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BCS to incoherent superconductivity crossover in the Yukawa-Sachdev-Ye-Kitaev model on a lattice
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We provide a quantitative and controlled analysis of the phase diagram of the Yukawa-Sachdev-Ye-Kitaev
model on a lattice, in the normal and superconducting states. We analyze the entire crossover from Bardeen-
Cooper-Schrieffer (BCS)/weak coupling to Eliashberg/strong coupling superconductivity, as a function of
fermion-boson interaction strength and hopping parameter. Cooper pairs of sharp Fermi-liquid quasiparticles
at weak coupling evolve into pairing of fully incoherent fermions in the non-Fermi liquid regime. The crossovers
leave observable traces in the critical temperature, the zero-temperature and zero-energy gap, the entropy, and
the phase stiffness.
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For an understanding of superconductivity, a clear grasp
of the corresponding normal state is essential, both near the
transition temperature, where it is the normal state that be-
comes unstable, and deep in the paired state, when the energy
scales of the superconducting phase are small [1,2]. As we
will see, such grasp is equally important when all scales are
of comparable magnitude.

A crucial assumption about the normal state made by the
Bardeen-Cooper-Schrieffer (BCS) theory of superconductiv-
ity [3–5] is that it can be described as a Fermi liquid (FL)
[6,7]. For conventional superconductors this assumption is
well justified. The Cooper instability, i.e., the formation of a
two-particle bound state at arbitrarily small attractive interac-
tion, relies crucially on the normal state being a FL [8].

On the other hand, in correlated electron systems super-
conductivity is frequently observed when FL theory does not
seem to apply [9–27]. This can, for example, be due to soft
collective modes that behave at small but finite temperatures
like almost classical degrees of freedom, possibly with addi-
tional quantum fluctuations. Then, single-particle momentum
states rapidly broaden at temperatures much smaller than the
bandwidth, even right at the Fermi energy and—depending
on the pairing state and collective modes involved—pair-
breaking phenomena weaken the Cooper instability. A related
but different reason for the failure of FL theory is the vicinity
to a quantum critical point (QCP). Here, slow long-range
interactions, mediated by critical modes, give rise to a sin-
gular single-particle scattering rate, even as T → 0. Then
the usual Cooper instability is absent. It is rather surprising
that for a number of materials the superconducting transition
temperature is largest right at a QCP [9–17]. In addition, even
when born out of an incoherent normal state, systems like the
cuprate superconductors display coherent and dispersing Bo-
goliubov quasiparticles below Tc [28–35]. The unusual nature
of the normal state is reflected in a small weight of these co-
herent quasiparticles. In Refs. [31] and [36] a close connection
between the spectral weight of Bogoliubov quasiparticles, the
superfluid stiffness, and the condensation energy was reported
for underdoped cuprates.

In this paper we present a controlled theory that describes
pairing of a system with and without quasiparticles and is able
to describe the crossover between the two regimes. This en-
ables us to establish several trends of how an unconventional
normal state affects the superconducting phase, trends that
might be more general than the model we use to derive them.
We use a lattice version of the Yukawa-Sachdev-Ye-Kitaev
(Yukawa-SYK) model of Ref. [37], which considers isolated
quantum dots with a large number of mutually interacting
internal degrees of freedom [37–43]. Coupling these dots with
a single-particle hopping amplitude yields, in the normal state,
a crossover from quantum critical regime at high energies to
a disordered FL at low energies [44–47]. Depending on the
pairing strength, superconductivity emerges in the quantum-
critical and the FL regimes. Our key findings are that Tc is
largest at the quantum critical point and decreases as one
moves towards a FL regime. This is despite the fact that the
usual Cooper instability is no longer active: it is replaced
by a more singular pairing interaction at criticality that is
more efficient than pairing in FLs [48–57]. At the same time
we observe that the stiffness is largest at the crossover from
FL to non-Fermi liquid (NFL) behavior. The stiffness in the
disordered FL is small because of the comparative weakness
of Cooper pairing, while it is small deep in the incoherent
regime because of the small optical weight of the normal
state. In between these regimes the stiffness is largest. Deep
in the NFL regime we further observe a correlation between
the Bogoliubov quasiparticle weight, the condensation energy,
and the stiffness, in qualitative agreement with observations
[31,36]. While our model is clearly motivated by these classic
observations, we do not pretend that it can be directly applied
to systems as complex and diverse as the cuprate, organic,
heavy-fermion, or iron-based superconductors. Nevertheless,
we suspect that some of the findings of our analysis are more
general in character and help develop a broader phenomenol-
ogy of pairing in systems without quasiparticles.

We consider a model where Yukawa-SYK dots are coupled
by a random single-particle hopping. This is analogous to
coupled purely fermionic SYK models [44,46,58,59], but it
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also allows for superconducting solutions due to coupling
between fermions and a scalar bosonic field. The model is
given as

Ĥ = 1

N

∑
i j

∑
〈x,x′〉

ti j,xx′ ĉ†
i,x,σ ĉ j,x′,σ +

∑
x

Ĥx. (1)

ĉi,x,σ and ĉ†
i,x,σ are fermionic annihilation and creation opera-

tors at site x, flavor index i, and with spin σ . ti j,xx′ is a random
single-particle hopping with mean square value t0/

√
z (z is the

coordination number), acting between neighboring sites x and
x′ and between all flavor pairs formed out of the N fermions.
Strong correlations at a given site are described by [37–43]

Ĥx = −
N∑
i=1

∑
σ=±

μĉ†
i,x,σ ĉi,x,σ + 1

2

M∑
k=1

(
π2

kx + ω2
0φ

2
kx

)

+ 1

N

N∑
{i, j}=1

∑
σ=±

M∑
k=1

gi j,k ĉ†
i,x,σ ĉ j,x,σ φkx. (2)

In addition to fermions we have phonons, i.e., scalar
bosonic degrees of freedom φkx with canonical momentum
πkx. {i, j} = {1, . . . ,N } refer to fermionic modes and k =
{1, . . . ,M } to the phonon field. We consider the limit of
large N and M with variable ratio M /N . The properties of
the single-site model, in the replica-diagonal large-N ansatz
and at particle-hole symmetry, were discussed in detail in
Ref. [37]. The key finding was a self-tuned critical normal
state at lowest temperatures, and a pairing state with a transi-
tion temperature Tc ∝ g2, where g is the typical value of the
Gaussian-distributed coupling constants gi j,k . Based on the
analysis of similar purely fermionic models, one expects at
finite t0 a crossover to FL behavior below some energy scale
kBT ∗; see below. The analysis of this model in the large-N
limit is rather standard [60] and leads to the following saddle-
point equations:

�(iωn) = ḡ2kBT
+∞∑

m=−∞
D(i�m)G(iωn − i�m) + z

t2
0

2
G(iωn)

(3a)

�(iωn) = −ḡ2kBT
+∞∑

m=−∞
F (iωm)D(iωn − iωm) − z

t2
0

2
F (iωn)

(3b)

	(i�n) = −2ḡ2kBT
+∞∑

m=−∞
[G(iωm)G(iωm + i�n)

− F (iωm)F (iωm + i�n)]. (3c)

Here, z is the coordination number, � and � are the nor-
mal and anomalous fermionic self-energies of the Eliashberg
formalism, while G and F are the corresponding propagators.
	 and D are the bosonic self-energy and propagator, respec-
tively. Equations (3) are supplemented by the Dyson equations

G(iωn) = iωn − μ + �∗(iωn)

D (μ, iωn)
, (4a)

F (iωn) = �(iωn)

D (μ, iωn)
, (4b)

D(i�n) = 1

�2
n + ω2

0 − 	(i�n)
, (4c)

where D (μ, iωn) = [iωn +μ− �(iωn)][iωn − μ+�∗(iωn)] −
|�(iωn)|2 [60–63]. In what follows we discuss the solution
of the set (3), (4), which determines quantities like the opti-
cal conductivity, the condensation energy, and the superfluid
stiffness [64].

Normal state. The behavior in the normal state is displayed
in Figs. 1 and 4(a). Figure 1(a) shows the phase diagram for
uncoupled Yukawa-SYK dots. This is the behavior already
discussed in Ref. [37]. Depending on temperature and the
dimensionless coupling constant g = ḡ/ω3/2

0 there are three
distinct normal-state regimes. At small g and high tempera-
ture kBT 
 g2ω0 fermions form a classical gas. Interaction
effects become important below the temperature g2ω0. At
lowest kBT < ω0/g2, fermions and bosons form a strongly
coupled critical fluid, governed by a single universal expo-
nent G(iω) ∝ |ω|2
−1 and D(iω) ∝ |ω|1−4
, where 1/4 <


 < 1/2 depends on the ratio N /M . This SYK-NFL regime
is similar to what is found for purely fermionic SYK mod-
els, where G(iω) ∝ |ω|−1/2 for a four-fermion interaction.
Once g > 1, an intermediate impurity-like regime emerges,
where bosons are extremely soft but sharp excitations, while
fermions behave almost like in a disordered system with
self-energy �(iω) ∼ −isign(ω)g2ω0, i.e., with large scatter-
ing rate. In Figs. 1(b) and 1(c) we show how the phase diagram
changes as one allows for coherent single-particle hopping
between SYK dots. The effect of hopping is straightforward
for the classical gas. Once kBT < t0 a degenerate disordered
Fermi gas forms. The behavior is identical to the so-called
SYKq=2 state, where q is the number of fermion operators
in the Hamiltonian [44,46,65]. In the SYK-NFL state, the
crossover scale is significantly reduced. Balancing the self-
energy of the SYK-NFL state and of the SYKq=2 Fermi
gas/Fermi liquid, one finds kBT ∗ ∼ (t0g−4
)1/(1−2
) for the
crossover scale [37], as confirmed numerically [60]. Further
increasing hopping also pushes the crossover between the
FL and impurity-like regimes to higher g, while it constrains
the critical SYK state to an increasingly smaller window of
parameters. In Fig. 4(a) we show the normal-state optical con-
ductivity for the SYK2-FL, the SYK-NFL, and the impurity-
like regimes, calculated from the electromagnetic kernel in
linear response [66]. In particular, we observe a change in
the frequency dependence between the former two regimes,
with Drude-like behavior for small g and quantum critical
decay for g ∼ 1. The conductivity in the impurity-like regime
at g = 4 drops dramatically, given the large fermionic scatter-
ing rates. To summarize, our rather simple model allows for
a rich normal-state behavior with FL, quantum-critical, and
strongly incoherent behavior. In the next step we analyze the
corresponding behavior of the superconducting state.

Superconducting transition temperature. In Fig. 2 we show
the variation of the superconducting transition temperature Tc

with coupling constant g and coherent hopping amplitude t0.
While the strong-coupling behavior is weakly affected by the
single-particle hopping, the weak- and intermediate-coupling
behaviors change dramatically. Pairing in the SYK-NFL
regime was discussed in Ref. [37]: one finds that at small g the
transition temperature varies as kBTc ∼ g2ω0. This behavior is
caused by the singular pairing interaction of NFL fermions,
as mediated by the exchange of bosons D(iω) ∝ |ω|1−4
.
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FIG. 1. Phase diagrams of the Yukawa-SYK model on a lattice, as a function of dimensionless fermion-boson interaction g and temperature
kBT/ω0, for different hopping energies: (a) t0 = 0; (b) t0 = ω0; (c) t0 = 4ω0.

The situation changes when a FL forms below T ∗. We find
that then Eqs. (3) lead to the established logarithmic Cooper
instability of the SYK2 regime, yet with a somewhat differ-
ent origin than the standard BCS mechanism. The linearized
version of the gap equation (3b) can be written as

�̃(iωn) = ḡ2kBT
/
ω2

0

∑
m

P(iωm)

1 − t2
0 P(ωm)/2

�̃(iωm), (5)

where P(iωm) = G(iωm)G(−iωm) is the product of the propa-
gators of the paired fermions. Using the analytical expression
for G(iωm) in the Fermi-liquid regime, and expanding the
term under the sum for small ωm, one realizes that the
leading-order term scales as 1/ωm, which yields a logarithmic
Cooper instability [60]. Thus, we find the asymptotically exact
BCS weak-coupling expression kBTc = 2eγ /πω0e−1/λ̄, with
γ Euler-Mascheroni constant and with an effective coupling
constant

λ̄ =
√

2

π
g2ω0/t0. (6)

Notice, the instability does not come from the term P(iωm) at
the numerator of Eq. (5), as would be the case for textbook
BCS pairing, but it is generated by the term 1 − t2

0 P(iωm)/2
in the denominator [60,67].

Comparing the expressions for the transition temperatures
at small g, Tc of a critical, NFL state is large compared to
what follows from the usual Cooper instability. The lack of
coherency of the NFL state, which at first glance weakens the
instability, is more than compensated by the singular pairing
strength due to the exchange of quantum critical bosons. This
behavior is illustrated in the right panel of Fig. 2 where we
show Tc as a function of t0 at fixed g. This is reminiscent of
the emergence of a superconducting dome that forms around
a quantum critical point. The rapid drop in Tc coincides with
the crossover from the quantum critical to the Fermi-liquid
regime.

Superfluid stiffness. The robustness of a d-dimensional
superconducting state against fluctuations of the phase of the
order parameter is determined by the superfluid stiffness

ρS = L2−d ∂2F (θ )

∂θ2

∣∣∣∣
θ→0

(7)

with free energy as a function of an applied phase twist F (θ )
[68,69] and L linear sample dimension. For Galilean-invariant
systems it holds at T = 0 that ρS = n/m, with particle number
n and mass m, respectively [70,71]. This implies negligible
phase fluctuations as long as kBTc � EF with Fermi energy

g = 1, z = 1
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FIG. 2. Superconducting transition temperature in the lattice model. Left panel: surface for kBTc/ω0 as a function of coupling g and hopping
t0, showing the weak-coupling FL, NFL, and impurity-like regimes. Right panel: kBTc/ω0 at fixed coupling g = 1, as a function of t0, showing
that Tc is highest in the single-dot NFL regime.
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FIG. 3. Phase stiffness and condensation energy for t0 = ω0. (a) Normalized superfluid stiffness πρS/(�Leγ ω0) at kBT = 0.005ω0 (gold
curve) and critical temperature kBTc/ω0 (red curve) as a function of coupling g; �L = N /(ah̄2), where a is the lattice constant [60].
(b) Condensation energy per fermion flavor 
�/(N ω0) as a function of g, at kBT = 0.01ω0.

EF. For disordered superconductors with impurity scatter-
ing rate τ−1 it holds in the limit 
 � τ−1 � EF that the
ground-state stiffness is reduced to ρS/(n/m) = πτ
 [72],
i.e., it scales with the superconducting gap 
, or equivalently,
with the transition temperature Tc. In Fig. 3(a) we show the
g dependence of the stiffness at low temperatures for finite
t0 = ω0. ρS is displayed as an energy scale in units of �L

[60]. In the weak-coupling regime πρS/(�Leγ ) (gold curve)
tracks perfectly kBTc (red curve), precisely as one expects
for a disordered BCS superconductor. On the other hand, at
large g, the stiffness decreases with increasing g like ρS ∼ g−4,
as the superconducting state that forms from an incoherent
normal state becomes increasingly more fragile [60]. Such
fragility could be reflected by an analysis of phase fluctu-
ations as 1/N corrections with respect to our saddle-point
theory [75]. ρS is largest right at the crossover between the
FL and NFL regimes. These trends can be understood from
the coupling constant dependence of the optical conductivity
shown in Fig. 4. The stiffness can be estimated using the

Ferrell-Glover-Tinkham (FGL) sum rule [73,74]

ρS = 2

πe2

∫ ∞

0+
dω(Re{σns(ω)} − Re{σsc(ω)}), (8)

where Re{σns(ω)} and Re{σsc(ω)} are the real parts of the op-
tical conductivities of the normal and superconducting states,
respectively. While the FGL sum rule assumes that the to-
tal optical weight is unchanged, it allows for a qualitative
understanding of the trends that we see in the ρS shown
in Fig. 3(a). The stiffness of the weak-coupling disordered
FL is small because of the small superconducting gap, com-
pared to the scattering rate. Hence, only a small portion of
the total spectral weight is being transformed into the ω =
0 δ-function Re{σsc(ω)} = πρSδ(ω). This portion is quali-
tatively estimated by the light-blue shaded area in the inset
of Fig. 4(a), where the dashed line corresponds to 2
0 for
g = 0.5, 
0 being the T = 0 static superconducting gap. In
the DC limit and at T = 0, we obtain Re{σns(0)}/�L = 2/π ,
so that from Eq. (8), ρS ≈ 2

π
Re{σns(ω)}2
0 ≈ 0.81
0. This

FIG. 4. Real part of the optical conductivity σ (ω) in the SYK2-FL, SYK-NFL, and impurity-like regimes, from the numerical solution
of Eqs. (3) analytically continued to the real axis ω + i0+, for t0 = ω0. Dashed vertical lines mark ω = 2
0, with 
0 gap at T = 0 and
ω = 0 estimated from Eqs. (3). (a) Normal-state conductivity σ (ω)/(�Le2) at kBT = 0.12ω0. g = {0.5, 1, 4} give the light-blue, gold, and red
curves, respectively. The shaded area highlights the spectral weight at ω � 2
0. The insets zoom on the SYK2-FL and impurity-like regimes.
(b) Temperature evolution of the SYK-NFL conductivity for g = 1. (c) Temperature evolution of the impurity-like conductivity for g = 4.
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estimation is fully consistent with a direct zero-temperature
calculation in FL regime yielding ρS/�L = 
0 [60]. On the
other hand, in the incoherent regime at large g the conductivity
is small: precisely, in the DC limit we have Re{σns(0)}/�L =
4/(π�2

0), where �0 = 16g2ω0/(3π ) [37]. Hence, a small
amount of weight is transferred despite a large pairing gap,
and ρS ∼ g−4
0, as confirmed by the exact T = 0 result
ρS/�L = 2zt2

0 
0/�
2
0 [60]. This effect is highlighted by the

red shaded area in the inset of Fig. 4(a), delimited by 2
0 for
g = 4 (dashed line). The sweet spot occurs at the crossover,
where the conductivity is still sizable and the pairing gap
already large—see gold-shaded area and dashed line for g = 1
in Fig. 4(a)—explaining the maximum in the stiffness.

Superconducting optical conductivity. Our arguments on
the low-frequency shift of the spectral weight, according to
Eq. (8), are substantiated by the explicit calculation of the
conductivity in the superconducting state. Figures 4(b) and
4(c) show the frequency dependence of Re{σ (ω)} for t0 = ω0,
in the SYK-NFL and impurity-like regimes, respectively, at
temperatures T < Tc. We observe the progressive depletion
of spectral weight below 2
0 (dashed vertical lines), accom-
panied by shake-off peaks at ω > 2
0, due to the strongly
interacting nature of the Cooper-pair fluid, and caused by
quasiparticle self-trapping into the fluctuating pairing field.
Such structures reflect analogous peaks in the fermionic
and bosonic spectral functions [37,60,67]. Interestingly, the
highest-amplitude coherence peaks occur at ω > 4
0 in the
SYK-NFL and impurity-like phases.

Condensation energy. The robust pairing state at the FL-
to-NFL crossover can also be deduced from the condensation
energy 
� = �sc − �ns, where �sc,ns stand for the grand
potential of the normal and superconducting state, respec-

tively. Figure 3(b) shows the coupling evolution of 
� from
the exact numerical solution of Eqs. (3), for t0 = ω0. 
� is
largest very near where the stiffness is largest. It decreases at
small and large coupling, because of the small Tc in the for-
mer case and because of the small weight of the Bogoliubov
quasiparticles in the latter.

Summary. We analyzed a model of strongly interacting,
critical Yukawa SYK sites, coupled via a random coherent
single-particle hopping. Hopping gives rise to a crossover
temperature T ∗ that separates quantum critical, NFL behav-
ior at intermediate temperatures and FL behavior at lowest
temperatures. Pairing of the NFL state is significantly more
efficient than the one due to conventional Cooper instabil-
ity, accounting for the frequently observed maximum in the
transition temperature at quantum critical points. The super-
fluid stiffness and the condensation energy are largest right at
the crossover between FL and NFL behavior. At large cou-
pling constant, the weight of the Bogoliubov quasiparticles,
the stiffness and the condensation energy are all correlated,
similar to what has been reported for the behavior in un-
derdoped cuprates [60]. These trends are also discerned in
the optical response, and are believed to be governed by
generic principles that characterize pairing of systems without
quasiparticles.
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