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The interplay of electronic and structural degrees of freedom in solids is a topic of intense research.
More than 60 years ago, Lifshitz discussed a counterintuitive possibility: lattice softening driven by
conduction electrons at topological Fermi surface transitions. The effect that he predicted, however, was
small and has not been convincingly observed. Using a piezo-based uniaxial pressure cell to tune the
ultraclean metal strontium ruthenate while measuring the stress-strain relationship, we reveal a huge
softening of the Young’s modulus at a Lifshitz transition of a two-dimensional Fermi surface and show
that it is indeed driven entirely by the conduction electrons of the relevant energy band.

T
he coupling between elastic and electron-
ic degrees of freedom is crucial to deter-
mining the phase diagrams of correlated
electron systems, such as those display-
ing electronic nematicity, in which con-

duction electrons develop anisotropies (1).
However, there is always a “chicken and egg”
question: Does the lattice drive or respond to
the conduction electron physics (2, 3)? Here,
we approached the entanglement of electronic
and structural degrees of freedom using a
different method from those most commonly
used. We studied the stress-strain relationship
of the quasi–two-dimensional (2D) correlated
metal strontium ruthenate (Sr2RuO4) as it
was tuned through a saddle point Lifshitz
transition (4–6) in which the Fermi surface
topology changes and the Fermi level crosses
a Van Hove singularity (VHS) (7). By combin-
ing direct stress-strain measurements with
experimentally determined entropy data across
the same transition, we have demonstrated
the existence of an unexpectedly large soften-
ing of the lattice driven entirely by conduc-
tion electrons. The possibility of such effects
was discussed theoretically by Lifshitz him-

self >60 years ago, but their size was esti-
mated to be extremely small (4). By contrast,
here, we measured a large effect that is in
principle singular, i.e., capable of introducing
a lattice instability in the T→ 0 limit if not cut
off by a phase transition to some other form of
order.We discuss our results in the framework
of quantum critical elasticity and show that
superconductivity is a natural way of cutting
off quantum critical lattice softening.

Young’s modulus dips across a stress-tuned
Lifshitz transition in Sr2RuO4

The material platform for our experiments,
Sr2RuO4, has attracted considerable attention
both as an unconventional superconductor
(8–12) and as a benchmark 2D Fermi liquid
(13, 14). It is one of the cleanest correlated
electron materials known. The best single crys-
tals have residual resistivities of ≈50 nW cm,
corresponding to electronmean free paths of
2 mmormore (15). The Fermi surface of Sr2RuO4

consists of three cylinders, commonly referred
to asa, b, and g (14). Electronic correlations lead
to a substantial mass renormalization over the
values predicted in independent-electron band

structure calculations, meaning that un
ambient conditions, the Fermi energy (EF) of
the g band sits only 14 meV below a saddle
point VHS at the M point of the tetragonal
Brillouin zone (16). It is possible to tune this
VHS through EF by applying a pressure of
0.7 ± 0.1 GPa along the [100] crystalline direc-
tion (17, 18), profoundly affecting the electronic
properties. For example, the superconducting
transition temperature is enhanced by a factor
of 2.4 from its ambient pressure value to 3.5 K
(19), and the temperature dependence of the
resistivity undergoes a large change from the
conventional Fermi liquid T 2 dependence seen
at higher and lower stress (5).
To investigate the consequences of this

Lifshitz transition on the lattice stiffness, we
used a custom apparatus in which both uni-
axial stress s and strain e can be monitored
simultaneously (20), allowing measurement
of the Young’s modulus (fig. S1). To maximize
the quantitative accuracy of the data, samples
were milled into a necked shape, as shown in
the inset of Fig. 1A, using a Xe plasma source
focused ion beam. The end tabs were then
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Fig. 1. The Young’s modulus Ex of Sr2RuO4 measured across a stress-tuned Lifshitz transition. (A) Ex as a function of strain exx measured at 4 K on three
samples. Inset: Scanning electron micrograph of sample 2. (B) Ex versus exx at a series of temperatures measured on sample 2. (C) Ex at 4 K taken from the
temperature series in (B) (black) together with the entropy S/T extracted from elastocaloric data from a separate sample at 4 K (orange) plotted as a function of exx.
The elastocaloric data are from (23).



embedded in epoxy, which acts as a conformal
layer through which large forces can be trans-
mitted to the brittle samples. The necking
creates a rapid crossover between low- and
high-stress regions of the sample, which is
important for resolving fine features in the
stress-strain relationship (21). Full details on
howweextracted theYoung’smodulus and strain
of the sample, including an examination of pos-
sible systematic errors that could affect the anal-
ysis, can be found in (22) and in figs. S2 to S5.
Our core result is shown in Fig. 1A: the

differential Young’smodulusEx= dsxx/dexx as
a function of strain at 4 K. To demonstrate
repeatability, data from three samples are
shown. Samples 2 and 3 had a higher aspect
ratio (22) and are therefore expected to yield
more accurate data. Each sample was in a
different stress cell. The force calibrations of
the cells were refined using the known Lifshitz
stress of –0.7 GPa (18), where negative values
denote compression. At the Lifshitz transition
strain of eVHS = –(0.45 ± 0.05)%, Ex is seen to
drop to ~146 GPa, and then beyond the tran-
sition to increase to ~200 GPa. In other words,
contrary to our naïve expectation, the dip in Ex
is not a small effect; the softening of the lattice
at the Lifshitz transition is between 10 and
15% depending on the definition used for the
background value. Under tensile strain, Ex

again decreases quite rapidly. A Lifshitz tran-
sition under tensile strain equivalent to that
under compressive strain would be expected,
and this decrease in Ex is most likely caused
by the approach to that transition. A second
notable aspect of the lattice softening at the
Lifshitz strain is its strong temperature de-
pendence, shown in Fig. 1B. At 40 K, the dip is
barely resolved. As the temperature is lowered,
it sharpens and deepens, with a substantial
change observable even between 5 and 4 K.
Elastic constants are second derivatives of

the free energy,C ¼ @2F
@e2. F =U − TS, whereU is

the internal energy and S is entropy. The intui-

tive expectationmight be that the valence band
contributions toU completely dominate F and
thus also the elastic moduli. However, the gen-
erally valid expression for the free energy
F T ; eð Þ ¼ E0 eð Þ � ∫T0 S T ′; eð ÞdT ′ , where E0 is
the ground state energy, reveals that any tem-
perature dependence of elastic constants derives
from changes in the entropy even if E0(e) may
dominate the elasticmoduli. Our Young’smod-
ulus data have a strong temperature dependence
(Fig. 1B), so a link between the Young’s mod-
ulus and a strain-dependent entropy would be
expected. In Fig. 1C, we compare the entropy
obtained from a recent study of the elasto-
caloric effect on Sr2RuO4 (23) at 4 K with the
Young’s modulus data at the same tempera-
ture. The strong correlation between the two
leads to the conclusion that the key physics that
we observe are driven by a conduction band. At
this low temperature, the phonon contribution
to the entropy in Sr2RuO4 is negligible (24) and
the valence band contribution even more so.
All that would be observed is conduction band
entropy because of the density of states at the
Fermi level.

Modeling lattice softening

To understand the observed behavior quanti-
tatively, we made use of a 2D model for the
Landau quasiparticles of the g band (23), the
parameters of which are all constrained by
other observations on Sr2RuO4 (25). Thismodel
(22) yields a contribution Fg(T,exx,eyy,ezz) to
the electronic free energy as function of tem-
perature and the three uniaxial strain values.
The crucial ingredient of the theory is a
symmetry-adapted deformation potential
a ~ t 1@t/@e with tight-binding hopping pa-
rameters t. (Notice that although we mostly
refer to the uniaxial strain along the x axis as
e, we briefly write out the axis labels explicitly
to account for the correct Poisson effects that
enter any measurement of the Young’s mod-
ulus.) The total free energy is then given as F =

F0 + Fg, where we determined F0 such that our
model reproduces the correct elastic constants
for the unstrained samples at the reference
temperature of T= 4K.We included the applied
uniaxial stress using F → F – exxsxx, which
yields the equation of state sxx = @F/@exx. In
linear elasticity, strain orthogonal to the ap-
plied stress is accounted for by Poisson ratios,
such as ekk = –nxkexxwithk =y, z. For the rather
large stress values applied here and given the
subtle behavior near the Lifshitz transition, we
must, however, allow for nonlinear relations
ekk = ekk(exx). Those follow from @F/@eyy =
@F/@ezz = 0. This finally yields the differential
Young’s modulus

Ex ¼ dsxx
dexx

¼ C11 þ C12
@eyy exxð Þ

@exx

þC13
@ezz exxð Þ
@exx

ð1Þ

with the usual definition of the elastic tensor.
The elastic constantsCij ¼ C0;ij � 2

kBT
∫ d3k

2pð Þ3 fk�
1� fkð Þ @Ek

@eii
@Ek
@ejj

consist of a background contri-
bution C0,ij and the part due to the g bandwith
strain-dependent Ek and Fermi function fk.
Within linear elasticity, the derivatives are the
strain-independent Poisson ratios and 1/Ex is
the i= j = 1 element of the inverse of the elastic
tensor Cij in Voigt notation. We show in (22)
that, near the Lifshitz point, –eyy/exx and the
differential Poisson ratio –@eyy/@exx differ and
have a pronounced strain dependence (fig. S6).
Once these nonlinear Poisson’s ratios were
included, our model made the predictions
shown in Fig. 2, A and B. The agreement with
the experimental data shown in Fig. 1 is very
good (see also fig. S7). The temperature depen-
dence of the dip in the Young’s modulus and
the relationship between the Young’smodulus
and entropy at 4 K are reproduced well and
provide evidence that the model correctly
captures the key physics of the observations.

Fig. 2. A simple model quantitatively reproduces key experimental features. (A) Calculated Ex versus exx at selected temperatures. (B) Ex and Sg/T versus exx at
4 K, where Sg is the calculated contribution to the entropy of the g band. (C) Ex versus temperature calculated at the Van Hove strain (solid line) and corresponding
experimental data (filled circles) extracted from the temperature series shown in Fig. 1B. The averaging window for the data is a strain range of 3 × 10−4. For details on
the model, see (22).



Qualitatively, the softening at the Van Hove
point is a consequence of the fact that Young’s
modulus is the sum of a presumed weakly
temperature- and strain-dependent background
contribution, Ex

(0), and a singular conduction
electron contribution from the g band

Ex ≅ E 0ð Þ
x � Alog

1

T=T0ð Þ2 þ exx � eVHSð Þ2
ð2Þ

where A is a positive constant and T0 is a
temperature such that kBT0 is of the order of
the electronic bandwidth. The logarithmic T
and strain dependence stems from the fact
that the electronic contribution to the elastic
constants is proportional to the density of states
[see the fk(1 – fk) term in the g-band contribution
to Cij], which diverges logarithmically at a VHS
in 2D. All electronic contributions to the Cij
and the differential Poisson’s ratios also show
this singular, logarithmic dependence. The sign
of the coefficient A > 0 reflects that the g band
will always cause a softening of the important
diagonal elements Cii of the elastic tensor. The
magnitude of A is determined by a combina-
tion of band renormalization factors and the
deformation potential: Aº a2.
A further prediction of the model is that the

temperature dependence of the Young’s mod-
ulus at the Lifshitz pressure has negative
curvature, and this is indeed observed in our
measurements (Fig. 2C). This negative curva-
ture, in addition to the strong link between
elastic and electronic degrees of freedom that
our data have established, imply that theYoung’s
modulus is related to an electronic suscepti-
bility. The logarithmic softening, however,
cannot continue down to the lowest tempera-
tures. This interruptionmight be a consequence
of a first-order structural transition, which was
initially proposed by Lifshitz, or the formation
of some electronic order that prevents a mech-
anical instability. One way in which the loga-
rithm will be cut off in a quasi-2D material is
by coherent 3D effects caused by interlayer
hopping. However, in the highly 2D g band of
Sr2RuO4, the scale for such processes is <3 K
(8). Whether the onset of superconductivity at
Tc = 3.5 K is related to themechanical stability
of Sr2RuO4 is therefore anexcitingopenquestion.

Interplay with superconductivity

In this context, it was interesting to extend
our Young’s modulus measurements to the
superconducting state in which a small gap is
opened at the Fermi energy. As shown in Fig. 3,
A and B, the strong normal-state softening of
the lattice is indeed cut off by the onset of the
superconductivity, with the lattice hardening
again slightly below the superconducting Tc, an
effect that is most pronounced at the Van Hove
strain. By contrast, if we suppress the super-
conductivity by applying a 2 T out-of-plane

magnetic field, then the softening continues
down to the lowest temperatures used in the
measurement.

A final aspect of our measurements is shown
in Fig. 3C, in which we present Ex data over a
wider range of temperatures, at zero strain, an
intermediate strain, and the Van Hove strain.
At zero strain, there is a broad minimum in
the Young’smodulus at T~40K, reflecting the
fact that, unusually, Sr2RuO4 softens along the
[100] crystalline direction as the temperature
is decreased from room temperature (26). We
show in fig. S8 that this feature is reproduced
in our model, demonstrating that it too is a
consequence of the conduction electrons in
the g sheet.

Discussion and outlook

Although the model that we have used to
analyze our Sr2RuO4 data is specific to the
Lifshitz transition in 2D, it can be viewed from
a more general perspective that highlights the
significance of low-temperature entanglement
between electronic and elastic degrees of free-
dom and emphasizes the close connection be-
tween elastic response and entropy. Consider
a quantum critical point (QCP) that can be
crossed by varying some combination of ele-
ments of the strain tensor. Under the assump-
tion that hyperscaling holds near any such a
strain-tuned QCP, for the singular contribution
to the entropy

S T ; eð Þ ¼ Td=zf
e� ec
T 1=nz

� �
ð3Þ

where z and n are the dynamical and correla-
tion length exponents, respectively, d is the
dimension of space, f is a universal scaling
function, and ec is the critical strain. The most
notable consequence of Eq. 3 follows as one
integrates the entropy with respect to tem-
perature to obtain the free energy and then
determine the elastic constant. Right at the
QCP, where |e – ec|

vz ≪ T, it follows that

C ¼ C0 � nz
n d þ zð Þ � 2

f″ 0ð ÞT n dþzð Þ 2
nz ð4Þ

where f′′ is the second derivative of f. Here,
C0 is a temperature-independent background
contribution to the elastic constant that enters
as an integration constant for the free energy.
Because the entropy is maximal at the QCP,
f′′ < 0. If n(d + z) > 2, then the universal tem-
perature correction is small and positive and the
system is mechanically stable. Conversely, the
system must undergo an instability, defined
by a vanishing elastic constant at a nonzero
temperature, if the quantum Harris criterion
n(d + z) < 2 (27, 28) is fulfilled. Then, the above
scaling theory of a “naked” QCP ceases to be
valid; the system either crosses over to a new
critical regime where strain becomes a genuine
dynamical quantum critical mode or undergoes
a phase transition to another state of matter.
As discussed in (22) and figs. S9 and S10, the
Lifshitz point herein corresponds to d = z =
n 1 = 2, placing us at the boundary of the

Fig. 3. Tracking Ex at key strains to lower and
higher temperatures. (A) Ex at eVHS continues
to soften with decreasing temperature as long as
superconductivity is suppressed with a 2 T magnetic
field (pink diamonds). In the presence of super
conductivity, Ex hardens instead (0 T, red diamonds).
The averaging window is a stress range of 0.05 GPa;
the value of Tc is taken from (19). (B) Ex versus exx at
selected temperatures with and without an applied
magnetic field (red, 0 T; pink, 2 T). The hardening is
visible in the data at 1.9 K. The curves at 3 and 10 K
have been offset by, respectively, 10 and 20 GPa for
clarity. Data in (A) and (B) are from sample 3.
(C) Ex versus temperature at eVHS (red), 0.4eVHS
(dark blue), and zero strain (light blue) over a wide
range of temperatures. Open circles, sample 1; filled
circles, sample 2. Data at eVHS for sample 2 are
replotted from Fig. 2C. The averaging window is a
strain range of 4.05 × 10−4 for sample 1 and
3 × 10−4 for sample 2.



quantum Harris criterion, resulting in a
logarithmic temperature dependence, and
leading to a mechanical instability. If one takes
the limit n(d + z) → 2, appropriate for the 2D
Lifshitz transition, then the exponent in
the temperature-dependent term in Eq. 4
does not simply vanish because the prefactor

1
n dþzð Þ 2 diverges at the same time. Instead,
one recovers the logarithmic behavior of the
Lifshitz transition.
Returning to the discussion of the experi-

mental findings, the results presented herein
constitute conclusive observation of a lattice
softening driven by conduction electrons, the
possibility of which was foreseen by Lifshitz
>60 years ago (4). However, he considered
hydrostatic pressure and transitions in mate-
rials with 3D electronic structure, in which case
the relative change in bulkmodulus would be
~10 4, three orders of magnitude smaller
than what we observed [(22) and figs. S11 and
S12]. Partly for this reason, previous searches
using hydrostatic pressure were unable to
unambiguously resolve the predicted effect
(29–33). Why, then, does it give such a promi-
nent experimental signature in Sr2RuO4? First,
wehaveworkedwithuniaxial rather thanhydro-
static pressure. Also, Sr2RuO4 is an extremely
clean material for which the relevant band is
strongly 2D, preventing the logarithmic term
in Eq. 2 from being washed out by 3D effects
or disorder broadening. It is tempting on first
inspection to assume that this logarithmmakes
the dominant contribution to the size of our
signal, but for measurements performed at a
few degrees kelvin, the size of the prefactor A
actually plays the crucial role. It is hugely
enhanced over Lifshitz’s original expectation for
three reasons: (i) the correlation-induced g band
renormalization, (ii) the nonlinear Poisson’s
ratio effect contribution to Young’s modulus,
and (iii) the value of a in the deformation po-
tential. In our model, the experimentally ob-
served VanHove strain yields a = 7.6 and enters
A as a2. To investigate further, we performed
first-principles calculations, which emphasized
that the g bandof Sr2RuO4 is based onRu-O-Ru
processes involving two d–p orbital hops, yield-
ing a = 8 [(22) and fig. S13].
Our findings also provide perspectives on

the nature and consequences of the entangle-
ment between elastic and electronic degrees of

freedom in metallic solids. To what extent
might they be a driver for superconductivity
as a route to avoid divergent lattice softening?
Do the physics directly following from conduc-
tion electron density of states play a bigger than
previously appreciated role in effects in heavy
fermion physics such as the Kondo volume
collapse (34) and lattice softening associated
withmagnetism (35) andmetamagnetism (36)?
Although these remain open questions, our
observations provide strong and concrete
evidence of relevance to the “chicken and egg”
problem discussed in the introduction: Con-
duction band physics can drive unexpectedly
large structural effects, and conduction elec-
trons are not always slaves to the lattice.
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