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Abstract

Causal discovery algorithms are very important in many fields because of their abil-
ity to reveal the underlying causal structure from observational data. With more and
more causal discovery algorithms being developed, it is hard for researchers to deter-
mine which algorithm to use for their specific domain of work. In this paper, several
causal discovery algorithms are made to run across datasets with varying variable
numbers and observation numbers, then their performance is evaluated using the
same metric. The result shows a low varsortability, such as 0.21 is achievable with
synthetic datasets. Algorithms that rely on the assumption of causal su�ciency
may exhibit similar performance on datasets that either with or without hidden
variables, provided that the number of such variables is minimal. Algorithms that
assume acyclicity, on the other hand, may display instability in their performance
when applied to datasets containing cycles. Regarding the overall performance of
tested causal discovery algorithms, it has been observed that GES underperformed
in comparison to other algorithms. Therefore, it may not be considered the optimal
choice for causal discovery. In this paper, the performance of several causal discov-
ery algorithms is evaluated. Future research will focus on gathering more algorithms
and datasets to do more cross-comparison in order to better understand the practical
characteristics of di↵erent causal discovery algorithms.
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1. Introduction

The use of causal discovery methods to extract knowledge from observational data
has gained increasing attention in recent years. With the increasing availability of
large amounts of data, combined with advances in computational techniques, it is
now possible to use causal discovery methods to understand complex systems and
gain valuable insights into the underlying causes of various phenomena, especially
in fields such as medicine, epidemiology, social science, and economics, where inter-
ventions are di�cult or even impossible to conduct.

The main objective of causal discovery is to identify the relationships between vari-
ables in a data set by conducting a graphical representation, in which the nodes
stand for the variables and edges indicate direct causality between them.

1.1 Motivation

Currently, there are numerous algorithms available for causal discovery, with new
ones being developed and published frequently. Each method claims to be more
precise or better suited for certain situations than others. However, evaluations and
comparisons, where algorithms are tested on the same data sets and evaluated using
the same metrics, are lacking. Therefore, it can be challenging for researchers to
determine which method would be the most suitable for their specific data set and
application area. They often have to rely on the claims made by the authors when
choosing methods for their work.

1.2 Goal

In this paper, several datasets are collected and unified into the same data format.
Then, causal discovery algorithms are made to run on the same datasets and eval-
uated using the same metrics. The goal is to perform evaluation and comparison of
causal discovery algorithms under equal grounds across data sets, thus giving some
insights into the practical characteristics of each technique.
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1.3 Related work

Before conducting the evaluation, several related papers are taken into consideration
for inspiration and guidance.

Evaluation of causal structure learning methods on mixed data Types [1] evaluated
several widely used causal structure learning methods on mixed data types under
di↵erent parameter settings and sample sizes. PC and its variants, Greedy Equiva-
lence Search(GES) were selected in this paper to represent two types of approaches
in causal discovery: constraint-based and score-based. Though it provided certain
guidelines as to which method to choose in a given context, its main focus was on
the mixed data type. In this paper, the evaluation is performed on causal struc-
ture learning methods across several data sets, with a di↵erent number of variables
and observations, as supplementation to help researchers make decisions on which
method to choose for their work.

A survey of bayesian network structure learning [2] can be used as a comprehensive
and detailed reference material for nearly all well-established and state-of-the-art
algorithms used to learn the graphical structures of Bayesian Networks from data.
It covered 24 constraint-based, 22 score-based, and 15 hybrid learning algorithms,
and highlighted the similarities as well as the di↵erences between algorithms us-
ing a consistent set of terms. However, the conclusions in this paper are mainly
drawn from information provided in other papers, instead of running the evaluation
themselves.

In comparison with the survey paper [2] mentioned above, Review of causal discov-
ery methods based on graphical models [3] focused on the characteristics of causal
discovery methods, which means, more details about how these algorithms work
and the fundamental theories they are based on. Constraint-based, score-based, and
functional causal models were discussed in this paper. Several illustrations and ap-
plications were also provided to help build a better understanding of these causal
discovery methods. However, the evaluation and comparison of these algorithms
were not covered in this paper.

Instead of focusing on the algorithms that learn causal model from data, The case
for Evaluating causal models using interventional measures and empirical data [4]
emphasized the evaluation techniques, more precisely, They advocated for greater
use of evaluative techniques that focus on interventional measures instead of struc-
tural or observational measures, and to evaluate those measures using actual data
rather than synthetic data. An Example of the evaluation was also provided, how-
ever, evaluating the performance of algorithms using their advocated techniques was
not the center of this paper.

Benchpress[5] is a Snakemake1 workflow made for causal discovery. It provides a
“all-in-one” environment for benchmarking structure learning algorithms for graph-
ical models. From causal discovery algorithms to datasets and evaluation metrics,
they are all included in this framework. However, it needs the support of snakemake
and apptainer2 to be installed properly. It works at its best in a Linux environ-

1
https://snakemake.readthedocs.io/en/stable/

2
https://apptainer.org/
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ment in a cluster, otherwise, docker3 is needed. Due to the burdensome installation
requirements of its dependencies, Benchpress is not utilized in this paper.

1.4 Structure of paper

In this paper, the background, including basic concepts of causal discovery, inte-
grated causal discovery algorithms, datasets, and evaluation metrics used in the
experiment are introduced. Then, details of the experiment setup are provided. In
the evaluation part, firstly, several research questions are introduced, and then the
corresponding result of each research question is presented. In the end, the con-
clusions drawn from this experiment and possible further works are discussed. The
specific contributions of this paper are the following:

• Evaluation of several causal discovery algorithms on the same datasets of vary-
ing observation and variable sizes with the same metrics.

• Comparison of causal discovery algorithms against each other regarding their
performance.

3
https://www.docker.com/
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2. Background

In this chapter, the causal discovery algorithms, datasets, and evaluation metrics
used in this paper are introduced.

2.1 Algorithms for causal structure learning

2.1.1 The main approaches

According to [1], there are two main automated approaches when it comes to find-
ing the causal structure from observational data: constraint-based and score-based.
In general, the constraint-based approaches start with a fully connected undirected
graph and then remove edges based on the result of conditional independence tests.
After that, the graph is directed by a set of rules. Score-based approaches use a
“goodness-of-fit” score of the model to the data while imposing a sparsity penalty
to prevent overfitting. Both of them are proven successful in the past. Based on
them, hybrid approaches have also been proposed. Nowadays, with the develop-
ment of machine learning technology, several causal discovery algorithms based on
continuous optimization have also been proposed.

In this paper, constraint-based algorithms and score-based algorithms are included.
Algorithms that fall into the category of continuous optimization are also included.

Category Algorithms

constraint-based PC
function-based DirectLiNGAM, ICALiNGAM
score-based GES
gradient-based Notears, NotearsLowRank

Table 2.1: List of the algorithms integrated into this project categorized by approach.

2.1.2 Assumptions

There are several important assumptions in the field of causal discovery algorithms.
In this paper, the following assumptions are introduced:
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• Causal su�ciency: Causal su�ciency, according to [6], means that there are
no hidden or latent variables. Two typical approaches to modeling hidden
variables are available: either by explicitly modeling them as nodes in struc-
tural equations or by their manifestation as a dependence among noise terms
(✏1, ..., ✏p), which are presumed to be independent in the absence of latent
confounding.

• Causal faithfulness: Causal faithfulness means all conditional independences
in true underlying distribution p are presented in the true graph. According
to [7], causal faithfulness can be expressed by this formula: Here is a direct
quote “PX is faithful to the DAG G if A ?? B|C) A ??G B|C for all disjoint
vertex sets A, B, C.”

• Acyclicity: Acyclicity means the causal structure can be represented by a
directed acyclic graph. According to [6], if cycles exist, the following aspects
will be a↵ected:

1. “Existence of a unique equilibrium solution of X  BX + ✏ where B is a
p⇥ p matrix and the distribution of X is determined by the choice of B
and the distribution of ✏.”

2. “Convergence to a stable equilibrium.”

3. “Existence of a stable equilibrium under do-interventions.”

With DAG, all three of the above aspects can be fulfilled.

In section 2.1.3, the algorithms integrated into this project and their assumptions
are listed.

2.1.3 Table of algorithms

Algorithms integrated into this project and their assumptions are listed in table
2.2. For acyclicity, there is a concept called CPDAG, full name: completed partially
directed acyclic graph. It is an equivalence class of DAGs because it contains edges
with no explicit direction. For example, an undirected edge between A and B means
it accepts both A to B and B to A. So far, the algorithms are from gCastle1.

PC is one of the most famous constraint-based algorithms. It has the advantage of
being super-fast and having relatively good performance. GES is representative of
score-based algorithms. It also has a relatively fast run time. The downside of both
PC and GES is that they have CPDAG as output thus the result is an equivalent
class of DAGs, not one unique DAG.

ICALiNGAM and DirectLiNGAM are from the LiNGAM family. Their advantage
is that the estimated true graph is weighted thus they provide more information on
the causal relationship. Please note that in this paper, the weighted true graph is

1
https://github.com/huawei-noah/trustworthyAI/tree/master/gcastle
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Name Su�ciency Faithfulness Acyclicity Library

PC Yes Yes Yes
(CPDAG)

gCastle

GES Yes Yes Yes
(CPDAG)

gCastle

ICALiNGAM Yes No Yes (DAG) gCastle
DirectLiNGAM Yes No Yes (DAG) gCastle
Notears - - Yes (DAG) gCastle
NotearsLowRank - - Yes (DAG) gCastle

Table 2.2: Table of the algorithms used in this project. The ”-” sign means no
explicit information was found.

converted into a true graph with only zeros and ones where ones indicate there’s a
causal relationship, and zeros mean there’s no causal relationship.

Notears and NotearsLowRank are both gradient-based. They greatly benefited from
the development of machine learning technology and the downside is their run time
is relatively longer than other algorithms like PC or GES. To achieve the optimized
result, hyperparameter tuning is needed.

2.2 Datasets

The datasets used in this paper are collected from multiple sources and so far, a
total of 1795 datasets are collected. It includes real, semi-synthetic, and synthetic
datasets. Real datasets are from the real world, synthetic datasets are artificially
generated and semi-synthetic datasets are generated based on real data. Datasets
with and without hidden variables are also included. All of the datasets are unified
to numpy.ndarray

2 data type when loaded into the experiment. The varsortability
of each dataset has also been calculated.

In the following section, all the datasets that are integrated into this project are
listed. (See Table: 2.3, 2.4, 2.5). Information about them can also be found in the
correspondent GitHub repository3 of this paper.

2.2.1 Real datasets

Table 2.3 lists the real datasets. Source of jdk, networking and postgres can be found
here4. The other four real datasets can be found here5. In the case of the dataset
“networking”, dummy variables are used to represent categorical variables such as
“server”, which has 7 levels. Please note that the sachs dataset is di↵erent from the
version on bn-learn6. auto mpg, cites, and yacht doesn’t have an explicit true graph
but a ground truth knowledge. It contains information on specific forbidden and
required edges and is represented in the following format:

2
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html

3
https://github.com/ravivanpong/CausalBench/tree/main/causalbench/data

4
https://groups.cs.umass.edu/kdl/causal-eval-data/

5
https://github.com/cmu-phil/example-causal-datasets/tree/main/real

6
https://www.bnlearn.com/bnrepository/
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Name Variable
Number

Observation
Number

Remark

jdk 15 37840
networking 17 415840
postgres 21 1506270
auto mpg 8 392
cites 7 7
sachs 11 7466 Original version. Di↵erent

from the version on bn-learn
yacht 7 308

Table 2.3: Real Datasets

/knowledge
addtemporal

1∗ x y z
2 w r

f o r b i d d i r e c t
w z

r e q u i r e d i r e c t
a b
x b

. . .

The true graph is then converted from the ground truth knowledge based on the
following steps:

1. Start with a fully connected graph.

2. Remove edges from later tiers to earlier tiers.

3. If a tier number is followed by an asterisk, remove all edges within that tier.

4. Remove edges specified in the “forbiddirect” section.

2.2.2 Synthetic datasets

Table 2.4 lists the synthetic datasets. Datasets with and without hidden variables
can be found in this URL7. The others in the table can be found in this URL8. It
contains datasets with and without hidden variables and datasets with a relatively
large number of variants. Here the “variant” means that the datasets all have the
same true graph. They are generated under the same condition using the same
method.

7
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/UZMB69

8
https://github.com/cmu-phil/example-causal-datasets/tree/main/simulated/feedbacks
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Name Variable
Number

Observation
Number

Remark

with confounders 17 ⇠ 21 500 20 datasets with 3
hidden variables.

without confounders 20 ⇠ 24 500 20 datasets without
hidden variables.

Network1 amp 5 500 60 variants
Network2 amp 5 500 60 variants
Network3 amp 5 500 60 variants
Network4 amp 10 500 60 variants
Network5 amp 5 500 60 variants
Network5 cont 5 500 60 variants
Network5 cont p3n7 5 500 60 variants
Network5 cont p7n3 5 500 60 variants
Network6 amp 8 500 59 variants. Vari-

ant number 25 is
missing.

Network6 cont 8 500 60 variants
Network7 amp 6 500 60 variants
Network7 cont 6 500 60 variants
Network8 amp amp 8 500 60 variants
Network8 amp cont 8 500 60 variants
Network8 cont amp 8 500 60 variants
Network9 amp amp 9 500 60 variants
Network9 amp cont 9 500 60 variants
Network9 cont amp 9 500 60 variants

Table 2.4: Synthetic Datasets

2.2.3 Semi-synthetic datasets

Semi-synthetic Datasets are listed in Table 2.5. The source can be found in this
URL9. Except for the “Dream4” datasets, the number appended to the name indi-
cates how the data is generated. For example, “Alarm” has no number appended,
meaning the data is generated from the original network. “Alarm3”means the data
is generated from tiling 3 of the original networks. “Alarm5” means the data is
generated from tiling 5 of the original networks, etc.

2.3 Evaluation metrics

There are several evaluation metrics available for this project. For example, true
positive rate, precision, recall, F1-Score, etc. All the available metrics in this project
are listed in section 2.3.2. In this section, several fundamental building components
for calculating the value of metrics are introduced. Then, the metrics are explained
in detail with formulas.

9
https://pages.mtu.edu/ lebrown/supplements/mmhc paper/mmhc index.html
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Name Variable
Number

Observation Number Remark

Alarm 37 500, 1000, 5000 10 variants for each observa-
tion number

Alarm3 111 500, 1000, 5000 Same as above
Alarm5 185 500, 1000, 5000 Same as above
Alarm10 370 500, 1000, 5000 Same as above
Barley 48 500, 1000, 5000 Same as above
Child 20 500, 1000, 5000 Same as above
Child3 60 500, 1000, 5000 Same as above
Child5 100 500, 1000, 5000 Same as above
Child10 200 500, 1000, 5000 Same as above
Hailfinder 56 500, 1000, 5000 Same as above
Hailfinder3 168 500, 1000, 5000 Same as above
Hailfinder5 280 500, 1000, 5000 Same as above
Hailfinder10 560 500, 1000, 5000 Same as above
Insurance 27 500, 1000, 5000 Same as above
Insurance3 81 500, 1000, 5000 Same as above
Insurance5 135 500, 1000, 5000 Same as above
Insurance10 270 500, 1000, 5000 Same as above
mildew 35 500, 1000, 5000 Same as above
munin1 189 500, 1000, 5000 Same as above
pigs 441 500, 1000, 5000 Same as above
gene 801 500, 1000, 5000 Same as above
link 724 500, 1000, 5000 Same as above
Dream4 1 100 100
Dream4 2 100 100
Dream4 3 100 100
Dream4 4 100 100

Table 2.5: Semi-synthetic Datasets

2.3.1 Building components of metrics

Metrics that concentrate on evaluating the relationship between two graphical struc-
tures can be built by the following basic components:

• True Positives(TP), corresponding to the number of true edges present in the
learned graph.

• False Positives(FP), corresponding to the number of false edges present in the
learned graph.

• True Negatives(TN), corresponding to the number of true absent edges in the
learned graph.

• False Negatives(FN), corresponding to the number of false absent edges in the
learned graph.

• Reverse, corresponding to the number of edges with reversed direction in the
learned graph.
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2.3.2 List of metrics

These metrics are the higher the better:

• Number of Nonzero Elements(NNZ)

–

NNZ = TP + FP

– NNZ shows the number of edges that are estimated by the algorithm,
including those not estimated correctly.

• Precision

–

Precision =
TP

TP + FP

– Precision measures the ratio of correct edges from all edges in the esti-
mated true graph.

• Recall

–

Recall =
TP

TP + FN

– Recall measures the ratio of the correctly estimated edges from all the
edges in the actual true graph.

• F1

–

F1 =
2 ⇤Recall ⇤ Precision

Recall + Precision

– The F1 score can be interpreted as a harmonic mean of the precision and
recall, where an F1 score reaches its best value at 1 and worst score at 0.

• G-Score

–

G-Score = max(0,
TP � FP

TP + FN
)

– Alternative of F1-Score but more strict.

• Normalized SHD

–

Normalized SHD = 1� SHD

2 ⇤ ARC NUM
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– Normalized SHD is used to enable cross-comparison. Its value is between
0 to 1 with 1 indicating that the estimated graph is the same as the actual
true graph. ARC NUM is the total number of edges in the actual true
graph.

These metrics are the lower the better:

• False Discovery Rate(FDR)

–

FDR =
Reverse+ FP

TP + FP

– FDR measures the ratio of incorrect edges from all the edges in the esti-
mated true graph.

• False Positive Rate(FPR)

–

FPR =
Reverse+ FP

TN + FP

– FPR can be interpreted as “false alarm rate”, it measures the ratio of
edges that are incorrectly included in the estimated true graph from the
edges that are not included in the actual true graph.

• Structural Hamming Distance(SHD)

–

SHD = undirected extra+ undirected missing +Reverse

– SHD is the number of edge deletions, insertions, or flips in order to trans-
form one graph into another graph.

• Runtime in Seconds
–

Runtime = Finish timestamp� Start timestamp

– Time measured in seconds. It indicates how long it takes for an algorithm
to estimate the causal graph.

Structural Intervention Distance (SID) and Total Variation Distance(TVD) are not
included as evaluation metrics in this experiment. SID is not included because there
is no implementation ready to be used for this experiment and the original imple-
mentation is meant for intervention while some of the datasets in this experiment
have no intervention. The reason for SID is similar. The original implementation
is outdated and no longer maintained by the author. It’s also quite tricky to run R
code in a python codebase.



3. Experiment design

For the experiment design, the main goal is to run each algorithm on 1795 datasets.
In this chapter, the workflow of the experiment and details of the implementation are
introduced. Then how the parameters are chosen and the reasons behind them are
explained. After that, it goes to the details of the runtime environment, including
both hardware and software. In the end, the time limitation is introduced as a
method to control the pace and energy consumption of the experiment.

3.1 Workflow

Figure 3.1 shows the workflow of the experiment. It starts with a JSON file as
input, including information on selected algorithms and their parameters, datasets
the algorithms will run on, and the name of the output file. Then, the JSON file
will be parsed and a task list will be generated by combining given algorithms with
given datasets. After that, functions provided by concurrent.futures

1 are used
to run the tasks in parallel. At last, the experiment will be ended either by hitting
the time limit or by finishing normally.

3.2 Experiment implementation

Implementation of the experiment is hosted on GitHub2.

3.2.1 Command-line interface

argparse
3 is a popular tool to write user-friendly command-line interfaces. Here

it is used to define the arguments the experiment requires. The arguments can be
configured in a JSON file and the experiment takes the relative path to the JSON
file as argument. To use it, the user needs to first navigate to the directory of the
experiment python file, then use the command line interface to run it. Here is the
general form of the command:

1
https://docs.python.org/3/library/concurrent.futures.html

2
https://github.com/ravivanpong/CausalBench

3
https://docs.python.org/3/library/argparse.html
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Figure 3.1: Workflow of experiment

$ experiment . py −s r c r e l a t i v e /path/ to / j son / f i l e

For example, if the path to the experiment.py file is username/Causalbench/ex-
periment/castle/experiment.py, and the path of the input.json file is user-

name/input.json, it should look like this:

$ experiment . py −s r c . . / . . / . . / input . j s on

3.2.2 JSON as input

The JSON file configures the algorithms and their parameters, as well as the datasets
they will be run on. The output file name is also configured here. Here is an example
of the general form of the JSON file:

1 {

2 "datasets": [

3 {

4 "name": "alarm",
5 "kwargs": {

6 "index": 3,

7 "sample_num": 500,

8 "version": 1

9 }

10 },
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11 {

12 "name": "dream4",
13 "kwargs": {

14 "version": 1

15 }

16 },

17 {

18 "name": "insurance",
19 "kwargs": {

20 "index": 1,

21 "sample_num": 500,

22 "version": 1

23 }

24 }

25 ],

26 "algorithms": [

27 {

28 "gcastle": [

29 {

30 "name": "pc",
31 "kwargs": {

32 "variant": "stable",
33 "alpha": 0.05,

34 "ci_test": "fisherz",
35 "priori_knowledge": null

36 }

37 },

38 {

39 "name": "ges",
40 "kwargs": {

41 "criterion": "bic",
42 "method": "scatter",
43 "k": 0.001 ,

44 "N": 10

45 }

46 }

47 ]

48 }

49 ],

50 "OUTPUT_FILE_NAME": "my_output"
51 }

The content of this JSON file can also be customized to run the same experiment
with di↵erent algorithms and datasets. It can be stored anywhere locally with any
name.
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3.2.3 Data loader

Each dataset has a dedicated dataset_loader.py to provide easy access to the
datasets. For example, if the input file is as defined in 3.2.2, the corresponding data
loader will be called like this:

load alarm (3 , 500 , 1)
load dream4 (1)

The loader function will return a dictionary object that contains:

• true_matrix: true graph of dataset in form of numpy.ndarray4

• X: dataset in form of numpy.ndarray.

• var_num: number of variables

• sample_num: number of samples

• name: full name of data set

3.2.4 Parallel computing

Because of the large number of datasets, parallel computing is necessary. The hard-
ware environment also has multiple CPUs which makes parallel computing possible.
In this experiment, concurrent.futures5 was used to run the tasks in parallel. The
process is:

1. Submit tasks to the executor

2. store the Future objects in an array

3. as soon as as_completed() is called, write the result in the predefined output
file.

3.3 Parameter

In this experiment, default parameters are used because normally it is considered
optimal by the author and it is the first choice if the user has no experience in tuning
hyperparameters. And generally, tuning hyperparameters is hard due to a lack of
ground truth. Another reason is that the computing resource is limited so in this
experiment, all the algorithms are tested with their default parameters. There are
some exceptions:

• By default, PC version is “original” in gCastle. In this experiment, version
“stable” is used, because version “original” is obsolete.

• All algorithms that have a GPU version is running with GPU. The default is
CPU.

4
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html

5
https://docs.python.org/3/library/concurrent.futures.html
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3.4 Run time environment

The hardware runtime environment is on BWUniCluster2 with 10 CPU, 90 GB
RAM, and 1 GPU. The software environment is python 3.8.13, future 0.18.2, gcastle
1.0.3, lingam 1.7.0, scikit-learn 1.1.1, numpy 1.22.3, pandas 1.4.3, networkx 2.8.5,
pytorch 1.13.0.dev20220721, and scipy 1.8.1

3.5 Time limit

Despite running in parallel, several time limits are set up, because the computing
resource is limited and it is not practical and not green to run a single task for more
than 3 days. Table 3.1 lists out the time limit for datasets with di↵erent variable
numbers. For variable number between 3 and 100, the time limit is 1 day, between
100 and 300 is 2 days, and a maximum of 3 days for variable number between 300
and 1000.

Variable Number N Time limit

3 <= N < 100 24h
100 <= N < 300 48h
300 <= N < 1000 72h

Table 3.1: Time limits
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4. Results

In this chapter, research questions and their corresponding result are presented.
Firstly, the research questions are introduced. Then, it goes to the results where the
data used to draw conclusions from are presented and step for step making approach
to the conclusions.

4.1 Research questions

There are 4 research questions that need to be answered:

• Do real, semi-synthetic, and synthetic datasets have similar varsortability?

• What is the impact of hidden variables on algorithms that assume causal
su�ciency?

• How sensitive are the algorithms that assume acyclicity when there’s a viola-
tion of it?

• How is the overall performance and what conclusion can be drawn from the
results?

4.2 Varsortability

4.2.1 Significance of varsortability

Varsortability is proposed as a measure of agreement between the order of increasing
marginal variance and the causal order in [8]. According to this paper, the data-
generating process may leave information about the causal order in the data scale,
so that varsortability is introduced as a measure of such information. It states that
varsortability is high, for example, above 0.94 in simulated graphs and above 0.71
in non-linear additive noise models. The higher the varsortability, the easier to
identify the causal structure. The value range of varsortability is from 0 to 1 with 1
indicating that the causal structure is identifiable.
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4.2.2 Experiment configuration

The experiment is set up to calculate the varsortability of all integrated 1795 datasets.
The implementation of varsortability is provided by [8] and is hosted on GitHub1.
The results are written into a CSV file for further usage.

4.2.3 Result data

The summary data is exhibited in Table 4.1

Real Semi-synthetic Synthetic

count 6 1124 664
mean 0.56 0.52 0.54
std 0.23 0.17 0.21
min 0.12 0.17 0.21
50% 0.62 0.52 0.50
max 0.75 0.85 0.87

Table 4.1: Summary of varsortability group by dataset type

One of the real datasets, “Networking”, is not included in Table 4.1 and Figure 4.1
because the current implementation of varsortability failed to calculate its varsorta-
bility by giving “nan” as result.

It can be easily seen that real, semi-synthetic, and synthetic datasets have similar
mean values of varsortability. All three of them have an average varsortability of
around 0.5 and it is much lower than the empirical average varsortability from [8],
which stated an average varsortability of above 0.94 in simulated graphs. However,
conclusions like “The varsortability of real, semi-synthetic, and synthetic datasets
are similar with each other.” can not be drawn yet because the means value could
be misleading sometimes and statistical tests should be done to tell if there is any
statistical significance.

4.2.4 Statistical significance

Statistical tests are used to test if a relationship observed in the data occurred only
by chance. The process includes the following steps:

1. Apply normality tests to see if the data is normally distributed.

2. If it is normally distributed, apply parametric statistical significance tests.

3. If not, apply nonparametric statistical significance tests for more complex dis-
tributions.

1
https://github.com/Scriddie/Varsortability
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Figure 4.1: Violin plot of varsortability

Here the real datasets are not included in the statistical tests because the number
of them is too small to do a test (See Table: 4.1).

For the normality test, scipy.stats.normaltest2 is used. Based on the result
of the normality test, scipy.stats.mannwhitneyu3 or scipy.stats.ttest_ind4 is
used to test if there is a statistical significance.

The result of test 4.2 shows that the synthetic datasets have a normal distribution
of varsortability while it is unlikely that the semi-synthetic datasets have a normal
distribution. After the Mann-Whitney U test, a p-value of 0.4 and a statistic of
364379.5 are given as result. Since 0.4 is smaller than the threshold of 0.5, the
result indicates that the similar mean values between synthetic and semi-synthetic
datasets could be a total coincidence and there is no relationship between them.

statistic p-value result

synthetic 0.80 0.67 normal
semi-synthetic 64.64 9.17e-15 not normal

Table 4.2: Normality test on varsortability of synthetic and semi-synthetic datasets

4.3 Su�ciency and hidden variables

4.3.1 Experiment configuration

PC (stable), GES, ICALiNGAM, DirectLiNGAM are chosen for this experiment
because they all assume causal su�ciency. There are two sets of datasets, one with

2
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.normaltest.html

3
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.html

4
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest ind.html
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20 datasets that have 3 hidden variables and another one with 20 datasets that have
no hidden variable. The purpose is to evaluate the performance of those algorithms
on these two sets of datasets, thus getting some insights into the impact of hidden
variables on algorithms that assume causal su�ciency.

The performance of the algorithms is measured by F1-Score.

4.3.2 Result data

Here exhibit the violin graphs (see Figure 4.2) of the performance of those four
algorithms on two sets of datasets: The left violin graph on each subfigure shows
the distribution of the F1-Score of the corresponding algorithm on datasets with
hidden variables. And the right one is on datasets without hidden variables. It is
clear that the mean value of the F1-Score is higher when the datasets are coherent
with the acyclic assumption. The detailed data can be seen in Table 4.3. However,
the statistical test still needs to be done to check if it could be a mere coincidence.

4.3.3 Statistical significance

Table 4.4 shows that all of them have a normal distribution so a T-test is needed
to check the statistical significance. Table 4.5 shows that except GES, the other
algorithms have equal performance on datasets with 3 hidden variables and without
hidden variables. So the result shows that GES indeed has better performance when
the dataset is coherent with its causal su�ciency assumption and for the other three
algorithms, the di↵erence of their performance on datasets with 3 hidden variables
and without hidden variables can be ignored.

4.4 Acyclicity

This section concerns the sensitivity of algorithms that assume acyclicity on datasets
that violate acyclicity. The approach is to run algorithms that assume acyclicity on
groups of datasets that have one or more cycles in the true graph. Datasets that
share the same true graph are in the same group. Each group contains 60 datasets
that are generated under the same condition and share the same true graph. Ideally,
if the algorithms are stable, the estimated true graph would be the same when they
run on datasets within the same group.

4.4.1 Experiment configuration

The experiment is setup with:

• 4 algorithms: PC (stable), GES, DirectLiNGAM, ICALiNGAM.

• 17 groups of datasets. (See Table 4.6)

• 60 variants in each group.
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(a) DirectLiNGAM

(b) ICALiNGAM

(c) PC (stable)

(d) GES

Figure 4.2: PC, GES, ICALiNGAM, DirectLiNGAM on datasets with and without
hidden variables
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• Normalized SHD as evaluation metric.

The reason that these datasets are chosen is that they have cycles in the true graph
and the number of datasets in each group is relatively large so it is suitable for the
sensitivity test. Netowrk6 amp is not included because it only has 59 variants. The
other groups all have 60 variants.

4.4.2 Result data analyse

Figure 4.3 shows the violin graphs of the performance of those four algorithms on
four of the selected group of datasets. The sub-figure names like “Network3 amp”
are names of the group of the datasets. It can be seen that the violin plots all look
thin and long, which means the normalized SHD is scattered. And these four groups
are already the best picked out from the tested groups. Ideally, if the algorithms are
stable, the violin graph should be wide and short, which means the normalized SHD
is stable accross datasets within the same group. And thus, the estimated true graph
would be the same or very similar to each other.

However, even if the violin graphs are all wide and short, it can not guarantee that
the estimated true graphs are similar to each other. The estimated true graphs could
have the same normalized SHD but look di↵erent from each other. An example
of PC (stable) on Network2 amp is shown in Figure 4.4. They have the same
normalized SHD but are di↵erent from each other.

4.5 Overall performance

Due to limitations of time and computing resources, the author does not have the
data of all the algorithms on all 1795 datasets. However, useful information can still
be extracted from the existing available result data. In this section, the performance
of 6 algorithms on 1079 datasets is evaluated by di↵erent metrics, and By doing this,
insights into the practical characteristics of these algorithms can be provided.

4.5.1 Experiment configuration

The experiment is setup with:

• 6 algorithms: PC (stable), GES, DirectLiNGAM, ICALiNGAM, Notears,
Notearslowrank.

• 1795 datasets.

• Evaluated by:

– Normalized SHD

– G-Score

– F1

– False Positive Rate(FPR)

– Runtime in seconds
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(a) Network2 amp

(b) Network3 amp

(c) Network4 amp

(d) Network9 amp amp

Figure 4.3: PC, GES, ICALiNGAM, DirectLiNGAM on groups of datasets with
cycles in their true graph.
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(a) Network2 amp version1 (b) Network2 amp version8

(c) Network2 amp version9 (d) Network2 amp version18

Figure 4.4: Estimated true graphs of PC (stable) on 4 datasets in group “Net-
work2 amp”.

4.5.2 Result data analyse

Figure 4.5 shows the performance of PC (stable), GES, DirectLiNGAM, ICALiNGAM,
Notears, Notearslowrank evaluated by Normalized SHD, G-Score, and F1. With
each value of varsortability, it shows the median of the metric value of each algo-
rithm.

It is hard to find out a “winner” as the absolute “top” algorithm but ICALiNGAM
seems always to have a place on the higher end of the metrics. DirectLiNGAM,
an algorithm from the LiNGAM family, also has a relatively good performance
against the others. According to this paper [9], there are some potential problems
of ICALiNGAM. One of them is that ICALiNGAM may not converge in a finite
number of steps. Another one is that the way ICALiNGAM works is not scale-
invariant. It’s possible that ICALiNGAM gives a di↵erent or even wrong ordering
of variables depending on the scales of variables. These issues should be considered
when researchers select a causal discovery algorithm for their research.

Except for ICALiNGAM, another algorithm also stands out from the others, in
another way.

Table 4.7 shows the performance on normalized SHD. It can be seen that GES
has a slightly lower normalized SHD compared with the others. Table 4.8 shows
the performance on G-Score. It can be seen that GES also has a relatively lower
value than the others. Table 4.9 shows performance measured by the False Positive
Rate(FPR), it is clear that GES has a higher false alarm ratio. When we look at
the runtime in seconds (see Table 4.10), GES is not bad compared with Notears or



4.5. Overall performance 27

Notearslowrank but it s still a lot worse than PC, ICALiNGAM, and DirectLiNGAM.
Most importantly, GES failed to estimate the true graph on 8 datasets and the other
5 algorithms can run on them with no problem.

Based on the data mentioned above, it seems GES undeformed in comparison to the
other algorithms tested in this experiment. However, it needs to be mentioned that
this could be a potential implementation issue of gCastle 5 that has been used in
this experiment.

5
gCastle: https://github.com/huawei-noah/trustworthyAI/tree/master/gcastle
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(a) Normalized SHD

(b) G-Score

(c) F1

Figure 4.5: Performance in scatter plots
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3 hidden variables No hidden variables

count 20 20
mean 0.34 0.40
std 0.15 0.11
min 0.11 0.14
50% 0.31 0.38
max 0.58 0.55

(a) DirectLiNGAM

3 hidden variables No hidden variables

count 20 20
mean 0.49 0.50
std 0.11 0.08
min 0.27 0.36
50% 0.50 0.49
max 0.69 0.68

(b) ICALiNGAM

3 hidden variables No hidden variables

count 20 20
mean 0.40 0.44
std 0.10 0.10
min 0.18 0.26
50% 0.41 0.42
max 0.58 0.65

(c) PC (stable)

3 hidden variables No hidden variables

count 20 20
mean 0.30 0.36
std 0.07 0.07
min 0.19 0.25
50% 0.31 0.34
max 0.43 0.47

(d) GES

Table 4.3: Performance of ICALiNGAM, DirectLiNGAM, GES, and PC (stable) on
datasets with and without hidden variables.
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statistic p-value result

PC with hidden variables 1.36 0.51 normal
PC without hidden variables 1.13 0.57 normal
GES with hidden variables 0.09 0.96 normal
GES without hidden variables 1.21 0.55 normal
ICALiNGAM with hidden variables 0.23 0.89 normal
ICALiNGAM without hidden variables 0.52 0.77 normal
DirectLiNGAM with hidden variables 1.52 0.47 normal
DirectLiNGAM without hidden variables 1.75 0.42 normal

Table 4.4: Normality test on vICALiNGAM, DirectLiNGAM, GES, and PC (stable)
on datasets with and without hidden variables

algorithm p-value result

PC 0.24 No di↵erence on datasets with and without hidden variables
GES 0.01 Performance is better on datasets without hidden variables
ICALiNGAM 0.71 No di↵erence on datasets with and without hidden variables
DirectLiNGAM 0.12 No di↵erence on datasets with and without hidden variables

Table 4.5: T-test of ICALiNGAM, DirectLiNGAM, GES, and PC (stable) on
datasets with and without hidden variables

Name Variable
Number

Observation
Number

Remark

Network1 amp 5 500 60 variants
Network2 amp 5 500 60 variants
Network3 amp 5 500 60 variants
Network4 amp 10 500 60 variants
Network5 amp 5 500 60 variants
Network5 cont 5 500 60 variants
Network5 cont p3n7 5 500 60 variants
Network5 cont p7n3 5 500 60 variants
Network6 cont 8 500 60 variants
Network7 amp 6 500 60 variants
Network7 cont 6 500 60 variants
Network8 amp amp 8 500 60 variants
Network8 amp cont 8 500 60 variants
Network8 cont amp 8 500 60 variants
Network9 amp amp 9 500 60 variants
Network9 amp cont 9 500 60 variants
Network9 cont amp 9 500 60 variants

Table 4.6: Datasets used in sensitivity experiment
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PC (stable) GES ICALiNGAM DirectLiNGAM Notears Notearslowrank

count 1071.00 1071.00 1071.00 1071.00 1071.00 1071.00
mean 0.69 0.67 0.73 0.78 0.70 0.70
std 0.14 0.15 0.11 0.10 0.10 0.11
min 0.19 0.25 0.39 0.42 0.40 0.35
50% 0.70 0.67 0.72 0.79 0.70 0.70
max 1.00 1.00 1.00 1.00 1.00 1.00

Table 4.7: Summary of performance on Normalized SHD

PC (stable) GES ICALiNGAM DirectLiNGAM Notears Notearslowrank

count 1071.00 1071.00 1071.00 1071.00 1071.00 1071.00
mean 0.14 0.09 0.23 0.40 0.12 0.12
std 0.22 0.17 0.22 0.22 0.18 0.18
min 0.00 0.00 0.00 0.00 0.00 0.00
50% 0.00 0.00 0.20 0.40 0.00 0.00
max 1.00 0.86 0.88 0.88 0.83 0.88

Table 4.8: Summary of performance on G-Score

PC (stable) GES ICALiNGAM DirectLiNGAM Notears Notearslowrank

count 1071.00 1071.00 1071.00 1071.00 1071.00 1071.00
mean 0.39 0.46 0.17 0.08 0.25 0.29
std 0.23 0.29 0.19 0.16 0.23 0.25
min 0.00 0.00 0.00 0.00 0.00 0.00
50% 0.33 0.40 0.12 0.04 0.20 0.21
max 1.33 2.33 1.33 1.67 2.00 1.67

Table 4.9: Summary of performance on False Positive Rate

PC (stable) GES ICALiNGAM DirectLiNGAM Notears Notearslowrank

count 1071.00 1071.00 1071.00 1071.00 1071.00 1071.00
mean 0.51 1.29 0.50 0.19 36.81 112.62
std 0.72 1.31 0.44 0.13 45.12 117.91
min 0.01 0.09 0.02 0.04 5.76 10.29
50% 0.22 0.68 0.51 0.16 26.10 75.62
max 3.76 5.90 1.84 0.68 460.65 1194.83

Table 4.10: Summary of performance on runtime
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5. Conclusion and future work

In this chapter, the conclusions drawn from the conducted experiments are pre-
sented. Following this, the challenges and critiques are discussed. Lastly, potential
avenues for future research are suggested in order to further advance the topic at
hand.

5.1 Conclusion

It has been demonstrated that low varsortability, such as 0.21, can be attained on
synthetic datasets. In the context of synthetic dataset generation, it is recommended
that varsortability be maintained at levels lower than 0.75, as indicated by the results
presented in the associated table 4.1 since real datasets were found to exhibit a
maximum varsortability of 0.75.

Algorithms that rely on the assumption of causal su�ciency may exhibit similar
performance on datasets that either with or without hidden variables, provided that
the number of such variables is minimal, for example, three or fewer.

Algorithms that assume acyclicity may display instability in their performance when
applied to datasets containing cycles. Specifically, the estimated true graphs result-
ing from such algorithms may exhibit considerable variation, even among datasets
that belong to the same group, which means that they were generated under the
same condition, and share the same true graph.

With regards to the general performance of tested algorithms for causal discovery,
it has been observed that GES underperformed significantly in comparison to other
algorithms. As such, it may not be regarded as the optimal choice for causal dis-
covery.

5.2 Challenges and critiques

The major causal discovery algorithm library used in this experiment, gCastle 1,
has implementation issues. For example, GAE, this algorithm has both CPU and

1
https://github.com/huawei-noah/trustworthyAI/tree/master/gcastle



34 5. Conclusion and future work

GPU versions in gCastle. The CPU version works fine but for the GPU version,
some variables are not migrated to the GPU properly thus it’s unusable. Collecting
and cleaning datasets for causal discovery is hard. Firstly, the sources of datasets
are often scattered, thus e↵orts to locate and consolidate the necessary data are
needed. Secondly, collected datasets frequently su↵er from inconsistencies, requiring
laborious manual cleaning. The biggest challenge is the limitation of computing
resources. Some of the datasets have more than 500 or even 800 variables which
require extra computing power to process.

As for the critiques, it needs to be mentioned that structural intervention dis-
tance(SID), an important evaluation metric in causal discovery, is not included in
this experiment. Other than that, no R packages were used in this experiment which
is a pity because a lot of useful libraries in the field of causal discovery were in R. As
mentioned in the challenges, because of the limitation of computing resources, not
all 1795 datasets were used in the experiment. Some of them have a large number
of variables and it is challenging to run algorithms on them with such limited com-
puting resources. The number of algorithms used in the experiment is also limited
because almost half the integrated algorithms in gCastle are gradient-based so GPU
is needed. However, GPU is not always available with limited computing resources.

5.3 Outlook

For future work, integrating more algorithms from diverse libraries, such as bn-
learn2, pcalg3, and trilearn4. is necessary. The inclusion of a broader spectrum of
algorithms, not solely limited to Python, but also R or Matlab, would enable the
cross-comparison of algorithms implemented across diverse programming languages
and libraries. Furthermore, it holds significant value to undertake hyperparameter
tuning to enhance the performance of the algorithms. This approach would ensure
that the algorithms are not merely running on their default parameters, but rather,
are optimized through fine-tuning to attain improved performance. In addition,
generating own synthetic datasets can serve as a valuable supplement to existing
datasets for causal discovery.

2
https://www.bnlearn.com/

3
https://cran.r-project.org/web/packages/pcalg/index.html

4
https://github.com/felixleopoldo/trilearn
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