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Abstract
The usually short lifetime of convective storms and their rapid development
during unstable weather conditions makes forecasting these storms challeng-
ing. It is necessary, therefore, to improve the procedures for estimating the
storms’ expected life cycles, including the storms’ lifetime, size, and intensity
development. We present an analysis of the life cycles of convective cells in Ger-
many, focusing on the relevance of the prevailing atmospheric conditions. Using
data from the radar-based cell detection and tracking algorithm KONRAD of
the German Weather Service, the life cycles of isolated convective storms are
analysed for the summer half-years from 2011 to 2016. In addition, numerous
convection-relevant atmospheric ambient variables (e.g., deep-layer shear, con-
vective available potential energy, lifted index), which were calculated using
high-resolution COSMO-EU assimilation analyses (0.0625◦), are combined with
the life cycles. The statistical analyses of the life cycles reveal that rapid initial
area growth supports wider horizontal expansion of a cell in the subsequent
development and, indirectly, a longer lifetime. Specifically, the information
about the initial horizontal cell area is the most important predictor for the
lifetime and expected maximum cell area during the life cycle. However, its pre-
dictive skill turns out to be moderate at most, but still considerably higher than
the skill of any ambient variable is. Of the latter, measures of midtropospheric
mean wind and vertical wind shear are most suitable for distinguishing between
convective cells with short lifetime and those with long lifetime. Higher ther-
mal instability is associated with faster initial growth, thus favouring larger and
longer living cells. A detailed objective correlation analysis between ambient
variables, coupled with analyses discriminating groups of different lifetime and
maximum cell area, makes it possible to gain new insights into their statistical
connections. The results of this study provide guidance for predictor selection
and advancements of nowcasting applications.
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1 INTRODUCTION

Forecasting and nowcasting convective storms are
challenging tasks for weather services. Every year,
these storms cause substantial damage to infrastruc-
ture, property, and agricultural areas. In central Europe,
convective storms occur most frequently from April to
September, leading to damage totalling billions of euros,
as well as many injuries and fatalities every year (Púčik
et al., 2019; Taszarek et al., 2019). In Germany alone,
some single convective events during the past decade
caused more than €100 million to occasionally more than
€1 billion in damage by, for instance, local flash floods
stemming from long-living quasi-stationary cells or by
extended hail swaths containing large hailstones produced
by long-living supercells (e.g., Piper et al., 2016; Bronstert
et al., 2017; Hübl, 2017; Vogel et al., 2017; Kunz et al., 2018;
Mohr et al., 2020; Wilhelm et al., 2021). Difficulties in
forecasting convective storms arise from the complex
processes and scale interactions involved, the lack of
comprehensive and detailed observational information,
and the limited representation of deep moist convection
(DMC) in numerical weather prediction (NWP) models.
Improvements in estimating the short-term evolution of
convective storms are essential for providing temporally
and spatially more accurate warnings to the public and
emergency services (e.g., Wapler et al., 2018).

During the past few decades, numerous dynamical
quantities and so-called convective indices quantifying
different atmospheric prerequisites for the development of
convective storms (thermal instability, sufficient moisture,
lifting; see Doswell, 1987; Johns and Doswell, 1992) have
been invented. This has allowed for the ingredients-based
forecasting of storm occurrences and associated haz-
ards (e.g., Huntrieser et al., 1997; Rasmussen and
Blanchard, 1998; Haklander and van Delden, 2003;
Manzato, 2003; Brooks, 2007; Kunz, 2007). Relation-
ships between thunderstorm occurrences or different
convective phenomena and ambient conditions have
recently been analysed in several studies using radar,
satellite, lightning, radiosonde, and model data, unravel-
ling characteristic connections in a statistical sense (e.g.,
Kunz, 2007; Brooks, 2009; Kaltenböck et al., 2009; Mohr
and Kunz, 2013; Púčik et al., 2015; Ukkonen et al., 2017;
Westermayer et al., 2017; Kunz et al., 2020; Taszarek
et al., 2021). An insufficiently clarified question is whether
and which of the ambient variables and parameters have
the highest prediction skill for the life-cycle properties of
convective cells, such as lifetime, the development of the
cells’ extent in terms of regions of high radar reflectivity
and precipitation, and the development of the cells’ inten-
sity characterised, for example, by a large fraction of very
high radar reflectivity. Incorporating information from

these ambient variables about the expected life cycles
might help with reducing the intricacies of operational
nowcasting procedures.

Zöbisch et al. (2020) recently presented a study on the
characteristics of DMC aimed at improving thunderstorm
nowcasting. Specifically, they provided a detailed review
of studies investigating convective storm life cycles dur-
ing the past few decades. As (severe) thunderstorms occur
in many regions of the Earth, on a broad range of scales,
and under a large variety of atmospheric conditions, draw-
ing generally valid conclusions from life-cycle studies is a
challenging task. Nevertheless, improved forecasting and
nowcasting techniques through improved life-cycle rep-
resentation have the potential to lead to more reliable
warnings, and thus save lives and prevent damage.

Ordinary and widely used nowcasting techniques for
hazards related to convective storms involve predicting
their development for the next minutes to hours. These
methods mainly extrapolate the track of a storm that a
certain tracking algorithm has detected based on tempo-
rally highly resolved radar or satellite observations (Wang
et al., 2017). Possible changes in intensity, size, propaga-
tion speed, and direction, however, usually are not taken
into account with these techniques. Still, convective cells
are intrinsically in a state of alteration during their life
cycles (e.g., Markowski and Richardson, 2010). One of the
challenges of thunderstorm nowcasting “is the improve-
ment of predictions of the remaining lifetime of existing
thunderstorms [… ] regardless of their organisation type”
(or life-cycle phase; Zöbisch et al., 2020). The organisa-
tion type, or convective mode, however, depends on the
mesoscale atmospheric ambient conditions that may be
described by meteorological parameters such as the mean
wind and the vertical wind shear in the lower to middle
troposphere (e.g., Weisman and Klemp, 1982; Markowski
and Richardson, 2010; Trapp, 2013).

Some nowcasting methods already use information
about ambient conditions from the NWP model data
along with observational data: German Weather Service’s
(DWD’s) nowcasting system, NowCastMix, is used for
nowcasting both summer and winter warning events
(James et al., 2018). NowCastMix combines NWP fore-
casts, real-time weather station reports, lightning data,
weather radar products, and data from convective cell
detection and tracking methods with a fuzzy logic
approach to produce an objective hazard warning. The
ProbSevere system of the National Oceanic and Atmo-
spheric Administration extracts and integrates data from
rapid-update NWP forecasts, satellite, lightning, and radar
data via multiplatform multiscale storm identification and
tracking. This is done to compute severe hazard proba-
bilities in a statistical framework using naive Bayesian
classifiers for machine learning (Cintineo et al., 2020).
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The Context and Scale Oriented Thunderstorm Satellite
Predictors Development (COALITION-3) system of the
Swiss weather service, MeteoSwiss, probabilistically esti-
mates storm developments for the next hour on the
basis of NWP, satellite, lightning, and radar data. It also
takes into account the influence of orography and uses
gradient-boosted decision trees for machine learning (Nisi
et al., 2014; Hamann et al., 2019). For nowcasting lead
times of 15 min and more, they found that NWP model
information becomes the most important source. Recently,
Mecikalski et al. (2021) presented a multisensor (satel-
lite, lightning, and radar data) random forest approach
to assess predictors’ importance and the predictive skill
of severe thunderstorm and tornado warnings in a multi-
variate framework. Because they suspected that “a severe
storm adjacent to a nonsevere storm could be assigned the
same NWP fields in terms of kinematic and thermody-
namic fields”, they did not consider the ambient conditions
of the storms.

For overcoming the simple extrapolation of thunder-
storm tracks and inspecting the importance of ambient
variables in detail, it is imperative to investigate which
ambient variables are strong predictors for a sound life-
cycle estimation, which may enhance today’s nowcasting
systems. Moreover, insights into the importance of the
parameters compared with information about the cells’
histories at different life-cycle stages are essential. These
questions are addressed in the study at hand, where the
main element is the statistical analysis of the relationships
between life-cycle attributes and ambient variables. In
particular, following the investigations of Wilhelm (2022),
this article addresses the following two main scientific
questions:

(1) Under which range of prevailing ambient conditions
does DMC develop, and how are the related ambient
variables statistically correlated with each other and
with cell attributes at the beginning of the cells’ life
cycles?

(2) Which ambient variables and cell attributes correlate
best with the storm properties of lifetime and maxi-
mum area, indicating the potential for the improve-
ment of nowcasting procedures?

Section 2 introduces KONRAD (from the German Kon-
vektionsentwicklung in Radarprodukten, meaning con-
vection evolution in radar products; Lang, 2001) cell
detection and tracking data, as well as Consortium for
Small-scale Modelling (COSMO-EU) assimilation analy-
ses, and it describes the methodology of the combination
of object data (radar) and meteorological fields (model).
Section 3 briefly discusses the convective cell properties,
provides an overview of the ambient conditions prevailing

during the storms detected, and quantifies the statistical
correlations between them. In Section 4, the correlation
of ambient variables, initial cell growth, and life-cycle
characteristics (like cell lifetime and maximum cell area)
is quantified, thus highlighting their potential predictive
value. Section 5 summarises and discusses the most impor-
tant findings.

2 DATA AND METHODS

The analyses presented in this study are based on two
datasets. First, the life cycles of convective cells are
represented by data of DWD’s operational radar-based
cell detection and tracking algorithm, KONRAD. Sec-
ond, meteorological ambient conditions are assessed by
means of assimilation analyses of DWD’s formerly oper-
ational regional NWP model, COSMO-EU. The investi-
gation period ranges from 2011 to 2016, with only the
summer half-years being considered (April to September).
These 6 months mark the time span when most thunder-
storms occur in Germany (e.g., Wapler and James, 2015).
Both tracking and model data, their preparation, and their
combination are described separately in the following.

2.1 Observation data: Convective cell
detection and tracking with KONRAD

As described in detail in Wapler (2021), the cell
detection and tracking algorithm KONRAD utilises
two-dimensional (2D) composite radar reflectivity data
from the terrain-following near-surface precipitation scan
(RX composite) of the German C-band weather radar
network consisting of 17 operational radar stations (Mam-
men et al., 2010). The time and horizontal resolution of
the 2D composite are 5 min and 1 km respectively. Thus,
KONRAD runs operationally every 5 min, defining a con-
vective cell numerically as a continuous area of at least
15 km2 size with a radar reflectivity factor Z of 46 dBZ or
more (cell area). This operationally used threshold is rel-
atively high compared with other algorithms and studies
(e.g., Goudenhoofdt and Delobbe, 2013; Nisi et al., 2018,
and references therein), so considerable parts of the cells’
cumulus and dissipation stages are not included. The
tracking of convective cells is realised by matching the
cells of two consecutive radar composites as described in
Lang et al. (2003). Similar to many cell detection and track-
ing algorithms, KONRAD is not able to correctly handle
all cell life cycles, especially when it comes to splitting or
merging two or more cells. Owing to the strict numerical
definition of a cell as already mentioned herein, many
splits or merges seen via KONRAD do not represent real
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physical cell splits or merges. Moreover, obtaining a single
full convective cell track is not feasible in cases of multi-
cells, cell clusters, or mesoscale convective systems, which
appear frequently.

With this tracking data, the life cycles (i.e., object-based
sequences of multiple cell attributes) of the convective cells
detected are analysed, and cells that have been detected
at only one point in time are discarded. Cell attributes
comprise age, size, propagation direction, and speed, as
well as the position of the reflectivity-weighted centroid,
and the cell-enframing latitude–longitude rectangle (see
Section 2.3). For the purpose of avoiding a priori mislead-
ing interpretations arising from the difficulties of defining
the cell’s full life cycle as described herein, a vicinity crite-
rion is applied: all detected cells that might have developed
or dissipated close to another one (neighbour) are dis-
carded, as also are their neighbours. A sensitivity study
revealed 5 km as a good compromise for the minimum
required distance between the latitude–longitude rectan-
gles of two cells so that they are not filtered out based
on the vicinity criterion. Thus, the analysis presented in
this study focuses primarily on isolated convective storms
(i.e., single cells or supercells) that have undisturbed life
cycles and that do not dynamically interact with other
cells. Hence, the focus on isolated convection is reason-
able: on the one hand, supercells exhibit the greatest dam-
age potential (e.g., Kunz et al., 2018; Wilhelm et al., 2021);
on the other hand, single cells represent the “most sim-
ple cases” and a sufficiently large fraction of the available
data (see later). It should be noted, however, that the
isolated convection might still have been influenced by
weaker cells in the vicinity that did not fulfil the KONRAD
criteria. The vicinity filter is connected with more filters
that discard cells due to missing life-cycle information in
connection with the radar coverage or with unrealistic
propagation/evolution tendencies (e.g., direction change
of more than 30◦/5 min, smoothed over three detection
times; growth of more than 50 km2/5 min). Of the origi-
nal 103,563 life cycles, 35.5% are discarded based on the
vicinity filter, 27.3% are discarded based on the other fil-
ters, and 37.2% (38,553) remain after filtering. The latter
fraction seems to be low at first glance, but it is high com-
pared with the 92.1% of organised precipitation cores in
Germany that Pscheidt et al. (2019) reported from their
2-year statistics. The difference might emerge from the
fact that they define organisation in terms of connectiv-
ity of single detections of precipitation cores, whereas in
the study at hand the dynamical organisational form in
terms of single cells, multicells, supercells, and mesoscale
convective systems are referred to – similar to Markowski
and Richardson (2010). Moreover, KONRAD uses a much
higher operational reflectivity threshold, so that a direct
and fair comparison is not possible.

2.2 Model data: NWP model
COSMO-EU

The DWD operationally used the NWP model COSMO-EU
for regional weather forecasts from the end of Septem-
ber 2005 to November 2016. The model covers almost all
of Europe with a grid point distance of 0.0625◦ (≈7 km).
Hence, non-hydrostatic mesoscale effects are partially cap-
tured. Meanwhile, the DMC still needs to be parametrised,
as do many other subgrid-scale processes. Vertically, 40
hybrid terrain-following model levels are defined, ranging
from 10 m above ground to a height of 21.75 km (Schulz
and Schättler, 2014).

The operational workflow at the DWD is subdivided
into the data assimilation cycle and the generation of NWP
analyses and forecasts. Whereas COSMO-EU NWP anal-
yses were generated four times a day, assimilation anal-
yses were produced within the assimilation cycle each
hour. Additionally, the availability of assimilation analyses
is not as time critical compared with the NWP analy-
ses needed to initialise the corresponding forecasts. This
results in a later cut-off time for observations to arrive.
The observations are then considered in the assimila-
tion analyses, and this leads to a higher analysis quality.
Consequently, this study makes use of hourly assimila-
tion analyses. Assimilation has been implemented via
Newtonian relaxation (nudging), a four-dimensional pro-
cedure that pulls prognostic model variables during the
forward integration of the model to observations within
a predetermined time frame (Schraff, 1996; 1997; Schraff
and Hess, 2013). For the period from September 2014 to
November 2016, high-resolution OPERA rain rate data,
which can be derived from the reflectivity factor Z, have
been assimilated into COSMO-EU via additional latent
heat nudging (Stephan et al., 2008; DWD, 2014; Saltikoff
et al., 2019).

The analyses enable the calculation of a multi-
tude of meteorological variables and convective indices
that are not stored by default in the DWD database
(Wilhelm, 2022). This is accomplished by extending the
COSMO-EU-internal post-processing routines, initialising
the model with the analyses and re-outputting the desired
quantities at forecast time t = 0 for pressure and/or height
levels. These quantities characterise different aspects of
convective stability as well as air mass temperature, mois-
ture content, and dynamical conditions (see Section 3.2).
The newly implemented variables have been verified in
detail by comparing them with radiosonde soundings,
reanalyses, and the literature. Compared with similar
studies from Europe or the United States in the con-
text of convective events or their hazards on the basis of
either coarse reanalyses (e.g., Brooks, 2009; Kaltenböck
et al., 2009; Ukkonen et al., 2017; Westermayer et al., 2017)
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or proximity sounding data (e.g., Kunz, 2007; Mohr and
Kunz, 2013; Púčik et al., 2015), COSMO-EU provides a
temporally and spatially high-resolution representation of
the atmospheric state (Miller and Mote, 2018; Zöbisch
et al., 2020).

2.3 Data combination

The object-based KONRAD life cycles are combined with
the meteorological ambient variables from COSMO-EU.
For this purpose, the relevant 2D and three-dimensional
(3D) COSMO-EU fields are linearly interpolated to the
5-min resolution of the KONRAD data at first. Subse-
quently, for every time instance of the detection of a cell, a
circular surrounding area is put around the respective cell.
The radius of this area is determined as the composition
of the radius of a circle, which encloses the cell-enframing
latitude–longitude rectangle minimally, as well as the
additional fixed width of Rfix = 25 km, which leads to an
adaptive surrounding area depending on the size of the
cell detected (Appendix A.2, Figure A3). Within that area,
nine statistical measures of the ambient variables are com-
puted at the detection time (percentiles, distance-weighted
and unweighted spatial averages and standard deviations).
Various sensitivity studies, conducted with the focus on
the described aspects for a convectively active time period
in May–June 2016 (Piper et al., 2016), consolidate the
suitability of the chosen settings. Note that, for example,
choosing an earlier time instance (e.g., 30 or 60 min
before the detection time) for the computation of the
pre-convective ambient conditions or culling regions of
precipitation (as regions of modified ambient conditions)
have only a minor qualitative effect on the statistical mea-
sures and, therefore, are omitted.

For the sake of easy reading, the indication of the
statistical measure is omitted in the following, as mostly
only minor differences occur in the subsequent analy-
ses, except for standard deviations that are marked with
the superscript “(sd)”. Of the available ambient variables,
33 are used for further discussion to focus on the most
relevant ones and to avoid redundancies (Appendix A.2,
Table A1). The selection criterion is based mainly on
the discrimination ability of the variables between short-
and long-living cells (see Section 4). From this, 28 of
the 33 variables are obtained, among them the temper-
ature and the equivalent potential temperature (approx-
imation for a pseudo-adiabatic process; Bolton, 1980)
at the 850 hPa level: T850 and 𝜃e,850. To represent air
mass temperature gradients in the cells’ surroundings, the
standard deviations of these temperature variables T(sd)

850
and 𝜃(sd)

e,850 respectively, are also considered. Moreover, the
well-known lifting condensation level height (LCLMU), the

vertically integrated water vapour (IWV), and the stability
index Δ𝜃e (Atkins and Wakimoto, 1991) – here in the for-
mulation of Kunz (2007) – are included as well, yielding 33
ambient variables in total.

3 STATISTICAL PROPERTIES OF
CELL ATTRIBUTES AND AMBIENT
CONDITIONS

3.1 General cell properties

This section briefly summarises the properties of the con-
vective life cycles without any further information about
their ambient conditions. Wapler (2021) already presented
the multiyear life-cycle statistics of more than 100,000
KONRAD cells between 2007 and 2017, partly focusing
on the 5-year period from 2013 to 2017. They mentioned
that the life-cycle properties were qualitatively very sim-
ilar for their long and short periods, so the 6-year period
from 2011 to 2016 with the 38,553 KONRAD cells used
in this study sufficiently captures the overall statistics. It
should be noted, however, that the filtering of the life
cycles in this study as described in Section 2.1 differs some-
what from the methods of Wapler (2021). However, the
goal is the same: to analyse the undisturbed life cycles of
isolated convection. In addition to the description of the
general cell properties in the following paragraphs, short
life-cycle analyses in the style of Wapler (2021) are pre-
sented in Appendix A.1, which motivate the selection of
cell attributes and introduce mathematical descriptions.

Owing to the different types of organisation of con-
vective storms (single cells, multicells, supercells, and
mesoscale convective systems), the life-cycle character-
istics of individual cells may be strongly influenced by
adjacent cells, leading to ambiguous life-cycle definitions.
Cell clusters and mesoscale convective systems, consisting
of multiple individual convective cells, are much more dif-
ficult to track compared with isolated convective cells. The
lifetime of the embedded individual cells and their spa-
tial extent detected by KONRAD do not allow one to draw
conclusions about the main characteristics of the entire
cell complex. These are the main arguments for focusing
on non-splitting and non-merging isolated convection, as
other storms do not disturb their individual life cycles.
Still, the need exists for efficient nowcasting methods that
are as general as possible to obtain realistic estimates for
all future cell evolutions. It is possible that the findings on
isolated convection may be transferred in such a way that
nowcasting methods can be improved in the prediction of
other types of convective storm organisation. We recog-
nise, however, that this remains to be proven in future
studies and that tracking-based statistical investigations of
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F I G U R E 1 Spatial distribution of the total number of
convective cells (colours) during the investigation period of the
summer half-years of 2011–2016 (1 × 1 km2 grid), derived from
track polygons of cells detected via KONRAD. Only grid points over
land inside of Germany are evaluated.

the life cycles of multicellular convection are needed to
foster both a better understanding of the underlying mech-
anisms and a more sophisticated treatment of them in cell
detection and tracking algorithms.

The 38,553 isolated storms of the investigation period
of the summer half-years of 2011 to 2016 occurred in
all parts of Germany (Figure 1). Cell tracks can approx-
imately be represented by polygons derived from the
cell-enframing latitude–longitude rectangle and direction
information gathered through KONRAD (see Section 2.1).
The regions in southern Germany and around Frank-
furt am Main (50.1◦ N, 8.7◦ E) that exhibit comparatively
high cell numbers are well known for the frequent occur-
rence of thunderstorms (e.g., Wapler and James, 2015;
Piper and Kunz, 2017; Taszarek et al., 2019). Remarkably
different from storm climatology is the high number of
cells in northwestern Germany that can be ascribed to
the convectively active period in May–June 2016 (Piper
et al., 2016). The spatial distribution of the number of
storm days (i.e., days with at least one storm passing
by a location on a 1 × 1 km2 grid) turns out to be qual-
itatively and quantitatively very similar to the distribu-
tion of total cell number shown in Figure 1 (i.e., days
with more than one storm at a location are rare in the
dataset).

The absolute frequency distributions of cell lifetime T,
maximum area during the life cycle Amax (Figure 2a), and
track length (not shown) appear very skewed, expressing
the prevalence of short-living, small cells in the dataset
(Wapler, 2021). In general, long-living cells reach compar-
atively higher maximum cell areas and longer tracks than
short-living cells do. Nevertheless, their maximum area,
propagation speed, and track length may differ signifi-
cantly among each other. Cells with a long lifetime of more
than 60 min (1,096 cells or 2.8%) and 120 min (121 cells
or 0.3%) are detected across the entire country. Note that
the lifetime at the first detection is assumed to be 2 min
for all cells. Owing to the strict cell definition and detec-
tion criterion of KONRAD regarding the radar reflectivity
factor (see Section 2.1), which leave out considerable parts
of the cells’ cumulus and dissipation stage, the lifetime of
a KONRAD cell can typically be considered to be shorter
than the lifetime of the real convective cell. Among the
10 KONRAD cells with the longest lifetimes (up to more
than 240 min) were several prominent supercells whose
rotation was confirmed by eyewitnesses. Other supercells
are not included owing to the filter criteria mentioned
in Section 2.1, like the supercell on September 11, 2011
(Fluck, 2018), or the supercells on July 27–28, 2013 (Kunz
et al., 2018).

A large fraction of the cells (that increases with storm
lifetime) moved from (south)westerly to (north)easterly
directions. The overall direction distribution (not shown)
is well in line with other radar-based tracking studies
for Germany (e.g., Wapler and James, 2015; Schmid-
berger, 2018) and is a consequence of the favourable con-
ditions for convection, when moist and warm air masses
from the southwestern European and western Mediter-
ranean regions are advected to central Europe (Kapsch
et al., 2012; Piper and Kunz, 2017; Mohr et al., 2019). The
propagation speed c of the cells ranges from close to zero to
values above 25 m⋅s−1, mirroring different dynamic envi-
ronments (Figure 2a). The initial cell growth is highly
variable. However, the life-cycle analyses in Appendix A.1
indicate that the cell area at the first few life-cycle stages
(e.g., the cell area detected 5 min after the first detection
At=7 min; Figure 2a) might serve as a good predictor for
the cell lifetime and the maximum cell area during the
life cycle. A last interesting property of the cells in the
dataset is that during the life cycles of long-living cells
(T > 60 min), many other cells are present across the coun-
try (Figure 2b). These simultaneous cells, which were each
detected at least at one detection time of the respective
long-living cells, were mostly short-lived due to the general
majority of the short-living cells. Several of them occurred
in similar ambient conditions in the wider vicinity of the
long-living cells (i.e., their track centres were closer than
100 km to the long-living cells’ track centre, but the cells
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F I G U R E 2 (a) Frequency distributions of the cell area detected 5 min after the first detection ct=7 min, propagation speed 15 min after
the first detection c(t = 17 min), maximum cell area during life cycle Amax, and cell lifetime T. The interquartile range is highlighted by
boxes, the median by the yellow line, the arithmetic mean by the yellow star and the 2nd and 98th percentiles by the whiskers. The kernel
density estimation of the distribution according to Parzen (1962) was applied with a Gaussian kernel. (b) Relative frequency of the
simultaneous cell count during the life cycles of the 1,096 long-living cells with lifetime T > 60 min. Bars for all simultaneous cells (orange),
only short-living simultaneous cells (purple), and short-living simultaneous cells within a spatial circle with 100 km radius (green) are
depicted. The numbers on the abscissa indicate the top limit of the respective interval.

did not interact), so that around 80% of the long-living
cells were accompanied by at least one short-living cell
each, and around 50% were accompanied by at least three
short-living cells each.

3.2 Characteristics of ambient variables

The analyses presented in this section investigate the prop-
erties of the ambient variables prevailing during the occur-
rence of the detected convective cells but without any
relation to life-cycle attributes, such as lifetime or maxi-
mum cell area. As described in Section 2.3, the subsequent
evaluations focus on the 33 most relevant ambient vari-
ables. Their values reflect mean values averaged over the
respective cell lifetime, as the analyses revealed that their
variations along the cell track are in many cases neg-
ligibly small (see later), especially for short-living cells,
which constitute most of the event set. The ambient vari-
ables comprise several parameters characterising ambient
dynamics (wind and vertical wind shear), thermodynami-
cal parameters representing convective stability, moisture
and temperature quantities, characteristic levels from par-
cel theory (e.g, Bjerknes, 1938; Holton, 2004) and com-
posite parameters consisting of a combination of several
quantities. A complete list of the 33 variables, including
their long and short names, is given in Appendix A.2
(Table A1).

The frequency distributions of seven of the 33 vari-
ables mirror the range of atmospheric conditions in which
the 38,553 storms occurred (Figure 3a). Only parame-
ters frequently used for the description of thunderstorm
environments in the ingredients-based forecasting (see
Section 1) are discussed: the most unstable (MU) convec-
tive available potential energy CAPEMU, the 700–500 hPa
lapse rate LR700–500, the mixed-layer (ML; lowest 100 hPa)
lifted index LIML, the 0◦C-level height h0◦C, the IWV,
the deep-layer shear DLS, and the 0–3 km storm rela-
tive helicity SRH0–3 calculated using the parametrisation
of Bunkers et al. (2000) for right-movers. About 74% of
the cells occurred in thermodynamical conditions with
CAPEMU < 500 J⋅kg−1, corresponding to a theoretical max-
imum updraught velocity of WMAX = (2CAPEMU)1∕2 ≈
32 m⋅s−1 (e.g., Markowski and Richardson, 2010). Only
7% of the cells evolved during high CAPEMU with val-
ues above 1,000 J⋅kg−1. High CAPE values are climato-
logically observed on fewer days or hours per year in
central Europe compared with the United States (Brooks
et al., 2003; Taszarek et al., 2020). The LR700–500, a differ-
ential measure of midtropospheric convective instability,
ranges mostly between typical values of 5.5 and 6.5 K⋅km−1

(Westermayer et al., 2017), whereas larger values are rep-
resented sparsely. The values of LIML, another measure
of convective instability, mostly range from −4 K (unsta-
ble) to +2 K (stable). A positive LIML does not necessarily
imply a stable stratification, as an air parcel starting to rise
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WILHELM et al. 2259

F I G U R E 3 (a) Similar to Figure 2a, but showing frequency distributions of a selection of seven atmospheric variables (from left to right):
most unstable convective available potential energy (CAPEMU), 700–500 hPa lapse rate (LR700–500), mixed-layer lifted index (LIML), 0◦C-level
height (h0◦C), vertically integrated water vapour (IWV), deep-layer shear (DLS), 0–3 km storm relative helicity (SRH0–3). (b, c) Combined
frequency distributions for the ambient conditions, (b) for the combination of DLS and maximum updraught velocity WMAX = (2CAPEMU)1∕2,
and (c) for the combination of IWV and 850 hPa temperature (T850). Value ranges with fewer than 10 assigned cells are shown transparently.

from a higher or more unstable level than the averaged
ML may still have experienced positive buoyancy. LI val-
ues below −5 K usually come with very high CAPE values
of more than 1,000 J⋅kg−1 (Westermayer et al., 2017) and
are only sparsely represented in the dataset. As most of
the 38,553 cells have a short lifetime (see Section 3.1), the
temporal variability of the ambient variables during the
life cycle is rather small compared with the general vari-
ability between the different storm environments (in terms
of standard deviation). Nevertheless, this ratio of life-cycle
variability to environment variability is occasionally>1 for
long-lasting cells, especially for thermodynamical quanti-
ties, such as CAPE and LI, which typically vary on com-
paratively small scales. In addition, the ratio is sensitive to
temperature and moisture variations in the near-surface
tropospheric layers (Lee, 2002; Miller and Mote, 2018).

About 19% of the cells experienced a rather strong
vertical wind shear, with DLS values being higher than
18 m⋅s−1, which are favourable for potential supercell
developments (Markowski and Richardson, 2010). Most
of the cells occurred in rather calm to moderate dynam-
ical conditions with DLS values below 18 m⋅s−1, a range
where extreme convection-related hazards are only occa-
sionally observed (except for heavy rain from stationary
storms, which are especially favoured by such conditions;
Púčik et al., 2015; Aregger, 2021). The SRH0–3 is mostly in
the range 0–150 m2 ⋅s−2 (Taszarek et al., 2020). In conclu-
sion, the bulk of the cells analysed represents single cells in
weak to moderate dynamical and thermodynamical con-
ditions (Figure 3b), which can be partly explained by the
application of the cell filters described in Section 2.1. Espe-
cially in warm summer air masses (850 hPa temperature
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F I G U R E 4 Correlation matrix of Spearman’s rank correlation coefficient rS (colours) for the 33 selected ambient variables as well as
the cell attributes area A, core area AC, their ratio AC∕A, and propagation speed c 5 min after the first cell detection (t = 7 min). For an
explanation of the abbreviations used for the ambient variables, please refer to Table A1 in Appendix A.2. High (anti-)correlations are shown
in strong hues (red: rS > 0; blue: rS < 0), low ones in pale hues. (Anti-)correlations with an absolute value equal to or above 0.5 are
additionally given as numerical values (percent). Statistically insignificant correlations are marked with a cross (significance level P = 0.01).

T850 higher than 10–15◦C), the IWV reaches high values
mostly ranging from 25 kg⋅m−2 to more than 40 kg⋅m−2

as a consequence of the Clausius–Clapeyron relation
(Figure 3c). These are remarkable values that can
lead to heavy precipitation and flooding (e.g., Wilhelm
et al., 2021). Regarding the spatial variability of the ambi-
ent conditions, only several thermodynamical quantities
vary on the meso-𝛼 scale (Orlanski, 1975) conspicuously,
indicating a northwest-to-southeast gradient (e.g., the
average LIML decreases, and T850 and h0◦C remarkably
increase from northwest to southeast), which mirrors the
general mean air mass distribution over Germany during
summertime (not shown).

3.3 Correlation and cluster analysis

The (anti-)correlation in terms of Spearman’s rank cor-
relation coefficient rS between either two dynamical or
two thermodynamical quantities is high and significant for
many combinations (Figure 4; Manzato, 2012; Ukkonen

and Mäkelä, 2019). The agglomerations of correlation
coefficients apparent in Figure 4 can be further interpreted
by non-hierarchical correlation clustering, an objective
multivariate correlation approach. The k-medoids clus-
tering, akin to the extensively used k-means cluster-
ing, is able to find clusters of correlated variables based
on the dissimilation matrix alone without knowing the
space dimensionality and the positions of the variables
in this space (MacQueen, 1967; Lloyd, 1982; Kaufman
and Rousseeuw, 1990). The corresponding algorithm is
called “partitioning around medoids”, which converges
with arbitrary dissimilation metrics. Here, the measure
d = 1 − |rS| serves as a dissimilation metric: d is small for
strong bivariate (anti-)correlations and is close to 1 for
weak correlations (Van der Laan et al., 2003). The quality
of the clustering is assessed by means of silhouette coeffi-
cients, with S → 1 representing strong structuring and S <
0 indicating the need for the improvement of the clustering
(Rousseeuw, 1987).

The highest total silhouette coefficient with S = 0.42 is
reached for NC = 4 clusters (Figure 5). However, clustering
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F I G U R E 5 Representation of NC = 4 clusters of ambient
variables and cell attributes identified by a k-medoids clustering.
The dissimilation metric is d = 1 − |rS|. The projection of the
clusters onto the first two principal axes of the high-dimensional
eigenspace after multidimensional scaling is shown. The first
principal axis explains 46.5% of the observed variability, and the
second principal axis explains 17.7% of the observed variability.

into three to seven clusters yields very similar values (e.g.,
S = 0.37 for NC = 7). The clustering with NC = 4 reveals
one cell (core) area cluster, one dynamical cluster at pos-
itive values of the first principal axis (mirroring the top
left ambient variable agglomeration in Figure 4 including
the cell propagation speed), and two clusters consisting of
thermodynamical and moisture quantities. Note that anal-
ogous clustering without cell attributes yields the same
constitutions of the three ambient variable clusters. The
medoids – that is, the variables whose average dissim-
ilarity to all variables in the four respective clusters is
minimal (they can thus be considered to be their respective
nuclei) – are AC,t=7 min, the midtropospheric mean wind
between 3 and 6 km above ground level (U3–6), the verti-
cal totals index (VT), and the ML deep convective index
(DCIML). Thereby, the clusters represent the cell (core)
area attributes, the midtropospheric flow, differential con-
vective instability in the middle troposphere as well as a
collection of air mass temperature, moisture, and further
convective instability indices. Note that the medoids do not
necessarily have to look centred in the clusters in Figure 5,
as only the projection onto the first two principal axes of
the high-dimensional eigenspace after multidimensional
scaling (Pison et al., 1999) is depicted. The three ambient
variable clusters are reminders of the best discriminator
between the high-shear low-CAPE severe and non-severe
convective events of Sherburn and Parker (2014): the
severe hazards in environments with reduced buoyancy
(SHERB) parameter, which multiplicatively consists of

a wind (shear) parameter, a midlevel lapse rate, and a
low-level lapse rate.

Within the thermodynamical cluster, for example, the
anti-correlation between the integral and differential sta-
bility measures CAPEMU and LIML, as adumbrated by
analyses from Westermayer et al. (2017), is strong with
rS = −0.85. Additionally, the principal component analy-
sis between WMAX and LIML reveals that the first principal
component explains more than 90% of the total variance
(not shown). This is a stronger anti-correlation as found
by Manzato (2012) and Mohr and Kunz (2013) between
different CAPE definitions and the LI. The differences pre-
sumably emerge from the fact that the latter studies are
based on parameters stemming from proximity soundings
(i.e., real radiosonde measurements), which are compared
with parameters derived from analysis data of an imperfect
convection-parametrising model here. Nevertheless, the
model-derived parameters describe the reality sufficiently
well, and have the advantage that they represent the condi-
tions in an environment and at a time instance, which are
close to the observed storm occurrence (see Section 2.3).

Within the dynamical cluster, DLS is moderately cor-
related with SRH0–3 (rS = 0.62). A very strong correlation
exists between DLS and the midtropospheric mean wind
U3–6 (rS = 0.87), whereas its correlation with the lower tro-
pospheric mean wind between 0 and 3 km U0–3 is remark-
ably smaller (rS = 0.45). As the correlation of DLS and the
midtropospheric wind at the 500 hPa level U500 (a vari-
able not used for further evaluation and discussion) is
even higher with rS = 0.91, it can be concluded that DLS
seems to be mainly determined by the absolute value of the
midtropospheric wind. All conclusions in the following
sections that are drawn based on DLS could therefore be
virtually attributed to the midtropospheric wind. The cell
propagation speed A(t = 7 min) exhibits a higher correla-
tion with the vertically averaged mean wind (e.g., rS = 0.70
with U0–6) than with the vertical shear (e.g., rS = 0.55 with
DLS). The supercell composite parameter (SCP; Thomp-
son et al., 2003), which is multiplicatively composed of
CAPEMU, DLS, and SRH0–3, and which is calculated as
in the formulation of Gensini and Tippett (2019), is more
strongly correlated to dynamical than to thermodynamical
parameters. The same applies for the spatial standard devi-
ation of the MU bulk Richardson number BRN(sd)

MU, which
represents the variability of the ratio between potential and
kinetic energy in the cells’ surroundings (Markowski and
Richardson, 2010). In contrast, the significant hail param-
eter (SHIP; NOAA SPC, 2014), which consists of CAPEMU,
DLS, the water vapour mixing ratio, and the midtropo-
spheric lapse rate and temperature, as used, for instance,
in Prein and Holland (2018), Czernecki et al. (2019), and
Tang et al. (2019), correlates more with thermodynamical
quantities.
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Within the cell (core) area cluster, it is apparent that
cell core area AC dominates the ratio AC∕A, which can
be largely attributed to the fact that AC,t=7 min has mostly
small values (e.g., 0 km2 for approximately 60% of the
cells). Interestingly, the correlations of all variables with
At=7 min are weak (|rS| ≤ 0.1) except for its correlation with
SHIP, which is slightly higher. The strongest cross-cluster
correlation is rS = −0.52 for IWV and LR700–500, which is
even stronger than the correlation is between IWV and
the relative humidity at the 700 hPa level RH700. More-
over, the latter is the ambient variable with the most weak
correlations (|rS| ≤ 0.1) with other ambient variables. Fur-
ther cross-cluster correlations with |rS| > 0.4 comprise
the thermodynamical combinations of LR700–500 with
h0◦C or 𝜃e,850, as well as VT with LIML or Showalter index
SI. A low correlation exists, however, between DLS and
LIML (rS = 0.19), mirroring the plausible weak connection
between the vertical wind shear and convective instabil-
ity. The highest (anti-)correlations between a dynamical
and a thermodynamical variable can be reported for the
combinations of the medium-layer shear (MLS) with T(sd)

850
(rS = 0.42), and U0–10 with Δ𝜃e (rS = −0.41).

Incorporating more than the chosen 33 ambient vari-
ables into the clustering identifies that further midtropo-
spheric thermodynamical and moisture variables can be
related to the cluster at large positive values of the sec-
ond principal axis. For example, building seven clusters
splits the dynamical cluster into an SRH cluster and the
remaining quantities, whereas from the thermodynamical
cluster at negative values of the first principal axis, two
smaller clusters are separated. Building even more clusters
separates A from AC and AC∕A and increasingly produces
further single-variable clusters, which should be avoided.
It is difficult to determine which cluster number between
3 and 7 is thus most appropriate. For the study at hand,
NC = 4 is chosen for further evaluations. In conclusion, the
results from the clustering procedure enable a fast and con-
cise overview of the correlations and the correlation-based
distance, respectively, between a variable and many others
(compared with the correlation matrix in Figure 4). More-
over, it can serve as an objective decision basis to omit
redundant information and select suitable combinations
of rather independent ambient variables for multivariate
analyses and forecasts of convective cell evolution.

4 STATISTICAL RELEVANCE OF
AMBIENT CONDITIONS FOR CELL
EVOLUTION

The analyses presented in this section examine the
life-cycle attributes lifetime T and the maximum cell area

Amax and their relations with the prevailing ambient vari-
ables, as well as with the cell attributes cell area A, core
area AC, their ratio AC∕A, and propagation speed c (at spe-
cific cell ages), in the following referred to as predictors.
As in Section 3, the evaluations consider the 33 most rele-
vant ambient variables (see Appendix A.2, Table A1). The
univariate analyses in Section 4.1 comprise not only inves-
tigations of the discrimination skill between short- and
long-living cells for the set of predictors (Section 4.1.1) but
also a similar examination of the discrimination between
small and large cells with respect to their maximum cell
area during the life cycle (Section 4.1.2). In addition,
Section 4.1.3 presents a simple mathematical model for
the description of the evolution of the cell area, consider-
ing information about an ambient variable for the example
of LIML. Bivariate analyses demonstrating quantitatively
the statistical connections between cell attributes and
the combinations of two predictors complete this section
(Section 4.2).

4.1 Univariate analyses

4.1.1 Discrimination of cell lifetime classes

First, the predictors are evaluated with regard to their
ability to distinguish between short- and long-living cells.
The lifetime separator for the following discussion is
𝜏 = 60 min, separating the data into 37,457 short-living
(i.e., T ≤ 60 min) and 1,096 long-living (T > 60 min) cells.
Generally, the separator value may be chosen arbitrar-
ily, resulting in potentially different outcomes. Thus, the
discriminator just defined is one possibility focusing on
the peculiarities of the ambient conditions of the 2.8%
longest-living cells, whose lifetime is well above the typical
values of usually not very severe single cells.

Following the methodology of Czernecki et al. (2019),
an estimation of the distribution function (probability den-
sity function, PDF) of these two classes is made via the
kernel density estimation according to Parzen (1962) with
a Gaussian kernel and 100 interpolation points. More-
over, several scores based on categorical verification (e.g.,
Mason, 1982; Wilks, 2006) are considered for the evalua-
tion of the predictor skills. These include the probability of
detection POD and the probability of false detection POFD
(also known as the hit and false alarm rate), the Peirce skill
score PSS = POD − POFD, and the parameter d′, which
indicates the separation of two distributions in terms of
the number of standard deviations that the means of the
two distributions are apart (assuming normal distributions
with equal standard deviations; higher values of d′ indicate
an easier discrimination; Brooks and Correia, 2018). These
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WILHELM et al. 2263

T A B L E 1 Contingency table explaining hits, false alarms,
misses, and correct rejections for the analysis of lifetime
discrimination, using the example of the deep-layer shear (DLS) as
predictor.

Long-living Short-living

Above DLS threshold Hit False alarm

Below DLS threshold Miss Correct rejection

scores can be depicted in the receiver operating charac-
teristic (ROC) diagram. Moreover, the POD, the success
ratio SR = 1 − FAR (where FAR is the false alarm ratio),
the critical success index (CSI), and the bias B are used to
describe the predictive skill in performance diagrams. For
example, the fraction of long-living cells associated with
a high DLS above a certain DLS threshold (hits) defines
POD, whereas the fraction of short-living cells associated
with a high DLS above this threshold (false alarms) defines
POFD (see Table 1). The FAR characterises the reliabil-
ity by giving the percentage of false alarms compared with
all (short- and long-living) cells above the threshold. CSI
relates the number of hits to all cells that are above the
DLS threshold or long-living cells (i.e., all but the correct
rejections). The bias B relates the number of forecasted
long-living cells to the number of observed long-living
cells. For variables with decreasing values for a longer life-
time (e.g., LIML), the scores are defined with respect to the
reversed threshold behaviour (i.e., “above” and “below” in
Table 1 are swapped). The optimal thresholds of the pre-
dictors are tested iteratively and determined such that the
PSS is maximised for the ROC diagram (Manzato, 2007),
and the CSI is maximised for the performance diagram.
The values of the other scores in the respective diagrams
relate to that same optimised threshold. The score values
depend on the lifetime separator 𝜏 as alluded to earlier
herein (Wilhelm, 2022). For example, PSS values gener-
ally increase for increasing values of 𝜏, mainly due to an
increase in POD. CSI values generally decrease for increas-
ing 𝜏 due to the increasing number of cells that are defined
as short-living and are not correctly assigned. Note that
such a categorical evaluation forms a hard decision bound-
ary, where, for example, cells with a lifetime of 57 min,
which are forecasted to be long-living, are rated as wrongly
forecasted.

The detailed PDFs from the kernel density estimation
of three exemplary predictors At=7 min, DLS, and LIML,
separately for short- (T ≤ 𝜏) and long-living cells (T > 𝜏),
illustrate that the higher the PSS is the lower is the result-
ing overlap of the PDFs (see Figure 6a–c). The PDFs con-
tain all 38,553 cells with a minimum lifetime of 7 min. In
general, the optimal variable threshold yielding the high-
est PSS value differs from the one for the highest CSI value.

However, the overlap between the distributions for all vari-
ables is remarkably high and PSS and CSI values low,
indicating only a weak discrimination and prediction skill.
This will be discussed in detail in the next paragraph by
means of the ROC and performance diagrams, where the
different score metrics are summarised for the best vari-
ables of the four respective clusters from Figure 5 (i.e., only
the results for one variable per cluster maximising PSS and
CSI are shown for the sake of clarity). The dependence of
the scores on the minimum cell age (i.e., on the time point
when the lifetime estimation is made) will also be inves-
tigated. Individual score values and variable thresholds
for all predictors are listed in the Supporting Information
(Tables S1 and S2).

The ROC and performance diagram clearly show that
the discrimination and prediction skill of all clusters is
rather low (Figure 7). However, the (blue) cell (core)
cluster achieves the best scores, followed by the (green)
dynamical cluster. The (red) thermodynamical and the
(purple) midtropospheric clusters show very little skill.
The best predictor in terms of PSS (ranging from 0.28 to
0.38 depending on the minimum cell age) and CSI (ranging
from 0.07 to 0.38) is cell area A (see Supporting Informa-
tion Tables S1 and S2), represented by the markers of the
cell (core) cluster. Within the dynamical cluster, several
variables, such as DLS, SCP, MLS, and U3–6, reach simi-
lar score values, whereas cell propagation speed c shows
slightly less skill. None of the ambient variables exceeds
PSS = 0.18. Owing to the majority of cells with short life-
times, the CSI and SR values are generally rather small.
This is especially true for high lifetime separator values,
like 𝜏 = 60 min, because many more wrong assignments
of the short-living cells exist in absolute numbers com-
pared with the correct assignments of the 1,096 long-living
cells. Generally, the scores indicate only a fair discrimi-
nation and a low reliability for deriving the cell lifetime
from a specific predictor during the first 37 min of the
life cycle. However, CSI and SR increase with increas-
ing cell age (e.g., for cell area A from CSI = 0.07 for
predictions at t = 7 min, to CSI = 0.38 for predictions at
t = 37 min), indicating a slightly more reliable estimation
when the forecast time point approaches lifetime separator
𝜏 = 60 min. Only the predictors from the cell (core) clus-
ter reach CSI values that are by around 0.05–0.10 higher
than those from a reference forecast, which always pre-
dicts long-living cells (Supporting Information Table S2).
Thus, the gain in forecast performance is only little, when
information about a single ambient variable is considered.
Interestingly, the discrimination skill of the ambient vari-
ables in terms of PSS decreases slightly with increasing cell
age (as does the bias B), whereas the skill for A (and AC)
increases. Hence, a strong initial cell growth and intensi-
fication seems to have positive effects on the cell lifetime
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F I G U R E 6 Comparison of probability density functions (PDFs) from kernel density estimation of all 38,553 cells for the three
predictors cell area detected 5 min after the first detection (At=7 min), deep-layer shear (DLS), and mixed-layer lifted index (LIML); (a)–(c)
37,457 short-living (blue) and 1,096 long-living (red) cells for the lifetime separation 𝜏 = 60 min; (d)–(f) 37,443 small (blue) and 1,052 large
(red) cells for the maximum area separation 𝜒 = 60 km2. The overlap of the PDFs appears purple. The black vertical solid line illustrates the
optimal variable threshold based on the Peirce skill score (PSS), the green dashed line illustrates the optimal variable threshold based on the
critical success index (CSI). The PDFs from the kernel density estimation are normalised so that the area under the graph equals 1 (i.e., their
function values are unit dependent). (a)–(c) are discussed in Section 4.1.1, and (d)–(f) in Section 4.1.2.

(see Appendix A.1). Moreover, this finding suggests that,
with increasing cell age, information about the cell his-
tory becomes more important compared with the ambient
variables.

The optimal variable thresholds in terms of PSS,
as exemplarily shown for At=7 min, DLS, and LIML in
Figure 6a–c, mostly do not change much with increas-
ing cell age (not shown) due to the minority of the 1,096
long-living cells in the statistics (i.e., the majority of the
short-living cells dominate the threshold determination).
The thresholds for cell area A range from 26 to 30 km2,
and the thresholds for dynamical variables represent mod-
erate wind speed and shear conditions (e.g., DLS and
U3–6 are around 12 m⋅s−1), whereas the thermodynami-
cal indices VT, KO index, SI, and LIML lie in the range of
slightly unstable stratification (e.g., LIML and SI are around
−1 K). The optimal variable thresholds in terms of CSI,
also shown in Figure 6a–c for a few examples, change
towards values that are less favourable for a long lifetime
with increasing minimum cell age (e.g., thresholds for A,
DLS, and U3–6 decrease and for LIML and SI increase). The
better performance of the dynamical variables compared
with the other two ambient variable clusters suggests

that they have the best discrimination skill with respect
to the lifetime due to their influence on the degree of
cell organisation. This finding is in line with theoreti-
cal considerations in classical textbooks (e.g., Markowski
and Richardson, 2010; Trapp, 2013) and corresponds to a
higher probability of severe weather occurring in dynami-
cally active environments (Taszarek et al., 2020), which is
mostly attributed to long-living convective storms. Inter-
estingly, this result contrasts the recent finding of Zöbisch
et al. (2020), which found no connection between DLS and
cell lifetime for a set of satellite-based thunderstorm detec-
tions over central Europe. They mentioned, however, that
this might originate from the fact that they deliberately did
their analysis without a filtering for complete undisturbed
cell life cycles in order to represent the full convective
spectrum.

4.1.2 Discrimination of cell area classes

For the investigation of the discrimination skill of the
predictors with regard to classes of the maximum cell
area, a similar split of the data as for the cell lifetime in
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F I G U R E 7 Evaluation diagrams of different score metrics for the discrimination between short- and long-living cells (𝜏 = 60 min). (a)
Receiver operating characteristic diagram with the theoretical Peirce skill score PSS = 0 isoline (black) and further isolines of PSS (dashed;
increasing from 0 to 1 in the top-left corner in intervals of 0.2) overlaid. Yellowish colours indicate values of d′, which increase for darker
hues (d′: 0.5, 1.0, 2.0). (b) Performance diagram with isolines of bias (dashed; increasing from 0 in the bottom-right corner to infinity in the
top-left corner; solid: B = 1) overlaid. Bluish colours indicate values of critical success index (CSI), which increase for darker hues (in
intervals of 0.1). In both diagrams, each marker corresponds to the skill of one variable per cluster for the variable with maximum (a) PSS and
(b) CSI, where the colouring is chosen in accordance with Figure 5 (blue: cell [core] area cluster; green: dynamical cluster; red:
thermodynamical cluster; purple: midtropospheric cluster). The different marker shapes indicate the evaluation for different minimum cell
ages (prediction time points): rectangle, 7 min (N = 38,553); circle, 17 min (N = 15,094); triangle, 27 min (N = 7,148); diamond, 37 min
(N = 3,942). Ambient variable values were chosen as the life-cycle average. Cell attribute values were chosen at the respective cell ages. The
best predictors of the respective clusters can be read from Supporting Information Tables S1 and S2 (underlined, bold score values). POD,
probability of detection; POFD, probability of false detection; SR, success ratio.

Section 4.1.1 is performed by separating the 1,052 largest
cells (2.7%), which reached maximum cell area Amax of
more than 𝜒 = 60 km2. For the prediction times 17 min,
27 min, and 37 min, only 1,043, 979, and 867 large cells
respectively remain, as a few large cells had a short life-
time. As for the lifetime discrimination, individual score
values and variable thresholds for all predictors are listed
in the Supporting Information (Tables S3 and S4).

From Figure 8a, it can be seen that here, the cell (core)
cluster shows a high discrimination skill (PSS ranges
between 0.49 and 0.59), much higher than all ambient
variables, resulting in less overlap of the corresponding
PDFs (see examples in Figure 6d–f). The threshold of A
that best discriminates the maximum cell area is around
A(t) = 30–38 km2 for most prediction time points (see
Figure 6d; Supporting Information Table S3). CSI and SR
reach higher values than for the lifetime estimation but
saturate after t = 17 min (i.e., the predictions after 27 and
37 min are not improving much; Figure 8b). The bias B is
close to 1 for all prediction times. Like the cell area, the
core area AC and the ratio AC∕A reach better score val-
ues than all ambient variables do (Supporting Information
Tables S3 and S4). In summary, these results indicate that a
cell should grow strongly already during the first life-cycle

stages to reach a large area during its life cycle as also
Figure A1 in Appendix A.1 suggests.

In contrast to lifetime discrimination (see
Section 4.1.1), when it comes to distinguishing small
and large cells, thermodynamical indices reach PSS val-
ues comparable to the dynamical variables (Figure 8a;
Supporting Information Table S3). Higher instability is
conducive for free buoyancy-driven convection, which
favours the growth of convective cells. In particular, the
combined parameters SCP and SHIP, consisting of both
thermodynamical and dynamical quantities, show the best
discrimination but with relatively small variable thresh-
olds below 0.25. Such values are observed very often in
thunderstorm environments. PSS hardly exceeds 0.20, B is
somewhat closer to 1 for all clusters, and CSI reaches val-
ues comparable to the lifetime discrimination (which are
again very small when compared with the reference fore-
cast, which always predicts cells with a large maximum
cell area; Figure 8b; Supporting Information Table S4).
The optimal variable thresholds for DLS and LIML do only
differ slightly from the ones for the lifetime discrimination
(Figure 6e,f; Supporting Information Tables S3 and S4).

Thus, compared with the skill for lifetime
discrimination, the cell attributes are of higher relative
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F I G U R E 8 As Figure 7, but
for the maximum cell area separation
with 𝜒 = 60 km2. The best predictors
of the respective clusters can be read
from Supporting Information Tables
S3 and S4 (underlined, bold score
values). POD, probability of
detection; POFD, probability of false
detection; SR, success ratio.

importance than ambient variables are, which only show
a weak statistical relationship with both targets lifetime T
and maximum cell area Amax. Nevertheless, most scores
indicate a somewhat higher skill for the discrimination
of small and large cells for all ambient variable clusters.
This is reversed for the dynamical cluster, however, when
more extreme lifetime and cell area groups are chosen;
for example, with 𝜏 = 100 min and 𝜒 = 80 km2 (taking
into account the equal division of the groups of lifetime
and maximum area; not shown). In that case, the separate
results for the lifetime and maximum cell area discrimi-
nation do not change much qualitatively, and the findings
for the predictors can be interpreted similarly to the
explanations earlier herein.

4.1.3 A simple life-cycle model with one
ambient variable

Despite the weak statistical relationships of ambient vari-
ables and the targets cell lifetime T and maximum cell
area Amax discussed earlier herein, a potentially useful
approach for the integration of an ambient variable in
a simple life-cycle model is presented in this section.
As shown in Wapler (2021), the temporal evolution of
the mean cell area A can suitably be approximated by a
parabola opened downwards. In Appendix A.1, their find-
ings are briefly recapped, and a mathematical parabola
formulation is introduced, which the following derivations
build upon.

The mathematical parabola model introduced in
Equation (A1) (see Appendix A.1) describing this evo-
lution can be refined by adding an ambient variable as
second form parameter u. The model then reads as follows:

A(T,u)(t) = A(T,u)
max −

A(T,u)
max − A(T,u)

min

(T∕2)2
(

t − T
2

)2
. (1)

Minimum cell area A(T,u)
min can conveniently be assumed

to be independent of T and u: A(T,u)
min = A0. The mean

wind and vertical wind shear expressed by the MLS,
DLS, or one of the SRHs exhibit no clear monotonic sta-
tistical relationship to the maximum amplitude A(T,u)

max −
A(T,u)

min ≡ 
(T,u), whereas thermodynamical variables like,

for example, LIML, SI, KO index, or LR700–500, can be incor-
porated via (T,u) = cA(u)T using a linear assumption for
cA(u). Equation (A2) is then transformed into

A(T,u)(t) = A0 + 4cA(u)t
(

1 − t
T

)

. (2)

A linear regression for LIML (in kelvin) yields
cA(LIML) ≈ (0.351 − 0.020LIML) km2 ⋅min−1 with a
root-mean-squared error of RMSE = 0.03 km2 ⋅min−1,
which leads to differences compared with the parabola
model without LIML information of (10 km2) and more
for the same lifetime T. Equation (2) leads to an estimate
of the maximum cell area, which is given by

A(T,u)
max = A(t = T∕2) = A0 + cA(u)T (3)

and also valid without u-dependence. As an example
(called Example 1) without an ambient variable, for T =
60 min, a maximum area of A(60 min)

max ≈ 39 km2 is obtained
(see Figure A2a). With dependence on LIML, one finds with
Equation (3) considering the uncertainty in the calculation
of the regression coefficient cA(LIML) ± 0.03 km2 ⋅min−1

that there are differences worth mentioning (Figure 9a):
the mean maximum area is around 10 km2 larger for high
instability (low LIML values) compared with stable con-
ditions (high LIML values) for the same lifetime T. This
difference is larger than the uncertainty arising from the
calculation of cA(LIML). Moreover, it becomes clear that the
original parabola model from Equation (A2) is equivalent
to the parabola model from Equation (2) with u = LIML =
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F I G U R E 9 (a) Example 1: Maximum cell area Amax depending on LIML as predicted by the parabola model for the example of
T = 60 min. The solid black line shows the result of Equation (3) for cA(LIML) ≈ (0.351 − 0.020LIML) km2 ⋅min−1; the dashed black lines
depict the uncertainty according to the regression RMSE = 0.03 km2 ⋅min−1. The dashed red line gives the result for cA = 0.295 km2 ⋅min−1 as
obtained for the parabola model without dependence on LIML (see Appendix A.1). (b) Example 2: Lifetime T depending on LIML as predicted
by the parabola model for the example of t = 17 min with A(t) = 38 km2. The lines are obtained similarly to (a), but using Equation (4). (c)
Like (a) but calculated from the lifetime values depicted in (b) of Example 2.

2.8 K, indicating that the maximum cell area is under-
estimated by the original parabola model in neutral and
unstable conditions.

Conversely, solving Equation (2) for T yields estimates
for the lifetime T as a function of LIML, given the cell area
A(t) at a specific cell age t:

T = 4cA(u)t2

A0 + 4cA(u)t − A(t)
. (4)

As a second example (called Example 2), one clearly sees
for a given cell area A(t) = 38 km2 at t = 17 min (corre-
sponding to the optimal discrimination threshold regard-
ing the maximum cell area Amax; see Section 4.1.2) that
the lower the LIML is (i.e., the more unstable the envi-
ronment is) the shorter is the remaining lifetime and the
smaller is the maximum cell area (Figure 9b,c). The inter-
pretation is as follows. For LIML values in the unstable
range of less than 0 K, a cell with At=17 min = 38 km2 has
not grown strongly for some reason considering the good
thermodynamical conditions. It is therefore expected not
to intensify further (i.e., to have a short lifetime and a
small maximum area). Another interesting aspect is that
the uncertainty ranges substantially increase, when the
chosen cell area A(t) approaches the theoretical limit of the
parabola model A(LIML)

crit (t) = A0 + 4cA(LIML)t (see Appendix
A.1). Uncertainties arising from other sources, like the
inaccuracy of the definition of the cell area or cell age,
caused, for example, by shadowing effects in the radar data
or the KONRAD cell definition, are, of course, not included
in the presented uncertainty ranges.

Separate statistics of cells occurring in rather unstable
(LIML < −1 K) and rather stable (LIML ≥ −1 K) conditions
depict these differences well (Figure 10). As mentioned in
the preceding discrimination analysis (Sections 4.1.1 and

4.1.2), values around−1 K are discriminating best between
long- and short-living cells, as well as between cells with
small and large maximum cell areas in terms of PSS (see
Supporting Information Tables S1 and S3). The fraction of
long-living cells with T > 60 min is 3.4% for unstable con-
ditions and 2.4% for rather stable conditions. The areas of
cells occurring in rather unstable conditions grow faster
than those for cells occurring in more stable conditions.
The lower the LIML values are the higher is the convec-
tive instability, and thus the possibility for rapid growth
through free convection. Nevertheless, large overlapping
areas remain between the curves of different lifetimes as
well as between the high-LI and low-LI curves, represent-
ing the large variability of individual cell life cycles. The
limited sample size makes the incorporation of more than
one ambient variable less confident, as the representative-
ness of the multivariate regression in the calculation of
cA degrades with higher dimensionality. This deficiency
might shrink for longer study periods.

4.2 Bivariate analyses

Separating the dataset into classes of short- and
long-living or small and large cells, as already described
in Sections 4.1.1 and 4.1.2, and comparing their PDFs as a
function of two ambient variables reveal their combined
statistical connections. As in Figure 6, the findings for
the cell area At=7 min, DLS, and LIML, which represent
three different predictor clusters (see Figure 5), are illus-
trated as examples (Figure 11). The evaluation scores are
again summarised in the ROC and performance diagrams
(Figure 12). The results are not depicted for all possible
bivariate predictor combinations, but only for a selection:
all bivariate predictor combinations are considered, where
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F I G U R E 10 As Figure A1b in Appendix A.1, but separated for cells associated with LIML (a) below or equal to −1 K (N = 16,282) and
(b) above −1 K (N = 22,271). Note that only every fourth line is drawn, and that the number of cells for long lifetimes is low.

F I G U R E 11 Scatter plot of all
38,553 cells and comparison of
two-dimensional probability density
functions from kernel density
estimation for (a, b) cell separation
with 𝜏 = 60 min in short lifetime
(blue hues; N = 37,457) and long
lifetime (red hues; N = 1,096), and
(c, d) cell separation with
𝜒 = 60 km2 in small maximum cell
area (blue hues; N = 37,443) and
large maximum cell area (red hues;
N = 1,052), as a function of (a, c) the
combination of deep-layer shear
(DLS) and cell area At=7 min, as well
as (b, d) DLS and mixed-layer lifted
index LIML. The contour lines
indicate the respective 0.25 (solid,
red/dark blue), 0.75 (solid,
orange/light blue) and 0.95 (dashed)
frequency levels; for example, 75% of
the long-living or large cells are
located within the respective solid
orange contour. Similar to Figure 6,
the black and green lines indicate
the optimal thresholds according to
the Peirce skill score and critical
success index respectively, based on
a linear discriminant analysis.
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F I G U R E 12 Similar to
Figures 7 and 8 but for the best
combinations of two predictors from
the four variable clusters in Figure 5.
The marker fill shows the respective
two colours according to the cluster
combination. (a, b) Lifetime
estimation; (c, d) maximum cell area
estimation. POD, probability of
detection; POFD, probability of false
detection; SR, success ratio.
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the predictors originate from two different clusters. From
these predictor combinations, only those are drawn that
reach the highest PSS and CSI for their respective specific
cluster combination. This is done independently for all
four different prediction times. Similar to the univariate
procedure described in Section 4.1.1 for the determination
of the optimal variable threshold, thresholding lines in the
2D variable spaces have optimally been calculated in an
iterative procedure with 100 repetitions, here by means of
a linear discriminant analysis.

The cell area At=7 min and DLS as predictors have a com-
bined discrimination skill that is mirrored by a shift in
the dense core area of the 2D PDFs from kernel density
estimation toward higher cell area and DLS values for the
long-living and large cell group respectively (Figure 11a,c).
Compared with the univariate score values of A, the com-
bination with DLS leads only to a minor improvement for
the lifetime estimation. Depending on the prediction time
point, PSS increases only by 0.01 to 0.02, and CSI increases
by 0.01 at most (not shown). For the estimation of Amax,
these metrics are not improved. The combination of A and
DLS reaches scores very close to the best variable combina-
tions from the cell (core) cluster and the dynamical cluster.

In general, when comparing Figure 7 with Figure 12a,b
and Figure 8 with Figure 12c,d, it is apparent that the
bivariate scores are not much better than the univariate
scores are. The greatest improvements can be seen for com-
binations of variables from two ambient variable clusters.
As an example, the combination of DLS and LIML (see also
Figure 11b,d) is in many cases the best ambient variable
combination (or very close to it): for the lifetime estima-
tion, the PSS increases by up to 0.03, and the CSI increases
by up to 0.01. For the maximum cell area estimation, the
highest increases are by 0.10 for the PSS and by 0.04 for
the CSI. However, combinations of any ambient variable
cluster with the cell (core) cluster achieve the highest skill.
Combinations of two clusters seem to improve the biases
in many cases compared with the univariate values. As a
last note, the optimal thresholding lines for PSS divide the
high-frequency regions of the PDFs (areas within the solid
blue and red lines in Figure 11) well, whereas the lines for
CSI are located at predictor values that are more favourable
for a long cell lifetime and a large maximum area (similar
to the univariate case; see Figure 6). For these threshold-
ing lines, the number of missed events is as high as or even
higher than the number of hits.
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2270 WILHELM et al.

F I G U R E 13 (a)–(c) Mean lifetime of all 38,553 cells, as a function of the combination of (a) core area AC,t=7 min and cell area At=7 min,
(b) deep-layer shear (DLS) and cell area At=7 min, and (c) DLS and mixed-layer lifted index LIML. The predictor values are each grouped in 20
intervals. Groups containing fewer than 10 cells are shown transparently. (d)–(f) The respective standard deviations (SD) in the same manner.

As could be expected from the previous analyses, the
mean lifetime increases with increasing vertical wind
shear and instability, as well as with increasing cell
and core area after 7 min. The mean lifetime differences
between different predictor ranges are higher for pre-
dictor combinations with the cell area A (25–30 min;
Figure 13a,b) than for combinations of ambient vari-
ables solely (10–15 min; Figure 13c; Figure A4). These
differences are higher than those for grouping by only
one of the ambient variables, leading to a difference
of at most 7–10 min (not shown). The standard devia-
tions (Figure 13d–f) are approximately of the same order
as the mean lifetime differences, meaning that the lat-
ter should be interpreted carefully. The high standard
deviations originate, inter alia, from the fact that, on
days with convection-favouring conditions, not only do
long-living cells develop but also many short-living cells
(see Figure 2b).

Very similar results apply qualitatively to the maxi-
mum cell area differences and respective standard devi-
ations, albeit the relative differences of the maximum
cell area are somewhat higher (Figure 14). The mean
maximum area increases from around 20 km2 for weak
initial cell growth to more than 50 km2 for strong ini-
tial growth (Figure 14a). The cell growth is more deci-
sive for the maximum area than DLS is (Figure 14b).

High vertical wind shear, however, combined with con-
vective instability procures a maximum area of around
35 km2, whereas cells grow only slightly (up to around
20–25 km2) during stable conditions with little shear
(Figure 14c).

When considering only cells that reached a life-
time of at least 30 min, the mean lifetime and maxi-
mum area increase for the groups that are conducive
for longer lifetimes/larger areas owing to the larger rela-
tive frequency of the long-living and large cells in these
groups. For example, at high DLS (>15 m⋅s−1) and low
LIML (less than −1 K) values, the lifetime is expected to
be around 55–60 min, and the maximum area is expected
to be around 55–60 km2, which is 20–25 min longer and
20–25 km2 larger than at low DLS and high LIML values
(not shown). Thus, the lifetime and maximum area differ-
ences between different predictor groups increase when
short-living cells with a lifetime of less than 30 min are
not taken into account for the evaluation. This is in line
with the increased forecast performance in terms of CSI
for later prediction times in the categorical analyses earlier
herein.

The investigations of combined dependencies with
even more than two predictors hardly show groups
with sufficient large sample sizes for establishing robust
statistical relations (not shown). A clear relationship could
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F I G U R E 14 Like Figure 13 but for the mean and standard deviations (SD) of maximum cell area instead of lifetime. Note the different
colour bar ranges.

not be extracted due to the existence of too many uncov-
ered subspaces in the multidimensional space. Advanced
statistical and machine-learning methods offer ways in
which to achieve a potentially better predictive skill in
the future by using more than two predictors simultane-
ously. They also provide the possibility of quantifying the
particular importance of the predictors for life-cycle esti-
mations and of addressing the corresponding uncertainties
for nowcasting applications.

5 SUMMARY AND CONCLUSIONS

The life cycles of convective storms in Germany are
analysed taking into account the prevailing atmospheric
ambient conditions by means of a unique object-based
dataset. This dataset combines cell objects derived from
DWD’s cell detection and tracking algorithm, KONRAD,
with high-resolution NWP assimilation analysis fields of
COSMO-EU. The focus of the study is on isolated con-
vection, which passed through an undisturbed life cycle
without any impact of another convective cell in its vicin-
ity, so cell clusters and several supercells have been filtered
out. The general research questions are which multivari-
ate statistical correlations exist between different variables
describing the prevailing ambient conditions of convective
cells, and which of these variables and which cell attributes
exhibit statistical relationships to life-cycle attributes such

as storm lifetime T and maximum horizontal extent Amax.
These analyses provide the basis for further investigations
on how the data and findings can be used to develop sta-
tistical or machine-learning models that provide life-cycle
estimations, with the objective to improve automated mul-
tidata real-time nowcasting procedures.

Taking up the main research questions posed in
Section 1, our conclusions are as follows.

(1) Under which range of prevailing ambient conditions
does DMC develop, and how are the related ambient
variables statistically correlated with each other and
with cell attributes at the beginning of the cells’ life
cycle?

(a) Most of the isolated convective cells occurred in
rather calm to moderate dynamical conditions,
associated with some convective instability and
moderate to high moisture amounts.

(b) A clustering, which bundles highly correlated vari-
ables in separate clusters, reveals one dynamical
cluster, representing the midtropospheric flow and
vertical shear (e.g., U3–6, SRH0–3, DLS), as well as
two clusters consisting of thermodynamical and
moisture quantities. Of the latter, the first clus-
ter represents convective instability in the middle
troposphere (e.g., LR700–500, RH700), whereas the
second one consists of a collection of variables
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2272 WILHELM et al.

describing air mass temperature (e.g., T850, h0◦C)
and moisture (e.g., IWV), and of further convective
instability indices (e.g., LIML, CAPEMU).

(c) When the horizontal cell area A (Z ≥ 46 dBZ) and
core area AC (Z ≥ 55 dBZ), their ratio, and the cell
propagation speed c, as observed 5 min after the
first cell detection, are included in the cluster anal-
ysis, the latter joins the dynamical cluster, while
the cell (core) area variables form a separate fourth
cluster.

(d) Correlations between variables within the clusters
can be very strong – for example, between CAPEMU
and LIML, and between DLS and U3–6 – showing
that the former is mainly determined by the
midtropospheric wind. Cross-cluster correlations
are generally mostly weak, but some reach values
up to |rS| = 0.52, like the correlation between IWV
and LR700–500.

(2) Which ambient variables and cell attributes correlate
best with the storm properties lifetime and maximum
area, indicating the potential for the improvement of
nowcasting procedures?

(a) In general, the statistical relevance of ambient vari-
ables for the cells’ lifetime and maximum area is
rather low.

(b) The discrimination skill between short- and
long-living cells is higher for dynamical variables
than for the other two ambient variable clusters,
presumably due to their influence on the degree of
cell organisation.

(c) The discrimination skill between cells with small
and large maximum cell area is similar for dynam-
ical and thermodynamical variables, and it is
slightly higher than the skill for the cell lifetime
discrimination is.

(d) The cell and core area 5–35 min after the first cell
detection show a (much) higher skill for discrimi-
nating between cells with short and long lifetimes
or small and large maximum areas. Thus, the cell
history is more important than ambient variables
are.

(e) The highest univariate skill can be reported for the
discrimination of the maximum cell area based on
the cell (core) cluster (i.e., without any knowledge
about the ambient conditions), particularly for the
cell area 5–35 min after the first cell detection rep-
resenting the initial growth of the cells.

(f) The bivariate skill for combinations of variables
from two different clusters does not increase much,
when the cell (core) area is combined with an
ambient variable, but it is the highest among
all combinations. The mean lifetime is 25-30 min

higher, and the mean maximum area is more than
30 km2 larger for high wind shear and a large cell
area 5 min after the first cell detection than for
weak wind shear and a small cell area.

(g) The bivariate skill for combinations from two ambi-
ent variable clusters can be higher than the uni-
variate skill is; for example, for the combination
of DLS and LIML. The mean differences between
high-shear low-LI and low-shear high-LI condi-
tions are 10–15 min for the lifetime and 10–15 km2

for the maximum cell area. The information about
the ambient variables makes it possible to estimate
the storm lifetime and the maximum area at least
with some skill even before cells develop in the
respective environments.

As presented by Wapler (2021), an axially symmetric
parabola opened downwards describes the mean cell area
evolution well. The study at hand revealed that this model
has second-order limitations, as the timing of the maxi-
mum cell area shifts to later life-cycle stages with increas-
ing lifetime. However, an advantage is that the parabola
model can be easily refined by adding one ambient variable
as a form parameter. Utilising, for example, LIML, the anal-
yses show that, for higher instability, the mean parabola
curves are somewhat steeper and thus represent a faster
growth during the first 15–30 min of the life cycle. Esti-
mates for the maximum cell area and the lifetime with
this refined model differ noticeably depending on insta-
bility. Still, the individual life cycles show high variability,
and considerable uncertainties remain in these estimates
stemming from the parameter calculation for the statis-
tical regression model, as well as the inaccuracy of the
definition of the cell area or cell age, caused, for example,
by shadowing effects in the radar data or the KONRAD cell
definition. An alternative, non-parametric approach to the
parametric parabola model with a different perspective on
cell life cycles, where cell evolution is represented by a flow
field in a feature space, seems to be worth investigating in
the context of probabilistic nowcasting procedures in the
future.

The limitations of the lifetime or cell area discrimina-
tion and the corresponding differences of the mean values
for specific ambient conditions, described in the last list
item, may have several reasons. First, even if the mesoscale
conditions as identified by model analyses appear very
similar, the actual storm development characteristics can
look very different depending on the trigger mechanisms
and non-resolved local- or microscale processes (e.g., oro-
graphic features, low-level convergence, cloud processes).
On days with similar widespread convection-favouring
conditions, a high number of short-living and small cells
may still occur (see Section 3.1), and only a few of these
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cells may develop into long-living and large cells. Sec-
ond, as described in Section 2.3, the ambient variables
from COSMO-EU were attributed to the KONRAD cells
such that single statistical measures or numbers repre-
sent the cells’ environment conditions. What was not con-
sidered in the methods of this study are the mesoscale
gradients around the position of the convective cells,
which may give more information than the projection of
the ambient variables onto the cell objects does. Third,
the strict detection criterion and the tracking method
of KONRAD cut off considerable parts of the cumu-
lus and the dissipation stage of the cells. Moreover, a
cell not fulfilling the detection criterion for one time
instance during its real life cycle is split into two indi-
vidual KONRAD cells. Fourth, only uni- and bivariate
relations between the predictors (ambient variables and
some cell attributes at the initial stage) and life-cycle prop-
erties T and Amax were presented. Similar investigations of
combined dependencies with even more than two ambi-
ent variables, however, hardly reveal combinations with a
sufficiently large sample size for establishing robust statis-
tical relations and, at the same time, remarkably stronger
signals with regard to the mean lifetime or mean maxi-
mum area (Wilhelm, 2022). Fifth, the ambient conditions
are characterised by high-resolution model analysis data,
which are a very good approximation but do not com-
pletely reflect the actual reality. Sixth, owing to the differ-
ent scales and processes involved, the chaotic behaviour
of the atmosphere strongly affects the challenges listed
herein.

For studying the potential additional benefit of con-
sidering more than two variables, for quantifying their
particular importance for life-cycle estimations, and for
addressing the corresponding uncertainties, advanced sta-
tistical or machine-learning methods have great poten-
tial to be successfully applied to the data (Ukkonen and
Mäkelä, 2019; Mecikalski et al., 2021). The adaptation
of the methods used by Sherburn et al. (2016) or Kunz
et al. (2020), taking into account the spatial distribution
of ambient variables, may provide more insights into the
mesoscale processes involved and unravel more complex
relations to storm properties, such as cell lifetime or max-
imum area. Beyond that, applying (convolutional) neural
networks as a machine-learning-based approach might
be beneficial for identifying such complex relations and
the relative importance of the variable fields (Kamangir
et al., 2020; Molina et al., 2021).

In terms of a multisensor/multidata approach (e.g.,
Nisi et al., 2014; James et al., 2018; Cintineo et al., 2020;
Zöbisch et al., 2020), a combination of the existing
dataset of this study with further data derived by radar,
satellite, or lightning detection measurements could
enhance the multidimensional picture of the measurable

properties of convective cells. Advances in the cell
detection and tracking algorithms as, for example, the
currently pre-operational algorithm KONRAD3D of the
DWD (Werner, 2020), relying on 3D radar reflectivity,
will be able to describe the life cycles of convective
cells more realistically and with a large variety of cell
attributes. In addition to the basic information gathered
via a 2D-algorithm like KONRAD, such advancements will
provide information about the vertical structure and the
liquid water content of the cells. Furthermore, information
obtained with modern dual-polarisation Doppler radar
can be used for hydrometeor classification (e.g., Ryzhkov
et al., 2005; Kumjian and Ryzhkov, 2008; Josipovic, 2020)
or the automatic detection of mesocyclones (e.g., Heng-
stebeck et al., 2018; Wapler, 2021). Data from lightning
detection yields further valuable information about con-
vective storms (e.g., Farnell et al., 2017; Wapler, 2017). This
opens up a large space of further possibilities for statistical
life-cycle analyses once a sufficiently large sample of 3D
cell objects has been generated.
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APPENDIX A

A.1 Life-cycle properties: Parabola model
As reported by Wapler (2021), a mean parabolic evolu-
tion of the cell area A for isolated convection, and a high
variability between life cycles is apparent (Figure A1a,b).
Based on multiyear KONRAD statistics and case studies

of several prominent storms, the DWD implemented
a parametric parabola life-cycle model for cell area
evolution in combination with an ensemble Kalman fil-
ter into the successor KONRAD3D (Feger et al., 2019;
Werner, 2020). The parabolic curves for short lifetimes in
Figure A1a,b are smoother than those for long lifetimes,
as they are based on a larger number of single-cell life
cycles. Especially during the first 15 min after the first
detection of the cells, the mean growth rates of long-living
cells appear to be higher than those of short-living cells
with a lifetime below approximately 60 min. However,
within a wide range of long-living cells, growth rates
are rather comparable. The respective variation ranges
strongly overlap, even with the ranges of short-living
cells.

As a proxy for convection intensity, the ratio of cell
core area AC (Z ≥ 55 dBZ) and entire cell area A (Z ≥
46 dBZ) indicates the high-reflectivity fraction of a cell
(Figure A1c,d). The mean ratio grows faster for long-living
than for short-living cells. This finding, which supports the
hints of Davini et al. (2012), underpins that initial rapid
and intense cell growth (i.e., a rapid increase in both the
cell area and the core area) can be a good indication of a
long lifetime. The reason for this could be a previous rapid
intensification of the cell’s updraught, which promotes
both vertical growth and horizontal extension of the deep
convection cell. This may lead to precipitation formation
in a large air volume, which is reflected in high reflectiv-
ity values shortly thereafter. Such a rapid cell development
was observed, for example, for the supercell of July 28,
2013 (Kunz et al., 2018).

Similar to the approach of Weusthoff and Hauf (2008),
the parabola family of cell area can be described by

A(T)(t) = A(T)
max −

A(T)
max − A(T)

min

(T∕2)2
(

t − T
2

)2
. (A1)

Here, A again represents the mean cell area, T the life-
time (form parameter), and t cell age. The difference
A(T)

max − A(T)
min can be called the maximum evolution ampli-

tude  of the mean cell areas. As can be estimated
from Figure A1a, mean maximum amplitude  and life-
time T are linearly highly correlated (rPearson = 0.74, rS =
0.73) so that (T) ≈ cAT. Linear regression without inter-
cept yields cA = 0.295 km2 ⋅min−1, with an RMSE of the
amplitude of 4.2 km2. The minimum of cell area A(T)

min is
assumed to be taken at the first cell detection, showing
similar values for the entire cell spectrum. Thus, a constant
fit leads to A(T)

min ≈ A0 = 21.3 ± 1.1 km2 (RMSE). Hence,
Equation (A1) may be rewritten as

A(T)(t) = A0 + 4cAt
(

1 − t
T

)

, (A2)
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F I G U R E A1 Mean time evolution of (a) cell area A and (c) the ratio of cell core area and cell area AC∕A, sorted by cell lifetime. Different
line colours indicate different lifetimes. The numbers at the line ends indicate the number of cells that contributed to the averaging. For the
sake of clarity, only every second line of the 5-min cell statistics is drawn. (b, d) Like (a) and (c), except that only every fourth line is drawn,
but with a variation range corresponding to the standard deviation (1𝜎 interval). [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E A2 (a) Parabola family of the analytical model according to Equation (A2) for the temporal evolution of the mean cell area
A(t) with lifetime T as form parameter. The limitation of the range of values is indicated by the black dashed line. (b) Mean evolution of the
normalised cell area with respect to the corresponding life cycle. The black dashed line is the curve of the normalised parabolic model. As in
Figure A1a, only every second line of the 5-min cell statistics is drawn. [Colour figure can be viewed at wileyonlinelibrary.com]
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limiting the values of the parabola family to Acrit(t) = A0 +
4cAt (black dashed line in Figure A2a).

Normalising the cell amplitudes A(T)(t) − A0 by the
maximum amplitude and the time t by the cells’ lifetime
T reduces the parabola family to one single representative
parabola describing the mean amplitude-normalised cell
area evolution during a normalised life cycle (black dashed
line in Figure A2b). As can be seen from the observations
in Figure A2b, and as Davini et al. (2012) reported for cells
in northern Italy, with increasing (absolute) lifetime, the
(relative) time when the maximum cell area is reached is
shifted to later life-cycle stages, an asymmetry, which is
not reflected in the parabola model. One possible expla-
nation could be that cells with a particularly intense and
broad updraught, and thus a large vertical extent, achieve
a long lifetime, as they increasingly expand horizontally
during the life cycle. These cells possibly reach the largest
cell area after the time of the highest maximum storm
intensity (in terms of high reflectivity area). The some-
what faster relative decrease in the cell area towards the
end of the life cycle could be attributed to a widespread
weakening of precipitation formation in regions far from
the residual cell core, which would lead to a reflectivity
decrease to values below KONRAD’s minimum detection
criterion of Z = 46 dBZ there. In conclusion, an axially
symmetric parabola describes the mean cell area evo-
lution well but with second-order limitations concern-
ing the timing of the maximum cell area during the life
cycle.

A.2 Additional table and figures

F I G U R E A3 Combined illustration of deep-layer shear
(m⋅s−1), as calculated from COSMO-EU assimilation analyses, and
the KONRAD track of a long-living thunderstorm cell in central
Germany on September 11, 2011 (1500 UTC). The KONRAD cell is
depicted for all following 5-min detections by light blue rectangles,
which enframe all radar pixels belonging to the respective
detection. For the first cell detection at 1500 UTC (green rectangle),
the cell surrounding is drawn as the outer black circle, obtained by
first drawing the inner circle enclosing the rectangle minimally and
then adding the fixed radius Rfix. [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E A4 Like
Figure 13c but depending on (a)
deep-layer shear (DLS) and
maximum updraught velocity
WMAX , (b) SRH0–3 and WMAX , and (c)
DLS and vertically integrated water
vapour (IWV). [Colour figure can be
viewed at wileyonlinelibrary.com]

T A B L E A1 Summary of the abbreviations used for the
relevant ambient variables in the main text and in figures and their
respective descriptions.

Abbreviation Description

BRNMU MU bulk Richardson number

CAPEMU MU convective available potential energy

CINMU MU convective inhibition

DCIML ML deep convective index

DLS Deep-layer shear (0–6 km AGL)

Δ𝜃e 𝜃e,sfc − 𝜃e,300

ELMU MU equilibrium level

h0◦C 0◦C-level height

IWV Vertically integrated water vapour content

KO index KO index

LCLMU MU lifting condensation level

LFCMU MU level of free convection

LIML ML lifted index

LR700–500 Mean lapse rate between 700 and 500 hPa

MLS Medium-layer shear (0–3 km AGL)

RH700 700 hPa relative humidity

SCP Supercell composite parameter

T A B L E A1 Continued

Abbreviation Description

SHIP Significant hail parameter

SI Showalter index

SRH0–1 0–1 km storm relative helicity

SRH0–1.5 0–1.5 km storm relative helicity

SRH0–3 0–3 km storm relative helicity

T2 m 2 m temperature

T850 850 hPa temperature

𝜃e,850 850 hPa pseudoequivalent potential
temperature

U0–3 Mean horizontal wind (0–3 km AGL)

U0–6 Mean horizontal wind (0–6 km AGL)

U0–10 Mean horizontal wind (0–10 km AGL)

U3–6 Mean horizontal wind (3–6 km AGL)

VT Vertical totals index

Z500 500 hPa geopotential

Note: For T850 and 𝜃e,850, the standard deviation in the cell surroundings is
considered as a separate variable in addition (see Section 2.3), resulting in
33 ambient variables in total.
Abbreviations: AGL, above ground level; ML, mixed layer; MU, most
unstable.
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