KIT | KIT-Bibliothek | Impressum | Datenschutz

SAFFIRRE: Selective Aggregate Filtering Through Filter Rule Refinement

Heseding, Hauke 1; Bachmann, Felix; Bien, Philipp Sebastian; Zitterbart, Martina 1
1 Institut für Telematik (TM), Karlsruher Institut für Technologie (KIT)

Abstract:

Volumetric Distributed Denial of Service attacks send unsolicited high-volume traffic to overwhelm network infrastructures and disrupt service availability. To counteract such attacks, we introduce Selective Aggregate Filtering through Filter Rule Refinement. This novel approach monitors traffic aggregates over the IP address hierarchy with hierarchical heavy hitter algorithms. Based on this, it builds effective droplists for upstream filtering to protect network infrastructures. By estimating attack traffic volumes in traffic aggregates with machine learning, filter rule refinement compensates several drawbacks of hierarchical heavy hitters to achieve low false positive and false negative rates. Furthermore, it enables adaptation to dynamic traffic by tracking filter rule precision over time. We evaluate mitigation effectiveness in dynamic situations with challenging mixed legitimate and attack traffic distributions.


Zugehörige Institution(en) am KIT Institut für Telematik (TM)
Kompetenzzentrum für angewandte Sicherheitstechnologie (KASTEL)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 02.11.2023
Sprache Englisch
Identifikator ISBN: 979-83-503-3807-2
KITopen-ID: 1000164123
HGF-Programm 46.23.01 (POF IV, LK 01) Methods for Engineering Secure Systems
Erschienen in 2023 14th International Conference on Network of the Future (NoF), Izmir, 4th-06th October 2023
Veranstaltung 14th International Conference on Network of the Future (NoF 2023), Izmir, Türkei, 04.10.2023 – 06.10.2023
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 42–46
Schlagwörter distributed denial of service, hierarchical heavy hitters, machine learning
Nachgewiesen in Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page