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Abstract. The existence and stability of steady-state averaged solutions for a strongly over-
damped particle in a cosine potential are analytically studied when subjected to harmonic
excitation. The stability loss of these solutions, which oscillate near the bottom of the po-
tential well, can be viewed as an escape problem. The harmonic balance method is used for
the analysis up to the first order, including a constant bias term. When a massless particle
is assumed, the steady-state solutions oscillate around either the potential well’s minima or
maxima. However, taking the particle’s mass into account alters the structure of the steady-
state solution. Within certain excitation parameter ranges, a new set of equilibrium positions
for the oscillation center arises, linking the equilibria at the potential’s extremities. Interest-
ingly, modulating only the force amplitude can continuously bias the steady-state oscillation
center.

Keywords: particle positioning, potential well, overdamped system, harmonic balance, sta-
bility analysis

1 Introduction

The precise and efficient control of particles at the microscale to nanoscale remains an area of
significant interest, primarily because of its potential applications in fields like rapid prototyping
and biomedicine. Traditionally, methods based on optical manipulation were common. However,
recent trends show an inclination towards the use of sound fields, which exert acoustic forces for
assembly, presenting a direct approach without requiring chemical additives such as photoinitiators.
Although the acoustic assembly of particles demonstrates potential in rapid prototyping [1] and cell
culture applications [2], its capabilities have been limited mainly to 2D assemblies near boundaries
[3, 4] or point-focused tweezing in both air [5, 6] and aquatic settings [7, 8]. Using standing waves
to assemble cells or colloidal microparticles often results in highly symmetrical patterns [9, 10, 11].
The closed cavity assembly discussed by Prisbrey et al. [12] also has certain geometric challenges.

Recent research by Melde et al. [13] has introduced the use of compact holographic ultrasound
fields. This technique assembles various materials, including solid microparticles and hydrogel beads,
without the need for opposing waves or scaffolds, presenting a promising approach for rapid bio-
fabrication. Separately, an earlier foundational study by Friedrich and Herschbach [14] detailed
the interactions between intense laser radiation and polarizable molecules. Their work highlighted
the formation of aligned pendular states, indicating a potential for laser alignment and molecular
trapping.
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The harmonic balance method is a well-researched technique in the literature. While Nayfeh and
Mook ’s textbook [15] is not solely focused on the harmonic balance, it provides a comprehensive
overview of the method, among other topics. The application of the method spans various disciplines,
including electrical circuits as described by Gilbert and Steer [16, 17], fluid dynamics by Hall et
al. [18], and mechanical systems discussed by Sarrouy and Sinou [19]. Alongside these, Krack and
Gross’s Harmonic Balance for Nonlinear Vibration Problems [20] offers a comprehensive overview
of the harmonic balance method in the context of nonlinear vibration problems.

In our study, we examine the positioning of a strongly damped particle in a cosine potential
subjected to a harmonic force (cf. Fig. 1), drawing parallels to the behavior of a strongly damped
driven pendulum. This research seeks to enhance our understanding of the system’s dynamics, with
the harmonic balance method employed to describe the system’s motion analytically.

The paper is organized as follows. Section 2 introduces the problem formulation. Section 3 em-
ploys the harmonic balance method, encompassing zeroth-order and first-order harmonics. Section
4 validates analytic solutions against numerical simulations. Section 5 discusses the broader impli-
cations of the results and outlines the limitations of the study. Section 6 summarizes the findings
and suggests areas for future research.

2 Problem setting

We investigate the dynamics of a strongly damped particle in a cosine potential under harmonic
excitation, as described by Eq. (1). The system is mechanically analogous to a damped pendulum
in a gravitational field subject to periodic external momentum, as depicted in Fig. 2. The governing
equation of motion is expressed as:

mẍ+ kẋ+ c sinx = f sin(ωτ + β), (1)

where:
– m is the mass parameter without further assumptions on its magnitude.
– k is a large damping coefficient that ensures an overdamped regime such that k = O(1).
– c sinx represents the restoring force of the potential.
– f denotes the amplitude of the external forcing and is also of the order O(1).

No specific conditions are imposed on the excitation frequency, ω, and the initial phase, β.

Fig. 1: Problem setting

We introduce a coordinate transformation τ = ω0t to further analyze the system, which leads to
the following differential relations:

ω0□
′ := ω0

d□
dt

=
d
dτ

, ω2
0

d2

dt2
=

d2

dτ2
. (2)
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Upon application of the transformation, Eq. (1) can be recast in the following form:

ω0m

k
x′′ + x′ +

c

kω0
sinx =

f

kω0
sin

(
ω

ω0
t+ β

)
. (3)

By setting the frequency as ω0 := c/k and introducing the dimensionless frequency Ω := kω/c, the
equation becomes as follows:

cm

k2
x′′ + x′ + sinx =

f

kω0
sin(Ωt+ β). (4)

Consequently, the system’s dimensionless mass and force parameters are defined by

M :=
cm

k2
, F :=

f

kω0
, (5)

yielding the nonlinear differential equation

Mx′′ + x′ + sinx = F sin(Ωt+ β). (6)

Numerical simulations suggest that the steady-state solutions of this system are not limited to being
centered at the bottom of the potential, as depicted in Fig. 3a. The solutions can also be centered
around the top, given certain values of F , as illustrated in Fig. 3c.

Furthermore, solutions placed between these two points are also feasible, as highlighted in Fig.
3b. Hence, the symmetry breaking bias can be observed in stationary solutions, which we will
capture analytically in the next section.

Fig. 2: Analogous mechanical model of the problem. Eq. (1) is obtained by setting m = m̃d
2 + 2mRl2

d ,
k = k̃d

2 , c = 2mRgl
d and x ≡ φ = x̃d

2



4 Genda et al.

(a) Bottom (b) Intermediate (c) Top

Fig. 3: Different kinds of solutions (black continuous curves) for parameter values M = 1, Ω = 1,
β = π/2 with homogeneous initial conditions. The center of the vibration (red curve) can be stable
at the bottom, top, or any point of the cosine potential, depending on the chosen value of F . In these
figures, the center of vibrations is estimated by the mean value of the upper and lower envelopes
(dashed black lines) obtained by MATLAB’s envelope function applied to the numerical simulation
data

3 Analytic treatment

In the following section, our analysis will concentrate on determining the steady-state solutions of
Eq. (6) and evaluating their stability.

3.1 Harmonic balance

Due to the strong damping, transient solutions decay quickly and only periodic solutions are ob-
served at the steady state. This makes the harmonic balance method suitable for capturing the
primary dynamics of the system. To be able to address asymmetric solutions as well, we include a
constant (bias) term besides the first harmonic term

x0(t) = A0 +A1 sin(Ωt+ β − Ψ). (7)

Plugging this into the differential equation, given by Eq. (4), we get:

M(−Ω2A1 sin(Ωt+ β − Ψ)) +A1Ω cos(Ωt+ β − Ψ)

+ sin(A0 +A1 sin(Ωt+ β − Ψ)) = F sin(Ωt+ β). (8)
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The last term on the left-hand side of Eq. (8) needs further treatment since a sine function is nested
in itself. The Jacobi-Anger expansion, as given by Eqs. (9-10), is suitable for solving this issue.

sin(z sin(θ)) = 2

∞∑
n=1

J2n−1(z) sin [(2n− 1)θ] , (9)

cos(z sin(θ)) = J0(z) + 2

∞∑
n=1

J2n(z) cos(2nθ), (10)

where Jn(z) is the Bessel function of the first kind of order n.
Applying Eqs. (9-10) to Eq. (8), we can derive three nonlinear algebraic equations by grouping the
constant, the sin(Ωt+ β), and the cos(Ωt+ β) terms:

J0(A1) sinA0 = 0, (11)

−A1Ω
2M cosΨ +A1Ω sinΨ + 2 cosA0J1(A1) cosΨ = F, (12)

A1Ω
2M sinΨ +A1Ω cosΨ − 2 cosA0J1(A1) sinΨ = 0. (13)

Eq. (11) has three different kinds of solutions, corresponding to solution families (SF): A0 is either
located at the bottom (bottom SF) or the top (top SF) of the cosine potential; or the value of A1

is a root of the Bessel function J0 (intermediate SF), i.e.,

A0,1 = 2kπ, k ∈ Z, (14)
A0,2 = (2k + 1)π, k ∈ Z, (15)

A1,3 = J−1
0 (0), A1,3 > 0, (16)

where we define J−1
0 (0) as a set-valued expression to denote all positive roots of the Bessel function

of the first kind of zeroth order. For the solutions given by Eqs. (14-15), the values of A1 and Ψ
still have to be determined from Eqs. (12-13), whereas in case of Eq. (16) the value of A0 and Ψ
must be determined using the remaining equations (12-13).

The following three SBs are given.

Bottom SF Inserting Eq. (14) in Eqs. (12-13) and applying some algebra, we can separate Ψ and
A1 in two distinct equations

sinΨ1 =
A1,1Ω

F
, (17)(

A1,1Ω
2M − 2J1(A1,1)

)2
+A2

1,1Ω
2 = F 2. (18)

Eq. (18) cannot be solved explicitly for A1,1; however, an asymptotic solution can be given for large
values of F when the force exerted by the cosine potential becomes negligible compared to the
damping and inertial forces

A1,1 ≈ F

Ω

1√
Ω2M2 + 1

, for F ≫ 1. (19)
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Top SF Similarly, by inserting Eq. (15) in Eqs. (12-13) and performing the same algebraic steps,
we can separate Ψ and A1:

sinΨ2 =
A1,2Ω

F
, (20)(

A1,2Ω
2M + 2J1(A1,2)

)2
+A2

1,2Ω
2 = F 2, (21)

thus, the equations for the top SF and the bottom SF only differ in the sign of 2J1(A1,2).

Intermediate SF The derivation of this family of solutions differs from the previous ones since
the possible values of A1 are already known; instead, A0 is sought. Let us denote the kth root of
J0(A1) by αk. Using this notation, we can rewrite Eqs. (12-13) as(

2 cosA0J1(αk)− αkΩ
2M
)
cosΨ + αkΩ sinΨ =F, (22)

−
(
2 cosA0J1(αk)− αkΩ

2M
)
sinΨ + αkΩ cosΨ =0, (23)

from which follows that

sinΨ3 =
αkΩ

F
, (24)(

2 cosA0J1(αk)− αkΩ
2M
)2

+ α2
kΩ

2 = F 2. (25)

Eq. (25) can be resolved for the bias term as

A0 = 2πl ± arccos

(
αkΩ

2M ±
√
F 2 − α2

kΩ
2

2J1(αk)

)
, l ∈ Z. (26)

On the contrary to the bottom and top SFs, the intermediate SF does not always exist. The solution
exists if the arccos function has real arguments on [−1, 1]. To secure a real argument,

αkΩ < F (27)

has to be fulfilled. Furthermore, the arccos function will take real values if the inequalities

−1 ≤
αkΩ

2M ±
√

F 2 − α2
kΩ

2

2J1(αk)
≤ 1 (28)

are fulfilled. If J1(αk) > 0 then we have

−2J1(αk)− αkΩ
2M ≤ ±

√
F 2 − α2

kΩ
2 ≤ 2J1(αk)− αkΩ

2M, (29)

otherwise, we have

−2J1(αk)− αkΩ
2M ≥ ±

√
F 2 − α2

kΩ
2 ≥ 2J1(αk)− αkΩ

2M. (30)

Whether the term with F should be taken with a plus or minus sign can be determined by case
distinction. We only investigate the case J1(αk) > 0, given by Eq. (29), since the procedure and
results are analogous for Eq. (30).
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The left term of Eq. (29) is always negative, and its right term is negative for

2J1(αk)

αkΩ2
< M, (31)

in which case only −
√
F 2 − α2

kΩ
2 is feasible. Then, we have√

(αkΩ2M − 2J1(αk))
2
+ α2

kΩ
2 ≤ F ≤

√
(αkΩ2M + 2J1(αk))

2
+ α2

kΩ
2, (32)

that always fulfills inequality (27) as well.
However, if

2J1(αk)

αkΩ2
> M, (33)

then case −
√
F 2 − α2

kΩ
2 always fulfills the right hand side of inequality (29), but also +

√
F 2 − α2

kΩ
2

does so for

αkΩ ≤ F ≤
√
(2J1(αk)− αkΩ2M)

2
+ α2

kΩ
2, (34)

thus, in this case, the two kinds of solutions

A0 = 2πl ± arccos

(
αkΩ

2M ±
√
F 2 − α2

kΩ
2

2J1(αk)

)
, l ∈ Z, (35)

exist. For √
(αkΩ2M − 2J1(αk))

2
+ α2

kΩ
2 ≤ F ≤

√
(αkΩ2M + 2J1(αk))

2
+ α2

kΩ
2, (36)

only

A0 = 2πl ± arccos

(
αkΩ

2M −
√
F 2 − α2

kΩ
2

2J1(αk)

)
, l ∈ Z, (37)

exists.
The existence of two distinct kinds of solution within the intermediate SF in the parameter

region given by Eq. (33) is an artifact of our chosen ansatz. In none of the numerical simulations,
such double solutions could be observed (cf. Fig. 4a and 5a). In fact, by increasing the values of
the amplitude of the force, the center of vibration A0 shifts continuously and smoothly from the
bottom of the potential to the top and vice versa.

As mentioned previously, in the case of J1(αk) < 0, the calculation is very similar, and the
artificial double solution parameter region emerges similarly.

3.2 Stability analysis of the steady-state solutions

The steady-state solutions for Eq. (4) have been identified. However, their stability still needs to
be ascertained. We introduce a small perturbation δ in the steady-state solution x0 as follows:

x(t) = x0(t) + δ(t), (38)
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and insert it in Eq. (6) to find

Mẍ0 +Mδ̈ + ẋ0 + δ̇ + sin(x0 + δ) = F sin(Ωt+ β), (39)

after linearizing the sine term around x0, we have

Mẍ0 +Mδ̈ + ẋ0 + δ̇ + sin(x0) + cos(x0)δ = F sin(Ωt+ β). (40)

Given that x0 satisfies the differential equation (6) within the first harmonic approximation, we can
simplify Eq. (39) by letting the terms cancel each other out. We obtain the following.

Mδ̈ + δ̇ + cos(x0)δ = 0. (41)

Eq. (41) is a linear differential equation with parametric excitation due to x0 being a function
of time. One way to obtain information on the stability of the solutions would be to determine
the Floquet multipliers. However, it is notable that the dynamics of δ is extremely slow when
the stability of the solution δ(t) = 0 is lost. Therefore, we can average the "fast" dynamics with
frequency Ω after making use of the Jacobi-Anger expansion again. Using Eq. (10), we find the
average value

⟨cos(A0 +A1 sin(Ωt− Ψ))⟩ = (42)
= ⟨cosA0 cos(A1 sin(Ωt− Ψ))− sinA0 sin(A1 sin(Ωt− Ψ))⟩ (43)

=

〈
cosA0

(
J0(A1) + 2

∞∑
n=1

J2n(A1) cos(2n(Ωt− Ψ))

)〉

−

〈
sinA0

(
2

∞∑
n=1

J2n−1(A1) sin [(2n− 1)(Ωt− Ψ)]

)〉
(44)

= cosA0J0(A1). (45)

Hence, the average of Eq. (41) becomes

Mδ̈ + δ̇ + cosA0J0(A1)δ = 0. (46)

Taking the values of A0 and A1 corresponding to the different SBs, we can use a simple linear
stability analysis to determine the stability of the steady-state solutions found in Secs. 3.1-3.1. For
asymptotic stability, cosA0J0(A1) > 0 must be fulfilled.

Stability of the bottom SF When the center of vibration, A0, is at the bottom of the potential
well, we have cosA0 = 1. Thus, the corresponding solution is stable if J0(A1) has a positive sign.
Since the change of A1 is continuous in F , two consecutive roots of J0(A1) = 0 define the stability
boundaries. Inserted in Eq. (18), these roots provide the critical forcing values where the stability
of the steady-state solution changes:

Fcrit,1,k =

√
(2J1(αk)− αkΩ2M)

2
+ α2

kΩ
2, (47)

with αk being the kth root of J0(A1). Hence, the steady-state solution is stable for the following
conditions.

√
(2J1(α2k)− α2kΩ2M)

2
+ α2

2kΩ
2 < F <

√
(2J1(α2k+1)− α2k+1Ω2M)

2
+ α2

2k+1Ω
2, (48)

with k ∈ N and α0 := 0.
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Stability of the top SF When the center of vibrations is at the top of the potential, the situation
is similar to the previous one with the difference that now cosA0 = −1; thus, the solution at the top
of the potential becomes stable for negative values of J0(A1). Since A1 is the solution of Eq. (21),
the critical forcing values, where the stability of the steady-state solution changes, are determined
by

Fcrit,2,k =

√
(2J1(αk) + αkΩ2M)

2
+ α2

kΩ
2, (49)

with αk being the kth root of J0(A1). Hence, a steady-state solution is stable for

√
(2J1(α2k+1) + α2k+1Ω2M)

2
+ α2

2k+1Ω
2 < F <

√
(2J1(α2k+2) + α2k+2Ω2M)

2
+ α2

2k+2Ω
2, (50)

with k ∈ N.
We can observe that the parameter regions, defined by Eqs. (48) and (50), are disjoint and do

not cover all possible values of F . There are parameter regions of F , where neither the solution with
a vibration center at the bottom of the potential nor a vibration center at the top of the potential
is stable. This topological argument suggests that some solution in between must be stable.

Stability of the intermediate SF The linear stability analysis does not give any statement
regarding the stability of the intermediate SF because the values of A1 are determined by the roots
of J0(A1). Consequently, the term cosA0J0(A1) invariably equals zero, leading to an eigenvalue in
Eq. (46) that has a real part of zero. Due to the problem’s linearization, it is impossible to determine
stability from this conclusively. However, it is noteworthy that both topological considerations and
results from thousands of numerical simulations suggest that the intermediate SF given by Eq. (37)
is stable for

√
(2J1(α2k+1)− α2k+1Ω2M)2 + α2

2k+1Ω
2 < F <

√
(2J1(α2k+1) + α2k+1Ω2M)2 + α2

2k+1Ω
2 (51)

and √
(2J1(α2k+2) + α2k+2Ω2M)2 + α2

2k+2Ω
2 < F <

√
(2J1(α2k+2)− α2k+2Ω2M)2 + α2

2k+2Ω
2, (52)

with k ∈ N and α0 := 0. Note that the sign of J1(αk) alternates for consecutive values of k, making
Eqs. (51-52) consistent with Eqs. (48) and (50).

4 Validation

In Fig. 4a, we display the numerically derived steady-state center of vibration as a function of
parameters F and M . A more detailed view of the parameter region F = 2.65 . . . 2.71 and M =
0.001 . . . 0.05 is provided in Fig. 5a. The analytical estimate for the center of steady-state oscillations
is shown in Fig. 4b. There is a clear qualitative agreement between the analytic and numerical
results. However, some discrepancies between them can be observed; for example, the first predicted
value, where the stability of the steady-state solution changes when M = 0, is numerically obtained
at Fcrit,num(M = 0) = 2.677. At the same time, the analytic prediction is Fcrit,anal(M = 0) = 2.619.
Similarly, the transition region from A0 = 0 to A0 = π is offset by some amount for M ̸= 0.
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Enhancing the harmonic balance approach by incorporating even a single additional term, like:

x0(t) = A0 +A1 sin(Ωt− Ψ1) +A2 sin(2Ωt− Ψ2), (53)

(a) Numerically obtained centers of vibration. Bifurcation
in the upper corner due to Eq. (37) prescribing a family
of solutions. The actual solution depends on the excitation
phase and initial conditions

(b) Analytically obtained centers of vibration. The function
in the bottom corner is not displayed correctly due to the
artificial double-solution of the harmonic balance ansatz.
Simulations show a continuous transition from 0 to π

Fig. 4: Position of the center of steady state vibrations against the values of F and M with Ω = 1,
β = π/2 and homogeneous initial conditions

significantly complicates the problem to the point where analytic solutions become nearly unman-
ageable.

Yet, numerically, we can observe that the intermediate solution breaks the symmetry not only
by its biased vibration center but also by its non-vanishing even Fourier terms. To demonstrate
this, in Fig. 6, two examples are given, where the Fourier coefficients of the periodic steady-state
solution are determined by the numerical evaluation of Eq. (54)

Ck =
1

T

∫ t∞+T

t∞

x(t)e−iΩktdt, (54)
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(a) High-resolution view of the bottom corner of Fig. 4a (b) Stable steady-state solutions

Fig. 5: Comparison of numerical and analytic results against parameters F and M . The left subfigure
shows the numerical results for small mass values, while the right presents the analytically obtained
stable steady-state solutions: bottom (green), top (red) and intermediate (purple). In the left figure,
for M = 0, the function converges to a step function at Fcrit = 2.677 that changes from A0 = 0 to
A0 = π

where T = 2π/Ω; and t∞ denotes a sufficiently late time instance after which the transient motion
might be neglected. With these coefficients, the steady-state solution can be represented as

x(t) =

∞∑
k=−∞

Cke
iΩkt. (55)

5 Discussion

This paper investigated steady-state solutions of an overdamped particle in a cosine potential un-
der harmonic excitation. Depending on the particle’s mass, the exciting force amplitude, and the
excitation frequency, the center of the steady-state oscillation might differ. One can observe that by
increasing the value of F , at a certain level, the center of vibration starts to shift continuously from
the bottom position 2kπ to the neighboring top position (2k ± 1)π, where after reaching a certain
critical force level, the center of oscillation settles. After the excitation force is further increased, a
continuous shift of the center of oscillation starts back to the bottom position. This process repeats
itself infinitely, although the transition from the bottom to the top of the potential always happens
faster by increasing the values of F . The observed continuous shift is an effect of the particle’s
mass; in the case of a massless particle, the continuous shift cannot be observed; it is reduced to a
discontinuous jump in the value of the center of steady vibrations.

Furthermore, the initial conditions and the starting phase of the excitation have a minor impact
on the steady-state outcome of the system. They determine the location of the vibration center but
do not change the stable solution family itself, as shown in Fig. 4a.
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(a) Symmetric steady-state solution with F = 2.5

(b) Asymmetric steady-state solution with F = 3

Fig. 6: Solution x(t) decaying to steady state (on the left) and the amplitudes of its spectral decom-
position |Ck| (on the right) with parameter values M = 0.5, F = {2.5, 3}, Ω = 1 and β = −π/2
using homogeneous ICs. The red line denotes the center of vibration, while the dashed line is the
vibration envelope

At first glance, it seems that the mass of the particle is responsible for the surprising asym-
metric dynamics of the system. However, we should realize that the system dynamics is naturally
asymmetrical, and neglecting the mass results in degenerate symmetric dynamics, as revealed by
Eqs. (12-13). A rather intuitive explanation for what has been derived analytically in the paper is
as follows.

For a given excitation, the resulting steady-state vibration amplitude is largely determined by the
damping and, eventually, by the mass of the particle. However, the underlying force of the potential
also contributes to the steady-state amplitude value. This contribution is based on the average force
acting on the particle during one period of its supposed steady-state movement. Depending on the
magnitude of the exciting force, the potential’s average force can either increase or decrease the
amplitude of the steady-state solution compared to the case of a damped free particle (without
potential). In most cases, this will either result in a bottom- or top-stabilized vibration center.
However, for the same excitation, the steady-state vibration amplitude at the bottom is always
different from the top one. Thus, when the steady-state solution loses its stability around one of
the positions, the other one still has not gained stability. Therefore, if there is any stable periodic
solution in such a case, it must be centered at an intermediate position between the bottom and
the top of the potential.
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In contrast, when a massless particle is considered, the structure of the system degenerates: it
becomes a first-order system, and as such, it is no "classical" mechanical system anymore. Thus,
our intuition, accustomed to second-order mechanical systems, is deceived. In the model reduction
with no mass, may it only be an artifact, the steady-state vibration amplitude at the top and at
the bottom are equal. Thus, by the loss of stability at one of them, stability is immediately gained
at the other.

6 Conclusions and scope for future research

The existence of a stable biased steady-state solution in what appears to be a symmetric prob-
lem raises a crucial question in research methodology: the selection of an appropriate ansatz. This
finding underscores the need for an initial (often numerical) exploration phase preceding analytical
treatment. Properly executed, this exploratory phase enables researchers to identify key system pa-
rameters and anticipate the types of bifurcations that may occur. Although experienced researchers
might accurately predict system behavior through intuitive thought experiments, even straightfor-
ward scenarios like the one detailed in this paper can yield surprising dynamics that risk leading to
an incorrect choice of ansatz.

The existence of stable steady-state solutions with an intermediate center of vibration has prac-
tical implications as well. The overdamped particle M might be a molecule actuated by an elec-
tromagnetic or acoustic field. Its position might be controlled only by changing the value of the
excitation amplitude, and there is no need to control the excitation phase.

These results have potential applications in ultrasound-driven particle systems and in the design
of microelectromechanical systems.

A pressing question from this study is about the nature of potentials that allow the vibration
center to shift continuously just by increasing the excitation force’s amplitude. Identifying the
conditions for such potentials remains a valuable area for further research.
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