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We formulate a general framework to study the flow of the electron liquid in two dimensions past a random
array of impenetrable obstacles in the presence of a magnetic field. We derive a linear-response formula for
the resistivity tensor p in hydrodynamics with obstacles, which expresses p in terms of the vorticity and its
harmonic conjugate, both on the boundary of obstacles. In the limit of rare obstacles, in which we calculate
0, the contributions of the flow-induced electric field to the dissipative resistivity from the area covered by the
liquid and the area inside obstacles are shown to be equal to each other. We demonstrate that the averaged
electric fields outside and inside obstacles are rotated by Hall viscosity from the direction of flow. For the
diffusive boundary condition on the obstacles, this effect exactly cancels in p. By contrast, for the specular
boundary condition, the total electric field is rotated by Hall viscosity, which means the emergence of a
Hall-viscosity-induced effective—proportional to the obstacle density—magnetic field. Its effect on the Hall
resistivity is particularly notable in that it leads to a deviation of the Hall constant from its universal value.
We show that the applied magnetic field enhances hydrodynamic lubrication, giving rise to a strong negative
magnetoresistance. We combine the hydrodynamic and electrostatic perspectives by discussing the distribution of
charges that create the flow-induced electric field around obstacles. We provide a connection between the tensor
0 and the disorder-averaged electric dipole induced by viscosity at the obstacle. This establishes a conceptual
link between the resistivity in hydrodynamics with obstacles and the notion of the Landauer dipole. We show

that the viscosity-induced dipole is rotated from the direction of flow by Hall viscosity.
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I. INTRODUCTION

Hydrodynamics of the electron liquid in solids has received
renewed attention—after the early theoretical advances made
about half a century ago [1,2]—]largely due to the recent surge
of interest in the transport properties of clean two-dimensional
(2D) electron systems. From the experimental perspective,
the relatively clean electron systems of interest primarily in-
clude those in high-mobility semiconductor structures [3—10],
undoped graphene [11-18], and pure quasi-2D (semi)metals
[19-22].

In the context of electrons in the solid-state environ-
ment, conventional wisdom suggests that the hydrodynamic
approach is accurate in describing viscous electron flows
on spatial scales larger than the momentum-density relax-
ation length /.. (resulting from total-momentum conserving
electron-electron collisions) and smaller than the total-
momentum relaxation length lp (resulting from external
perturbations, say, impurity-induced disorder or thermal lat-
tice excitations). From the point of view of hydrodynamics, it
is this separation of scales that distinguishes the exceptionally
clean electron systems from more typical conductors. More
specifically, it is the possibility of having a “window” for the
temperature 7, as T is varied, within which /.. < Ip even for
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low T, where the total-momentum conservation is broken by
impurities or other static imperfections of the kind.

The advent of electron hydrodynamics in solids has sub-
stantially modified the conceptual framework by which to
categorize the transport phenomena in interacting electron
systems in condensed-matter physics. In the hydrodynamic
limit (/. < Ip), the key notion to characterize collective
electron transport becomes that of viscosity. The collective
variable that is fundamental to the notion of viscosity is the
space-time dependent drift velocity v(r,t). The viscosity-
based approach aims at describing the universal properties
of an electron liquid that follow solely from the total charge,
momentum, and energy conservation in the presence of fric-
tion between parts of the system which move, at given ¢, with
different v(r, ¢). In this approach, v(r, t) obeys a continuity
equation for the momentum density in the form of the Navier-
Stokes equation [23], where friction is parametrized by the
viscosity coefficients.

From the microscopic point of view, the viscous-flow de-
scription of an electron liquid hinges on the assumption that
the system at any r is close to a local (r-dependent) thermal
equilibrium, established as a result of fast electron-electron
collisions, in the moving [with the velocity v(r,t)] frame.
Dissipation produced by viscosity is a measure of deviation
from the local equilibrium. From a more general perspec-
tive on the collective response, the viscous hydrodynamics
emerges as the limiting case of the theoretical framework
that bridges the gap between the hydrodynamics and the
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collisionless (Vlasov) dynamics in Fermi liquids [24,25]. The
microscopic consideration is also instrumental in representing
the viscosity coefficients as Kubo formulas in terms of the
correlation functions of the stress tensor, both in the classical
and quantum formulations [26—29]. This also indicates, in the
case of charged particles, an inherent link between viscosity
and the momentum dispersion of the conductivity (or resistiv-
ity) tensor [26,28,30].

Our purpose here is to formulate a framework to study
hydrodynamic transport of the 2D electron liquid in a random
ensemble of impenetrable obstacles and apply it to calculate
the resistivity tensor p in the presence of a magnetic field. In
particular, we will derive a general linear-response formula
for p in hydrodynamics with obstacles. As a fundamentally
compact relation, this formula expresses p in terms of the
vorticity and its harmonic conjugate on the boundary of ob-
stacles. The essential meaning of this formulation is that p,
defined by the average electric field induced by the electron
flow, has two contributions, one of which comes from the
area covered by the liquid and the other from the area inside
obstacles. Remarkably, in the limit of rare obstacles, in which
we calculate p, the electric fields outside and inside obstacles
contribute equally to the dissipative resistivity p,,. These two
contributions to p,, are associated, in a one-to-one correspon-
dence, with the effect of viscous stress (electric fields outside
obstacles) and pressure exerted by obstacles on the liquid
(fields inside them).

We will particularly focus on the role played by Hall
viscosity in transport of the electron liquid past obstacles.
We will show that the averaged flow-induced electric fields
outside and inside obstacles are rotated by Hall viscosity with
respect to the direction of the averaged velocity. With regard to
this effect of Hall viscosity, the boundary conditions imposed
on the flow on the boundaries of obstacles become a matter
of major importance. For the diffusive boundary condition,
the Hall-viscosity-induced modifications of the electric fields
outside and inside obstacles exactly compensate each other in
the space-averaged total electric field, so that p is indepen-
dent of Hall viscosity. By contrast, for the specular boundary
condition, the total electric field is modified by Hall viscosity.

A conceptually significant point that follows from this
consideration is the emergence of a Hall-viscosity-induced
effective magnetic field in the flow perturbed by obstacles for
a finite degree of “specularity” in the boundary condition. Its
effect on the Hall resistivity oy, is particularly prominent in
that it modifies the Hall constant compared to the universal
value characteristic of the Drude formula (and of the result
for p,, in the case of the diffusive boundary condition for that
matter). Within a more conventional hydrodynamic context,
we will also calculate the drag and lift forces exerted by the
electron liquid on the obstacle, where the lift force emerges
entirely because of Hall viscosity and counterbalances the
force exerted on the liquid by the effective magnetic field.

Apart from the Hall-viscosity-induced modification of p,
we will provide a controlled description of another effect
the external magnetic field B has on p in the hydrodynamic
regime, namely the enhancement of hydrodynamic lubrication
in the flow of charge through an array of obstacles, with oy,
vanishing to zero in the limit B — oo. This effect is in stark
contrast to the Drude noninteracting regime (characterized,

from the point of view of relaxation processes, solely by Ip).
In light of this picture, the magnetic-field induced lubrication
makes hydrodynamic transport accessible and detectable in
the measurement of the bulk resistivity in samples that need
not be narrow.

We will round out our consideration of hydrodynamic
transport in a random obstacle array with a calculation of
the spatial distribution of charges that create the flow-induced
electric field around obstacles. This will relate the resistivity in
the hydrodynamic regime with the disorder-averaged electric
dipole induced by viscosity at the obstacle, thus establishing
a conceptual perspective which links hydrodynamics in dis-
ordered media to the notion of the Landauer dipole [31]. In
particular, we will show that the viscosity-induced dipole is
rotated from the direction of flow by an angle dependent on
the ratio of the Hall and dissipative viscosity coefficients.

Methodologically, we will formulate a model to explore
the electron flow around a single obstacle and solve it in detail
for the case when both the dissipative and Hall viscosities are
present. This solution will be used to perform disorder aver-
aging up to the leading terms in p induced by Hall viscosity.
We will complement this approach by providing a mean-field
solution of the hydrodynamic problem in a random array of
obstacles.

The paper is organized as follows. In Sec. II, we present
background material concerning viscosity in the presence of
a magnetic field. In Sec. III, we provide a general perspective
as to the compressibility of the 2D electron liquid in the hy-
drodynamic formalism, particularly with regard to the charges
created by the flow around obstacles. In Sec. IV, we discuss a
general picture of how the magnetic field affects hydrodynam-
ics of the electron liquid. In Sec. V, we write the boundary
conditions for the flow at B # 0. In Sec. VI, we formulate
the general framework for calculating the resistivity in the
hydrodynamic problem. In Sec. VII, we study the flow past a
single obstacle in the presence of both the dissipative and Hall
viscosities. In Sec. VIII, we perform disorder averaging and
calculate the magnetoresistivity tensor for the hydrodynamic
flow through the array of obstacles. In Sec. IX, we consider
the charge distribution induced by the flow and its dependence
on the magnetic field. In Sec. X, we critically discuss some of
the experimental results. Section XI provides a summary. In
Appendix A, we consider the mean-field formulation of trans-
port in the obstacle array. Appendix B extends the discussion
of the flow-induced charge distribution in Sec. IX.

II. VISCOSITY OF A MAGNETIZED PLASMA

As a general method and ideology, hydrodynamics of vis-
cous conducting (thus subject to the Lorentz force) fluids has
been actively investigated over the past sixty or so years—
primarily in the context of an electron-ion plasma, both in the
Galilean-invariant and relativistic limits, with emphasis on the
viscous properties of a magnetized plasma [32] (also in con-
nection with magnetohydrodynamics, where fluid mechanics
is fundamentally coupled to electromagnetism). It has been
well understood that viscosity is modified by a magnetic field
[33-37] (see also Ref. [32] for a general discussion illustrated
by the limit of large B).
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For the case of an incompressible liquid (considered in the
present paper, with a disclaimer specified in Sec. III), the two
kinematic viscosity coefficients v and vy that describe purely
transverse (with respect to the direction of the magnetic field)
deformations are given by [33-38]

1 2w, Tee
VH=V) ———,
T o Qwetee 2

— _ 1
T T Qoetee? )

where w, > 0 [39] is the cyclotron frequency, Tee = lee/VF
with vr being the Fermi velocity (assuming the degenerate
case of low T), vy = v% Tee /4, and the magnetohydrodynamic
effects [36], normally weak in the solid-state context, are
neglected. Throughout the paper, viscosity that stems from
electron scattering off static disorder is neglected, under
the assumption that 1/7.. is much larger than the disorder-
induced relaxation rate of the second angular harmonic of
the distribution function (for disorder-induced viscosity, see
Refs. [40,41]).

One important caveat to note is that, in the 2D case, the
relaxation rates for the even and odd (in momentum space)
parts of the electron distribution function that are induced by
electron-electron scattering are generically vastly different in
the limit of low 7T [42-49], which may lead to the emer-
gence of a “quasihydrodynamic” regime [42—44,49,50] not
characterizable by a single electron-electron scattering time.
In the present paper, however, we consider the “orthodox”
hydrodynamic regime, in which 7. is the relaxation time for
the second angular harmonic of the distribution function.

The magnetic field is seen to manifest itself in Eqs. (1) ina
twofold manner: as B increases, the “conventional” viscosity
coefficient v decreases, down to zero in the limit B — oo,
and there emerges the Hall viscosity coefficient vy. The con-
tribution of vy to viscous heating is zero (‘“this stress is
‘orthogonal’ to the strain,” as it was elegantly formulated in
Ref. [35]), i.e., vy for arbitrary w,7.. describes, in contrast
to v, nondissipative transport (similarly to the Hall resistivity
Pxy)- The nonvanishing of vy in the frictionless limit of 7. —
oo for given w, in Eq. (1) can be rationalized either within
the kinetic approach or, equivalently, from the perspective
of the geometric interpretation of viscosity of noninteracting
electrons in Landau levels through the response to a variation
of the metric tensor [51-54].

Apart from the experimental works [3-22], electrically
measurable manifestations of viscosity in dc transport in
specific setups of 2D electron devices were discussed in
Refs. [55-64], with Refs. [57,62—64] focusing on Hall vis-
cosity. Viscous transport in undoped graphene [65] shows a
number of peculiarities associated with the linear dispersion
relation of massless Dirac fermions near the crossing point
and the presence of both electron and hole liquids, for a review
see Refs. [66—68]. Here, we focus on viscous hydrodynamics
of massive electrons.

III. “INCOMPRESSIBLE” ELECTRON LIQUID
IN TWO DIMENSIONS

For the 2D incompressible electron liquid (defined by as-
suming a constant electron density n, the meaning of the
quotation marks in the title will become clear shortly) with
the mass and charge densities mn and —en (with e > 0),

respectively, the continuity equation and the linearized
Navier-Stokes equation with the viscosity coefficients for
B # 0 from Eq. (1) are written as

Vv =0, @)

AV =Vp—w.(vxn)+vViv—y(Viv xn), Q)

where ¢ in the pressure term is related to the electric potential
V by

b=V, 4)
m

and n is the unit vector in the direction of the (perpen-
dicular) magnetic field. Note that, within the hydrodynamic
description of the incompressible liquid of charged par-
ticles (“plasma”) at a homogeneous entropy density (we
neglect throughout the paper the contributions to pressure pro-
duced by flow-induced inhomogeneities of both the chemical
potential and temperature), the gradient —mnV¢ of the flow-
induced pressure is solely due to long-range electric forces.
For the degenerate electron liquid, this implies neglecting the
force that comes from a spatial variation of the degeneracy
pressure (T h? /m)n? (per spin). Without much discussion of
the origin of the electric forces in terms of charges, this
fact was used in Ref. [58] to demonstrate the essential dif-
ference between the electric potential profiles generated by
the viscous and Ohmic incompressible flows. An important
basic question, worth answering here, is about what charges
produce the electric forces [69]. This question is not exactly
trivial, as we discuss next.

A conceptually significant point, which does not seem
to have been generally appreciated in the literature, is that
the viscous electron liquid obeying Egs. (2) and (3) in
the 2D case or their direct analog in the three-dimensional
(3D) case [70] is charge-neutral locally (i.e., incompressible
as such) only in the 3D case (and even then generi-
cally only for B=0). For a 2D liquid, the situation is
qualitatively different in that the solution to Eqs. (2) and
(3) for a steady-state viscous flow past hard-wall scat-
terers (which are encoded in the boundary conditions to
these equations) is necessarily associated with a genera-
tion of charges in the bulk of the liquid (even for B = 0).
This is despite the by now common designation for Egs. (2)
and (3) as an incompressible model.

Consider first the case of B = 0. It is instructive to contrast
the 2D and 3D geometries. In the 3D case, the electric field
E = —(m/e)V¢ is produced at B =0 by charges that are
“external” within the formalism of Egs. (2) and (3), in the
sense that the Poisson equation reads

3Dg_o: V¢ =0, n=ny 5)

everywhere inside the liquid [as can be seen by applying V
to Eq. (3)], where ny is the equilibrium density (homogeneous
between the scatterers). That is, the viscosity-induced field in
the presence of a flow is produced by charges that sit exactly
on the boundaries of the liquid. In the bulk, the liquid can be
thought of as being exactly incompressible.

It is a subtle feature of the hydrodynamic description that
the very existence of a nonequilibrium solution to Egs. (2) and
(3) for v # 0 is entirely [71] due to a tacitly assumed nonzero
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compressibility of the electron liquid in the vicinity of the
boundary. Indeed, it is only because of a compressibility that
charges can be generated on the boundary when the liquid is
pushed towards or away from it (assuming, as we do here, that
the shape of the boundary is rigidly fixed, which is the case
for a hard wall). The beauty of the hydrodynamic formalism
in the incompressible limit [defined by Eq. (2)] is that the field
V¢ is viewed as freely adjusting itself to the flow constrained
solely by the boundary conditions imposed on the field v, so
that the value of the “boundary” compressibility completely
drops out from the distribution of v.

In a 2D liquid, the equation V2¢ = 0 holds at B =0 as
well, with V acting within the plane, as follows from Eq. (3) in
similarity with the 3D case. By contrast, however, the flow in a
viscous 2D liquid, obeying Egs. (2) and (3), in the presence of
impenetrable scatterers generates charges that are now spread
over the bulk of the liquid [72]. The flow-induced charge
density is smooth and falls off away from the boundaries in
a power-law manner, namely

2Dp_o: Vi =0, n—ny x 1/r2, (6)

where r is the distance to the scatterer, as we will demonstrate
below in Sec. IX. It is worth emphasizing that the gradient of
the electric potential that emerges to counterbalance the vis-
cous forces necessitates the production of an inhomogeneous
charge density in the 2D flow while the gradient of the chem-
ical potential [69], associated with the charge inhomogeneity,
may be totally neglected in the balance of forces in Eq. (3).

Because the gradient of the chemical potential does not
explicitly enter Eq. (3), the compressibility itself does not
explicitly show up in the solution for v and in the corre-
sponding profile of ¢, similarly to the 3D case. It is the
latter circumstance that arguably justifies the use of the term
“incompressible” with regard to the model of Egs. (2) and (3)
in a 2D liquid—but only with the caveat specified above [“in-
herently” finite modulation of n, Eq. (6)]; hence the quotation
marks in the title of this section. As a matter of fact, Egs. (2)
and (3), when applied to the electron liquid, may describe the
limit of perfect screening (“infinitely high compressibility”),
where —(m/e)V¢ is the “residual” (screened) electric field
[69]. This is precisely the limit we consider when discussing
the density profile in Sec. IX.

A useful way to account for the emergence of the bulk 2D
charges is to realize that the flow v(r) in the r = (x, y) plane
in Eq. (3) in the presence of impenetrable disks is exactly the
same as in an incompressible 3D liquid flowing past impene-
trable cylinders obtained by “translating” the disks along the
z axis. Therefore the pressure profiles are also the same in the
(x, y) plane, i.e., the electric field —(m/e)V ¢gis (x, y) created
by a disk in the 2D liquid is the same as the z independent
electric field —(m/e)Veey(x, y) created by a cylinder in the
3D liquid:

Visk (X, ¥) = Veyi(x, y). @)

We will use this identity in Sec. IX.

The difference between the 2D and 3D cases is in the
distribution of charges that create Vs (x, y) and V ey (x, ),
respectively. In the 3D case, all charges sit on the surface of
the cylinder [Eq. (5)]. Therefore, to produce the same electric
field in the plane of a 2D liquid, the 2D charge density must

necessarily be finite away from the disk. More specifically,
the interplay of 2D hydrodynamics and 3D electrostatics in
a 2D liquid produces E(r) at B = 0 that satisfies the Poisson
equation (inside the liquid and on its two surfaces, with a 2D
vector V) of the form

VE|, 0 =0, 0,E|,0 = —4me(n —np)s(2). ®)

The profile of E , in Eq. (8) is peculiar in that the in-plane
field is incompressible (in addition to being irrotational, so
that altogether the 2D electric field is a harmonic function
inside the liquid) while the charge density n — ng is inhomo-
geneous in the plane.

We have thus seen that the 2D and 3D cases for B =0
differ in an essential manner in Egs. (5) and (6). If B # 0,
however, V2¢ becomes nonzero and charges are generically
induced in the bulk of a flow irrespective of dimensionality. In
a 2D liquid, described by Egs. (2) and (3), the expression for
V2¢ in terms of v takes a particularly simple form in the static
limit:

V2 = sw.Q, ©
where
Q= (V xVe, (10)

is the 2D (scalar) vorticity, e, is the unit vector in the z
direction, and

s = ne; (11

is equal to =1 depending on the orientation of the magnetic
field. Note that, in Eq. (9), the Hall viscosity term in the
Navier-Stokes equation does not contribute to V2¢ [it does
only if € depends on 7, in which case the right-hand side of
Eq. (9) has one more term, namely svg V2R, which is then
nonzero because of vVV2Q = §,Q].

In a 3D liquid, V2¢ in the static limit contains not only
a contribution from the Lorentz force term, the same as in
Eq. (9), but also a contribution from the viscosity terms, which
is only nonzero, in view of Eq. (5), because of the anisotropic
(transverse vs. longitudinal with respect to the magnetic field)
modification [32,33,35,36] of the viscosity tensor by B # 0.
For the 3D flow, a nonzero Vng is directly linked to the
production of charges. In a 2D liquid, as mentioned below
Eq. (8), the relation between V2¢ and n (with V acting in
the plane) is more subtle: w, 7% 0 means a generation of ad-
ditional, compared to the case of zero B, charges in the bulk.
We will discuss the distribution of ¢ and » in more detail in
Sec. IX.

IV. HYDRODYNAMIC VELOCITY IN A MAGNETIC FIELD

Having highlighted in Sec. III the essential difference be-
tween the 2D and 3D hydrodynamics of a plasma with regard
to the distribution of n in the bulk of a flow and specified
precisely in what sense Egs. (2) and (3) can be thought of
describing an “incompressible” liquid, we focus below on the
2D case. We now turn to the role the magnetic field-induced
quantities w, and vy play in the distribution of v in Egs. (2)
and (3).
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Note that the Hall viscosity term in Eq. (3), rewritten with
the use of Eq. (2) as the force

F' = —m(svn)VEQ, (12)

is associated with the vorticity (10), with —svy Q2 playing in
Eq. (12) the role of a “potential” additional to ¢ in Eq. (3).
Apart from modifying v, the magnetic field is thus seen to
produce two distinctly different forces in Eq. (3): the Lorentz
(cyclotron) force F, = —mw.(v x n), which acts “directly”
on v, and the transverse drag force F!! due to the spatial
variation of v, which acts on the gradient of €2. The force FE’ is
generically much stronger than the dissipative viscosity force
F, = mvV?y [expressible in terms of 2 as —mv(V x Qe,)]
in the large-B limit of vy > v.

It is good to be clear about the interplay of the two forces
in the charge flow past obstacles. Certain conclusions about
the effect of the magnetic field on the distribution of v can
be formulated in rather general terms. Both magnetic field-
induced forces F, and F!! in Eq. (3) can be incorporated in a
shift of the potential ¢ — ¢y, where

ou = ¢+ s(w. + vV W 13)

is expressed through the stream function v, defined in the 2D
incompressible liquid by

v=V X {e, (14)
and related to the vorticity by
Q=-Viy. (15)

As can be seen from Eq. (3), by acting on it with n x V,
within the space in which the total-momentum conservation
is not broken, i.e., between the obstacles, ¥ obeys the bihar-
monic equation

Vi =0 (16)

for 9,2 = 0. Equation (16) is a hallmark [23] of a 2D incom-
pressible flow in the stationary limit (considered throughout in
this paper) if one neglects (“linear response”) the quadratic-in-
v inertia term in the Navier-Stokes equation, as was assumed
in Eq. (3). In view of Eq. (15), another way to state Eq. (16) is
that € is a harmonic function,

ViQ=0 a7

[cf. the comment below Eq. (11)].

According to Eq. (13), the validity of Eq. (16) does not
depend on the presence or absence of the magnetic field. It
follows, importantly, that the influence of the (homogeneous)
magnetic field on i (r) and, by means of Eq. (14), on v(r)
is entirely encoded in the boundary conditions to Eq. (3)
[imposed on v(r) and, possibly, its derivatives on both the
external boundary of the system and on the boundaries of
obstacles in the bulk of the flow]. If these are B independent,
the magnetic field does not affect the flow. Without taking Hall
viscosity into account, the independence of ¥ (r) on B was
pointed out in Ref. [61]. As will be discussed in Sec. V, the
boundary conditions generically depend on B, namely through
Hall viscosity. That is, the force Fﬁl, which does not deflect the
flow in the bulk locally, affects the flow through the boundary
conditions.

Having made the general conclusion about the effect of
a magnetic field on the flow, it is worth noting that—in
the broader context of odd viscosity [73]—the Navier-Stokes
equation is often represented in the form that contains the
Hall-viscosity term but not the Lorentz-force term (both
generically allowed by broken time-reversal symmetry). On
the one hand, this may be a matter of notation, because the
Lorentz force can be understood as being incorporated in the
pressure term: in the 2D case, by adding the stream function
Y to the pressure [Eq. (13)]. On the other hand, one can think
of hydrodynamics of “parity-violating fluids” that possess
Hall viscosity in the absence of any external magnetic field
[74-79]. In our model, both the Lorentz and Hall-viscosity
forces are “part of the equation.” With regard to Hall viscosity,
however, 2D parity-violating fluids in the absence of a mag-
netic field, with active chiral fluids (“spinners’) as a prominent
example, and 2D magnetized electron liquids share much of
the phenomenology.

V. BOUNDARY CONDITION IN A MAGNETIZED
VISCOUS LIQUID

We introduce disorder in the viscous liquid by adding ran-
domly placed, with the density n4, rare impenetrable obstacles
(*“voids”), each in the form of a disk of radius R. We assume
that the interior of the voids is neutral, i.e., contains no back-
ground charges. The fact that rare—even “pointlike,” of radius
R < l..—obstacles can produce a hydrodynamic contribution
to the conductivity that would dominate over the Drude con-
tribution was pointed out in Ref. [80], emphasizing the effect
of logarithmically singular long-range hydrodynamic correla-
tions in the 2D case (“Stokes paradox”) [23,81]. For B =0
(and the sticky boundary condition), the friction force exerted
on a moving fluid by the circle-shaped hard obstacle in the
hydrodynamic regime of R > [ is given by Stokes’ formula
[23,81]. As argued in Ref. [82], for R K [ K n;/z, not only
the hydrodynamic correlations on spatial scales between /e
and n;l/ % lead to the logarithmic enhancement [80] of the
conductivity, but also multiple collisions of a given electron
with the hard obstacle on scales between R and /.. contribute
to the logarithmic singularity. In the present paper, however,
we only consider the hydrodynamic regime, assuming that the
radius of the obstacles is larger than the spatial scale over
which the local equilibrium is established [83].

Scattering of the electron flow by a “large-scale” hard
obstacle is the most conventional, from the hydrodynamic
perspective, type of a local perturbation—and it is our goal to
explore the consequences of B # 0, especially in the presence
of Hall viscosity, for the electrical resistivity of an elec-
tron liquid in this (historically, “hydrodynamic” in the most
straightforward sense) limit. Conceptually important differ-
ences arising in the hydrodynamic limit in the case of smooth
weak disorder, as opposed to the case of rare strong scatterers,
were formulated in Ref. [84] (see also Ref. [85] for a hydrody-
namic description of magnetotransport in the limit of smooth
disorder; for a broader perspective, see Ref. [86]).

In our model, the boundary conditions to Eqs. (2) and (3)
are to be fixed on the boundaries of the voids. Two types of
the boundary conditions that we discuss here correspond to
two limiting cases of diffusive and specular electron scattering
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on the boundaries. For a disk centered at r = 0, the diffusive
(sticky, or “no-slip” in the hydrodynamic context) condition
reads

v(r)[—r = 0. (18)

The specular (“no-stress”) condition requires that the nor-
mal component of the velocity v,(r) and the nondiagonal
[“radial-tangential,” in the polar coordinates (r, ¢)] compo-
nent of the stress tensor vanish on the boundary, where
the latter condition is equivalent, in view of the former, to
the vanishing of the radial-tangential component IT,,(r) of the
momentum flux density tensor (contributes —d,I1,, /7 to 9;v,)
[87]. The specular condition thus reads

vr()|=p =0,  TLy(r)[,—r = 0. 19)

In the incompressible liquid, the Hall component of IT,, is
given by —2svya,v,, so that the second condition in Eq. (19)
is written as

1 1
v<8rvq) + =0,V — = vq)) + 2svygo, v, =0 (20)
r r

for r = R. More general boundary conditions, using the
notion of the Navier slip length, were discussed in
Refs. [56,58,59,63,88] (in Refs. [63,88] also within a kinetic
equation approach).

Importantly, the boundary condition (20) is affected by
Hall viscosity [63] and thus necessarily, in our model, by
the magnetic field, even if one neglects the dependence of
the dissipative coefficient v on B—see also an analogous
modification of the boundary condition in the edge magneto-
plasmon problem in Ref. [89]. This is in contrast to Ref. [61],
which studied the effect of the Lorentz force F,. on viscous
transport—but where neither Hall viscosity in the boundary
condition [Eq. (20)] nor the Hall viscosity force FL‘I [Eq. (12)]
inside the liquid were included in the calculation. Note also
that the dependence of the specular boundary condition on vy
entails its dependence on the dissipative viscosity coefficient
as well (which is trivial by dimensionality but demonstrates
a nontrivial interplay of dissipative and nondissipative pro-
cesses for specular scattering at B # 0). Within the context
of active chiral liquids, the boundary condition in the form
of Eq. (20) arises [78] if one sends the rotational viscosity
coefficient to zero while keeping the odd viscosity coefficient
finite.

It is worthwhile to mention that, in contrast to conven-
tional (“molecular”) viscous fluids, Eq. (19) appears to be
much more adequate [compared to Eq. (18)] to describe at
least some of the electron systems that are experimentally
relevant to the measurements of viscosity effects. For exam-
ple, multiple geometric-resonance peaks observed in magnetic
focusing experiments in GaAs moderate- and high-mobility
heterostructures [90,91] and graphene [92,93] indicate that
boundary scattering in these samples was to a large degree
specular.

VI. RESISTIVITY IN HYDRODYNAMICS

For an arbitrary stationary flow describable by Egs. (2) and
(3), the potential ¢ that obeys Eq. (3) is given by a sum of

three terms:
¢ = —vQ+s(mQ — w.P), 1)

where those in the brackets correspond to the magnetic-field-
induced terms in Eq. (13), and €2 is the harmonic conjugate of
2, with 2 and 2 related by

VQ = -V x Qe (22)

[which is the Cauchy-Riemann condition for the analytic
function Q2(x, y) + i2(x, y) of the complex variable x + iy].
Equation (21) can also be represented in terms of the potential
¢y from Eq. (13) as ¢y = —vQ2.

A. Average electric field

Green’s theorem applied to an arbitrary area integral of the
curl-free 2D field E = —VV reads

/d2rE =e, X (yﬁ —?{ )le, (23)
ext int

where the contour integration is performed along the exterior
(ext) and interior (int) boundaries of the area, in both cases
(here and everywhere below) in the counterclockwise direc-
tion. In particular, for V. = (m/e)¢ from Eq. (21), the relation
(23) allows one to express the electric field averaged over the
total area S of the system, which includes empty space inside
obstacles,

1 2
(E) = < fd rE, (24)

in terms of the hydrodynamic variables ENZ, Q, and ¥ on
the boundary of the sample only, with only fext in Eq. (23).
Specifically,

(E) = (Ey) — % e, x fbdl(vfz Q). (25)

where
(Eqp) = %smez X (V) (26)

is the Hall field counterbalancing the Lorentz force averaged
over the liquid, with (v) given by

v) = é / d*rv, 27)

and the contour of integration in f%b runs along the sample
boundary. The Hall-field term (26) comes from the integral of
Yr along the boundary of the sample, because of the identity

1
_7€ dly = —(v). (28)
S sb

To calculate the average (24), it is, however, more
convenient—and also more instructive—to split it into two
parts:

(E) = (E)obs + (E>liq’ (29)

where the former term is the contribution to the integral (24)
of the area inside obstacles and the latter of the area covered
by the liquid. Integrating over the interior of obstacles, the
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substitution of Eq. (21) in Eq. (23) gives

mN ~
(E)ops = ——— €, X <¢ dl(vQ2 — svHQ)>, (30)
ob

eS
where the integration contour in f(}b runs along the obstacle
boundary, encircling the obstacle from outside. The angular
brackets in Eq. (30) denote averaging over obstacles:

Zy%dl(---) =N<7§bd1(...)>, 31

where the sum Y, =Y | is taken over all N obstacles
inside the system. Note that the term in Eq. (21) that is as-
sociated with the Lorentz force (namely, —sw.v) drops out
from Eq. (30). This is because i is constant along the bound-
ary of an impenetrable obstacle, so that the integral fgb dly
along the boundary vanishes. This property of ¥ is similar to
Eq. (28) and equivalent to the condition that no current flows
through the boundary, i.e., it holds independently of whether
the boundary condition is diffusive or specular (we will dis-
cuss the behavior of the hydrodynamic variables around an
impenetrable disk in detail in Sec. VII).

In Eq. (23), the form of E inside the area need not be
specified explicitly (apart from the property of E being curl-
free); in particular, in writing Eq. (30), it was sufficient to
represent V in terms of the hydrodynamic variables on the
boundary of the liquid around the obstacles. When averaging
E over the area fully covered by the liquid, E can be written
in terms of the hydrodynamic variables at every point of the
area integration and, after the use of Eq. (22), represented as

E=—"[uV x Qe. + sV — 0 )].  (32)
e

Applying Green’s theorem to E in the form of Eq. (32) yields

,  mN
(E)iiqg = (En) + E' — ’

X <v<f dl S2> + svge, X <f dl Q>), (33)
ob ob
m
E:—(U% dl Q2 + svye, x% de) (34)
eS sb sb

is the viscosity-associated external-boundary term. Note that
an equivalent way to state the relation between the terms
proportional to v and vy in Egs. (33) and (34) is the identity

7gdls~2=ez xfdm, (35)

valid for an arbitrary contour of integration enclosing the area
(possibly multiply connected) within which €2 is the harmonic
conjugate of 2. In our problem, this means an arbitrary area
fully covered by the liquid.

The contour integral of ¥ along the boundaries of obstacles
vanishes in Eq. (33), similarly to Eq. (30). Note that S in
Eq. (27) [and, by means of Eq. (26), in the Hall field (Ey) in
Eq. (33)] is the total area of the system, which includes empty
space inside obstacles, whereas the integration is performed
over space filled with the liquid (another way to formalize
the averaging is to integrate over the whole space and assign

where

v = 0 to space inside voids). This is particularly important for
the calculation of the Hall resistivity p,,, with a deviation of
5pxy from the “universal” value mw,/e*n being produced, as
we discuss later in Sec. VIII, by viscosity but not by the effect
of exclusion volume.

Summing up the averaged fields inside obstacles and out-
side them, the total field (E) [Egs. (24) and (29)] is obtained
as

(E) = (Ey) + E' — ﬂv«f de>+eZ X <% d1s~2>).
eS ob ob

(36)

The Hall-viscosity terms in (E)qs and (E)jq that are pro-
portional to e, x (fob dl 2) cancel out in the total field (E)
exactly. This cancellation emerges straightforwardly within
the derivation above, but it signifies a nontrivial effect of Hall
viscosity on the distribution of the electric field created inside
and around an obstacle by the flow. We will return to this point
in Sec. IX B.
The voltage drop on the sample is retrievable from

f dlV = —Se, x (E) (37)
sb

[Eq. (23)], where (E) is given by Eq. (36). If the system is
pushed from equilibrium by sending a current through it from
an external current source, the velocity distribution with a
given average (v) [Eq. (27)] generates an electric field in the
bulk and a voltage on the boundary of the sample according to
Egs. (36) and (37). Vice versa, if (E) is viewed as a source of
nonequilibrium, the friction force counterbalances the applied
force according to Eq. (36).

Equation (36) elucidates the rationale behind the represen-
tation of the first term in Eq. (32) through 2 instead of 2 [by
using Eq. (22)]. Specifically, this made it possible to explicitly
express (E) in Eq. (36) in terms of the contributions of indi-
vidual obstacles, as opposed to Eq. (25). The two terms in the
round brackets in Eq. (36), induced by dissipative viscosity,
are the contributions to (E) of the electric field in the liquid
and inside the obstacles, respectively. They do not cancel in
(E), in contrast to the opposite-signed, as already mentioned
above, terms associated with Hall viscosity.

It is worth emphasizing that Eqgs. (30), (33), and (36) are
quite general, being valid in an arbitrarily shaped sample of
an arbitrary size, with an arbitrary number of obstacles inside
it. The shape of obstacles can also be arbitrary. This enables
us to obtain the expression for (E) in the thermodynamic limit
directly from Eq. (36).

B. Thermodynamic limit

In the limit of S — oo with the density of randomly dis-
tributed obstacles ny; = N/S and the shape (“‘aspect ratio”)
of the system both held fixed—which is a definition of the
thermodynamic limit in our problem—the average (E) is fully
determined, apart from (Ey), by the average contribution of an
individual obstacle. The field E’, given by the contour integral
fs , d1€2 along the sample boundary, vanishes in this limit,
since €2 inside the liquid is bounded in this limit from above
(for a stationary distribution of v with a given (v)). This is in
contrast to the contour integral fx , d1€2 in Eq. (25), which is
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an extensive quantity for nonzero ny. In the thermodynamic
limit, Eq. (36) thus becomes

therm.

limit my ~
(E) — (Ey) — Tnd<<¢. dl Q> +e; x <¢l dl §2>> (38)
ob ob

Note that solely the dissipative viscosity coefficient v is
explicitly present in Eq. (38), whereas Hall viscosity may
only affect (E) in the thermodynamic limit through the Hall-
viscosity-dependent boundary conditions [Egs. (19) and (20)],
which then modify, for given (v), the integrals (f,, 41€2) and
( 9§0b dl S~2) in Eq. (38). It is also worth noting that the absence
of an explicit dependence of (E) on vy is a peculiarity of
the thermodynamic limit, since the field E’, associated with
the sample boundary, preserves the explicit dependence on vy
[Eqg. (34)]. In what follows, (E) is understood as calculated in
the thermodynamic limit.

Equation (38) is a general formula for (E) in the thermo-
dynamic limit, written in terms of the integrals ( fob dl ) and
( foh dl S~2) along the boundaries of arbitrarily shaped obstacles.
The property of Q being the harmonic conjugate of €2 implies
that the integral of 2 is expressible in terms of €2 alone, and
vice versa. This connection substantially simplifies for our
choice of obstacles in the form of a disk (Sec. V). In this
case, (550,7 d1 ) can be represented in terms of €2 [by directly
integrating by parts and using Eq. (22) afterwards] as

ygdlﬁ = e, x ygdl (rve), (39)
R R

with the integration contour in 9§R running along the circumfer-
ence of a circle of radius R. The viscosity-induced component
of (E) is then written only in terms of the vorticity as follows:

my
(E) = (Eg) — 7nd<?§d1 Q- rVQ)>. (40)
R

Note that Eqs. (38) and (40), describing the thermo-
dynamic limit, do not assume that the electric field is
macroscopically homogeneous. This is especially important
because the distribution of the electric field in a 2D sample
is generically inhomogeneous on the scale of the system size
[94-96], even in the thermodynamic limit and even in the
limit of ideal screening. In particular, if the sample is of a
rectangular form, the distribution of the electric field depends
in an essential way on the aspect ratio of the sample. Therefore
the area averaging in a given configuration of disorder, which
is the strict meaning of the angular brackets in all of the above
equations, reduces to local disorder averaging in the ther-
modynamic limit, but generically with the locally averaged
integrals fab being dependent on the obstacle position on the
scale of the system size.

One example of a macroscopically homogeneous 2D flow,
which we particularly have in mind, is that of an ideal (in-
finitely long) Hall bar, sufficiently wide to also exclude the
effect of friction on the edges (present if these are not specu-
larly reflecting). In the limit of ideal screening (zero screening
length), the Hall field is then macroscopically homogeneous
across the Hall bar, with the homogeneous component cre-
ated by the charge density that varies on the scale of the
bar width, diverging at the edges (as the inverse square root

of the distance to the edge) [95-97]. For a long Hall bar, a
weak nonideality of screening produces, apart from boundary
effects (cutting off the divergency of the charge density), only
a small inhomogeneity of the field in the bulk [97].

C. Resistivity versus vorticity

From Eq. (38), the resistivity tensor p, defined by the
relation [98]

) = p~'(E) (41)
between the averaged electric field (E) and the averaged cur-
rent density (j) = —e(nv), is fully determined in the linear

response limit by two vectors, (v) and

pzﬂ(<y§d19>+ezx<y§dl§>>, (42)
2me ob ob

both expressible in terms of the distribution of the hydrody-
namic velocity, with

(E) — (En) = —2mngp. (43)

Specifically, a macroscopically isotropic system is character-
ized by

21 ng p(v)
x — T T T 15 44
p e o (V)2 (44)
maw, 27 ng (p X n)(v)
oy = e = 2 RS 45
5P eZng e ny (v)2 (43)

This is an exact (linear response) expression for p in hydro-
dynamics for the case of a homogeneous equilibrium density
ny between obstacles. In this expression, p is fully—apart
from the universal term in the left-hand side of Eq. (45)—
determined by the vorticity and its harmonic conjugate on the
boundary of obstacles. For circular obstacles, p can also be
represented as [Eq. (39)]

my
p=—(Pdl(2—-rVQ)). (46)
2ne<ﬁ >
As follows from Eq. (44), the projection of p on (v) in a stable
flow is positive for arbitrary relation between v and vy.

If there are random macroscopic inhomogeneities of the
obstacle density (or any other characteristics of disorder for
that matter), Eqgs. (44) and (45) are still valid with n; un-
derstood as the average density in the thermodynamic limit
and the vector p averaged according to Eq. (31). It is perhaps
also worth mentioning that 2! in Eq. (41) should then not
be confused with the local conductivity averaged over the
inhomogeneities [99—-101].

VII. SINGLE OBSTACLE

The field v, constrained by Eqgs. (18) or (19), is infrared-
singular in the 2D case [23,81]. For a single obstacle, the
logarithmic hydrodynamic singularity can be regularized by
going beyond the linear response theory (by retaining the
inertia term in the Navier-Stokes equation; in particular, by
means of the conventional Oseen approximation [81,102]).
Another possibility is to introduce a total-momentum relax-
ation by additional weak disorder [103]. These regularizators
are not necessary if there is a finite density of obstacles, as
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in our model (or in the model with pointlike scatterers from
Refs. [80,82]), where a characteristic spatial scale L, (we
will discuss it in Sec. VIII) emerges on which the viscous
effect produced by a given obstacle fades away because of
the presence of other obstacles. In a dilute obstacle array, with
ngR?> < 1, the thus defined relaxation length L, is much larger
than R.

With this rationale in mind, our strategy for finding the
average solution to Egs. (2) and (3) is, then, to first solve an
auxiliary problem of the flow past a single void by imposing
an inhomogeneous boundary condition on the circle of radius
L around it. Let us first choose

v(r)l,=L = Vo 47)

with an arbitrary velocity vy, constant along the circle (cen-
tered at the origin). The solution to Eqgs. (2) and (3) is to be
found within the space specified by R < r < L, with one of
two conditions fixed at r = R [Eqs. (18) or (19)] and the other
atr = L [Eq. (47)].

For our choice of the boundary conditions, the first angular
harmonic of ¥ (r) decouples [104], so that the Navier-Stokes
equation reduces to an ordinary differential equation for the
complex function yx(r), dependent on the radial coordinate
only and defined by

¥ (r) = Re{x(r)e"}. (48)
Specifically, from Eqgs. (16) and (48), x obeys

d(4 + Y =0 (49)

ar\ar 7)) XTT

The radial and tangential components of v and the radial-
tangential component of the momentum flux tensor are given,
in terms of x, by

1 . y
v =——Im{xe"}, v, = —Re{x'e’}, (50)
r

M,, = Re{[ux” —w+ 2isvH)(§)/]e’¢}, (51)

where the sign ” denotes the derivative d /dr. The counterparts
of the boundary conditions (18) and (19) are, then, rewritten
in terms of x as

XR)=0, x'®R)=0 (52)

for the former case and

X(R)=0, Ry"(R)— (1 + 2is VTH>X/(R) —0  (53)
for the latter. On the outer boundary, Eq. (47) translates into
(x/r)=L =0, (54

where ¢y is the polar angle of v [note that the second equa-
tion (54) means, because of Eq. (50), the vanishing of v/ at
r = L]. The two conditions on the 2D vector v(r) defined
in the 2D plane, fixed on the inner and outer boundaries
[Egs. (18) or (19), and Eq. (47)], along with the constraint
(2) impose altogether four conditions [Egs. (52) or (53), and
Egs. (54)] on the complex scalar y (r).
The general solution to Eq. (49) is a sum of four terms

X = R(C\FInF + CF + C3F + Cy /), (55)

X(L) = —iL|vole™,

where 7 = r/R and the complex numbers C) ;34 are to be
fixed by the boundary conditions on the inner and outer cir-
cles. For ¢ from Eq. (48), it is convenient to represent v as a
sum of the zeroth and second angular harmonics

V=<§3@Hﬂ+ginﬁ% (56)

(here and below, the upper and lower lines correspond to the
x and y vector components, respectively), where g4 are given
by the combinations

ge=5(Ex +2) (57)
2 r

(related by g/, + g +2g_/r = 0). Note that the terms with
C; and C, drop out from € and V?v (and g/, which fully
determines 2 and V?v, for that matter). That is, the vorticity
and the viscous force around the obstacle depend on only two
constants, C; and C;. Specifically,

2 C A
Q=-= Re{ (Tl + 4czf>e'¢}, (58)
R T

2 (Im\[ 1 ‘
V= ﬁ<Rr2>{ﬁcre—2“ﬂ - 402}. (59)

The contour integral of 2 along the boundary of the obstacle
reads

?§ A= —2n<lm>{cl +4G). (60)
R Re

As seen from the singular terms in Eqs. (58) and (59),
the constant C; determines the strength of Stokes’ singularity.
The constant C, gives the average of the viscous force over
the space filled with the liquid. Indeed, C; drops out from
the integral f d?r V2v, with V2v from Eq. (59), over the area
with R < r < L. This can also be seen by noting that this area
integral is given by the difference of #d1<2 taken on the outer
(r = L) and inner (» = R) circles.

As follows from a comparison of Eqs. (52) and (53), the
difference between the specular and diffusive boundary con-
ditions disappears for vy/v — 00:

bl — 00 > (specular b.c. — diffusive b.c.) 61)
v

This can also be inferred from Egs. (18)—(20), where the only
difference that remains in this limit between the specular and
diffusive boundary conditions is that v, = 0 in the latter case,
whereas v, can be an arbitrary constant along the boundary
of an obstacle immersed in an incompressible liquid in the
former. For the boundary conditions (52)—(54), this constant is
zero, so that the difference is irrelevant. Below, we will present
the results for the specular boundary condition and make use
of Eq. (61) to immediately obtain those for the diffusive one.

For L/R > 1, the constants C) , which determine €2 and
V2v in Eqgs. (58) and (59), and the functions g4 (r) from
Eq. (56) are written for the specular boundary condition as
follows:

l

O TR e (62)
C, ~ L(R 2C 63
P _§<Z) 1s (63)

165429-9



1. V. GORNYI AND D. G. POLYAKOV

PHYSICAL REVIEW B 108, 165429 (2023)

and
In % 4+ 5 r< L,
g4 ~ iCy x k2 2 (64)
il,—e+1—2h—(z), r>R,
i l_h(R/r)27 r<< La
g~ —=C; x ) (65)
2 1—(r/L), r>R

in the overlapping regions r << L and r >> R, where the terms
proportional to

h= (66)

Vv + isvyg

arise because of Hall viscosity. To avoid cumbersome-
ness, we omitted terms in the denominator of C; and in
g+/C) of the order of (R/L)* and higher, and the terms
in C,/C; of the order of (R/L)* and higher. In view of
Eq. (61), C;» and g4(r) for the diffusive boundary con-
dition are obtained by setting & = 1. The ratio ¢;/C; to
order (R/L)? is the same for impenetrable obstacles irre-
spective of whether the boundary condition is diffusive or
specular.

For the case of the specular boundary condition, retaining
the nonlogarithmic terms in g4 and 1/C; is important in two
respects. Firstly, it is because of the nonlogarithmic terms that
g+ in Eq. (64) and g_ in Eq. (65) do not vanish for A # 1
at r = R. Secondly, these terms change the phases of g4 and
C;. The phase change is due to the presence of vy in the
boundary condition (53). Note that, despite v being finite at
r = R for the specular boundary condition, the separation of
the first angular harmonic in v, in Eq. (50) [cf. Eq. (56)]
ensures that the circulation of v around the void 95 dlv van-
ishes, also in the presence of the Hall viscosity term in
Eq. (53).

Interestingly, Hall viscosity makes the liquid slow down
on the boundary of an obstacle with the specular boundary
condition, leading to v =0 on the boundary in the limit of
a strong magnetic field [k = 1 in Egs. (64) and (65)]. This
is quite apart from the logarithmic suppression of C; (which
constitutes Stokes’ paradox) in Eq. (62).

From Eqgs. (60) and (62), neglecting C, compared to C,
because of the relation (63), the integral of €2 around the void
for In(L/R) > 1 is written to leading order as

2
idl Q ~ In(L/R) Vo (67)

for both the diffusive and specular boundary conditions. The
difference between the two occurs at order 1/1n*(L/R), at
which the factor vy in Eq. (67) is modified as vo — vy + Av,
where

[vflvo + vvg(vy X n)]}

(68)

{Vo +

YT 2@/ N

for the case of the specular boundary condition, and Av for
the case of the diffusive boundary condition is obtainable from
Eq. (68) by, as discussed above, sending vy /v — oo. Notably,
if vy is finite (neither zero nor infinite), Av is not parallel to
v for the specular boundary condition.

The average of v over the area between the inner and outer
circles, which is fully determined by v on the outer boundary,
fr<Ld2r v=—¢_,dly, is given, as follows from the first
condition in Eq. (54), by

/ d*rv = L%, (69)
r<L

as if there was no obstacle. That is, for this boundary condition
at r = L, the slowing down of the liquid near the obstacle and
the exclusion volume are exactly compensated in the average
of v by an acceleration, with respect to vy, away from the
obstacle [105]. Note that, in contrast to Eq. (68), the average
(69) is parallel to vy also in the case of the specular boundary
condition with vy # 0.
For Q from Eq. (58), € [Eq. (22)] reads

~ 2 o) A .
Q=— Im{ <T — 4C2r)e""}. (70)
R r

Substituting Eq. (70) in the integral of Q along the boundary
of the obstacle from Eq. (42) [or, equivalently, using Eq. (39)]
gives

- I
e, x 5£d1sz - —271( m){q —4Cy), (71)
R Re

which is only different from Eq. (60) by the sign in front of
C,. The constant C; thus cancels out in the sum of the integrals
of Q and 2 in Eq. (42), so that the sum is fully determined by
the constant C;:

- I
?{dl&?ﬁ—ezxy{dl{z:—ém( m)cl. (72)
R R Re

Since C; < C) [Eq. (63)], the two terms in Eq. (72) contribute
almost equally to the sum.

For a circular obstacle, the integration in Eqgs. (60) and
(71) “filters out” all but the first angular harmonic in €2 on
the boundary of the obstacle. Consequently, all but the ze-
roth and second harmonics of v, on the outer boundary at
r = L are decoupled from ¢,d1<2 and §,d1 (rvV<) [Eq. (39)].
Recall that only the zeroth harmonic of vy, is present in the
boundary condition specified by Eq. (47). Let us now relax
this condition by adding a nonzero second harmonic of v, ,,
i.e., by fixing both g1 (L) # 0 [Eq. (5§6)]. For

g+(L) = [vole™"*, (73)
as in Eq. (47), and
g—(L) = |vale™™, (74)

where ¢, is the angle of vy, Eq. (62) is modified by the
addition of g_(L) as

i g+(L) +2g_(L)
In(L/R) — (1 4+ h)/2"

|~ = (75)
The accuracy of Eq. (75) is the same as for Eq. (62) [terms
of the order of (R/L)* and higher in the denominator are
neglected].

For given g+ (L), Eq. (63) for the relation between C; and
C, is modified, to first order in (R/L)?> for C, (up to the
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logarithmic factor in C)), as

1/R\* ,

C, >~ -5\ 7 [C —2ig_(L)]. (76)
The contribution of C; to $,d1€2 and §,d1 (rV<Q) is seen to
remain negligibly small for L/R >> 1. Equations (67) and (68)
for fRdl 2 are modified by the shift vo — vy + 2v,. Similarly,
the average (69) of v(r) over the area with » < L is modified
by shifting vop — vy + v».

VIII. RESISTIVITY TENSOR AND HALL VISCOSITY

Having established the general framework for the calcu-
lation of the resistance in hydrodynamics with impenetrable
obstacles (Sec. VI) and discussed in detail the flow around a
single circular obstacle (Sec. VII), we proceed to calculate the
resistivity tensor p of a liquid flowing through a random array
of obstacles. According to Egs. (44) and (45), p is determined
by two averages: the vector p, which is an average over ob-
stacles [Egs. (42) and (46)], and the space averaged velocity
(v). It is convenient to view p # 0 as a linear response, which
is to be found, to the perturbation of equilibrium parametrized
by a given (v). We now use the results obtained for fRdl Q

and fRdl Q2 within the single-obstacle “scattering problem,”
Egs. (60) and (71).

A. Disorder averaging

As mentioned already at the beginning of Sec. VII, the
rationale behind using the results of the single-obstacle model,
which has an outer boundary, is based on the large separation
of the spatial scales L, (the precise expression for which is
to be obtained below) and R in a dilute array of obstacles
(ngR* < 1). For the flow past an individual obstacle, we
therefore accurately treat the flow on spatial scales around the
obstacle that are much smaller than L, and treat the rest of the
system essentially as an effective medium which regularizes
the singularity on the scale of L,. This amounts to a “logarith-
mically accurate” theory. For our problem with vy # 0, the
logarithmic accuracy for the case of specular boundary condi-
tions means that any term in p linear in ny (up to logarithmic
factors dependent on n,) that is distinct in powers of v and vy
can be found exactly to leading order in powers of 1/, where

£ =21n(L,/R). (77)

Importantly, the leading order here does not necessarily
imply the first power of 1/L. As we will see below, the terms
that do not depend on vy are accurately obtainable within this
approach only to order O(1/L), whereas those induced by
Hall viscosity to order O(1/L£?). The latter is the leading order
at which the terms dependent on vy emerge in the expansion
of p in powers of 1/L.

Specifically, the disorder averaging in Eq. (42) implies the
summation (31) of the contributions of different obstacles,
each of which can be viewed as given by Eq. (72) with fluctu-
ating coefficients C;:

_ 2my (Im c 78
P——7<Re>( 1) (78)

One can visualize the averaging of C; by placing each obsta-
cle, in a given realization of disorder, at the center of a circle
of radius L,. The argument that Eq. (75) for a single obstacle
with L ~ L, can be used to accurately calculate the leading
contributions to p—also induced by Hall viscosity—proceeds
by considering the characteristic orders of magnitude of
f+(Ly) on such a circle with the use of Eqs. (64) and (65). The
relevant orders of magnitude in powers of 1/L are as follows.

Firstly, the main contribution to g4(L,) in a random envi-
ronment is given by Eq. (73) with vy = (v), up to corrections
that emerge at order O(1/L) but on average do not rotate
vo with respect to (v) at this order. Secondly, the leading
contribution to g_(L,) is of the order of g, (L,)/L, and the
phases of g1 (L,) are on average the same at this order, i.e.,
both the average vy and v, ~ vo/L, with v, from Eq. (74), are
parallel to (v) to order O(1/L). Thirdly, both the amplitudes
and the phases of g1 (L,) are affected by Hall viscosity, with
the average v and v, rotated with respect to (v), only at order
o/L*).

An important aspect of this argument is that the disorder
averaging preserves the combination 4 [Eq. (66)] in which the
ratio vy /v appears in C; in Eq. (75) and, therefore, in Av in
Eq. (68). With the orders of magnitude obtained above, the
key point with regard to the dependence of (C;) on vy is that
this dependence emerges at order O(1/£?) and, to this order,
it comes from the denominator of Eq. (75) but not from the
dependence of g.(L,) on vg. Moreover, to order O(1/L?),
only g4 (L,) contributes to the amplitude of the vy dependent
term in (C;) but not g_(L,).

With this input, Eq. (75) produces

(C1) = (Ci)o + (Ci)n, (79)

where (C})o does not depend on vy and (C; )y is induced by
Hall viscosity, with the leading (in powers of 1/L) contribu-
tions to (Cy)o.y given by

20 .

(Ci)o = 3 [{v)|e™"%™, (80)
2ih »

(Ci)n = 7 (v)|e™"m, (81)

The angle ¢y specifies the direction of (v). Representing the
vector p [Eq. (78)] as a sum of two components,

P =po+Ppx, (82)
similarly to (C;), Egs. (80) and (81) correspond to

N 4mvy 23
po =~ v (v), (83)
4 1
P~ L2V +von(v) x ] (84)

T eL? v 4]

Note that, in accordance with the above argument, py is pre-
cisely given by the vy dependent component of Av [Eq. (68)]
with vo = (v). The two terms in py, one parallel to (v) and the
other perpendicular to it, are thus inherently related to each
other.

It is notable that, as follows from Egs. (60), (71), (72), and
specifically the comment right below Eq. (72), the contribu-
tions to p of the interior space of obstacles and the space
outside them are equal to each other in the limit of a dilute
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array. This is because of the relation (76) between the charac-
teristic values of C, and C; for L substituted by the average
distance between obstacles n;l/ 2, or the still undetermined

relaxation length L, for that matter. Correspondingly,

(E)obsp =~ (E)iiqp =~ (E)p/2, (85)

where the sign >~ becomes “equals” at linear order in n; (and
arbitrary order in 1/L).

B. Relaxation length

It remains to find L,. Recall that L,, which is the infrared
cutoff in the logarithm L [Eq. (77)], is defined as the re-
laxation length for the viscous effect produced by a given
obstacle in the random environment of other obstacles. One
way to obtain an estimate for L, is to define it by representing
the average friction force, i.e., the component of e(E) that is
parallel to (v), as —(mv/Lg)(v):

(E)(v) my

o T 0

which means the damping rate
1/t = v/L? (87)

for the current. On the other hand, as follows from Egs. (38),
(72), and (80), to order O(1/L), the amplitude of the friction
force obeys

mngv
~ —8m

(v)? L

(88)

By combining Egs. (86) and (88), the equation to find L, takes
the form 1/L2 ~ 87n,/L, which yields, with logarithmic ac-

curacy,
[In(1/nyR?)
L~ |——. 89
87Tl’ld ( )

In a dilute obstacle array, L, is seen to be much larger
[by the logarithmic factor in Eq. (89)] than the average
distance between obstacles. That is, it takes as many as
In(1/n4R?) obstacles to “blur” the viscous effect of one
obstacle. With logarithmic accuracy, though, £ can be approx-
imated as In(1/ny4R*) [by neglecting the double-logarithm
term In In(1/n4R?) in L].

C. Resistivity tensor
Having found p [Egs. (82)-(84)] and specified L,
[Eq. (89)] in the definition of L, we can now use Eqs. (44)
and (45) to obtain the resistivity tensor p. It is convenient to
split the dissipative resistivity p,, into two parts as

Pxx = Pxx,0 + Pxx,Hs (90)

where p,, o is independent of vy and py, g emerges entirely
because of Hall viscosity, in line with the corresponding repre-
sentation of (C}) [Eq. (79)] and p [Eq. (82)]. For the specular
boundary condition, the leading terms in py 0 and oy p are

then given by

8Tm ny
ex,0 = —V, 91
ey S oD
8wm ng v
PxxH = 1 (92)

e2L? ny vV2+ v

The leading term in the deviation of the Hall resistivity oy,
from the universal value, for the specular boundary condition,

is written as
mw, 8wm ng; vy

eng  €*L? ng v+ i’

SPxy — (93)

It may be worth noting that p,, in hydrodynamics with obsta-
cles is finite for the no-stress condition on their boundaries,
in contrast to the Poiseuille-like flow through a straight pipe
with this boundary condition.

Equations (91)—(93) were obtained by relying on the exact
hydrodynamic formula we derived for p (Sec. VI), the exact
solution of the single-obstacle problem (Sec. VII), and the use
of the large parameter £ > 1 to perform disorder averaging
(in the preceding part of Sec. VIII). This allowed us to pro-
ceed by making precisely controlled approximations [to order
O(1/L) in Eq. (91) and to order O(1/L£?) in Eqgs. (92) and
(93)] but required a somewhat complex logical construction
with regard to the disorder averaging below Eq. (78). In Ap-
pendix A, we complement the foregoing calculation by using
the mean-field approximation to describe the effect produced
by the random environment of a given obstacle on the flow
around it. This approximation, while giving an explicit con-
struction for calculating the disorder-averaged flow around a
given obstacle, reproduces Egs. (91)—(93) and has exactly the
same range of applicability with respect to the accuracy of the
expansion of p in powers of 1/L as the above calculation.

Let us now discuss the significance of Egs. (91)—-(93). To
begin with, recall that p for the diffusive boundary condition is
obtainable from p for the specular boundary condition as the
limit vy/v — oo [Eq. (61)]. Note that the leading term (91) in
the expansion of py, in powers of 1/L does not depend on vy
and thus is the same for an arbitrary degree of specularity in
the boundary condition. Importantly, however, as mentioned
already at the end of Sec. IV and detailed in Sec. VII, Hall
viscosity modifies the flow v(r) in the case of the specular
boundary condition. Remarkably, as follows from Eq. (92),
the change of the flow by Hall viscosity—with Hall viscosity
being by itself dissipationless in the bulk of the flow—affects
the dissipative resistivity. This occurs at order O(1/£?), with
Pxx.u relying on the interplay of Hall and dissipative viscosity,
thus vanishing for both vy = 0 for arbitrary v and v = 0 for
arbitrary vy.

Since, as discussed in Sec. IV, neither the Lorentz force nor
the Hall viscosity force in the bulk affect the flow, the vector
p in Eq. (42) is only rotated by Hall viscosity with respect
to (v)—and thus produces a finite contribution to p,—if
the boundary condition depends on vy. In accordance with
this, the deviation of p,, in Eq. (93) from the universal value
vanishes in the limit vy/v — oo [Eq. (61)]. Otherwise, the
nonuniversal term in py, relies on the interplay of Hall and
dissipative viscosity, being zero for vy = 0 and v # 0 and for
v = 0and vy # 0, similarly to p., 1.
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D. Hall coefficient

The structure of the tensor p in Egs. (44) and (45) suggests
that Hall viscosity can be thought of as leading to the emer-
gence of an effective magnetic field in the liquid, linear in ng,
which amounts to “screening” of the external magnetic field
and, to order O(1/L?) in the effective field, results in a shift
w. = W, + Aw. in p, where

2

8tng vovy

Aw, = 2 vl (94)
Since Aw./w, > 0, this effect is rather that of overscreening.
Note that Aw, depends on the electron density ng only through
the dependence of the viscosity tensor on it.

The Hall coefficient (“Hall constant”) Ry = —sp. /B,
where B is the modulus of the amplitude of the magnetic field,
is thus modified by Hall viscosity. It is worth emphasizing that
B in the above definition of Ry is the external (not effective)
field. To order O(1/L?), we have from Eq. (94):

1 A,
<1+ 2 ) 95)
enpc W,

where c is the speed of light. In the small-B limit, using vy
from Eq. (2), the Hall-viscosity induced correction to Ry near

RH’:—

the “universal” value of Ry = —1/engc is written as
1 4 5
Rul,_, ~ ~one <1 + 73 ndlee). (96)

That is, in the hydrodynamic regime, this is a small correction.
It is, however, conceptually significant that Hall viscosity
modifies, for the specular boundary condition, not only the
dissipative resistivity, as discussed above, but also the Hall
coefficient. Since the Hall-viscosity induced term in the Hall
coefficient is a correction to the universal value, it is, arguably,
more easily amenable to experimental investigation.

Note that the modification of Ry|z_, by the kinetic coef-
ficient vy, in particular, the presence of the single relaxation
rate 1/7.. (not a ratio of some relaxation rates, which may
reduce to a quantity that by itself does not describe any ki-
netic process) in Eq. (96) contradicts the general statement
from Ref. [106] that Ry|z—, is always expressible as a certain
thermodynamic susceptibility, irrespective of the presence of
disorder. While Ry in our framework explicitly depends on
viscosity, with a clear origin of this dependence, the dis-
crepancy is likely traceable to the decoupling procedure of
disorder averaging (the handling of irreducible averages) at
zero external momentum in Ref. [106].

E. Dissipative resistivity

Let us now discuss the dissipative resistivity in more detail.
To order O(1/L), the momentum relaxation rate 1/t = py, X
(e’no/m) that can be inferred from Eq. (91) or, equivalently,
from Eqgs. (87) and (89), is given by

1 N 8mny
Tt L
One remarkable point to note is that the electric field that
defines 1/t in Egs. (86)—(88) (which is in line with the above
definition of 1/t in terms of p,,) is the total electric field
(E), which includes the electric field inside obstacles, while

o7

the work performed by the electric field on the liquid per unit
time and unit area is given by —eng(Ev), which, by definition,
is entirely determined by the electric field in the liquid. This
implies a subtle relation between the average product (Ev)
and the product of averages (E)iq(v). Specifically, as follows
from Eq. (85):

(Ev) = 2(E)iiq (V). (98)

This relation can also be inferred from the correlation between
the spatial behavior of V2v and v in the single-obstacle prob-
lem (Sec. VII).

Another point worth discussing in more detail is the
viscosity-modulated magnetoresistance, especially in compar-
ison with the magnetoresistance of noninteracting electrons.
The momentum relaxation rate (97) should be contrasted
with 1/7 = (8/3)nsvpR for impenetrable disks (in the qua-
siclassical limit of mvgR/h > 1) at zero B in the absence
of electron-electron interactions. Substituting Eq. (1) for v
in Eq. (97), the momentum relaxation is seen to become
much weaker in the hydrodynamic regime of v/L < vpR,
i.e., VpTee/L < R, depending on the magnetic field and van-
ishing in the large-B limit. The hydrodynamic lubrication (the
decrease of 1/t as v decreases) is thus enhanced by the mag-
netic field. This leads to a strong negative magnetoresistance
Apyx = prx(B) — pxx(0), which for v from Eq. (1) is repre-
sentable to order O(1/L) as

Ay -~ (ch‘[ee)z
pe(0) T 14 QueTee)?

99)

The Lorentzian shape of p,,(B) in Eq. (99) implies that the
hydrodynamic description of transport is valid for arbitrary B,
including B = 0 [83].

Recall that A p,, = 0 in the most conventional formulation
of the Drude approach to transport of noninteracting elec-
trons. In this formulation, among other conditions [107], the
magnetic field is assumed to not modify the scattering cross-
section for momentum relaxation. Phenomenologically, the
nonzero Ap,, in Eq. (99) could thus be simply the statement
that the total-momentum relaxation rate varies with changing
B. We emphasize, however, that the nonzero right-hand side
of Eq. (93) clearly signifies a departure from the Drude-like
(characterizable solely and completely by the momentum re-
laxation rate) picture of magnetotransport [107].

It is also worth noting that it is entirely because of electron-
electron interactions that p,, does not exactly vanish above a
critical magnetic field in the model of impenetrable obstacles
(with no additional source of total-momentum relaxation).
In this model, the Drude approach to magnetotransport of
noninteracting electrons is totally inadequate [108]. The non-
interacting kinetic problem for this model is exactly solvable
[109] for classical electrons in the limit of ny; — oo with
ngR? held fixed (“Boltzmann-Grad limit”), showing p., o
1/B for large B. The metal-insulator transition mentioned
above occurs beyond the Boltzmann-Grad limit at a crit-
ical value of the Larmor radius R, of the order of n‘;” 2
[108,109]. Therefore one of the important messages of the hy-
drodynamic approach we developed here is that viscosity, in-
duced by electron-electron interactions, restores ergodicity of
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quasiclassical magnetotransport in the model of impenetrable
obstacles.

F. Drag and lift forces

It is instructive to look at the emergence of Aw, [Eq. (94)]
from a different perspective. While the constant C;, when
averaged over different obstacles, determines the vector p
[Eq. (78)], and thus the resistivity tensor p [Egs. (44) and
(45)], it also defines the total force F exerted by the flowing
liquid on a given obstacle. Specifically, the stress tensor o;;,
which describes the distribution of forces in the liquid, is
written in our problem as

o;j = mngv[—§28;; + (Bv; + 9;v)]. (100)

Here the pressure term, proportional to §;;, includes, apart
from the effect of V¢ on 9,v in Eq. (3), also the effect of
both the Lorentz force and the Hall viscosity force [Eq. (21)],
and the term in the round brackets gives the conventional
contribution to o;; of dissipative viscosity.

Imagine a closed contour in the liquid. The stress tensor
defines the local force f per unit length of the contour exerted
by the surrounding liquid on it as

fi = oijNj,

where N is the unit vector normal to the contour at the given
point of it and oriented in the outward direction. The total
force F acting on the obstacle is then given by the contour
integral along its boundary

(101)

F = %d[ f, (102)
R

which, by using Egs. (100) and (101), yields

F:mn0u<7§d19+ezx7§dls~z>, (103)
R R
or, in terms of C; [Eq. (72)],
Im

F= —4nmn0v<Re>C1. (104)

Averaged over obstacles, (F) is related to p [Eq. (78)] as

(F) = 2menop (105)
and can be split into two components,
(F) = (Farag + (Fuitc, (106)

where the drag force (F)qra is parallel to (v) and the lift force
(F)g is perpendicular to it. From Egs. (82)-(84), we have

8mmngv

L

(F)arag =~ (v) (107)

and, by using Eq. (94) for Aw,,

Aw,
(Fhife = mng ——((v) x ). (108)
nq
Note that —ny(F) is the disorder-averaged force density
exerted on the liquid by obstacles. Parenthetically, in the
conventional hydrodynamic context, Eqs. (103) and (104)
describe also the force per unit length exerted on a cylinder

immersed in a flow homogeneous along the axis of the cylin-
der (with ny understood then as the 3D density of the liquid).

As seen from Eq. (108), the emergence of Aw, is directly
connected with the existence of the lift force exerted by the
liquid on the obstacle (or rather the oppositely directed force
exerted by the obstacle on the liquid). Note that, according to
Egs. (60), (71), and (72) on the one hand and Eq. (100) on the
other hand, half of the contribution to (F)j;, comes from the
pressure and the other half from the viscous stress. The same
relation holds for (F)ga [110].

It is worth emphasizing that the lift force (F)jn in
Eq. (108)—induced by Hall viscosity—is only due to the
presence of vy in the specular boundary condition but not
the action of the Hall viscosity force in the bulk. This is in
line with the proof given in Ref. [76] that hydrodynamic lift is
absent for the diffusive boundary condition, irrespective of the
presence of Hall viscosity. Indeed, Aw, vanishes in the limit
of vy/v — oo [Eq. (61)] and thus in the case of the diffusive
boundary condition.

It is perhaps also worthwhile to stress that the lift force
in Eq. (108) is obtained in the linear-response limit, and so
it is fundamentally different from inertial lift forces (both
those of the “aerodynamic” Kutta-Zhukovsky, or Joukowski,
type [23], which emerge in inviscid fluids in the presence
of velocity circulation around the obstacle, and those of the
Saffman type [111], which emerge in viscous fluids in the
presence of simple shear). Viewed in a broader context, the lift
force (108) bears resemblance to the lift force characteristic of
(incompressible) 2D active chiral liquids [78]. It also shows
similarity to the lift force exerted on a liquid domain by
surrounding liquid when the two are characterized by different
odd viscosity coefficients [112].

IX. FLOW-INDUCED CHARGE DISTRIBUTION

In Sec. VII and Appendix A, we discussed the behavior
of the stream function ¥ (r), the velocity v(r), the vorticity
Q(r), and the viscous force mvV2v(r) for the flow past an
obstacle. We now turn to the distribution of the charge den-
sity —e[n(r) — ng] around the obstacle. As already mentioned
below Eq. (3), we neglect the (small in the parameter ag/R
[69] and not interesting here) term in the balance of forces
that comes from a spatial variation of the degeneracy pressure
( H? Jm)n? (per spin), i.e., the contribution to V¢ of the chem-
ical potential. The electric potential V is then given by (m/e)¢
[Eqg. (4)], and the charge density —e(n — ng) that creates the
electric potential obeys the integral equation

2 A
o(r) = —e—/ d*r' () —no o
m Jy>gr |

(109)
r—r|

We emphasize that V and n are related here through the bare
(unscreened) Coulomb kernel. This is because V and n are the
actual (screened) potential and density.

From Egs. (21) and (109), the flow-induced density is seen
to have two essentially different ingredients (this is, in effect,

a continuation of the logic of Sec. III),
n—nyg=ny, +n, (110)

where n,, associated with the terms proportional to Q and Q
in ¢, arises because of viscosity and n., associated with the
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Y term in ¢, is the density induced directly by the cyclotron
force. It is worth noting that the electric potential (m/e)¢ is
given by Eq. (21) only inside the liquid but obeys Eq. (109)
inside both the liquid and impenetrable obstacles.

For the stream function 1/ (r) in the form of only the first
angular harmonic, as is the case in the single-obstacle problem
in Sec. VII or in the mean-field problem in Appendix A,
the potential ¢(r) is of the same rotational symmetry. By
expanding the Coulomb kernel in the 2D plane in cylindrical
harmonics,

1 oo [
— — Zelm(tp—‘ﬂ)/ dk J, (kr)J, (kr'), (111)
- m=—00 0

where J,,(x) is the Bessel function of the first kind, doing the
Hankel transform, and using the identity

foodkkJm(kr)Jm(kr/) = 1(S(r —r), (112)
0

,
the solution to Eq. (109) for n(r) can then be written as

N(r) = —g /oodkszl (kr)/oodr’r'F(r’)J] (kr'), (113)
0 0

with N(r) and F(r) being the amplitudes of the angular har-
monics of n(r) — ny = Re{N(r)e’*} and ¢(r) = Re{F(r)e'*},
respectively.

The solution (113), while being exact, implies the knowl-
edge of ¢(r) in the whole 2D plane. In particular, the problem
of finding the charge distribution induced by a flow inside
the circle with r < L in the model consideration of Sec. VII
is well posed (has a unique solution) only if one specifies
whether there are “external” (for » > L) charges and, if yes,
what are then the boundary conditions for the electrostatic
problem. However, for L/R > 1, any physically reasonable
boundary condition imposed (at the model level) on n(r)
and/or ¢(r) in the area with r > L only slightly affects the
dipole part of the charge distribution around the obstacle for
r < L [as can also be inferred from Eq. (113)]. Alternatively,
one can rely on the disorder-averaged solution for the flow
around a given obstacle, the position of which is fixed, in
a random obstacle array (Appendix A). Below, to describe
the density distribution around the obstacle, we primarily
make use of the solution of the single-obstacle problem from
Sec. VII. We focus on the viscosity-induced charge density
n,(r) and its connection with the notion of the Landauer
dipole in Secs. IX A-IX C, while relegating the discussion of
n.(r) to Appendix B.

A. Viscosity-induced dipole

Solving Eq. (109) for n, with € and Q from Egs. (58) and
(70) asymptotically for R < r <« L, we have

m

n, >~ Im{C; (v + isvy)e“}. (114)
mer?
Equation (114) is obtained by noting that
rr’
/dzr’— =2, (115)
"y —r|

where the integration is performed over the whole space, with
n,(r) inversely proportional to the integral. As already men-

tioned in Sec. III [Eq. (6)] and now demonstrated in Eq. (114),
the viscosity-related charge density in the 2D electron liquid
falls off away from the obstacle in the limit of ideal screening
as 1/r2.

It is worth stressing that Eq. (114) for n, is purely classical,
with the prefactor 1/me? which is expressible as 2agdn/du
in terms of two quantum quantities, the Bohr radius ag
(screening radius in a degenerate electron gas) and the inverse
compressibility (3n/d4)~'. The limit of ideal screening, in
which we neglected the variation of the chemical potential
in V¢, means the limit ag/R — 0 with the product agdn/du
held fixed [69].

For L/R > 1, the dependence of n,(r) on the length scales
R and L in Eq. (114) is only under the sign of the logarithm in
C) [Eq. (62)]. In arandom array of obstacles, for the viscosity-
induced density 7, (r) around a given obstacle averaged over
positions of other obstacles (Sec. VIII A and Appendix A), the
logarithmic dependence is specified as

Ty ~ —n;—rzﬂ |(V)| Ref(v + isvy)e' @90}
for R < r <« L,. Since the density n,(r) in Eq. (114) is
sharply peaked at the obstacle, the compact dipoles induced
by the flow in typical realizations of the ensemble of rare
obstacles can be viewed as separate entities, each associated
with its own obstacle.

It is notable that the dipole axis of the distribution of 72, (r)
in Eq. (116) is rotated by Hall viscosity: the axis is parallel
to (v) for vy = 0 and perpendicular to it in the limit of large
vy /v, irrespective of the degree of specularity in the boundary
condition. The angle 6§ by which the direction of the electric
dipole in Eq. (116) is rotated from the direction of (v) is given,
for £L> 1, by

(116)

Svy
0 ~ — arctan —
v

(117)
(the sign >~ only refers to the shape of the dependence of 6 on
B, with 6 varying between the exact values of 6 =0at B =0
and 6 = £ /2 in the large-B limit).

Equation (116) describes the leading contribution to 72, (r),
which does not depend on the boundary condition. An ad-
ditional Hall-viscosity induced rotation of the dipole axis
emerges in the expansion of 7, (r) in powers of 1/L at order
O(1/L?) for the case of the specular boundary condition. Im-
portantly, the density distribution is affected by Hall viscosity
even if the velocity distribution is not, which is the case for
the diffusive boundary condition (Secs. IV and V), and indeed
it is the redistribution of n(r) with varying vy that is necessary
to maintain the lack of dependence of v(r) on vy in that
case. Measuring the charge distribution induced by the flow
around an obstacle provides thus a direct way to probe Hall
viscosity.

Note that both 7,(r) in Eq. (116) and 7.(r) in Eq. (B2)
have a dipole structure. However, generically, the dipoles in
n.(r) and 7,(r) are oriented differently: the dipole orien-
tation of n,(r) is highly sensitive to the presence of Hall
viscosity [Eq. (117)], whereas that of 7.(r) does not de-
pend on vy /v in the leading approximation for £ >> 1. The
dipoles in 7, (r) and 72.(r) are oriented along the same axis
(in opposite directions), perpendicular to (v), only in the
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limit of a strong magnetic field [113,114]. The amplitude
of the charge modulation around the obstacle also depends
strongly on the magnetic field. For B = 0, there is only 7,
present. It is only in the large-B limit, namely, for the Larmor
radius R, < R, that the amplitude of the variation of 7.(r)
with changing ¢ becomes [(R/R.)? times] larger than that
of n,(r). Note also that, irrespective of the strength of the
magnetic field, the density 7,(r) is sharply peaked at the
obstacle, whereas the density 72.(r) is spread on the scale of
L, > R.

B. Electric polarization and Hall viscosity

Notice that the angle 6 in Eq. (117) is the same angle by
which the electric field inside obstacles (E)qps is rotated by
Hall viscosity in Eq. (30). Recall that the angle by which (the
bulk contribution to) the electric field (E)jiq inside the liquid—
outside the obstacles—is rotated by Hall viscosity in Eq. (33)
comes with the opposite sign. As already mentioned below
Eq. (36), the two Hall-viscosity induced contributions to the
total field (E) cancel each other exactly. In the presence of
Hall viscosity, we thus encounter a nontrivial distribution of
the electric field. As a matter of fact, as we will see below, the
problem is not completely trivial even for vy = 0.

In the limit of rare obstacles, the viscosity-induced electric
field inside an obstacle can be thought of as being produced
only by charges forming the dipole (114) around the same ob-
stacle. Note that the charge distribution described by Eq. (114)
[or Eq. (116) for that matter] is not characterized by a finite
dipole moment: since the dipolar charge density falls off as
1/r?, the dipole moment diverges (linearly with r). With this
in mind, it is convenient to use the exact mapping expressed
by Eq. (7).

As discussed in Sec. III [see also the comment below
Eq. (108)], the distribution of forces exerted by obstacles on
the liquid in the (x, y) plane is exactly the same for the 2D
flow through an array of impenetrable disks and the 3D flow
through an array of impenetrable parallel cylinders oriented
along the z axis. In particular, the distribution of the flow-
induced electric field within the plane is identical in the two
systems, only the flow-induced charge density differs. Recall
that, in the limit of ideal screening, charges induced by an
arbitrary 3D flow for B = 0 are only present on the surface
of obstacles [Eq. (5)]. Because of the homogeneity of the
system of parallel cylinders in the z direction, this is the case
with regard to viscosity-induced charges also for B # 0 if the
magnetic field is oriented along the cylinders. The averaged
electric field inside obstacles for the 2D flow [Eq. (30)] can
thus by represented as a polarization field:

(E>0bs = —Zﬂ”dqcyl, (118)
where
m ~
oyl = —— €, X <y§ dl(vQ2 — svHQ)> (119)
2me ob

is the averaged dipole moment per unit length of a cylinder.
This dipole moment is strongly affected by Hall viscosity,
being rotated by the angle 6 [Eq. (117)] from the direction
of (v).

Since

<7§ d19>=ezx<?§ dl§~2> (120)
ob ob

in the limit of rare obstacles [recall the comment below
Eq. (72)], the vector p [Eq. (42)], which determines the total
electric field (E), can thus be expanded in this limit as a sum
of four terms:

p=(q +q)+ (q — q2), (121)

where q; and q, are given by the first and second terms in
Eq. (119), respectively. The Hall-viscosity induced contribu-
tion q cancels out from p, with

P =2q (122)

being twice as large as the term ; in the dipole pcyi. The
factor of 2 in Eq. (122) is essentially the manifestation of the
“fifty-fifty split” in Eq. (85). To dispel a possible confusion:
despite the cancellation of ¢, o vy from p, the remaining part
of p in Eq. (121) depends on vy for the specular boundary
condition, and this is how Hall viscosity affects then the resis-
tivity tensor p (Sec. VIII).

C. Landauer dipole in 2D hydrodynamics

The notion of the average force acting on electrons —e(E)
being determined in viscous plasma hydrodynamics by elec-
tric polarization of obstacles, as formalized by Eqgs. (43)-(45)
and (122), parallels that of a “Landauer dipole” [31,115-118].
This charge density perturbation is formed around a scat-
terer in a conducting electron system by elastically scattered
electron waves weighted with the nonequilibrium, describ-
ing a nonzero current, distribution function. The Coulomb
interaction only manifests itself in the Landauer-dipole the-
ory through static screening of the current-induced electric
potential. In the hydrodynamic limit, considered here, fast
electron-electron interactions modify the picture of a Lan-
daver dipole in an essential way; however, the dipolar
structure of the nonequilibrium electron density around the
obstacle remains intact (Sec. IX A), together with Landauer’s
idea of the current-induced electric field in a conductor with
rare scatterers being extremely inhomogeneous.

It is worth emphasizing that the charge density perturbation
conventionally designated “the Landauer dipole” is not the
actual charge density around a scatterer. Rather, it is the bare
(unscreened) density obtainable within the noninteracting pic-
ture of scattered waves. In the 2D case, the bare and actual
densities fall off with increasing distance r to the scatterer as
1/r [116,117] and 1 /r2, respectively. In the formulation of
our hydrodynamic problem, the density n(r) is, throughout
the paper, the actual density.

Let us now delve deeper into the question of how Eq. (43)
for (E) and Eq. (118) for (E)qps, with p and qcy; related by
Eq. (122), are connected with the original idea [31] that the
average electric field (E) in a 3D conductor for B =0 is
expressible in terms of the average current-induced dipole
moment at an impurity psp as (E) = —4mwngpsp, with ny
understood as the 3D impurity density. This equation repro-
duces the Drude formula for noninteracting electrons. A direct
extension of the reasoning [31] to the case of noninteracting
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2D electrons scattered at B = 0 off impurities the 2D density
of which is n, yields [116]

(E) = —4mnyq, (123)

where the Landauer dipole moment q is defined in terms of
the electric potential

vy =28 (124)
r

created by scattered electrons at nonequilibrium around an
impurity [119]. The electric field for V (r) from Eq. (124) is
given by

—2mqdé(r),
r>0+

(125)

E(r) = %[—q + 2@]

where the last term describes the polarization field in the
“core” of the dipole.

The relation (123) corresponds to the resistance measure-
ment between the source and drain terminals in the form of
two infinitely long parallel lines in the 2D plane [116]. The
condition on the geometry of the area over which the electric
field is averaged is crucially important here, with the right-
hand side of Eq. (123) being a sum of two equal contributions.
Specifically, one of them comes from the polarization field of
the dipole and the other from the averaging of the “stray” field
[the term in the square brackets in Eq. (125)] produced by the
dipole on the spatial scale given by the distance between the
source and drain lines.

In the absence of Hall viscosity, there is thus a one-to-
one correspondence in terms of phenomenology between the
expressions for (E) in Egs. (43) (hydrodynamics) and (123)
(Drude theory). Namely, p in Eq. (43) is given by 2qcy1, with
qcy being equivalent to q in Eq. (123). However, as discussed
in Sec. IXB, for vy # 0, the direct generalization of the
Landauer dipole to hydrodynamics qc, = q; + 2 contains
the Hall-viscosity induced component q,, while the vector p,
determining (E), is given by 2q; [Eq. (122)] irrespective of
the presence or absence of Hall viscosity.

At this point, it is useful to look at a simple—but highly
instructive in the context of the hydrodynamic Landauer
dipole—electrostatic problem of finding the average electric
field within a finite 2D system of identical pointlike “dipoles”
each creating the potential (124) (we use here the quotation
marks since this potential is created not by a 2D dipole as
such but by a cylinder with the dipole density q perpendicular
to the plane [119]). The average electric field (E) within the
system is a sum of the polarization fields inside the dipole
cores and the average field (E),, outside them. For illustra-
tive purpose, assume that the dipoles form a regular (square)
lattice of a rectangular shape, altogether L x M dipoles sit-
tingatx = (1,2,...,L)aandy = (1,2, ..., M)a, where a is
the lattice constant. Let the area of averaging be a rectangle
with opposite vertices at the points (x, y) fixed as (0,0) and
[(L 4+ Da, (M + 1)a]. The contribution to (E)a? of the polar-
ization fields is given by —2mq and the contribution of the

field in the area outside the pointlike dipoles by

8
<E>outa2 =2mq— m

L M M L
m
X |e +e arctan —,
(quZZ yquZ> ,
n=1 m=1 n=1 m=1
(126)
where e, and e, are the unit vectors in the x and y directions.
For q oriented along the x axis, we have

5 M. L
(E)a’ ~ —4q —In_~ (127)

M
for L > M > 1 and

(E)a* ~ —4nq (128)

for M > L > 1. By symmetry, (E)o, = 0 for L = M.

Equation (128) is the most relevant to the notion of the Lan-
dauer dipole, as it shows explicitly the origin of the doubling
of (E) in Eq. (123) compared to the average polarization field.
For M > L, the current flows across a narrow stripe, so that
the polarization and stray fields produced inside the stripe by
the Landauer dipoles contribute, as already mentioned below
Eq. (125), equally to (E). By contrast, if the dipoles are
oriented along the narrow stripe, (E) in Eq. (127) is seen to
vanish in the limit of a large aspect ratio L/M. This is not what
happens if the current flows along the narrow stripe (Hall-bar
geometry) with impurities because the electric field in this
geometry is mainly produced by the current-induced charges
that are additional to those forming the Landauer dipoles (see
the discussion at the very end of Sec. VIB). The geometry
with M > L is peculiar precisely with regard to the fact that
only in this limit the charges produced by the boundaries of
the sample do not play a role in the distribution of the electric
field.

One of the most remarkable features of the hydrodynamic
expression for the average electric field (E) obtained in the
thermodynamic limit [Eq. (38)] is that it is valid—as already
emphasized at the very end of Sec. VIA—for an arbitrary
shape of the sample. In particular, Eq. (43) holds irrespective
of the aspect ratio of the sample containing a macroscopi-
cally large number of obstacles. In view of the discussion
below Eq. (128), this means that the hydrodynamic transport
theory developed in Sec. VI “automatically” incorporates the
production of charges whose density varies on the scale of
the system size. The subtle point here is that the average
electric field (E) in the thermodynamic limit is “universally”
determined—regardless of the presence or absence of these
additional charges—by the average contribution of an indi-
vidual obstacle, as formalized by Eq. (43) in terms of the
vector p.

Within the concept of the Landauer dipole, the fact that
(E) is determined in Eqgs. (43), (121), and (122) by only the
component q; of the flow-induced dipole (119), whereas the
Hall-viscosity induced component q, cancels out from (E), is
rationalized by means of the auxiliary electrostatic model pre-
sented above. This model demonstrates that the cancellation
implies a very specific choice of the sample geometry when
using Landauer’s line of approach. Specifically, the sample
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should be chosen in the form of a stripe with M/L — oo ori-
ented normally to the vector p. If ¢, # 0, the Landauer dipole
ey is then not perpendicular to the axis of the stripe, and
its component q is “filtered out” by the averaging over the
long stripe. Indeed, as Eq. (126) shows, (E)a’> — —4mq.e, in
the limit of M > L >> 1. Crucially, in the presence of Hall
viscosity and for the case of the specular boundary condition,
the vector p is oriented at an angle with respect to the average
velocity (v). This fundamentally limits the universality of
Landauer’s formulation as far as the conceptual link between
the (dissipative) resistivity and the Landauer dipole in hydro-
dynamics is concerned.

X. EXPERIMENT

Before concluding, we briefly comment on the possible rel-
evance of the hydrodynamic description of magnetotransport
in a random array of impenetrable obstacles to high-mobility
GaAs heterostructures. We are primarily concerned with
these structures because there have been, for quite some
time, experimental indications pointing towards the impor-
tance of rare strong scatterers in them. More specifically,
these indications point towards the interplay of strong scat-
terers and smooth disorder—both at zero and, especially, at
a classically strong magnetic field, including linear-response
transport and nonequilibrium phenomena, for an early review
see Ref. [120].

One particularly significant set of experiments, which
might be thought of as potentially relevant to our discus-
sion above, are the measurements of p,, as a function of B
(in sufficiently wide samples to exclude the effect of their
boundaries on py,). A very strong negative magnetoresistance,
with p,, dropping by a factor of up to several tens [121],
was reported for B of a fraction of kG and 7 down to a
few hundred mK [122-130] (see also Ref. [10] for the wider
samples among those studied there). The magnetoresistance
is weakly 7" dependent in the low-7 limit but strongly sup-
pressed for T above 1-1.5 K in ultrahigh-mobility samples
[10,123-126,130] or persisting to T an order of magnitude
higher in the case of moderate mobility (with p,, dropping by
a factor of about ten) [127]. Changes in the negative mag-
netoresistance in ultrahigh-mobility samples brought about
by addition of an artificially created random array of impen-
etrable obstacles were studied—for various densities of the
array—in Ref. [131]. The phenomenon is likely of a classical
origin (the ultrahigh mobility of the order of 107 cm?/V s is
too high to otherwise explain the amplitude of A p,,).

The type of strong scatterers that is commonly thought
to limit electron mobility in ultrahigh-mobility GaAs het-
erostructures is “background impurities” (as opposed to
“remote donors”) present in a small concentration in close
vicinity of the 2D electron system, see Ref. [132] and Sec. I A
in Ref. [120]. It is important to note that the model of
Refs. [108,109], mentioned at the end of Sec. VIIIE, is en-
tirely inadequate to describe magnetotransport controlled by
background impurities. This is because of the presence of
smooth disorder produced by remote donors, the result of
which is that the typical shift of the guiding center of a
cyclotron orbit after one revolution is, for the magnetic fields
at which the experiments [122—-130] were performed, by far

larger than the characteristic size of background impurities
(which is the Bohr radius) [120].

Thinking more generally, however, reveals that correla-
tions in the multiple scattering process at the points of
self-intersection of diffusing quasiclassical paths produce
a strong negative magnetoresistance [133] for the case of
“mixed disorder” (strong scatterers plus smooth disorder),
with the magnetic field effectively “switching off” scatter-
ing off strong scatterers. These correlations are key to the
concept of quasiclassical “memory effects” and display very
rich physics, especially in magnetotransport [120]. Adding
electron-electron scattering, which by itself conserves total
momentum, to the picture of quasiclassical correlations will
provide a T dependence of the magnetoresistance induced by
the memory effects [134]. With this in mind, it remains to be
seen if this theoretical framework is capable of shedding more
light on the experimental observations [122—-131], in particu-
lar, with regard to the discussions of the possible connection
between the two in Refs. [122,124,126,127,131].

In the last decade or so, it has become clear [126] that a
different type of strong scatterers may be relevant to transport
in high-mobility GaAs heterostructures, namely Ga droplets
(“oval defects”). These typically emerge in the technological
process in very small numbers (with the characteristic density
10* cm™2) but can be very large in size (with the characteristic
radius up to about 20 pum inside the 2D electron system,
as reported in Ref. [126]). Although these droplets were
commonly deemed irrelevant to the transport measurements,
impenetrable obstacles of that size and density put a bound on
the electron mean free path /p at a scale comparable to Ip ~
10> um typically deducible from the mobility in ultrahigh-
mobility samples. Moreover, they seem to have “come to the
fore” in the literature in what concerns the memory effects of
the type [126,133] and the measured magnetoresistance.

Note that memory effects of a similar nature may be
present simultaneously for both types of strong scatterers
(background impurities and Ga droplets), thus giving rise to
two peaks in the shape of the dependence of p,, on B, both
centered at B = 0, superimposed on each other. The character-
istic amplitude and width of the two peaks may substantially
differ in view of the differences in the characteristic concen-
tration and radius for the two types of strong scatterers.

There is difficulty, however, in reliably analyzing the re-
sults of Refs. [122—-130] in these terms: (at least) the size of
Ga droplets is apparently very sensitive to the technological
process. Specifically, the Ga droplets in the “best wafers”
grown in the Weizmann Institute are (at most) of the same
density 10* cm™? as in the ultrahigh-mobility samples on
which the measurements were performed in Ref. [126]—but
their characteristic radius is an order of magnitude smaller,
about 1 um [135]. The density of Ga droplets can also vary
noticeably [136] depending on the growth conditions. From
this perspective, it might be interesting to look into how the
results of the magnetotransport measurements correlate with
the amount and size of Ga droplets.

Besides intentionally created large obstacles (e.g., the ob-
stacle radius in Ref. [131] was fixed at 0.5 um), Ga droplets
may thus be one of the experimentally realizable examples
of impenetrable obstacles of the type discussed in the present
paper. It should be noted, however, that although it might be
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tempting to view the viscous magnetoresistance described in
the present paper as directly related to the observations in
Refs. [122-131], the hydrodynamic picture for transport in
the bulk should be taken with caution as far as the electron
liquid in high-mobility GaAs samples for 7 ~ 1 K or less is
concerned.

Indeed, the characteristic /.. for these samples at 7 = 1 K
is likely about 100 um for B = 0 [137], which gives .. =
lee/vF of the same order of magnitude as the total-momentum
relaxation time t for ultrahigh-mobility samples, where t is
extracted from the measured mobility p according to T =
(m/e)p. In the moderate mobility sample from Ref. [127], in
which a very strong negative magnetoresistance was observed,
the thus obtained t is, correspondingly, an order of magnitude
smaller than .. The condition T < 7. also implies that the
total-momentum relaxation length is much smaller than /.
[138]. The conventional hydrodynamic approach, assuming
that viscosity is induced by electron-electron interactions, is
thus unlikely to be justified at zero B for transport in the bulk
of moderate- to ultrahigh-mobility GaAs structures—all the
more so because /.. exceeds the size of strong scatterers, even
if these are associated with Ga droplets. In view of the latter
condition, transport at B = 0 is likely describable in the spirit
of Refs. [82,139], with the addition of the effect of smooth
disorder.

Turning to the observed dependence of p,, on B [122-131],
which is often referred to in the literature, following Ref. [37],
as a manifestation of viscous hydrodynamics in macroscopic
2D samples, an essential inconsistency between the experi-
mental data and its description in terms of viscous transport
looms. Within the hydrodynamic framework, the negative
magnetoresistance results from the suppression of dissipative
viscosity according to Eq. (1), as discussed in Sec. VIIIE.
To articulate the issue in general terms, let us change over to
phenomenology by introducing the relaxation time of the sec-
ond angular harmonic of the distribution function 7, (which
reduces to . in the case of viscosity induced by electron-
electron scattering). Extracting t, from the measured width
of the peak of p,,(B), which is invariably a fraction of kG in
high-mobility GaAs heterostructures, the thus obtained 7, at 7
about 1 K is conspicuously by far too small, giving the length
I, = vp 1, of the order of a few microns. In particular, if one
assumes that 7, is given by t., this length scale is at least an
order of magnitude less than expected.

In fact, the observed T dependence of the width of the
peak in p,,(B) saturates with decreasing T in this range of
T, which indicates—within the linear-response hydrodynamic
picture—that /, in the low-7" limit is not given by /. but,
rather, is connected with electron scattering off disorder. The
condition of applicability of the hydrodynamic framework
to describe viscous flow around impenetrable obstacles of
radius R would then be [, « R, which requires the presence
of an additional source of disorder, on top of impenetrable
obstacles. In turn, the purported predominately hydrodynamic
character of the flow would require that the viscosity-related
total-momentum relaxation time t, given by Eq. (87), be
much smaller than the total-momentum relaxation time lp /vp
induced by the additional source of disorder. These condi-
tions are hardly compatible with each other in the discussed
framework, so that viscosity induced by impurity scattering is

unlikely to play any significant role in a good conductor with
rare obstacles.

In terms of /; and /p both induced by disorder, the essential
problem with the description of the experimental results for
the magnetoresistance within the picture of viscous hydro-
dynamics thus manifests itself in the fact that fitting to the
experimental data in the low-7 limit within this picture would
require that /; be much smaller, by a large margin (at least an
order of magnitude), than /p. Note also that, although a strong
magnetic field makes the hydrodynamic regime more easily
achievable [83], this line of approach implies the existence
of an intermediate, as B increases, regime in which a strong
magnetoresistance emerges not describable in terms of con-
ventional hydrodynamics, but electron-electron interactions in
the presence of disorder play a crucial role.

The above means that there is much difficulty in associ-
ating the magnetoresistance in Refs. [10,122—-131] directly
with the purely hydrodynamic description of the electron
liquid flowing past strong scatterers. To summarize, (i) the
characteristic 7., is too large to account for a hydrodynamic
regime for B =0, (ii) the characteristic 1, extracted from
the measured width of the peak of p,, as a function of B
under the assumption of viscous transport is by far too small,
(iii) the observed saturation of the width of the peak of
pxr With decreasing T cannot possibly be associated with
disorder-induced viscosity. It is worth mentioning that this
cautionary remark is at odds with the forthright conclusion
made in Ref. [37]. As a matter of fact, the fitting in Ref. [37]
to the experimental data [127] (for the sample parameters
cited in Ref. [127] with the mobility and electron density at
T =1 K about 1.0 x 10° cm?/V's and 2.8 x 10'' cm~2, re-
spectively) yields the fitting parameters that are rather dubious
precisely with regard to the inconsistency outlined above. In
particular, the lengths [, and Ip used in the fitting (Fig. 1 in
Ref. [37]) at T =1 K are 3 pm and 100 pum, respectively,
differing by more than an order of magnitude, with the length
scale of 3 um being thus much smaller than both /.. for T =
1 K and Ilp. Moreover, the “effective sample width” 10 pm,
used in the fitting and associated with the average distance
between Ga droplets with reference to the experimental data in
Ref. [126], is an order of magnitude smaller than about 90 um
corresponding to the droplet density 1.3 x 10* cm~2 cited in
Ref. [126].

Altogether, despite the above note of caution, viscous
hydrodynamics is an important direction in attempting to un-
derstand the magnetoresistance observed in Refs. [122—-131],
with the present paper formulating the theoretical framework
for electron hydrodynamics in a random array of impenetrable
obstacles in the presence of a magnetic field and solving the
basic problem in this direction.

XI. SUMMARY

We have presented a detailed analysis of the flow of
the 2D electron liquid through a random ensemble of rare
impenetrable obstacles in the presence of a magnetic field.
The theoretical framework we have formulated to calculate
the linear-response resistivity tensor p relates p to the vor-
ticity and its harmonic conjugate, both averaged along the
boundaries of the obstacles. This basic relation shows that p,
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which is defined by the averaged electric field induced by the
electron flow, has two distinctly different contributions. One
is related to the electric field induced in the liquid, the other
to the electric field induced inside obstacles. Remarkably, the
electric fields outside and inside obstacles give equal contri-
butions to the dissipative resistivity p, in the limit of rare
obstacles. This, in particular, highlights an inherent link be-
tween hydrodynamics and electrostatics in the charged liquid.
Specifically, the contribution to p,, of the electric field in the
liquid is brought about by viscous stress, whereas that of the
electric field inside obstacles comes from pressure exerted by
them on the liquid.

Throughout the paper, we have maintained the theme of
elucidating the role played by Hall viscosity in transport of
the electron liquid past obstacles. We have shown that the
averaged electric fields outside and inside obstacles are rotated
by Hall viscosity from the direction of the averaged veloc-
ity. For the diffusive boundary condition on the obstacles,
this effect exactly cancels in p, as a result of which p is
not affected by Hall viscosity. By contrast, the total electric
field is modified by Hall viscosity for the specular boundary
condition. One conceptually interesting piece of physics here
is that the resulting dependence of p on Hall viscosity implies
the emergence of an effective—proportional to the obstacle
density—magnetic field produced by Hall viscosity in addi-
tion to the external one. The dependence of the Hall resistivity
Pxy on Hall viscosity leads to a deviation of the Hall constant
from its universal value.

Within the analytically controllable approach, we have also
described the vanishing of p,, in the limit of a strong magnetic
field, the essential physics of which is the known modification
of the dissipative viscosity coefficient by the magnetic field.
A corollary of the magnetic-field enhanced hydrodynamic
lubrication is that hydrodynamics can, in principle, be probed
in magnetotransport through a random array of rare obstacles
in the bulk of a sample.

We have further explored the interplay of hydrodynamics
and electrostatics by calculating the distribution of charges
that create the flow-induced electric field around obstacles.
We have related the resistivity in the hydrodynamic regime
with the disorder-averaged electric dipole induced by vis-
cosity at the obstacle. This conceptual link is much in the
spirit of the Landauer dipole for noninteracting particles,
with the dipole precisely defined in our problem in terms
of hydrodynamic variables. We have also shown that the
viscosity-induced dipole is rotated from the flow direction by
Hall viscosity.

Although it might be tantalizing to speculate that the en-
hancement of the hydrodynamic lubrication by the magnetic
field is behind the numerous fairly puzzling observations of
the strong negative magnetoresistance in high-mobility GaAs
heterostructures, the experimental picture is likely far from
being described in purely hydrodynamic terms, as we have
also discussed in the paper.

Note added. Very recently, when the writing of this
manuscript was nearing completion, the preprint [140] has
appeared dealing with some of the problems studied in our
work.
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APPENDIX A: MEAN-FIELD FORMULATION

As mentioned below Eqgs. (91)—(93), a complementary way
to organize the calculation of p, which gives the same results
and has the same level of accuracy with respect to the expan-
sion of p in powers of 1/L, is the mean-field approximation
(“effective medium approximation”). The advantage of this
approach is that it gives an explicit form for the hydrodynamic
variables around an obstacle the position of which is fixed,
averaged over positions of other obstacles. Below, the quan-
tities that are subjected to this type of disorder averaging are
denoted by a bar over them.

The essence of the mean-field approximation is to en-
sure the balance of disorder-averaged forces in the linearized
Navier-Stokes equation around a given obstacle by represent-
ing the effect of other obstacles as friction and lift forces, both
local in space. Specifically, the velocity V in the stationary
case obeys [cf. Eq. (3)]

Vo — 0.V xn)+vV¥ —vg(VE xn) + I(¥) =0, (Al)
where the term /(V) is local and linear in V:

I(V) = —V/7T — Aw.(V x n). (A2)

In Eq. (A2), the total-momentum relaxation rate 1/t and the
effective cyclotron frequency Aw., which describes hydro-
dynamic lift for the specular boundary condition, are given
by Egs. (97) [see also Eq. (87)] and (94), respectively. Equa-
tion (Al) is supplemented with the condition

Vv=0 (A3)

[cf. Eq. (2)]. The boundary conditions to Egs. (A1) and (A3)
are fixed on the boundary of the given obstacle at r = R
[Egs. (18)—(20)] and at infinity as

(A4)

V|r~>oo = (V>7

where (v) is defined in Eq. (27).

It may be worth noting that the force density mngl (v)—
exerted by obstacles (except the one that does not participate
in disorder averaging) on the liquid—counterbalances on av-
erage the force F [Eq. (103)] for each of the obstacles and,
as such, has contributions of the electric field both inside the
liquid and inside the obstacles [cf. Eq. (103) and the averaging
of the electric field in Sec. VI]. Indeed, recall that, for any
given obstacle, the part of F stemming from pressure [the
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second term in Eq. (103)] is representable for the charged
liquid “rushing against” the rigid walls of the obstacle in
terms of the electric field inside the obstacle. Accordingly,
(m/e)I(V) for r — oo is given by (E) — (Ey), where (E) is
the total field [Eq. (29)]. Note also that the balance of forces in
Eq. (A1) is the stationary limit of the dynamic equation with
the term 9,V on the right-hand side of Eq. (A1), which de-
scribes dynamics of the momentum density carried by the
liquid. The contribution to 9,V from the friction force is given
by —V/7, where 1/t is the momentum relaxation rate that
determines the resistivity, i.e., once more, the total—including
the contributions from the area outside and inside obstacles—
electric field (E) induced by the current.

The mean-field approach to Stokes flow in a random 3D
array of obstacles was conceptualized in the late 1940s [141],
with the mean-field equation similar to Eq. (A1) derived for
the 3D case for w. = 0 in the absence of Hall viscosity and
for the diffusive boundary condition (hence with Aw, = 0)
[142-146]. It was explicitly demonstrated that the mean-field
approximation in the 3D problem is exact in the limit of a
dilute array to linear order in the density of obstacles.

An important feature of the 2D model is that the 2D re-
sistivity at linear order in ny is expandable in a series in
powers of 1/L (Sec. VIII), as was also noted [145] within
the hierarchical scheme of decoupling multiple-obstacle “in-
teractions” [143] when it is applied to the 2D case. In the
mean-field framework, the parameter that controls this ex-
pansion is represented as 1 /ndLﬁ <« 1, where the relaxation
length L, (for the decay of a viscous effect produced on the
flow by a given obstacle) is given by Eq. (89). That is, firstly,
it is the large number of obstacles within the “relaxation area”
Lg that justifies the mean-field approximation to leading order
in 1/L. Recall that the leading order is O(1/L) for p, o and
O(1/L?) for both py n and spxy, — maw,/e*ng [cf. Eqs. (91)—
(93)]. Secondly, in contrast to the 3D case, spatial fluctuations
of the number and the positions of obstacles within the area
Lg, which amounts to spatial fluctuations of the relaxation
length, break the mean-field approximation in the form of
Egs. (A1) and (A2) for the calculation of p in the 2D case
already at linear order in n,. This occurs at the first subleading
order in 1/L£ beyond the leading one [147].

The mean-field equation (Al) formalizes essentially a
single-obstacle problem, similar to that solved in Sec. VII,
with the outer boundary moved to infinity [cf. Eqs. (47)
and (A4)] and the starting equation for i modified [cf.
Eq. (16)] as

— 1
Vi — EV

v

2y =0. (A5)
The solution to Eq. (A5) for the boundary conditions specified
above is the first angular harmonic ¥ (r) = Re{}(r)e'?} [cf.
Eq. (48)] with the function ) obeying Eqgs. (52) or (53) on the
boundary of the obstacle and

O/ Pro0 = —il(v)|e™ (A6)
at infinity. The solution reads
_ r R r
X =Di—+D,— +D:Ki| — ), (A7)
R r L,

where K, (x) is the modified Bessel function of the second
kind, the coefficients D; and D, are exactly given by D; =
—iR|(v)|e™*™ and D, = —D; — D3K (R/L,), and the coef-
ficient D3 to leading order in L, /R [with relative corrections
to D3 /L, of the order of O(R*/L2)] is given, for the specular
boundary condition, by
2iL, .
D3 >~ — [(v)]e "™,
In(L,/R) — h/2+4+d

Here d =In2 + 1/2 — y, with y being Euler’s constant, and
h is defined by Eq. (66). As in Secs. VII and VIII, the result
for the diffusive boundary condition is obtainable by sending
vg/v — oo (h — 1)[Eq. (61)]. Note that the first two terms in
% in Eq. (A7) drop out from Q and V2V (cf. the corresponding
terms in x in Sec. VII).

As discussed above, similarly to the calculation of p in
Sec. VIII, retaining the vy independent term d in the denom-
inator of Eq. (A8) is beyond the accuracy of the mean-field
approximation. This is in contrast to the term —h/2 that
accurately describes the leading—of the order of O(1/L£?)—
contributions to the Hall-viscosity induced terms in p [cf.
the denominator of C; in Eq. (62)]. By representing, simi-
larly to Egs. (79) and (82), Qand v as Q = Q + Qy and
V = Vy + Vg, where the first terms in the sums do not depend
on vy and the second terms are induced by Hall viscosity, we
have from Eqs. (A7) and (AS8):

(A8)

= _ 41wl .
Q- T(ﬁi' m( )I m{he/¥ 00 (A10)

for the leading terms in QO H, and

2 .
B
(A11)
— 2|<V)| Re i(p—i
B
ko =) [efew Al2
o 7 (A12)

for the leading terms in V2Vy j.
The amplitudes of the angular harmonics of v, defined in
terms of ¥ similarly to Egs. (56) and (57), are given by

2= 1— ki =) [imle
" WL, ’

(A13)

_ R? 2RLK R K r
Pt I(Lv)‘ Z(LT)
X [(v)|e 7w, (Al14)
where
W =K R 1—h RK R AlS
(E) o Ea(f)

This is the exact solution to Eq. (A1). We keep the term pro-
portional to K;(R/L,) in the square brackets in Eq. (A14) not
expanded in the small parameter R/L, so that vV in Egs. (A13)
and (A14) satisfies the boundary condition of impenetrability,
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v, = 0 at r = R, exactly. This condition is then satisfied for
arbitrary W. Similarly, the exact form of W guarantees that the
other boundary condition at » = R [Eq. (20)] is also satisfied
exactly (note that the difference between the specular and
diffusive boundary conditions is fully encoded in W, with the
second term in W vanishing for the diffusive boundary con-
dition). Otherwise, g, from Eqs. (A13)-(A15) can be written
to linear order in nyR?, expanded in powers of 1/£, and split
into two parts, one describing Vo and the other vy, each of
which is within the limits of applicability of the mean-field
approximation similarly to Egs. (A9)—(A12).

Importantly, the terms in Eqs. (A13) and (Al14) at r ~ L,
reproduce the “power counting” presented between Eqs. (78)
and (79) with regard to the expansion of the amplitude and
the phase (for complex &) of g, (L,) in powers of 1/L. In
particular, the mean-field approach produces, as follows from
Egs. (A9) and (A10) at r = R, exactly the same leading
terms in po [of the order of O(1/L£)] and py [of the order
of O(1/L£*)] as in Eqs. (83) and (84) [with the subleading
terms in the expansion of p in powers of 1/L being, as
already mentioned below Eq. (A4), beyond the accuracy of
the mean-field approximation itself]. To order O(1/L), the
drag force in Eq. (107) and the one obtained [145] for the 2D
case within the hierarchical scheme [143] (for the diffusive
boundary condition) coincide with each other.

It is worth noting the difference in the effect of disorder on
the vorticity € and the viscous force, proportional to V2V, on
the one hand, and on the velocity V itself on the other hand.
Both Q and V%V decay exponentially, as the distance from the
given obstacle r increases, on the scale of the relaxation length
L,, whereas the perturbation Vv — (v) induced by the obstacle
decays only as a power law. Specifically, the amplitude of
the second angular harmonic of v behaves, as follows from
Eq. (A14) upon substitution of Eq. (89) for L,, in the limit of
r> L, as

1

g~ — v)|e v
8 2nndr2|( i ;

r> L, (A16)
[the contribution to g_ of Hall viscosity for r >> L, is given
by the expression in Eq. (A16) multiplied by the small factor
h/L]. Note that this is in contrast to the amplitude of the zeroth
angular harmonic of Vv — (v) which falls off with increasing r
proportionally to exp(—r/L,) [Eq. (A13)].

Another point to notice is that the equation obeyed by g,
from Eq. (A13),

-V !
&yt

— Al7
2 (A7)

(g+ - §+|rﬁoo) = 07
incorporates the balance between the zeroth angular harmon-
ics of the viscous force mv V>V and the friction force —m(V —
(v))/t that makes V relax to (v):

2 v
[l o) e

It follows that the sum of the zeroth harmonics of V>V and
—V/Lﬁ, in which each of the two terms is rotated with respect
to (v) because of Hall viscosity, is oriented strictly along (v).
In turn, the component of the zeroth harmonic of the disorder-
averaged pressure term V¢ in Eq. (A1) that counterbalances

(A18)

vV2V — ¥/t is constant and given by (v)/t for arbitrary r.
This is in contrast to the component of the zeroth harmonic
of V¢ that is due to Hall viscosity, which varies in space as a
linear function of v.

The balance of forces in Eq. (A18) demonstrates also a
subtle effect produced by the environment of a given ob-
stacle on the behavior of the viscous force mvV>v around
it on spatial scales below the relaxation length L,. Specif-
ically, as r increases, the amplitude of the zeroth harmonic
of V2V decreases logarithmically for R < r < L, as In(L, /r)
[Egs. (A11) and (A12)]. This counterbalances the correspond-
ing change of the force —m(V — (v))/r. The logarithmic
relaxation of the zeroth harmonic of Vv should be contrasted
with Eq. (59) for the single-obstacle problem, where the ze-
roth harmonic of V2v does not depend on r. Note that the
second harmonic of V3V in Egs. (All) and (A12) varies in
the limitof r < L, as 1/ r2, which is, in contrast to the zeroth
harmonic, in exact correspondence with the behavior of the
second harmonic of V?v in Eq. (59). Correspondingly, the
vorticity € in Eqs. (A9) and (A10) consists for r <« L, of
two leading terms, one of which falls off with increasing r
as 1/r, exactly as in Eq. (58) for the single-obstacle problem,
whereas the other grows as r In(L, /r), with the additional log-
arithmically varying factor compared to Eq. (58). As already
mentioned above, the result for © at » = R reproduces exactly
the leading terms in both py and py in Eqgs. (83) and (84).

Finally, we should note that equations similar to Egs. (A1)
and (A2) can be written outside the context of the mean-field
approximation for a random array of obstacles. Namely, as
mentioned at the beginning of Sec. VII, this is the case in a
single-obstacle problem if the regularizator of Stokes’ singu-
larity is a total-momentum relaxation [finite 1/t in Eq. (A2)]
produced by weak “environmental” disorder, which can be
static or dynamic, around the obstacle. From this perspective,
the key distinguishing property of the mean-field approxi-
mation in a random obstacle array is the “self-consistency”
condition on the total-momentum relaxation rate in Eq. (A2),
which in our case takes the form of Egs. (86) and (87) in the
limit of £ > 1. Note that equations of the Navier-Stokes type
for a single obstacle with environment-induced friction in the
presence of odd viscosity arise [77,78] in the context of active
chiral liquids, where they become similar to Eqs. (Al) and
(A2) if one neglects rotational viscosity. As already mentioned
at the end of Sec. V, the specular boundary condition is then
the same in the active chiral liquid and in the magnetized
electron liquid.

APPENDIX B: LORENTZ-FORCE INDUCED DIPOLE

In Secs. IXA and IX B, we discussed the flow-induced
perturbation of the electron density around an obstacle n,(r)
that is directly produced by viscosity forces (associated with
both dissipative and Hall viscosities). In contrast to n,(r),
the Lorentz-force induced density n.(r) is not peaked in the
vicinity of the obstacle. Indeed, the variation of the Hall
electric field —(mw,./e)(v x n) around the obstacle follows
the slowing down of the flow around it, so that its amplitude
behaves only logarithmically as a function of r. Specifically,
according to Egs. (64) and (65)—apart from the intricate
behavior, associated with Hall viscosity, in the immediate
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vicinity of the obstacle on the scale of r ~ R—the amplitude
of the Hall field grows slowly as In(r/R) with increasing r
for R <« r <« L. This requires that the charges producing the
variation of the Hall field with r be spread on the scale of L
[not R, as in the case of n, (r)].

Solving Eq. (109) for n.(r) in the limit of R < r K L, we
have

T Livy x m) (B1)
ne >~ ——— —(vg X
7 In(L/R) r

for the charge density that produces the component of the Hall
electric field that behaves as In(L/7) on top of the homoge-
neous component —(mw,./e)(vy x n). The charge distribution
(B1) forms a dipole around the obstacle and is » independent.
For the density 7. around a given obstacle, averaged over

positions of other obstacles (Sec. VIIT A and Appendix A),
Eq. (B1) is modified to

_ 2mw,. r
Tip -
wel r

for R < r < L,. Similarly to Eq. (116) for n,, Eq. (B2) gives
the leading contribution to 7. in the expansion of 7z, in powers
of 1/L.

It is instructive to examine how n.(r) behaves beyond the
limit of » < L when a boundary condition, mimicking the
effect of other obstacles around a given one, is placed on
r > L within the model problem of Sec. VII. A simple and
illustrative solution can be obtained for the condition that
specifies the potential ¢, fixed as ¢ = —sw. ¢ with ¢ given
by Egs. (48) and (55) for R < r < L and obeying V¢ =0

(v) x n) (B2)

for r < R and r > L with continuous V¢p at r = Rand r = L,
which thus imposes no constraint on n.(r) directly. The con-
dition for r > L means that Q(r) = 0 [Eq. (9)] and v(r) = vy
forall r > L.

This problem is exactly solvable for n.(r) in terms of Q2(r):

meo, L, Q)
ne(r) = s——o iy (B3)
477262 R<r'<L |l' - I‘/|

with Q(r) from Eq. (58) and the same Coulomb kernel as in
the “direct” transformation in Eq. (109). In the limit of L/R >
1, Eq. (B3) yields n.(r) for r > R that differs from that in
Eq. (B1) by a factor « (r/L), where the dimensionless function
Kk (x), expressible in terms of the Bessel functions as

*dk
) =1 - / L)+ 25®1 Ak, (B
0

describes the behavior of n.(r) on the scale of r ~ L, with
k(0) = 1 and k(c0) = 0. This demonstrates in what way the
vorticity in the presence of a magnetic field [Egs. (9) and
(B3)] establishes a profile of n.(r) that maintains the balance
between the slowing down and acceleration of the flow around
an obstacle in Eq. (69).

Extending the line of approach that led to Eqs. (B3) and
(B4) to the mean-field solution from Appendix A, 7r.(r) in
Eq. (B2) acquires the factor xy,¢(r/L,), where

o k
m = dk ——J; (kx). B5
Konf () /0 Pl (BS)
The function xn¢(r/L,) specifies the crossover behavior of
n.(r) for r ~ L, with the limiting values «n(0+) = 1 and
Kkmf(00) = 0.
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