KIT | KIT-Bibliothek | Impressum | Datenschutz

Predicting B2B Customer Churn for Software Maintenance Contracts

Zhang, Zhuonan 1; Ravivanpong, Ployplearn ORCID iD icon 2; Beigl, Michael ORCID iD icon 2
1 Karlsruher Institut für Technologie (KIT)
2 Institut für Telematik (TM), Karlsruher Institut für Technologie (KIT)

Abstract:

Customer churn prediction is a well-known application of machine learning and data mining in Customer Relationship Management, which allows a company to predict the probability of its customer churning. In this study, we extended the application of customer churn prediction to the context of software
maintenance contract. In addition, we examined the predictive power of economic factors. Random forest, gradient boosting machine, stacking of random forest and gradient boosting machine, XGBoost, and long short-term memory networks were applied. While an ensemble model and XGBoost performed best, macroeconomic variables did not yield statistically significant improvement in any prediction.


Verlagsausgabe §
DOI: 10.5445/IR/1000164219
Veröffentlicht am 20.11.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Telematik (TM)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2019
Sprache Englisch
Identifikator ISBN: 978-0-9998551-3-3
KITopen-ID: 1000164219
Erschienen in Proceedings of the 34th International Business Information Management Association Conference (IBIMA) 13-14 November 2019, Madrid, Spainn. Vision 2025: Education Excellence and Management of Innovations through Sustainable Economic Competitive Advantage. Ed.: Khalid S. Soliman
Veranstaltung 34th International Business Information Management Association Conference (IBIMA 2019), Madrid, Spanien, 13.11.2019 – 14.11.2019
Verlag International Business Information Management Association (IBIMA)
Seiten 6593-6603
Externe Relationen Konferenz
Schlagwörter customer churn prediction, macroeconomic variables, machine learning, software maintenance service
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page