KIT | KIT-Bibliothek | Impressum | Datenschutz

Assessing different roughness description methods in skin friction prediction

Yang, Jiasheng ORCID iD icon 1; Stroh, Alexander 1; Lee, Sangseung; Bagheri, Shervin; Frohnapfel, Bettina ORCID iD icon 1; Forooghi, Pourya
1 Institut für Strömungsmechanik (ISTM), Karlsruher Institut für Technologie (KIT)

Abstract:

A comparative analysis is conducted to investigate the effect of different roughness description methods as input parameters on data-driven predictive models for determining the roughness equivalent sand-grain size $k_s$. All models developed in this work are realized in form of deep neural networks (NN). The first type of model, denoted as $\text{NN}_\text{PS}$, incorporates the roughness height probability density function (p.d.f.) and power spectrum (PS), while the second type of model, $\text{NN}_\text{ST}$, utilizes several roughness statistical parameters as inputs. The architecture of the models are individually determined through Bayesian optimization. Ensemble prediction technique is adopted in the present work. Specifically, 50 individual NNs, either $\text{NN}_\text{PS}$ or $\text{NN}_\text{ST}$, are trained and combined to create ensemble neural networks (ENN) denoted as $\text{ENN}_\text{PS}$ and $\text{ENN}_\text{ST}$, respectively. A database consisting of 85 artificially generated roughness samples, along with direct numerical simulation results for those samples are employed to train both ENN models. Finally, the models are evaluated using roughness samples from both internal and external sources. ... mehr


Zugehörige Institution(en) am KIT Institut für Strömungsmechanik (ISTM)
Publikationstyp Vortrag
Publikationsmonat/-jahr 09.2023
Sprache Englisch
Identifikator KITopen-ID: 1000164092
Veranstaltung 14th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements (ETMM 2023), Barcelona, Spanien, 06.09.2023 – 08.09.2023
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page