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A B S T R A C T

Auctions are a widely used policy instrument to support the deployment of renewable energies (RE). Yet,
their complex design raises concerns about explicitly or implicitly discriminatory effects against particular
technologies. Such discriminatory effects would distort fair competition, reduce economic efficiency, and
potentially violate European Union law.

Several studies analysed discriminatory auction design from a theoretical and simulation perspective but
actual empirical evidence is limited. Here, we demonstrate the existence of technology discrimination in
European RE auctions empirically. We apply a fractional logit model to empirically measure the impact of
various auction design elements on the success of two technologies, solar PV and onshore wind, based on 57
European multi-technology RE auctions from 2011–2021.

Our results confirm the existence of discriminatory effects of several auction design elements in RE
auctions, such as installation size restriction, support duration, realisation period, ceiling price, and financial
prequalification. The results are stable against various robustness checks such as varying the countries included,
the time frame, and the composition of the regions controlled for.

Our findings advance the understanding of explicitly and implicitly discriminatory effects against particular
technologies in multi-technology auctions and we propose steps to reduce technology discrimination in future
multi-technology RE auctions.
. Introduction

Auctions have helped to reduce renewable energy (RE) installation
osts effectively and contributed to a rapid decrease in RE genera-
ion costs of up to 85% since 2010 (IRENA, 2021). After being well
stablished as a RE support instrument, the political and academic
ebate on RE auctions now focuses on the optimal design of such.
ith its 2014–2020 Environmental and Energy State Aid Guidelines

EEAG) (European Commission, 2014), the Renewable Energy Directive
RED II) (European Parliament and European Council, 2018), and the
ewly adopted Guidelines on State Aid for Climate, Environmental Pro-
ection and Energy 2022 (CEEAG) (European Commission, 2022), the
uropean Commission has taken a clear stand for the principles of non-
iscrimination and openness in auction schemes. This requires multiple
uitable technologies to compete against each other in the same auction
n a non-discriminatory basis. Such multi-technology auctions have
een conducted in the EU since 2011 (and to a certain extent, even
efore) and include any scheme that is not exclusively designed for one
echnology and range from technology-basket auctions to integrated

∗ Corresponding author.
E-mail address: vasilios.anatolitis@isi.fraunhofer.de (V. Anatolitis).

auctions with combined storage or other Greenhouse Gases-reducing
technologies, according to the definition of Winkler (2021). They were
developed by a few Member States in parallel to technology-specific
auctions and experienced substantial growth in numbers, yet not at the
same rate as their technology-specific counterparts, which make up the
majority of RE auctions today in the EU as well as globally (Del Río
and Kiefer, 2021; Winkler, 2021).

The advantages of a multi-technology setup in auctions compared
to technology-specific support are a matter of debate. Economic ar-
guments are typically brought forward in favour of multi-technology
schemes, such as a higher static efficiency of the RE capacity pro-
curement as well as higher participation and a lower risk of under-
contracting the auctions (Kreiss, 2018; IRENA, 2015; Jerrentrup et al.,
2019; Fleck and Anatolitis, 2023). Anatolitis et al. (2022) showed
empirically that multi-technology RE auctions lead to lower awarded
prices compared to their technology-specific counterparts, at least if
the auctions are not limited to small-scale projects. Critical positions of
multi-technology setups acknowledge secondary policy objectives, such
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as controlling the security of supply and total system costs, dynamic
efficiency and complex practical realisation (del Río, 2017; Jerrentrup
et al., 2019; Fleck and Anatolitis, 2023), and under specific circum-
stances, even negative effects of multi-technology auctions on static
efficiency (Anatolitis and Winkler, 2023). Fabra and Montero (2020)
came to a more nuanced conclusion in their micro-economic study:
whether technology-specific or multi-technology RE auction are supe-
riour ‘‘depends on the costs of the available technologies, their degree
of substitutability, the extent of information asymmetry, and the costs
of public funds’’. Some scholars have furthermore suggested that the
implementation of a level playing field for all participating technologies
is difficult to realise and that the required non-discrimination is not
achieved in today’s multi-technology schemes (Kreiss, 2018; Haelg,
2020; Diallo and Kitzing, 2020). These schemes may explicitly or
implicitly discriminate against certain technologies due to their asym-
metric techno-economical characteristics. For setting up a truly non-
discriminatory support scheme, often also called technology-neutral
schemes, a better understanding of the auction design impact on the
chances of each technology to be awarded is required. In particular
the implicit discriminatory effects, that certain design configurations
may unfold on technology outcome, are not well researched so far and
literature lacks empirical insight.

The aim of this work is an empirical investigation of potentially dis-
criminatory design elements in multi-technology RE auctions already
identified in the existing literature, especially in the works of Diallo
and Kitzing (2020) and Haelg (2020). Diallo and Kitzing (2020) in-
vestigated discriminatory effects of various auction design elements
in multi-technology auctions using a model-based approach. Haelg
(2020) evaluated the influence of certain auction design elements on
the outcomes of multi-technology auctions. Our work goes beyond the
existing studies in several aspects. First, we provide the first empirical
econometric investigation of auction design elements on the success
rate of RE technologies in such auctions. Second, we cover more design
elements than previous studies for their potentially discriminatory
effects.

The remainder of our work is structured as follows: Section 2
provides background information and presents the literature concerned
with discriminatory effects in the context of multi-technology RE auc-
tions. Section 3 goes on to introduce data and methodology, presenting
an overview of the variables as well as the fractional logit approach.
Section 4 reports the results, while Section 5 provides a discussion.
Finally, Section 6 concludes and derives policy implications.

2. Background and literature review

2.1. Techno-economical asymmetries of PV and onshore wind

With multi-technology auctions on the rise, scholars are becom-
ing increasingly interested in the optimal design of such schemes.
As Ehrhart et al. (2018) note, by opening a RE auction up to multiple
technologies, its design becomes increasingly complex. For our anal-
ysis, we focus on PV and onshore wind, which are by far the most
represented types in multi-technology auctions (AURES II Database,
2021). This section illustrates the main techno-economical asymmetries
between the two focal technologies. Diallo and Kitzing (2020) build
on the short conference paper from Kreiss (2018) to provide a first
overview of such asymmetries as a possible source for discriminatory
effects. This section will be guided by their collection, yet extends on
it through own research. It serves as a basis to detect design elements
possibly associated with these asymmetries.

Both generation technologies exhibit significant differences in their
upfront investment (CAPEX), financing conditions, and their operating
and maintenance expenditures (OPEX). For CAPEX, solar PV shows signif-
icantly lower investment cost per kW installed than onshore wind, only
about half of the cost (Diallo and Kitzing, 2020; Kost et al., 2021). Ad-
ditionally, these capital expenditures are subject to different financing
2

conditions. Steffen (2020) finds the pattern that solar PV projects face
a smaller weighted-average cost of capital (WACC) than onshore wind
projects. For OPEX, differences are also substantial. Typically, a utility-
scale PV installation faces about a third lower generation-dependent as
well as about half lower fixed maintenance costs than onshore wind
projects (Diallo and Kitzing, 2020; Kost et al., 2021). Thus for the
same capacity installed, the two technologies exhibit a clear difference
in CAPEX and OPEX with onshore wind carrying the higher financial
burden.

Onshore wind projects typically exhibit a higher capacity factor and
a flatter generation profile that is (seasonally) more correlated with
energy demand compared to the one of solar PV (Eising et al., 2020).
Thus, in the Levelised Cost of Electricity (LCOE) metric, the high overall
expenditures of wind are compensated over a project’s lifetime and both
technologies currently generate power at similar costs of around 40–
50 EUR/MWh (Kost et al., 2021). Furthermore, onshore wind projects
recover their upfront costs at a faster rate due to a higher market value
of generation. The market value is viewed as a function of the capacity
factor, generation volatility and the infeed-price correlation (Klie and
Madlener, 2020).

A further difference can be seen in the planning and preparation
efforts of a project. The physical or permit prequalification step in the
project development involving site assessment and technical studies
contributes to the upfront investment and represents sunk costs, thus
increasing bidder risk (Haelg, 2020). For a solar PV project, these
costs tend to be smaller than for the development of a onshore wind
farm (Kreiss, 2018).

The average utility-scale PV project size installed in Germany was 10
MW (IRENA, 2021). It is known that PV can be efficiently deployed at
small scales, such as in rooftop installations, yet the technology may
also profit immensely from economies of scale, as recent examples
of extremely large (2 GW) single-unit auctions in the Middle East
showed (IRENA, 2021). These projects are able to bid for electricity
at around 10 USD/MWh. Thus, PV can be used very flexible in terms
of installation size. Good data on average onshore wind farm size
is hard to find, although they tend to be larger than utility-scale
PV. Enevoldsen and Valentine (2016) analyse a sample of 33 mostly
European onshore wind farms, for which the median size is around 40
MW.

Haelg (2020) assumes a higher learning rate for PV (15%) than for
onshore wind (5%) technology, thus relatively faster cost decreases in
CAPEX and OPEX. IRENA (2021) find a similar tendency with smaller
differences. It is uncertain if these historical trends will continue,
however for projects in the short-term future they will likely uphold.

Similarly to the difference in planning efforts, the two technologies
also exhibit different efforts in eventually constructing the site. Kreiss
(2018) hints at this asymmetry in his paper. It also is expressed in
the significantly higher upfront investment for installation material and
labour related to onshore wind projects. The difference also shows in
the required lead time to build of European auctions, which mostly
exhibit shorter deadlines for PV compared to the onshore wind auc-
tions (AURES II Database, 2021).

2.2. Literature on discriminatory effects of multi-technology auction design

Discrimination against particular bidder groups in public procure-
ment has been a topic of interest for quite a while now. Already in the
early 1990s, under the concept of favouritism, economists investigated
particular favourable conditions and possible collusion between auction
designers and bidders (Laffont and Tirole, 1991; Vagstad, 1995). Such
phenomena have been illuminated in the context of defence and elec-
tricity procurement as well as in the case of EU Member States public
procurement in the late 1980s, which were awarding government
contracts to an abnormally large share (above 95%) to domestic actors.

Now in the context of RE multi-technology auctions, the issue of

fair conditions rearises. In many auctions, design parameters are being
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actively differentiated between technologies, in which case the design
exhibits explicitly discriminatory design features (Jerrentrup et al.,
2019). Of course, these design features can then manifest in explicitly
discriminatory effects for a technology, i.e., a technology actually having
a lower chance of success. It is further important to notice that given the
individual technology characteristics, multiple technologies may be af-
fected differently even if there are no apparent explicitly discriminatory
design features (Kreiss, 2018). For a design configuration with all equal
design elements that still unfolds discriminatory effects on success, this
paper uses the term implicitly discriminatory effects.

Kreiss (2018) highlights implicit discriminatory effects as one of
he main challenges in designing multi-technology auctions. He notes
hat the technological differences are a possible source for a dis-
orted competitive bidding process and therefore challenges the actual
eutrality (i.e., non-discrimination) of these auction schemes. Concep-
ually, he highlights the ambiguity of the term technology-neutrality in
his context, asking whether it refers to the same factual conditions of
articipation or whether it implies the creation of a level playing field.
he auction design elements he brings into play are prequalification
equirements, realisation period and price ceiling. Physical and permit
requalification requirements affect bidder groups via different sunk costs
f qualification. The realisation period affects the bidder groups via

different construction times. Price ceiling differences are used as an
example for possible explicitly discriminatory effects. Unfortunately, no
formulation of the expected direction of the discriminatory effects is
derived here.

Haelg (2020) provides a comprehensive framework for auction
design and further investigates the effect on technology outcome in
detail. She uses an LCOE model to show how generation (i.e., bid)
prices are affected by changes in the parameters of three design ele-
ments, thus quantifying the expected direction of the resulting implicit
discriminatory effects. According to her model, as the realisation period
increases, the costs for PV fall substantially stronger than for onshore
wind. This is due to the distinct assumed learning rate potential, which
can be utilised through later construction. Altering the remuneration
scheme from a tariff to a sliding or a fixed premium, increases the cost
for onshore wind more than for PV. A fixed premium or even more
so a sliding premium exposes the projects to market price risks, which
increases cost of capital, according to her model. This effect translates
differently to the technologies due to their cost structures with onshore
wind having the higher CAPEX. Finally, according to Haelg (2020),
as bid bonds, which act as a security for potential penalties and are
deposited/submitted during the auction procedure, increase, PV is more
affected by a small rise in cost. Here, the moderate increase in CAPEX
from the bid bonds carries more weight in the calculation for PV costs.

Diallo and Kitzing (2020) also investigate implicitly discriminatory
effects in multi-technology auctions by constructing an LCOE model to
approximate bidding behaviour of various technology projects. They
investigate the design elements support period, realisation period, and
remuneration scheme in scenarios with and without considering exter-
nalities. Our paper focuses on the latter case, since externalities are
rarely included in the auctions in practice. They find that a very short
(10 years) to short (15 years) support period is favourable for wind. The
longer the support is granted, the better the chances for PV become.
In the long scenario (25 years), PV is the favoured technology, being
able to offer bids at lower cost. The reason for this development is
to find in the authors’ assumptions of cannibalisation effects, which
are seen to be stronger for PV, thus these projects have difficulties
recovering investment expenditures from electricity market revenues
after the support period has expired. In contrast to Haelg (2020), Diallo
and Kitzing (2020) find that increasing the realisation period leads
to higher costs for both technologies, yet more so for PV. Different
realisation periods thus lead to a disadvantage for the technology with
the longer realisation period. This is due to the authors’ assumption that
a longer realisation period causes a later project realisation, for which
3

the technologies face differently falling market prices over time. Lastly,
switching the remuneration scheme from a fixed premium to a one-
sided sliding premium increases the costs significantly in the model.
This effect is stronger for onshore wind. On top, a two-sided sliding
premium is slightly increasing the discrimination against onshore wind
further.

Consequently, to the best of our knowledge, most of the existing
literature has analysed discriminatory effects of auction design ele-
ments in multi-technology RE auctions only theoretically, based on
modelling or auction theory. Empirical insights and evidence on the
discriminatory effects are still scarce. This follows the general finding
of Quintana-Rojo et al. (2020) that there is a lack of econometric anal-
yses dealing with RE auctions. One noteable exception is the recently
published paper by Melliger (2023), who empirically investigated the
effects of auction design elements and country-specific factors in multi-
technology auctions using statistical methods, mostly ANOVA. While he
was able to show that 80% of all multi-technology auction rounds from
2011 to 2020 in Europe were skewed, the investigated design elements
and general context factors could not explain this finding.

Nevertheless, our study goes beyond the existing literature by con-
ducting an econometric analysis to control for the effects of the various
design elements and context factors in a holistic manner. Moreover,
in our analysis, we cover more design elements than previous studies.
Thus, on the basis of these key contributions, particularly interest-
ing design elements for the analysis of discriminatory effects can be
abstracted. We present those in Fig. 1. Both explicitly discriminatory
design and implicitly discriminatory effects are addressed in these
works, yet knowledge about the implicit effects is especially interesting
for the analysis due to their covered nature.

3. Data and method

3.1. Data

The data used for this analysis stems from the open-source auction
database of the AURES II research project (AURES II Database, 2021).
In the latest version dating April 2021, the database contains 417
auction rounds from 20 EU Member States in the years 2011–2021.
307 rounds were conducted targeting one specific technology, while
107 rounds are multi-technology auctions according to the definition
of Winkler (2021). When examining the variety of technologies eligible
in the multi-technology rounds, it shows that onshore wind (64 rounds)
and PV (63 rounds) are by far the most represented of all technologies.
Also, these two technologies are awarded most of the volume. The
two focal technologies are also best comparable to each other in terms
of LCOE, variability of generation, maturity and system penetration.
The final dataset consists of 57 multi-technology auctions rounds from
12 EU Member States (Denmark, Estonia, Finland, France, Germany,
Greece, Hungary, Italy, Netherlands, Poland, Slovenia, and Spain) and
can be found on an online repository (Buschle et al., 2023).

3.1.1. Dependent variable
Our dependent variable is set as the success rate of the focal

technologies PV and onshore wind. Technology success rate is calculated
as the capacity awarded to the respective technology divided by the
total capacity being awarded support in that auction round.

Over time, there is a positive trend for the success rate of PV and
a slightly negative trend for the one of onshore wind in the consid-
ered European multi-technology auctions. Yet, there is large variance
throughout all the years. The general trend in favour of PV is in line
with the literature on price development of RE technologies, portraying
a substantial price fall in the last decade and a faster capacity expansion

compared to onshore wind (IRENA, 2021; Kost et al., 2021).
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Fig. 1. Summary of design elements potentially contributing to implicit discriminatory effects based on the literature and analysis of technology asymmetries with assumed direction
of effect, based on own analysis and Kreiss (2018), Haelg (2020), and Diallo and Kitzing (2020).
3.1.2. Explanatory variables
Based on the elaborations in Section 2, a relationship between auc-

tion design and the success of individual technologies is hypothesised.
The independent variables for the analysis are thus the auction design
elements of interest derived before, which are presented in Fig. 1 and
whose parameter specifications are observed in the data set.

Particular attention is paid to the selection and encoding of the ex-
planatory variables, i.e., the auction design elements. The combination
of the small sample size of 60 observations (57 after outlier removal,
see Section 3.2) and the large number of potentially influential design
elements presents a key challenge for our quantitative analysis. The
issue is aggravated by the fact that six design elements of interest are
designed explicitly discriminatory, which means they exhibit distinct
parameters per technology. Thus, their technology-specific values ad-
ditionally need to be incorporated in the analysis. The factor variables
reduce the model’s degrees of freedom (df) further for each factor
level. In general, for the encoding of the variables we focused on
reducing the appropriation of df’s while keeping as much information
about the auction design in the model as possible. A further issue is
multicollinearity among the large set of explanatory variables, which
we addressed by keeping an eye on the Variance Inflation Factor (VIF)
of the variables. Bid bonds and performance bonds were summarised
into one new variable financial prequalification, containing all payable
financial securities. Both types of bonds are securities to safeguard
potential penalties for non-realisation or delays and are submitted
by the bidders during and after the (successful) participation in the
auction, respectively. While timing and risk profile of these payments
are not identical, both are contributing to higher upfront expenditures
and their effects should be in a similar range.

Both minimum size restriction and maximum size restriction are often
explicitly discriminatory elements, while in some instances even the
existence of the requirement differs for the technologies. This makes it
4

challenging to correctly encode and cover all the cases, i.e., it would
absorb a high number of df’s. Simply including two technology-specific
continuous variables each is also problematic since these variables
correlate strongly with each other. A solution was found by reducing
informational content, yet still accommodating the explicitly discrimi-
natory aspect. Consequently, for both design elements a new categorical
variable was introduced with their factor levels set to none restricted,
only PV restricted and both restricted, covering all present cases in the
data. In a similar way, informational density was reduced for financial
prequalification to further manoeuvre the multicollinearity issue in the
model. In its original continuous form, the element contributed to the
issue with a VIF greater than 10. Encoded as a categorical variable with
the four levels none, of similar magnitude, higher for PV, and higher for
wind, now explicitly as well as implicitly discriminatory effects can be
captured, while collinearity is mitigated.

The two continuous variables realisation period and price ceiling enter
as ratio variables, whereby the continuous design element parameters
for PV are divided by the values for onshore wind. This allows us
to accommodate explicitly discriminatory design in one variable. Sup-
port duration is included with its original continuous value from the
database, as it is not designed explicitly discriminatory in the observed
auctions. This way, potential implicit discriminatory effects can be
captured.

We decided not to consider material prequalification in the model due
to the low variance of the binary variable in the data. The overwhelm-
ing majority (49 observations) of auctions impose material prequalifi-
cations on both technologies, therefore the variable’s individual effect
cannot be well determined empirically.

In addition, remuneration exhibits a high VIF, in particular due to a
high association with financial prequalification. With its four categories,
the variable reduces model df unproportionally. Above threshold levels
of multicollinearity as well as a loss of statistical power in the model led
to a choice of either including financial prequalification, remuneration or

both combined in a single variable. The last option lacks theoretical
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Table 1
Summary statistics of auction design elements as they are encoded in the econometric model.

Statistic N Mean St. dev. Min Max GVIF1∕2𝐷𝑓

Success PV [%] 57 0.56 0.381 0 1
Success onshore wind [%] 57 0.3 0.352 0 1

Support duration [years] 57 16.72 2.889 12 25 2.06
Price ceiling ratio [PV to wind] 57 1.09 0.217 0.68 1.55 1.84
Realisation ratio [PV to wind] 57 0.84 0.145 0.5 1 2.68
Success other technologies [%P] 57 14.8 26.343 0 99 1.49
Year 57 2018.28 2.085 2011 2021 1.90

Minimum size restriction 57 2.43
None 16 (28%)
PV only 18 (32%)
Both 23 (40%)

Maximum size restriction 57 2.21
None 27 (47%)
PV only 6 (11%)
Both 24 (42%)

Financial prequalification 57 2.85
None 21 (37%)
PV higher 7 (12%)
PV lower 15 (26%)
Similar 14 (25%)

Region Europe 57 2.27
Central Western 22 (39%)
Eastern 18 (32%)
North Eastern 5 (8%)
Southern 12 (21%)

Note: GVIF1∕2𝐷𝑓 should be squared to apply common rules of thumb.
3
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motivation and a combined interpretation is not meaningful in an
economic sense. In order to capture the explicit discriminatory effects
from financial prequalification, which are of high interest given that
he ratio ranges from a 0.34 to a 1.67-fold value for PV relative to
nshore wind, we decided to keep financial prequalification and drop
emuneration from the model.

Table 1 presents summary statistics for the design elements as
hey enter the econometric model as well as the corresponding Gener-
lised Variance Inflation Factors (GVIF), adjusted for Df of categorical
ariables.

.1.3. Control variables
Any empirical analysis that aims to draw conclusions on the ef-

ects of auction design on certain outcomes has to be conducted very
arefully. As noted by Mora et al. (2017), auction designs are highly
ontext-specific and the exact outcome of an auction may differ from
arket to market. Thus, it is essential to control for factors that might
ave influenced the technology success. Therefore, several factors were
onsidered in the model, which are presented in this section.

The model needs to control for the success of other participating
echnologies to measure the true relative effect of ratio variables. In
any multi-technology auctions, renewable technologies other than PV

nd onshore wind are eligible to participate and secured a considerable
hare of the volume.

Further, the data set at hand exhibits characteristics of two-level
ata (Gelman and Hill, 2006). The first level contains the individual
uctions, which are nested in the second data level, the countries. For
uch data, Gelman and Hill (2006) advise to consider the variance
etween higher-level structures, which can considerably influence the
echnology success. Thus, to account for unobserved regional hetero-
eneity, the model controls for four regional clusters Central Western
urope (France, Germany, and the Netherlands), Eastern Europe (Hun-
ary, Poland, and Slovenia), North Eastern Europe (Denmark, Estonia,
nd Finland), and Southern Europe (Greece, Italy, and Spain).

Finally, general changes over time are controlled for by including
he year of the auction (subtracted by 2000 to obtain a similar range
5

o the other variables). o
.2. Regression model

This paper deploys a fractional logit regression approach to em-
irically analyse the relationship between auction design elements
nd the impact on the individual success of PV and onshore wind
n multi-technology auctions. Technology success rates are a share in
he interval [0,1]. This type of dependent variable is very common
n econometric research, yet it requires special handling compared to
inear OLS regression (Papke and Wooldridge, 1996).

We use a fractional logit regression (Papke and Wooldridge, 1996)
ith varying intercepts (Gelman and Hill, 2006). This is a well estab-

ished approach in the econometric literature for dependent variables
hat are percentages as in our case here with success rates (Gelman and
ill, 2006). Separate models are applied to individually investigate the
ffects on the success rates of the most prominent RE technologies in
he multi-technology auctions, PV and onshore wind.

To isolate the effects of the design elements from other influences
nd to avoid omitted variable bias, we control for several factors. First,
he success rate of other technologies besides PV and onshore wind
re considered. Second, expected regional unobserved heterogeneity
s accounted for by varying intercepts depending on four granular
eographic country clusters 𝛼𝑖. Third, a trend variable 𝛾𝑖 is included
o control for different technology learning rates and cost reductions.
he mathematical model formulation is given by

(𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑟𝑎𝑡𝑒𝑖|𝑥𝑖) =

(𝛽0 + 𝛽1𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑠𝑖𝑧𝑒 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑖 + 𝛽2𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑠𝑖𝑧𝑒 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑖
𝛽3𝑓𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙 𝑝𝑟𝑒𝑞𝑢𝑎𝑙𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑖
𝛽4𝑟𝑒𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜𝑖 + 𝛽5𝑝𝑟𝑖𝑐𝑒 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜𝑖 + 𝛽6𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑖
𝛽7𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑟𝑎𝑡𝑒 𝑜𝑡ℎ𝑒𝑟 𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑖𝑒𝑠𝑖 + 𝛽8𝛼𝑖 + 𝛽9(𝑦𝑒𝑎𝑟 − 2000)𝑖) (1)

he country clusters 𝛼𝑖 are employed through indicator variables. The
luster Central Western Europe is set as the reference due to its central
ocation and importance in the EU. The effect of the remaining regions
s then measured in relative terms to the reference cluster, i.e., whether
hey are offering better or worse conditions for technology success.

The trend variable 𝛾𝑖 is employed as the year (subtracted by 2000)

f the observed auction 𝑖. To make sure that the model is well fitted,
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several tests and regression diagnostics are applied. Following Zhang
(2016) with a focus on logistic regression, visual investigation of the
residual plot and Cook’s distance revealed two outliers and one highly
influential observation. Consequently, these three observations were
removed from the data set. Further, Pearson residual plots for each
predictor show a linear horizontal trend, indicating that no single
predictor exhibits issues being fitted by the model. Visual inspection
as well as the Breusch–Pagan test suggest that heteroscedasticity is
present. As Wooldridge (2010) suggests for fractional logit, robust
variance estimators are used for the results. To accommodate the nested
data structure, the robust standard errors are clustered at the regional
level.

Additionally, a goodness-of-fit test for the logistic link function is ap-
plied in line with Stata’s command linktest, based on Pregribon (1980).
This test addresses any possible specification error regarding the link
function or the relationship between dependent and independent vari-
ables. The result of this test does not indicate such specification error
in the model. The issue of multicollinearity, i.e., a high correlation
in the set of explanatory variables, is taken care of very attentively.
For its indication, Generalised Variance Inflation Factors (GVIF) (Fox
and Monette, 1992) are used, which account for degrees of freedom
of categorical variables. In the model, the squared 𝐺𝑉 𝐼𝐹 1∕2𝐷𝑓 metric
ies well below the threshold of 10 (Vittinghoff et al., 2012) for all
redictors. This suggests that multicollinearity in the data lies within
n acceptable range and estimations are reliable in this matter. Further-
ore, the choice of control variables has been separately confirmed by

asso regression which indicates that the choice of control variables
sed here is adequate from a statistical point of view. In addition,
eta regression has been tested as alternative to the fractional logit
pecification made here and led to similar results (see robustness checks
n section 4.3 for beta regression and 5.2 for Lasso).

The quantitative part of this paper is conducted with the statistical
oftware R (RStudio Team, 2020). The fractional logit regression was
mplemented with the embedded R function glm and the quasi-binomial

family. This approach is similar to the implementation that the authors
from Papke and Wooldridge (1996) suggest themselves for Stata, which
was later replicated by Oberhofer and Pfaffermayr (2012). Robust
standard errors are obtained from the function vcovHC of the sandwich
package (Zeileis et al., 2020). Average Marginal Effects (AME) are
calculated with the function margins (Leeper, 2021).

4. Results

Table 2 presents the Average Marginal Effects (AME) of the explana-
tory variables on the success rate of both PV and onshore wind in
European multi-technology auctions. The AME should be interpreted
as a change in the success rate of the respective technology in terms
of percentage points (pp). In other words, the effects describe how the
share of the technology in the awarded auction volume is affected on
average by a change of the respective variable. Robust standard errors
reported in parentheses and p-values indicate statistical significance.
Both models are highly significant and most independent variables
are significantly different from zero. Further, the model shows high
explanatory power in terms of the McFadden Pseudo 𝑅2 in line with
the overall high significance of the predictors. These results indicate
that the empirical data of technology success in RE auctions can be
well explained by the design elements selected for this analysis as well
as by the control variables assumed to be influential.

Since the data is preselected to auctions with both focal technologies
participating, it comes at no surprise that what is beneficial for the
one technology, is usually similarly detrimental for the other. This
tendency holds true for all explanatory variables except for success of
other technologies which, as it grows, is naturally detrimental for both
6

technologies. u
4.1. Analysing the effects of the individual design elements

4.1.1. Minimum size restriction
The reference level for minimum size restriction is ‘no restriction’ for

both. Thus, the AME for the two other levels need to be interpreted in
contrast to having no restriction.

The first level represents the case where the restriction applies to
both technologies, thus a setting with no explicit discrimination appar-
ent1. The results indicate that PV projects now have a 17.5 percentage
points (pp) lower success rate compared to their success rate in case
of ‘no restriction’ for both technologies. The AME now capture implicit
discrimination in the auction design, as they indicate a considerable
negative effect on PV success and a positive effect on onshore wind
(an 18.3pp higher success rate) compared to no restriction. The second
level represents the case where only PV projects are subject to a
minimum installation size requirement. The results indicate that under
this circumstances, PV projects have on average a 55.4pp lower chance
of being awarded compared to the case of ‘no restriction’ for both
technologies. This setting depicts clearly a large negative effect with
regard to explicit technology discrimination in auction design.

This is in line with our expectations, although minimum size re-
striction is not mentioned explicitly in the literature concerned with
discriminatory auction design. However, from the study of technology-
specific characteristics, we know that PV can be deployed more flexibly
compared to wind, which are mostly larger projects. A minimum
requirement would therefore rather impede the chances of PV projects.

4.1.2. Maximum size restriction
Maximum size restriction is structured the same way as minimum

restriction. Similarly, no definite expectation of implicit discriminatory
effects can be extracted from the literature. When recapitulating the
technology-specific asymmetries, a maximum restriction would rather
be expected to disadvantage wind projects compared to PV projects.
Onshore wind installations are typically larger than PV projects, a
technology that operates efficiently at a wide range of installation sizes.

The first level of the variable again represents a restriction for
both technologies. The results indicate that when restricting both tech-
nologies increasing the chances of PV being awarded significantly
by 47.9pp compared to the ‘no restriction’ reference level. Thus, the
model seems to capture implicit discrimination again by revealing a
significantly positive effect on PV. On the other hand, wind projects
show a significantly 35.7pp lower success rate in case both technologies
are restricted. Consequently, the result is in line with expectations.
The second level of the variable again represents a restriction for
PV only, and here the result is not as expected. Basic model AMEs
suggest that this configuration is highly beneficial for PV projects,
which show a significant 64.6pp higher success rate compared to the
case of no restrictions. The success rate of onshore wind decreases
again significantly, namely by 29.1pp. A possible economic or practical
reasoning for this finding could not be elaborated and would lead into
speculation.

4.1.3. Financial prequalification
In our analysis, the variable financial prequalification is composed

of both bid bonds as well as performance bonds. In terms of implicit
discrimination, expectations are that as bonds grow in size, wind
projects are less affected in terms of their LCOE due to their cost
structure. The upfront cost increases are carried with less weight into
the LCOE calculation since CAPEX is high anyway. The reference
level for financial prequalification is again set to no prequalification
requirements at all. Only two Member States design auctions without

1 In the data, there are technology-specific differences in the magnitude
f requirements in three observations, however such quantitative information
nfortunately is lost after encoding.
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Table 2
Complete data base model, Average Marginal Effects for both technologies.

Effects on PV Effects on onshore wind

Dependent variable: Dependent variable:

Success PV P-value Success onshore wind P-value

Minimum size restriction: Both −0.175 <10e−4 0.183 <10e−4
(0.016) (0.021)

Minimum size restriction: PV only −0.554 <10e−4 0.497 <10e−4
(0.013) (0.017)

Maximum size restriction: Both 0.479 <10e−4 −0.357 <10e−4
(0.024) (0.023)

Maximum size restriction: PV only 0.646 <10e−4 −0.291 <10e−4
(0.018) (0.036)

Financial prequalification: PV higher −0.192 <10e−4 0.108 0.6026
(0.012) (0.208)

Financial prequalification: PV lower 0.585 <10e−4 −0.455 <10e−4
(0.017) (0.017)

Financial prequalification: similar 0.356 <10e−4 −0.238 <10e−4
(0.018) (0.015)

Price ceiling ratio −0.926 <10e−4 0.770 <10e−4
(0.121) (0.107)

Realisation period ratio −1.109 <10e−4 0.765 <10e−4
(0.212) (0.182)

Support duration [years] 0.038 0.0003 −0.028 0.0014
(0.010) (0.009)

Success other technologies [%P] −0.003 0.0001 −0.004 <10e−4
(0.001) (0.000)

Region: Eastern Europe −0.389 <10e−4 0.422 <10e−4
(0.019) (0.018)

Region: North Eastern Europe −0.728 <10e−4 0.828 <10e−4
(0.022) (0.022)

Region: Southern Europe −0.552 <10e−4 0.626 <10e−4
(0.015) (0.025)

Year 0.145 <10e−4 −0.118 <10e−4
(0.019) (0.017)

Num.Obs. 57 57
Pseudo R2 (McFadden) 0.92 0.89

Note: Clustered Robust SE in ().
any financial prequalification, however for the considerable number
of multi-technology auction rounds conducted in the Netherlands and
Slovenia, this level is represented at a similar frequency to the others.

The level PV higher of the categorical variable represents a case
of explicit discrimination, in which PV projects face higher total fi-
nancial prequalification. Model results suggest unsurprisingly that such
a configuration of the design variable has a negative impact on PV
success, i.e., PV projects are expected to have a 19.2pp lower success
rate compared to the case without prequalification requirements. On
the other hand, a higher financial prequalification for PV projects
has a positive, yet insignificant, effect on the success rate of onshore
wind projects. Conversely, the level PV lower captures cases with a
lower burden for PV, for which the model conclusively estimates a
considerable and significant positive impact on PV projects (of a 58.5pp
higher success rate) and a significant, negative effect of −45.5pp on
wind compared to the no prequalification case. The final level similar
with both technologies facing similar financial prequalification cap-
tures implicit discrimination. AME generally indicate a positive and
significant effect on PV success of 35.6pp. The missing interaction with
the absolute bond size complicates the interpretation of this case and
the comparison to the expectation. Since expectations in the literature
are formulated in relative terms (any increase is favourable for x) and
not in absolute terms (this level is favourable for x), a direct comparison
of the results is not possible.

It can be concluded that at the levels determined in practice, the
average effect of setting the financial prequalification similarly for both
technologies has shown beneficial for PV compared to the case of no
prequalification. By increasing the prequalification requirements above
7

these levels, it can be expected to reduce the advantage for PV.
4.1.4. Price ceiling ratio
The first continuous variable that is considered in more detail is the

ratio of the PV-specific and the wind-specific price ceiling. Price ceiling
is mentioned in the literature on technology-specific discrimination,
yet unfortunately without further specification of the workings and the
relationship of this design element and discrimination.

Analysing the data, it can be seen that price ceilings are often set
technology-specific, thus explicitly discriminatory, with 38 auctions
exhibiting such configuration. These asymmetric prices do not exhibit
a systematic discrimination of one technology. Instead, the ratio of
technology-specific ceilings ranges from 0.68 to 1.55 with the mean
at 1.09, implying that explicit discrimination is actually rather bal-
anced across observations and policymakers do not seem to follow any
particular pattern here, indicating a lack of established guidelines.

The analysis of technology asymmetries showed that both technolo-
gies generate electricity at a similar cost level, thus it seems one would
not expect substantial implicit discriminatory effects from setting equal
parameters. Consequently, this cost parity suggests that it would not
require corrections via explicit discrimination in price ceilings.

The empirical (and significant) results are not intuitive at first
glance. They suggest that the higher the relative price ceiling for PV
projects is set, i.e., the more relative freedom in submitting bid prices
they have, the lower the success of PV projects. However, the results
also mean that the higher the price ceiling is set for wind relative to
PV, the larger the success of solar projects. From this perspective, the
result seems more plausible. The literature offers a possible explanation
with the phenomenon of price anchoring triggered by the disclosure of
price ceilings (IRENA, 2015). It is found that often bidding behaviour
is oriented towards the ceiling price as a reference point, thus a
higher ceiling for one technology may actually be detrimental. Yet,
whether price anchoring also applies to multi-technology auctions with

individual price ceilings remains ambiguous.
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4.1.5. Realisation period
Likewise included as a continuous ratio variable, the empirical effect

of realisation period is discussed next. Realisation period is one of the
typical design elements, for which implicit discrimination is expected in
the literature and is suited well as an example to illustrate the concept.
Yet, the two main papers concerned with technology favouritism obtain
different results for both the general effect direction as well as the
discriminatory effect of expanding realisation periods. While Haelg
(2020) argues that a longer realisation period allows PV projects to
benefit from the faster technology cost improvements and thus being
favoured, Diallo and Kitzing (2020) see in a longer realisation period
mainly a later remuneration in a cannibalising market environment.
They expect projects to face falling market prices over time, with PV
being more affected than onshore wind.

In practice, more than half (34/57) of the auctions exhibit an
explicitly discriminatory setup. For these setups and in contrast to price
ceilings, policymakers coherently seem to follow the guideline that PV
projects need to face shorter realisation periods, assumingly in order to
compensate for their lower preparation and development efforts. The
ratio ranges between half the period for PV and equal realisation times.

The model results suggest that this explicit discrimination is ac-
tually beneficial for PV. The larger the realisation period for PV and
the closer the parameter is set to parity, the lower the success of
PV2. More specifically, if the ratio of the realisation periods of PV
and onshore wind increases by 0.1, the success rate of PV decreases
by 11.0pp. Conversely, the longer the realisation period of PV be-
comes relative to the one of onshore wind, the success rate of onshore
wind projects increases. This seems surprising at first glance, since
PV projects are granted more flexibility in their development, possibly
capturing technology improvements in line with Haelg (2020). If we
follow the argumentation from Diallo and Kitzing (2020), however, a
longer period may also have negative effects for a project, especially if
it implies a delay of the support payments. The empirical perspective
seems to be confirming the view that for a longer (possibly longer than
needed for PV) realisation period, negative effects prevail.

4.1.6. Support duration
As the final design element, the effects of support duration are ex-

lored. The literature clearly mentions this design feature in the context
f implicit technology discrimination. Diallo and Kitzing (2020) expect
ery short to short contract duration of 10–15 years to be advantageous
or wind projects. As the contract duration is expanded, this favouring
ffect melts away and turns into an advantage of PV projects for long
eriods of 25 years.

In all observations, support duration has consistently been applied
equally to both technologies, which allows us to include the design
element as a continuous variable. Thus, any favouring effect associated
with the element can be interpreted as an implicit discriminatory effect.

Indeed, the model reveals a statistically significant relationship
between the support duration and technology success. The direction
of the effect seems to be in line with the expectations by Diallo and
Kitzing (2020), confirming a moderate and significant beneficial effect
of 3.8pp on PV projects’ success rate per year the period extends. In this
case, the Average Marginal Effects can be interpreted very intuitively.
With every extra year that support is granted, PV projects capture on
average an additional share of 3.8pp of the total auction volume. At the
same time, onshore wind projects lose a share of around 3pp for each
year the support is extended.

2 A note on the confusing magnitude of the AME below −1 in the base
model, which seems wrong given the effect is expressed on the probability
scale: The reason lies in the small range of the ratio variable, for which
observations spans only from 0.5 to 1. A full step of 1 on the variable scale is
not sensible, thus neither is the full AME on the probability scale.
8

4.2. Influence of region and time

The regional environment and timing of an auction are expected to
influence the technology outcome in multi-technology auctions besides
the design elements themselves. There are many potentially influencing
factors in play, which are absorbed across the geographic and the time
dimension in the model. This section now investigates the model results
concerning these two control variables.

4.2.1. Influence of regional heterogeneity
As outlined in Section 3.1, auctions function distinctively depending

on the regional market and the potential influences span from the
cultural and behavioural dimension to the political and regulatory
dimension. Not to forget is the geographic dimension itself, which
includes the differences in the technologies’ generation capacity.

In terms of expectations, overall regional effects are hard to pre-
dict, as the country variables include and control several different
(and potentially opposite) effects. Kaspar et al. (2019) find that the
further south a region is located in Europe, the higher the solar irra-
diance and the capacity factor for PV will be. Conversely, Northern
coastal areas are offering better conditions for wind generation. Yet,
the relative weight of these resource endowment effects amongst other
non-observable effects, such as political and cultural conditions, is not
determined.

The model results indeed reveal a significant impact for all con-
sidered regions. Interestingly, all regions show on average negative
effects on PV success and positive impact on wind projects compared
to Central Western Europe, which is set as the reference level. Their
effects vary in magnitude, but all are of considerable to even major
influence. The largest effect is calculated for North Eastern Europe,
where the success rate of PV projects is on average reduced by 0.73pp
compared to PV success in Central Western Europe. For Southern Europe,
the model suggests a reduction of 0.55pp for a ceteris paribus switch
from the reference region. Finally, the most moderate decrease for PV
success is empirically found in Eastern Europe with 0.39pp. A potential
explanation for this observation can be the fact that in both France
and Germany multi-technology auctions were conducted in parallel
to technology-specific ones (Winkler, 2021). And in both countries,
the respective auctions for onshore wind were undersubscribed, thus
guaranteeing bidders an award (at the ceiling price). Thus, project
developers with onshore wind projects did not have any incentive to
compete against PV projects in the multi-technology auctions. This led
to only PV projects being awarded in the multi-technology auctions in
both France and Germany. While no technology-specific auctions ran in
parallel in the Netherlands, solar PV projects were still more successful
than onshore wind projects, thus further strengthening the effect. In all
other regions of our sample, the technology-specific auctions were only
open to specific sizes of onshore wind projects or no technology-specific
auctions were conducted in parallel, thus onshore wind projects had to
participate in the multi-technology auctions to receive support.

To confirm the joint significance of regional effects, a Likelihood
Ratio Test is applied (McCullagh and Nelder, 2017), comparing the
full model to a specification without regional effects. The test is highly
significant, thus we can reject the null hypothesis and conclude that
the full model offers a significantly better fit of the data.

4.2.2. Influence of time
As explored in Section 3.1, one can expect EU-wide time effects

related to the focal technologies, which may have altered the conditions
for technologies over time.

The same Likelihood Ratio Test conducted for the model spec-
ification with regions is not needed to confirm the significance of
accounting for time effects. The trend variable enters the model as
a single continuous variable, therefore the Wald test of significance

calculating the known p-values is sufficient.
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For the time effect, the model indeed reports a highly significant
relationship with technology outcome during the observed time period.
The direction of the effect is as expected, thus over time PV projects are
able to capture more total auction volume. Consequently, the success
rate of onshore wind projects declined. With every year passing, the
average improvement of PV success rate is estimated to be around
0.15pp.

4.3. Robustness checks

To ensure robustness of the model results, several robustness checks
are performed. The aim of these checks is to exclude certain obser-
vations from the data that are assumed to be influenced by further
exogenous factors or exhibit idiosyncratic characteristics compared to
the other auctions. The regression results of the individual robustness
checks are given in the appendix for completeness and transparency.

First, we perform a check excluding observations from the Nether-
lands, as their auctions are budget-based and, further, do not require
any financial securities in Table 3. Second, German observations are
excluded since parallel to the multi-technology auctions, technology-
specific ones were in place, constituting potential outside options for
the bidders in Table 4. Third, early multi-technology rounds as well
as inexperienced countries are excluded in Table 6 to validate the
results against any adaptation effects and, fourth, the composition of
the country clusters is altered to test their influence in Table 8. Fifth, to
validate against possible methodological issues with the fractional logit
model and Maximum Likelihood estimates, a beta regression model is
estimated in comparison in Table 10, which showed almost the same
significance levels as the base model.

The results of these additional models are reported in the appendix
and show no qualitative deviation from the base model results, indicat-
ing that the model is relatively robust against the identified potential
influences.

5. Discussion

Our results come with some uncertainty that will be discussed in the
present section. Generally, the present analysis does not aim to derive
quantitatively exact recommendations on design element configuration
in order to level out the playing field and to design non-discriminatory
auctions. Rather, the results shall reveal empiric relationships of auc-
tion design elements influencing the technology outcome in a certain
direction, thereby exhibiting smaller or larger systematic effects.

5.1. Multicollinearity

The fact that design elements are not always chosen independently
from each other, i.e., multicollinearity can be present in the set of
auction design elements, is a challenge for the analysis of the question
at hand. In Section 3 we describe how we carefully encode our variables
to reduce multicollinearity in the data. The Variance Inflation Factors
of our final variables are found within, yet at the upper range of rule-
of-thumb values typically advised in the literature. When specifying the
model factors, we are faced with a trade-off in statistical biases, namely
multicollinearity and omitted variable bias. Due to the large number of
theoretically motivated and influential design elements, we are very
cautious of dropping variables from the model due to a narrow focus
on rules of thumb for VIF values. As O’Brien (2007) warns, such focus
9

can introduce more sources of bias to the model than it cures.
5.2. Limited sample size and overfitting

We want to address potential technical concerns regarding the high
number of highly significant variables and the very good fit of the data.
A concern might be related to the issue of overfitting, a phenomenon
in which the model capitalises on the idiosyncrasies of the sample and
thus may not be able to fit new data well (Babyak, 2004). This issue
should be investigated especially when many variables are fit to the
data (Zhang, 2014). We address this in three points.

First, we use cross-validation to test the predictive abilities of sev-
eral models increasing in the number of predictors, starting from only
one to the full base model. We added new variables in the order we
have displayed for the base model, as there are no obvious key variables
in our case. For each model, we split the data randomly in 2/3 training
and 1/3 test data 50 times and determine the mean MSE for both train-
ing and test data. As expected, we find the training MSE to decrease
significantly with increasing predictors. More importantly however, we
also find the MSE on the test data to decrease to its minimum at the full
base model . This indicates that our base model shows good predictive
ability compared to less potent models and the test does not show
indication of overfitting, given the uncertainty from the limited sample
size. Second, we applied the LASSO technique (Tibshirani, 1996) to
our model predictors to validate the variable selection. Indeed, we find
that 14 of the 15 factors remain in the model after applying LASSO,
indicating their explanatory power from a purely statistical point of
view. This result complements nicely our theoretically based selection.
Third, while most regression analyses rely on a small sample of the
population, we have almost has the entire to-date population of multi-
technology auctions available. Thus it is not possible to obtain a better
quantitative picture of the important issue at hand.

5.3. General considerations

Auction design and the relationship with its outcome is a complex
matter, as the outcome depends on more factors than could have
been considered in our analysis. Among these factors, interactions
between design elements have to be mentioned. For example, when
most other elements are arranged favourable for one technology, the
individual favouring effect of one particular element will tend to be
less pronounced compared to a scenario where the other elements are
conversely set discriminatory in effect. These interactive influences are
not accounted for in the model and the results refer to average effects
at observed values.

Due to the limitations in availability of design elements observed in
the database as well as in statistical degrees of freedom, the present
analysis only considers the main subset of elements. Other design
elements such as the quotas of all kinds are not observed. When more
data is available on multi-technology auctions, these elements should
additionally be considered to understand their influence.

Likewise, there are numerous factors outside the auction design that
can have an influence on the outcome. Accounting for these influences
with regional effects may not be enough. For example, Pakalkaite and
Jones (2019) hint in their profound blog post at the possibility of
intentionally manufactured outcomes in seemingly technology-neutral
auctions. In such cases, additional unobserved regulatory framework
conditions may be influencing the technology outcome. Another ex-
ample of particular external factors are outside support options for
technologies, such as in the case of the German multi-technology
auctions. Further, there is a stream in the RE auctions literature that
views the right to build a project resulting from an auction as obtaining
a real option, closely related to a financial product (Matthäus et al.,
2021). The value of this option and thus the bidding behaviour depends
on expectations on the future development of LCOEs, amongst others,
which are likely to differ for the technologies as we have shown in
Section 2. It might be worthwile to investigate external factors associ-
ated to future LCOE development. Thus, further research could expand
the set of control variables and focus on revealing systematic influence
of outside factors, which is also what Matthäus (2020) suggests in his

empirical analysis on RE auction effectiveness.
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6. Conclusion and policy implications

This paper applies an econometric approach to complement the
literature on technology discrimination in multi-technology auctions
with empirical insights. Our findings reveal discriminatory effects of
individual auction design elements as they are applied in practice for
two focal technologies, PV and onshore wind. We include a set of
selected design elements, for which either literature or technological
asymmetries suggest discriminatory effects. For the data, 57 observa-
tions from the comprehensive AURES II auction database tracking EU
RE auctions exhaustively for the years 2011–2021 was used. Several
robustness checks were conducted in order to test model sensitivities
against varying the countries in the data, the time frame, and the
composition of the regions controlled for. These robustness checks do
not suggest any particular sensitivity.

Our empirical findings suggest an influence for all design elements
considered, confirming the existence of discriminatory effects in prac-
tice. Thus, the following results and recommendations should be taken
into account by policymakers when designing multi-technology RE
auctions:

• When applying equal installation size restrictions to both technolo-
gies, a minimum size restriction favours onshore wind projects,
whereas a maximum size restriction is favourable to PV compared
to the scenario without such restrictions. This relationship con-
firms the existence of implicitly discriminatory effects in practice,
which may have been hidden to the auctioneer so far. According
to the results, it also should be avoided to apply size restrictions
exclusively to a single technology. If size restrictions are to be
applied to both technologies, explicit discrimination in the design
may be a way to reduce the inherent implicitly discriminatory
effects of the design element.

• A longer support duration, which is always set equally for both
technologies in the observations, is beneficial for PV. Thus, ex-
plicit design discrimination by lowering the support duration for
PV can be expected to work towards more equal conditions.

• The realisation period for PV is set either shorter or equal to
wind in the observations. A longer realisation period for PV,
i.e. approaching the one of wind, is actually detrimental for PV
projects.

• Price ceilings are set lower, equally or higher for PV in current
auctions, with no clear tendency. Empirically, the higher the price
ceilings relative to the other technology, the lower the success in
auctions. Thus, for both technologies it is important to note that
relatively higher ceiling prices are not beneficial, according to the
analysis.

• Discriminatory effects of financial prequalification, i.e., combined
bid bonds and performance bonds, are conclusive for explicit dis-
crimination, i.e., higher bonds for one technology are detrimental.
If they are they set at a similar range for both technologies, PV
projects benefit compared to the case of no prequalifications.
Thus, to compensate for the implicit effect, PV projects could be
burdened moderately higher than onshore wind projects.

hese insights advance understanding of explicit and, in particular,
mplicit discriminatory effects in multi-technology RE auctions. A gen-
ralisation of the results to future auctions should be made with care.
ore observations, possibly including more technologies, and a more

ronounced control dimension could further improve model quality
nd lead to more refined results. A focus on factors outside the auc-
ion design itself can offer interesting insights given the high con-
extual sensitivity of RE auctions, which could be fed back into the
ulti-technology auction design.
10
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ppendix

.1. Excluding the Netherlands

Multi-technology auctions from the Netherlands represent the largest
ortion in the data of a single Member State. This does not come as
surprise as the Dutch auction scheme SDE was pioneering multi-

echnology schemes in the EU in 2011. Its successor programmes SDE+
nd SDE++ are still at the forefront of RES auction design, offering sup-
ort schemes open to all CO2-reducing technologies including Carbon
apture and Storage or low carbon heat. This role makes the 14 Dutch
bservations stand out, together with the fact that the Netherlands are
ne of two countries using a budget-based scheme and not requiring
ny financial securities from the participants. To check the base model
gainst sensitivities for such influences, the model is fitted with data
xcluding observations from the Netherlands.

Table 3 shows the AMEs for the specification without the Dutch
uctions. When comparing these results with the complete base model
esults, it firstly shows that the direction as well as the significance of
ost design element effects holds. For two elements, the relationship

annot be determined with significance, which are the influence on
ind projects of price ceiling and the factor level indicating higher
V financial prequalification. Overall, the effects remain very similar
n magnitude compared to the base model, suggesting robust estima-
ions against unobserved influences from the unique characteristics and
ontext of Dutch auctions.

.2. Excluding Germany

While Germany is conducting technology-specific auctions in con-
iderable numbers since 2015, multi-technology schemes started only
n 2018 and were then conducted seven times in the observed time
eriod. For these auctions, there are two basic configurations in Ger-
any. Six auctions were conducted as technology basket auctions with

he only two eligible technologies being PV and onshore wind. The
ther programme is more flexible in the form of a mixed auction,
llowing for the inclusion of storage capacity with RES-E generation.
ighly noteworthy about the German multi-technology auctions is the

echnology outcome. Of the six technology basket auctions, the entire
uction volume was captured by PV projects. Experts attribute this to
large extent to the attractive simultaneous outside options for wind

rojects. The technology-specific wind auctions had a relatively low
ompetition level and project developers expected to realise higher
upport prices (Winkler, 2021). Outside options are neither invariant

ith respect to region nor time and are therefore not controlled for

http://dx.doi.org/10.17632/b5n4jphtmr.1
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Table 3
Specification without the Netherlands, Average Marginal Effects for both technologies.

Effects on PV Effects on onshore wind

Dependent variable:

Success PV Success onshore wind

Min restriction: Both −0.215*** 0.191***
(0.024) (0.024)

Min restriction: PV only −0.552*** 0.589***
(0.014) (0.029)

Max restriction: Both 0.470*** −0.396***
(0.037) (0.038)

Max restriction: PV only 0.690*** −0.515***
(0.032) (0.041)

Fin prequalification: PV higher −0.142*** 0.075
(0.037) (0.132)

Fin prequalification: PV lower 0.566*** −0.489***
(0.037) (0.034)

Fin prequalification: similar 0.226* −0.160*
(0.092) (0.064)

Price ceiling ratio −0.548*** 0.001
(0.141) (0.239)

Realisation period ratio −1.198** 0.617*
(0.377) (0.284)

Support duration 0.037*** −0.030***
(0.009) (0.008)

Success other technologies −0.002* −0.009***
(0.001) (0.001)

Region: Eastern Europe −0.292 0.277
(0.594)

Region: North Eastern Europe −0.797*** 0.727
(0.145)

Region: Southern Europe −0.548 0.434
(0.610)

Year 0.143*** −0.127***
(0.022) (0.025)

Num.Obs. 43 43
Pseudo R2 (McFadden) 0.93 0.93

Note: Clustered Robust SE in ()
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

in the model. A robustness check is conducted excluding the German
observations.

The results presented in Table 4 are consistently in line with the
base model results concerning direction and significance of the effects.
Also for the magnitude, a considerable deviation cannot be observed.
Our model is therefore robust against the idiosyncrasies of the Ger-
man auctions. Yet, since unobserved outside options may influence
outcomes in other countries as well, endogeneity issues from this factor
cannot be ruled out for the entire model.

A.3. Excluding inexperienced countries

In this data set variation, all countries having conducted only two or
less multi-technology auction rounds are excluded. These inexperienced
countries include France, Finland, Denmark, Greece and Estonia. This
way, it can be tested if adaptation effects of stakeholders within a
market play a distorting role (see Table 5).

The model results of this data specification exhibit minor deviations
to the full data model. First, since all countries making up the North
Eastern geographic cluster are removed, this introduces some changes
to the effect sizes of the remaining regions, with the AME of Eastern
urope being considerable smaller (from −0.73 to −0.51 on PV success).

Also, the effect of support duration in this check is not significant
nymore. Apart from these deviations, the indication of significance,
irection, and magnitude of the majority of predictors remain robust
gainst possible idiosyncratic influences from auctions in inexperienced
nvironments.
11
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Table 4
Specification without Germany, Average Marginal Effects for both technologies.

Effects on PV Effects on onshore wind

Dependent variable:

Success PV Success onshore wind

Min restriction: Both −0.189*** 0.209***
(0.017) (0.025)

Min restriction: PV only −0.612*** 0.566***
(0.014) (0.021)

Max restriction: both 0.469*** −0.407***
(0.024) (0.019)

Fin prequalification: PV lower 0.666*** −0.518***
(0.019) (0.022)

Fin prequalification: similar 0.405*** −0.271***
(0.021) (0.021)

Price ceiling ratio −1.016*** 0.877***
(0.132) (0.234)

Realisation period ratio −1.216*** 0.873**
(0.232) (0.265)

Support duration 0.041*** −0.032**
(0.011) (0.011)

Success other technologies −0.003*** −0.005***
(0.001) (0.001)

Region: Eastern Europe −0.316*** 0.343***
(0.022) (0.022)

Region: North Eastern Europe −0.701*** 0.804***
(0.025) (0.026)

Region: Southern Europe −0.501*** 0.574***
(0.017) (0.030)

Year 0.159*** −0.134***
(0.021) (0.020)

Num.Obs. 50 50
Pseudo R2 (McFadden) 0.9 0.88

Note: Clustered Robust SE in ()
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

.4. Excluding early multi-technology auctions

In this data set variation, all of the very early multi-technology
uction rounds before 2016 are excluded. Similarly to the test before,
his specification aims at testing robustness against any disturbance
resent during the first-time global auctions when participants as well
s auctioneers had no experience.

In this robustness check aiming at behaviour adjustments after
arly auctions, the model results are less deviant than in the test
efore concerning the regionally contextualised learning effects. Yet
gain, contrary to the base model support duration is found to be non-
ignificant on PV as well as onshore wind success. Eastern Europe shows
n average a considerably larger effect (from −0.39 to −0.54) in this
pecified data set. All other effects are very similar in significance,
irection and magnitude to the base model specification.

.5. Varying the regional clusters

Country clusters have been established as a second-best solution
o directly including the countries, representing the second level of
he nested structure of the data. In order to test the model sensitivity
gainst the composition of these geographic country clusters, a last
obustness check is applied. For this check, every cluster composition
s varied as well as an additional cluster introduced to increase gran-
larity. The new clusters are also based on geographic proximity and
re presented in Table 7. To ensure a relatively equal distribution of
bservations, geographical proximity has to be stretched compared to
he closer tied base cluster.

The AME results in Table 8 are consistent with the base model for

he majority of factors in terms of effect directions and significance
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Table 5
Specification without inexperienced countries, Average Marginal Effects for both
technologies.

Effects on PV Effects on onshore wind

Dependent variable:

Success PV Success onshore wind

Min restriction: Both −0.010 0.073*
(0.030) (0.036)

Min restriction: PV only −0.434*** 0.515***
(0.024) (0.045)

Max restriction: Both 0.610*** −0.379***
(0.016) (0.011)

Max restriction: PV only 0.769*** −0.246***
(0.014) (0.070)

Fin prequalification: PV higher −0.246*** 0.364***
(0.026) (0.022)

Fin prequalification: PV lower 0.427*** −0.446***
(0.037) (0.022)

Fin prequalification: similar 0.435*** −0.274***
(0.035) (0.021)

Price ceiling ratio −0.809*** 0.605**
(0.093) (0.186)

Realisation period ratio −0.881*** 0.503*
(0.216) (0.253)

Support duration −0.009 −0.005
(0.012) (0.011)

Success other technologies −0.003*** −0.004***
(0.001) (0.001)

Region: Eastern Europe −0.510*** 0.535***
(0.063) (0.036)

Region: Southern Europe −0.563*** 0.660***
(0.041) (0.030)

Year 0.126*** −0.095***
(0.018) (0.018)

Num.Obs. 49 49
Pseudo R2 (McFadden) 0.95 0.92

Note: Clustered Robust SE in ()
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

levels. Effect sizes deviate more than in previous robustness checks,
indicating the relevance of the regional effects. As single exemption
of a switched sign, higher PV burden in financial prequalification is
significantly positive for PV success. Further, the AMEs of the regions
naturally differ with the new composition. Explanatory power in terms
of the McFadden indicator is similar to the base model. Overall, model
results seem to be sensitive to the composition of country clusters,
however effect direction and significance is stable. Given the arbitrary
configuration of these clusters used to approximate country effects, the
result of this check is important.

A.6. Including penalties

Penalties are not explicitly included in our base model due to the low
variation of the binary variable in the data set. Implicitly, the volume of
penalties are recognised in our model predictor financial prequalification,
which is often set to be retained in the case of non-realisation. In this
robustness check, we nevertheless test influence of the penalties variable
of the data set.

We find including penalties to have astonishingly little effect on the
estimations of the other predictors (see Table 9). The explanation here
however seems to lie in the fact that the only observations not having
penalties employed are from one country, the Netherlands, and also
have otherwise identical characteristics in almost all variables, except
for the price ceiling ratio. Thus, the new variable is almost fully linear
dependent on the set of other predictors, making this robustness test
add little information.

A.7. Beta regression model

As a final robustness check, we include a run of our model spec-
ification on a further regression class for fractional data, named beta
12
Table 6
Specification without early auction rounds before 2016, Average Marginal Effects for
both technologies.

Effects on PV Effects on onshore wind

Dependent variable:

Success PV Success onshore wind

Min restriction: Both −0.259*** 0.128
(0.021) (0.102)

Min restriction: PV only −0.563*** 0.497***
(0.010) (0.060)

Max restriction: Both 0.337*** −0.351***
(0.096) (0.072)

Max restriction: PV only 0.596*** −0.378***
(0.034) (0.062)

Fin prequalification: PV higher −0.213*** −0.029
(0.012) (0.213)

Fin prequalification: PV lower 0.548*** −0.405***
(0.017) (0.049)

Fin prequalification: similar 0.258*** −0.134+
(0.026) (0.069)

Price ceiling ratio −0.767*** 0.098
(0.131) (0.211)

Realisation ratio −1.130*** 0.754**
(0.221) (0.248)

Support duration −0.038 −0.035
(0.032) (0.038)

Success other technologies −0.002*** −0.006***
(0.001) (0.001)

Region: Eastern Europe −0.539*** 0.311***
(0.054) (0.064)

Region: North Eastern Europe −0.801*** 0.751***
(0.032) (0.092)

Region: Southern Europe −0.511*** 0.506***
(0.062) (0.134)

Year 0.156*** −0.125***
(0.019) (0.018)

Num.Obs. 51 51
Pseudo R2 (McFadden) 0.93 0.93

Note: Clustered Robust SE in ()
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Fig. 2. Development of the MSE and standard deviation on training and test data
with an increasing number of predictors, Predictors include categorical variables with
multiple levels, thus steps are not always equal to one.

regressions (Cribari-Neto and Zeileis, 2010). Beta models rely on the
assumption of a beta-distributed dependent variable compared to the
(quasi-)binomial distribution of fractional logit models. One drawback
of regular beta models is the lacking ability to produce values at the
interval bound, i.e., 0 and 1, of which our data set has a significant
amount. For this test, our observations reduce to 37.

We were actually surprised to find the beta model to show very
similar results to our base model, even on the drastically reduced data
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Table 7
Composition of new country clusters for robustness check.

New cluster Countries contained Observations

Central Western Europe France, the Netherlands 15
Central Eastern Europe Finland, Denmark, Poland, Germany, Estonia 19
Southern Europe Spain, Italy 10
Eastern Europe Slovenia, Hungary, Greece 13
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Table 8
Model with varied regional country clusters, Average Marginal Effects for both
technologies.

Effects on PV Effects on onshore wind

Dependent variable:

Success PV Success onshore wind

Min restriction: Both −0.194*** 0.192***
(0.033) (0.033)

Min restriction: PV only −0.480*** 0.399***
(0.043) (0.047)

Max restriction: Both 0.517*** −0.393***
(0.034) (0.029)

Max restriction: PV only 0.682*** −0.323***
(0.030) (0.082)

Fin prequalification: PV higher 0.542*** −0.699***
(0.042) (0.013)

Fin prequalification: PV lower 0.486*** −0.450***
(0.020) (0.035)

Fin prequalification: similar 0.546*** −0.552***
(0.031) (0.030)

Price ceiling ratio −0.944*** 0.777**
(0.144) (0.243)

Realisation period ratio −1.110*** 0.764**
(0.252) (0.276)

Support duration 0.038** −0.028**
(0.012) (0.011)

Success other technologies −0.003*** −0.004***
(0.001) (0.001)

Region: Eastern Europe −0.229*** 0.262***
(0.018) (0.015)

Region: Central Eastern Europe −0.402*** 0.444***
(0.025) (0.033)

Region: Southern Europe −0.625*** 0.700***
(0.029) (0.026)

Year 0.147*** −0.118***
(0.023) (0.021)

Num.Obs. 57 57
Pseudo R2 (McFadden) 0.92 0.89

Note: Clustered Robust SE in ()
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

set (see Table 10). This comes with a loss of a few observed levels
for the categorical variables financial prequalification and minimum size
restriction, however for the remaining predictors, effect directions and
magnitudes are very alike to the base model. Statistical significance also
still shows for all predictors, albeit at a less confident level, which we
attribute to the smaller sample and computational differences. Overall,
this final robustness test is suited well to confirm our main statistical
approach in this work.

A.8. Checks for potential overfitting

In Section 5.3 we elaborate on potential concerns of an overfitted
model due to large number of predictors. Here, we present two checks
we applied in order to detect potential overfitting. First, we tested
the predictive abilities of several models increasing in the number of
predictors, starting from only one to the full base model. We added the
variables in the order we have displayed for the base model, as there
13
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Table 9
Model with penalties included, Average Marginal Effects for both technologies.

Effects on PV Effects on onshore wind

Dependent variable:

Success PV Success onshore wind

Min restriction: Both −0.175*** 0.183***
(0.016) (0.022)

Min restriction: PV only −0.554*** 0.497***
(0.013) (0.018)

Max restriction: Both 0.479*** −0.357***
(0.024) (0.017)

Max restriction: PV only 0.646*** −0.291***
(0.018) (0.067)

Fin prequalification: PV higher −0.192*** −0.217
(0.012)

Fin prequalification: PV lower 0.585*** −0.455***
(0.017) (0.019)

Fin prequalification: similar 0.356*** −0.238***
(0.018) (0.018)

Price ceiling ratio −0.926*** 0.770***
(0.121) (0.205)

Realisation period ratio −1.109*** 0.765**
(0.212) (0.233)

Support duration 0.038*** −0.028**
(0.010) (0.009)

Penalty: yes −0.427*** 0.451
(0.021)

Success other technologies −0.003*** −0.004***
(0.001) (0.001)

Region: Eastern Europe −0.294 0.307***
(0.053)

Region: North Eastern Europe −0.725*** 0.825***
(0.011) (0.036)

Region: Southern Europe −0.511 0.576***
(0.115)

Year 0.145*** −0.118***
(0.019) (0.018)

Num.Obs. 57 57
Pseudo R2 (McFadden) 0.88 0.86

Note: Clustered Robust SE in ()
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

re no obvious key variables in our case. For each model, we split the
ata randomly in 2/3 training and 1/3 test data 50 times and determine
he mean MSE for both training and test data. As expected, we find the
raining MSE to decrease significantly with increasing predictors (see
ig. 2). More importantly however, we also find the MSE on the test
ata to decrease to its minimum at the full base model. This indicates
hat our base model shows the best predictive ability of all and justifies
he inclusion and explanatory relevance of all variables of our base
odel. Second, we apply the LASSO methodology to our base model

o double check the relevance of our predictors from a pure statistical
oint of view (see Fig. 3). LASSO shrinks the influence of less relevant
ariables to zero according to a penalty function. As a result, only the
ategorical level Financial prequalification: PV higher is identified by
ASSO to not be relevant, whereas the best model includes 14 of our 15
redictors. Both tests complement our theoretically motivated inclusion
f predictors with a purely statistical argument.
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Fig. 3. LASSO results indicating the best model contains 14 of our 15 variables of the
base model.

Table 10
Beta regression model, Average Marginal Effects for both technologies, only observa-
tions without success rates of 0 and 1 due to model restrictions.

Effects on PV Effects on onshore wind

Dependent variable:

Success PV Success onshore wind

Min restriction: Both −0.173*** 0.186***
(0.020) (0.026)

Min restriction: PV only −0.571*** 0.456***
(0.018) (0.021)

Max restriction:both 0.496*** −0.395***
(0.037) (0.034)

Financial prequalification: PV lower 0.678*** −0.522***
(0.015) (0.018)

Financial prequalification: similar 0.382*** −0.237***
(0.016) (0.016)

Price ceiling ratio −1.150*** 0.962***
(0.172) (0.199)

Realisation period ratio −1.268*** 0.852**
(0.254) (0.292)

Support duration [years] 0.031** −0.026*
(0.011) (0.012)

Success other technologies [%P] −0.005*** −0.005***
(0.001) (0.001)

Region: Eastern Europe −0.327*** 0.446***
(0.024) (0.029)

Region: North Eastern Europe −0.740*** 0.876***
(0.013) (0.015)

Region: Southern Europe −0.561*** 0.687***
(0.018) (0.024)

Year 0.165*** −0.141***
(0.017) (0.018)
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