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Ecosystem management aims at providing many ecosystem services simultaneously. 
Such ecosystem service multifunctionality can be limited by tradeoffs and increased 
by synergies among the underlying ecosystem functions (EF), which need to be 
understood to develop targeted management. Previous studies found differences in 
the correlation between EFs. We hypothesised that correlations between EFs are vari-
able even under the controlled conditions of a field experiment and that seasonal and 
annual variation, plant species richness, and plot identity (identity effects of plots, 
such as the presence and proportion of functional groups) are drivers of these cor-
relations. We used data on 31 EFs related to plants, consumers, and physical soil 
properties that were measured over 5 to 19 years, up to three times per year, in a 
temperate grassland experiment with 80 different plots, constituting six sown plant 
species richness levels (1, 2, 4, 8, 16, 60 species). We found that correlations between 
pairs of EFs were variable, and correlations between two particular EFs could range 
from weak to strong or negative to positive correlations among the repeated measure-
ments. To determine the drivers of pairwise EF correlations, the covariance between 
EFs was partitioned into contributions from species richness, plot identity, and time 
(including years and seasons). We found that most of the covariance for synergies 
was explained by species richness (26.5%), whereas for tradeoffs, most covariance 
was explained by plot identity (29.5%). Additionally, some EF pairs were more 
affected by differences among years and seasons, showing a higher temporal variation. 
Therefore, correlations between two EFs from single measurements are insufficient 
to draw conclusions on tradeoffs and synergies. Consequently, pairs of EFs need to 
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be measured repeatedly under different conditions to describe their relationships with more certainty and be able to derive 
recommendations for the management of grasslands.

Keywords: biodiversity, correlation analysis, ecosystem function relationships, synergies, temporal variation, tradeoff

Introduction

Land management and policy aim to improve human well-
being by providing multiple ecosystem services, i.e. ecosystem 
service multifunctionality (Dade et al. 2019, Manning et al. 
2018). The Millennium Ecosystem Assessment (2005) 
defined ecosystem services (ES) as the ‘benefits people obtain 
from ecosystems, e.g. food, water, timber and cultural val-
ues. Ecosystem services derive from ecosystem functions (EF) 
(Balvanera et al. 2006, Costanza et al. 2017). Ecosystem func-
tions describe the biogeochemical processes influenced by the 
organisms and their traits to sustain an ecosystem (Millennium 
ecosystem assessment 2005, Reiss  et  al. 2009). Ecosystem 
functions include a set of ecological processes and attributes, 
which can be characterised by various ecosystem variables, 
processes or attributes, allowing for detailed inquiries into the 
underlying function of an ecosystem (Weisser  et  al. 2017). 
The flow and exchange of materials and energy in ecosys-
tems, i.e. the ecosystem functions, can be measured directly 
(Naeem 1998) or indirectly via ecosystem properties, such as 
storage and retention of water or nutrients (Costanza et al. 
2017). In the last decades, the average global crop yields have 
been rising due to more intensive management practices in 
agriculture (Foley et al. 2011). These management practices 
had negative side effects on the environment, such as declines 
in native pollinators, increases in pests and diseases, and 
degrading land and water (Gordon et al. 2008, Foley et al. 
2011). On the other hand, one important aim of nature con-
servation is to protect areas in order to preserve important 
ES, such as carbon sequestration and climate regulation, and 
to avoid widespread biodiversity declines (Watson and Venter 
2017). While ES multifunctionality may be an implicit or 
explicit management aim, current management strategies 
often focus on providing single ecosystem services, e.g. maxi-
mising productivity or the value of nature conservation. For 
example, in agriculture, conventional farming practices may 
prioritise high crop yields or pest control while disregarding 
other ecological services like the biodiversity of pollinators or 
soil health (Mondelaers  et  al. 2009). ES multifunctionality 
requires EF multifunctionality (Manning et al. 2018). Since 
many ecosystem functions improve with increasing plant 
species richness (Scherber et al. 2010, Weisser et al. 2017), 
diversifying ecosystems have been proposed as an alternative 
management target, and studies have found a generally posi-
tive relationship between plant species richness and EF mul-
tifunctionality (Cardinale et al. 2006, Gamfeldt et al. 2008, 
Pasari et al. 2013, Dooley et al. 2015, Finney and Kaye 2017, 
Hautier et al. 2018, Meyer et al. 2018).

One challenge of promoting EF multifunctionality is that 
the simultaneous enhancement of all EFs is likely impossible 

because there are tradeoffs between EFs (Rodríguez  et  al. 
2006, Manning et al. 2018, Meyer et al. 2018). Such trad-
eoffs occur when the provisioning of one EF improves at the 
expense of another EF. For example, under conventional man-
agement of single crops, high productivity often is associated 
with soil degradation (Kleinman  et  al. 2011, Pereira  et  al. 
2023). In contrast, synergies among EFs occur when EFs are 
co-varying in the same direction (Rodríguez et al. 2006). For 
example, high below-ground biomass production is related 
to high below-ground carbon storage (Hanisch et al. 2020).

Two mechanisms can cause correlations between EFs. 
The first mechanism consists of common drivers affecting 
multiple EFs (Bennett et al. 2009), referred to as the com-
mon-driver mechanism in the following. Environmental 
conditions can improve one EF while deteriorating another 
EF (Bradford et al. 2014), thereby causing a tradeoff between 
the two EFs or a synergy if both EF would improve or dete-
riorate in the same way in response to the environmental 
condition. For example, Maestre  et  al. (2012) found that 
an increase in temperature decreased EF multifunctionality, 
which could indicate that either individual EFs are negatively 
affected by increasing temperature or that higher temperature 
can cause weaker synergies and/or stronger tradeoffs among 
EFs. The second mechanism consists of physiological or eco-
logical constraints among EFs (Bennett et al. 2009), referred 
to as ecological-constraints-mechanism in the following. As 
resources are limited within an ecosystem, not all EFs can 
be improved simultaneously, independent of external driv-
ers. Carbon sequestration, for example, can be enhanced by 
afforestation, but during tree growth, evapotranspiration is 
increased, and water availability deteriorates (Engel  et  al. 
2005). Management strategies cannot easily overcome eco-
logical constraints. Consequently, correlations among EFs 
need to be understood to mitigate tradeoffs and enhance 
synergies (Shen et al. 2020). One decision strategy for eco-
system management could be to consider the occurring spe-
cies traits to avoid potential tradeoffs, as species traits link 
EFs with each other (Hanisch  et  al. 2020). An attempt to 
consider species traits is to maximise the number of species 
present, as each species possesses a large number of traits, or 
to consider functional groups, classifying groups of plant spe-
cies according to plant traits, which seem more likely to influ-
ence EFs (Tilman 2001, Roscher et al. 2004). Consequently, 
correlations among EFs and the underlying drivers need to 
be understood to mitigate tradeoffs and enhance synergies 
(Shen et al. 2020), which is essential to manage ecosystems 
for ES multifunctionality. 

Previous syntheses on the relationships between EFs 
reported inconsistent results, i.e. EFs are provided at unstable 
levels throughout time (Cardinale  et  al. 2012), indicating 
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unstable EF-relationships over time. Inconsistent results 
were also shown when ES were compared between studies 
in a meta-analysis (Lee and Lautenbach 2016). For example, 
for the ES ‘Nutrition biomass’ and ‘Life cycle maintenance, 
habitat and gene pool protection’, as many as 50–75% of the 
case studies reported a tradeoff, whereas 25–50% reported 
a synergy or no relationship between these ES. For the ESs 
‘Intellectual and representative interactions’ and ‘Physical 
and experiential interactions’, 50–75% of the studies 
reported synergies, while 25–50% reported the opposite or 
no relationship. While Lee and Lautenbach (2016) investi-
gated the variability of ES relationships, the results also hold 
relevance for relationships between EFs and underline that 
the causes of these conflicting results are still subject to debate 
(Dade et al. 2019).

There are several possibilities why the relationship between 
two particular EFs or ESs could differ among studies. First, 
the relationship between EFs or ESs can change based on 
the scale or land system considered, e.g. urban area versus 
agricultural area (Adhikari and Hartemink 2016, Lee and 
Lautenbach 2016). Second, most studies investigated EF- or 
ES relationships based on single measurements. However, 
ecological drivers, such as diversity or nutrient availability, 
can change over time and cause variations in relationships 
between EFs (Crouzat  et  al. 2015, Torralba  et  al. 2018, 
Zheng  et  al. 2019). Third, differences in the ecosystem 
investigated, or in abiotic conditions among sites, can cause 
variation regarding EF relationships among studies. Land-use 
type (Li et al. 2018), management intensity (Rodríguez et al. 
2006), and environmental factors like climate and soil pH 
have been shown to strongly affect individual EFs (Wang et al. 
2021), and the correlations between EFs (Spake et al. 2017). 
If these drivers affect EFs differently, a change in the driver 
will change the relationship between these EFs. One example 
would be EFs dependent on water availability, such as shoot 
length and root length, being positively related within a year 
of high precipitation (Pérez-Ramos et al. 2012) and showing 
a weaker relationship at low precipitation when plants invest 
more in roots than shoots (Mokany  et  al. 2006). In addi-
tion, previous studies have found that drivers of individual 
EFs are of different importance at different places and time 
points (Isbell et al. 2011, Crouzat et al. 2015, Torralba et al. 
2018, Zheng  et  al. 2019, Martin  et  al. 2020, Shen  et  al. 
2020, Willemen 2020). This implies that also the variability 
in EF relationships may differ among places and time points 
as these drivers can influence EF relationships directly by 
changing the ecological dependency of the two EFs or indi-
rectly by affecting EFs individually and, therefore, causing 
a change in their covariance. Finally, also differences in the 
statistical methods used to evaluate relationships between ESs 
can bias results (Lee and Lautenbach 2016). For example, 
no-effect relationships were more likely to be found when 
correlation coefficients were used, whereas descriptive meth-
ods such as GIS analyses, which quantify and describe ES 
relationships based on the cooccurrence of ESs at the same 
location, showed a higher probability of identifying tradeoffs 
(Lee and Lautenbach 2016). In summary, there are several 

reasons why relationships between different EFs and ESs may 
vary. Whereas a few studies recorded the variation of individ-
ual EFs (van der Plas et al. 2020) and their drivers over time 
(Gaglio et al. 2020, van der Plas et al. 2020), such studies are 
lacking for EF relationships.

To understand whether EF relationships are inher-
ently variable or whether meta-analyses detected variability 
because of differences among studies, studies investigating 
EF relationships repeatedly under comparable conditions are 
needed. Furthermore, the drivers of EF relationships need to 
be investigated to understand what might cause variability in 
EF relationships. Drivers and variability of EF relationships 
might depend on the individual EFs or their proxies inves-
tigated. For example, it was shown that plant diversity has 
particularly strong effects on lower trophic levels and effects 
dampen with increasing trophic levels (Scherber et al. 2010). 
Consequently, it can be expected that EFs depending on dif-
ferent components of the ecosystem (e.g. plant productivity 
and soil microbes) show different EF relationships or a higher 
variability of EF relationships. Furthermore, we expect to see 
similar EF relationships between EFs depending on the same 
components of the ecosystem, e.g. between EFs representing 
plant productivity and EFs representing invasion resistance.

Here we used data from 31 EFs repeatedly measured dur-
ing 5–19 years in a large-scale temperate grassland biodi-
versity experiment, i.e. the Jena Experiment (Roscher et al. 
2004, Weisser  et  al. 2017). The 31 EFs covered different 
components of the ecosystem related to plant productivity, 
plant nutrients, soil microbes, consumers, invasion resis-
tance, soil properties, and soil nitrogen and carbon concen-
trations, which are called classes of EFs hereafter. Our study 
aimed to systematically investigate the variability in the pair-
wise relationships between EFs and the underlying drivers of 
variability. Specifically, we addressed the following questions:

1.	 How variable are EF relationships over replicated mea-
surements under the controlled conditions of a field 
experiment?

2.	 What drives the relationship among EFs? How much 
do years, seasons, species richness and the identity of the 
plots contribute to these relationships by affecting pairs of 
EFs in similar or opposing ways?

3.	 Are synergies and tradeoffs driven differently by years, sea-
sons, plant species richness and the identity of the studied 
plots?

Material and methods

Study site

In 2002, the Jena Experiment, a biodiversity experiment with 
82 plots, was established at a former arable field near the city 
of Jena (Germany) (Roscher et al. 2004, Weisser et al. 2017). 
The plots were sown in May 2002 with species richness (SR) 
of 1, 2, 4, 8, 16 and 60 grassland plant species, with 16, 16, 
16, 16, 14 and 4 replicates, respectively (each replicate was a 
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unique species composition, i.e. community, except for the 
highest richness level where all replicates had the same spe-
cies composition). Plot identity (‘plotID’) represents unique 
plots containing different plant communities with diverse 
compositional features (Jochum et al. 2020). The experiment 
reduces stochastic variation by standardising abiotic condi-
tions across all plots. However, the lack of replicates at the 
species composition level prevents us from determining if the 
effects are solely due to species composition. Additionally, 
species composition may have changed over time, along with 
abiotic factors, contributing to the net differences observed 
in plotID (Wagg  et  al. 2022). Plant species for communi-
ties with 1–16 species were randomly chosen from a pool 
of 60 plant species typical for Arrhenatherum grasslands with 
restrictions to create different levels of functional-group rich-
ness within each level of species richness. We distinguished 
three functional groups, namely grasses, herbs (small herbs 
and tall herbs combined), and legumes, based on ecologically 
relevant attributes (Roscher  et  al. 2004). Species richness 
and functional group richness (FGR, number of functional 
groups per community) were varied as independently as 
possible (Roscher et al. 2004). All plots were mown twice a 
year, did not receive any fertiliser, and were weeded two to 

three times a year (Roscher et al. 2004). The chosen mow-
ing regime corresponds to the region’s typical management 
of extensively used hay meadows (Weisser et al. 2017). Two 
monocultures were given up due to the weak establishment 
of the target species in the first years, resulting in 80 plots 
used for this analysis.

Dataset

We based this analysis on 31 EFs measured during 5–19 years 
in the Jena Experiment (full description in the Supporting 
information). These EFs are indicative of eight classes of EFs: 
plant productivity, plant nutrients, soil microbes, consumers, 
invasion resistance, soil carbon, soil nitrogen and soil prop-
erties (Table 1). The EFs within one class of EFs are often 
related.

The data were categorised into spring (March, April, 
May), summer (June, July, August), and autumn (September, 
October, November) according to the meteorological seasons 
of the Northern Hemisphere (while in winter, no measure-
ments were taken). In the case of multiple measurements of 
the same EF per season and year, the raw data were averaged 
per plot, year, and season. The EFs were always measured 

Table 1. List of all Ecosystem functions (EF), the classes of EFs they represent, the abbreviations for the EFs used in the following, and if EFs 
were inverted to represent a valuable function according to humans’ perspective.

Class of EF Ecosystem function (EF) Abbreviation for EF Inverted

Consumer Herbivory damage in % Herbivory no
Predation as bite-marks on dummy caterpillars in% Predation no

Invasion resistance Invasion resistance as biomass on weeded subplots (inverse of biomass of weeds) WeedBM(−1) yes
Invasion resistance as cover (inverse of weed cover) WeedCover(−1) yes
Invasion resistance as species number on not weeded subplots (inverse of the 

number of weed species)
WeedSPrnw

(−1) yes

Invasion resistance as species number on weeded subplots (inverse of the number 
of weed species)

WeedSPrw
(−1) yes

Plant productivity Standing root biomass RootBM no
Biomass of target plants ShootBM no
Total cover (inverse of bare ground) BareGround(−1) yes
Cover of target plants PlantCover no
Plant height PlantHeight no
Leaf area index LAI no

Plant nutrients Plant tissue carbon (C) concentration PlantC no
Plant tissue calcium (Ca) concentration PlantCa no
Plant tissue potassium (K) concentration PlantK no
Plant tissue magnesium (Mg) concentration PlantMg no
Plant tissue nitrogen (N) concentration PlantN no
Plant tissue sodium (Na) concentration PlantNa no
Plant tissue phosphorus (P) concentration PlantP no

Soil carbon Inorganic carbon concentration SoilCinorg no
Organic carbon concentration SoilCorg no
Dissolved inorganic carbon concentration in soil solution SoilDIC no
Dissolved organic carbon concentration in soil solution SoilDOC no

Soil microbes Biomass of microbes MicrobeBM no
Basal respiration SoilResp no

Soil nitrogen Total nitrogen concentration in soil SoilN no
NH4-N concentration in soil SoilNH4 no
NO3-N concentrations in soil SoilNO3 no
Mineral nitrogen concentration (sum of the NH4-N and NO3-N concentrations) in soil SoilNmin no

Soil properties Looseness of soil (Inverse of soil bulk density) SoilDensity(−1) yes
Water content in the soil SoilH2O no
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on all plots but in different numbers of years and seasons. 
The number of years ranged from 5 to 19, and most EFs 
were measured once or twice a year. A dataset comprising 
all plots is referred to as a measurement in the following. 
The number of measurements ranged from a minimum of 
five (SoilDensity) to a maximum of 36 (PlantHeight). The 
inverse of some EFs was used to represent a valuable function 
according to humans’ perspective, enabling to identify syner-
gies and tradeoffs (Table 1).

Data preparation

All data manipulations and later analyses were conducted 
using the free software R ver. 3.6.2 (www.r-project.org) and 
Rstudio ver. 1.1.442 (RStudio Team 2016). To approximate 
normal distributions, all raw data (EFraw) were boxcox-trans-
formed (EFboxcox) using two lambda-values (λ and λ2) esti-
mated with the package ‘geoR’ (Ribeiro 2020):

EF boxcox›transformed EF EF
boxcox

raw= ( ) = + -l
l

l
2 1

To scale all EFs to a comparable range of 0–1, the EFboxcox 
were minmax-transformed (EFminmax):

EF minmax›transformed EF

EF min EF
EF

minmax

boxcox boxcox

bo

= ( )

=
- ( )

xxcox boxcoxmin EF( ) - ( )

Variation in individual EFs

The variation of individual EFs was quantified as a standard 
deviation over all data points (individual measures on plots). 
The individual EFs are not consistently measured at the same 
time. However, there is sufficient overlap in the timing of 
measurements (Supporting information). Variation of indi-
vidual EFs is expected to be comparable and not biased by 
the identity of years and seasons measurements were taken. 
However, we tested whether the variation of individual EFs 
depended on the number of repeated measures, meaning how 
often in time EFs were measured (number of years ⨯ num-
ber of seasons). Therefore, a model with the standard devia-
tion per individual EF depending on the explanatory variable 
‘number of repeated measures’ (number of years × number of 
seasons an individual EFs was measured) was run.

The drivers of the variation in individual EFs (EFminmax) 
were tested in a linear model with the explanatory terms 
‘block’ (factor with four levels), ‘SR’ (initial number of spe-
cies planted, log-transformed continuous variable), ‘plotID’ 
(factor with 80 levels), ‘season’ (factor with three levels, as 
no measurements were done in winter), ‘year’ (continuous 
variable), and their interactions (model 1). The plot identity 
(plotID) effect mainly accounts for differences among the 
initially planted communities. This set of terms is referred to 

as ‘drivers’ in the following. The same model was conducted 
for EFs measured only once per year, excluding ‘season’ and 
the respective interaction terms (model 2).

model block log SR plotID season year

season:year log

1( ) ( )+ + + +

+ +

X ∼

SSR season year season:year

plotID: season year season:

( ) ( )+ +

+ + +

:

yyear( )
model block log SR plotID year

log SR :year plotID:y

2( ) ( )

( )

+ + +

+ +

X ∼

) eear

(note that here, following conventions of R, we use the colon 
instead of a multiplication sign as an interaction operator).

To analyse whether different classes of EFs were affected 
differently by drivers, the variance in individual EFs explained 
by individual drivers was calculated by dividing the sum of 
squares explained by the driver by the total sum of squares in 
the respective model of the individual EFs explained above. In 
a subsequent model, the explained variation per EF and per 
driver was used as meta-data. The variation was tested against 
the classes of EFs (with the different classes of EFs as levels) 
and the drivers (with the levels ‘block’, ‘SR’, ‘plotID’, ‘sea-
son’, ‘year’ and their interactions) as independent variables.

Relationships between pairs of EFs

Relationships between EF pairs were statistically investigated 
using covariances and correlations. In correlations, the rela-
tionship between two EFs was standardised by the variation 
of the individual EFs (product of their standard deviations), 
enabling us to compare relationships between different 
EF pairs. To calculate correlation coefficients, we used the 
R-package ‘Hmisc’ ver. 4.4-2 (www.r-project.org, Harrell 
and Dupont 2020). We used the non-standardised relation-
ships (covariances) to analyse the influence of drivers on rela-
tionships among EFs.

Variation in EF correlations
To quantify the general strength and variation of EF corre-
lations, we calculated the mean and the standard deviation 
of Fisher’s Z-transformed correlation coefficients for each EF 
pair. Correlation coefficients were calculated among measure-
ments on all plots at a particular time point and then aver-
aged across time points. Hence we refer to this correlation as 
the mean correlation. It includes the effects of species rich-
ness and plot identity. In order to plot the EF relationships 
as correlation coefficients on a scale of –1 (perfect negative) 
to 1 (perfect positive correlation), the mean correlation coef-
ficients were back-transformed from Z-scale. Mean correla-
tions were defined as no correlation (−0.1 > r < 0.1), weak 
(|r| > 0.1 and |r| < 0.3), moderate (|r| > 0.3 and |r| < 0.5), 
and strong (|r| > 0.5) correlations after Cohen (2013).

The standard deviation of the individual correla-
tions at the different time points quantifies the temporal 
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variation (among seasons and years) of correlations among 
EFs. However, using all time points to calculate the temporal 
variation might be influenced by the number of time points 
and the identity of time points (deviating years or seasons). 
Therefore, first, we checked whether this temporal variation, 
based on all time points, depended on the number of time 
points. We analysed the temporal variation of the correlations 
per EF pair as a function of the number of time points that 
an EF pair was measured (number of years ⨯ number of sea-
sons). The number of repeated measures for pairwise EFs, 
meaning the number of times two EFs were measured at the 
same time (same year and same season), ranged from 0 to 36 
times (the Supporting information contains an overview of 
the individual EFs and at what time (years and seasons) they 
were measured). Second, we checked whether the variation 
of correlations per EF pair depended on the identity of the 
time point that the EF pair was measured. Therefore, for each 
EF pair, we randomly chose four time points to calculate a 
standard deviation of the respective correlation coefficients. 
For each EF pair, this was done 20 times. The range of these 
20 standard deviations per EF pair was used to check whether 
the standard deviation for that EF pair was stable (small range 
indicating no identity effect of years and seasons) or not (large 
range indicating strong identity effects of years or seasons).

Drivers of the covariance between EF pairs
To analyse whether years, seasons, species richness, and plot 
identity affect EF relationships by driving individual EFs 
in similar or opposing ways, we partitioned overall covari-
ances into contributions of the different explanatory terms. 
Here, plot identity was further decomposed in the effects of 
functional group richness and the presence of the functional 
groups legumes, herbs (tall and short herbs combined), or 
grasses. This decomposition of covariances was based on an 
additive partitioning of sums of products (SPs) in the same 
way as additive partitioning of the sum of squares (SS) is 
used in a decomposition of variances in an analysis of vari-
ance (ANOVA). This type of covariance analysis has previ-
ously been used to investigate, for example, the influence of 
explanatory terms on trait–trait relationships (He et al. 2009) 
and is frequently used in quantitative genetic and phyloge-
netic approaches (Kempthorne 1957, Bell 1989).

The decomposition of covariances includes the following 
steps:

Preservation of the sum of squares (SS) for each EF pair
The SS were obtained from general linear models, imple-
mented with the lm() function in R (Mangiafico 2015). 
We run the decomposition of covariances twice: Once to 
estimate the general effect of species richness (SR), plot 
identity (plotID), season, year and their interactions on 
EF-relationships (model 1 and model 2). Model 1 encom-
passed all explanatory terms, while model 2 excluded ‘season’ 
and its interaction terms, specifically targeting EFs mea-
sured once per year (similar to the analysis on the individ-
ual EFs). Second, we run the decomposition of covariances 
additionally to estimate the effect of the functional groups  

(grasses, herbs and legumes; FGi), inserted as sown propor-
tions per plotID, and the functional group richness (FGR) 
(model 3 and model 4). To be able to investigate all pairs 
of EFs, model 3 encompassed all explanatory terms, while 
model 4 excluded ‘season’ and its interaction terms. Model 3 
and model 4 were executed individually for each functional 
group, meaning that the following steps were carried out sep-
arately for each functional group.

model block log SR FGR FG

plotID season year season:

3( ) ( )+ + +

+ + + +

X i∼

yyear 

log SR season year season:year

FGR season year s

+ + +

+ + +

( ) ( ):

: eeason:year

FG season year season:year

plotID season

( )

( )+ + +

+ +

i :

: yyear season:year+( )

model block log SR FGR

FG plotID year

log SR year

4( ) ( )

( )

+ +

+ + +

+ +

X

i

∼

: ) FFGR:year

FG year plotID:year+ +i :

(note that here, following conventions of R, we use the 
colon instead of a multiplication sign as an interaction 
operator).

To summarise, for the first decomposition analysis, we 
used model 1 and model 2 to examine the drivers (SR, 
plotID, season, year and their interactions), for the second 
decomposition analysis, we used model 3 and model 4 for 
each functional group, to investigate the drivers and addi-
tionally the effects of FGR and the proportions of grasses, 
herbs and legumes present in the plant communities. The fol-
lowing steps were done for each of the decompositions:

For each EF pair, the linear models were run three times: 
one for each of the individual EFs (X and Y) and one for 
the sum of the two EFs (X + Y), based on the measurements 
from different time points of EFminmax. For EF-pairs, which 
were just present in one season, the same models were run, 
reduced by the term ‘season’ and its interactions (model 2 or 
model 4).

Calculating sums of products for each EF pair
The sums of products, which are equivalent to covariances, 
were obtained per EF pair using the following formula:

SP
SS SS SS

X Y
X Y X Y

,( ) = +( ) - ( ) - ( )
2

where X and Y are the EFs of interest, and X + Y is the sum of 
the two EFs.
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Like in ANOVA, SPs were divided by their degrees of 
freedom to obtain mean SPs (MSPs), which were divided by 
residual MSP to calculate F-ratios and significances. Because 
there are nested effects, not all terms could be tested against 
‘Residuals’. ‘Block’, ‘log(SR)’, and ‘FGR’ had to be tested 
at the level of variation between plots with different species 
compositions (plotID). Similarly, the interaction terms ‘log(S
R):(season + year + season:year)’, ‘FGR:(season + year + season:
year)’, and ‘FGi:(season + year + season:year)’ had to be tested 
for the same reason against ‘plotID:(season + year + season:yea
r)’. All other terms were tested against ‘Residuals’ (Supporting 
information). It has been shown that for balanced experi-
mental designs such as the Jena Experiment, this method is 
comparable to linear mixed-model analysis using restricted 
maximum likelihood methods (Schmid et al. 2017).

Calculating the percentage per driver per EF pair and separating EF 
pairs into synergies and drivers
Because SPs are additive, we can express the influence of 
each driver on EF covariation (i.e. the relationship between 
the EFs) by calculating the percentage of the (absolute) total 
sum of products explained, similar to a percentage vari-
ance explained (He et al. 2009). However, unlike variances, 
covariances are either positive, indicating a positive relation-
ship between two variables, or negative, indicating an inverse 
(i.e. tradeoff) relationship between two variables. The sign 
of SPs for each explanatory term informs us about whether 
covariances are positive or negative. This means that we could 
deduce whether the individual drivers affected the EFs in a 
pair in an antagonistic (negative covariance) or synergistic 
(positive covariance) way. Therefore, we show ‘signed per-
centages’ of covariance in the results by multiplying the abso-
lute percentages with the sign of the respective covariance.

Sensitivity analysis
Per combination of EF-class, one EF-pair is drawn for rep-
resentation, and the results of the decomposition of covari-
ances were stored. This results in 27 EF-pairs, representing 
each one combination of EF classes (e.g. plant productiv-
ity and soil nutrients). From this subset, the results of the 
decomposition for these 27 EF-pairs were used to calculate 
average values per driver and per correlation type (synergy 
versus tradeoff). By repeating this process 100 times, an aver-
age effect per driver and correlation type could be estimated, 
while the range of minimum and maximum values indicated 
the influence of the identity of EF-pairs and, consequently, 
the influence of the number of EF-pairs within each combi-
nation of EF-classes on the results of the decomposition.

Results

Variation in individual EFs

First, we compared the variation of individual EFs and EF 
classes. The average standard deviation, calculated by aver-
aging all standard deviations of all EFs, was 0.17. While 

some EFs varied strongly in time among replicated measures, 
other EFs showed a low variation (Table 2; the minimum 
standard deviation was 0.07 for plant carbon, and the maxi-
mum standard deviation was 0.38 for plant sodium). The 
variation of individual EFs did not depend on the number of 
times (number of years × number of seasons) they were mea-
sured (F1,29 = 0.753, p = 0.393) (Supporting information). 
Classes of EFs did not differ significantly in their variation 
(F7,23 = 0.76, p = 0.63; Table 2).

Second, we tested if measures of individual EFs differed 
among years, seasons, species richness levels, and plot identi-
ties (Fig. 1). Considering all EFs, year explained on average 
4.7% of the variation of EFs, and season explained on average 
4.1%. Additionally, species richness explained 8.6%, while 
plot identity explained 21.3% of the variation of individual 
EFs. These differences explained about one-fourth of the 
variation of the individual EFs. One-third of the variation in 
individual EFs was unexplained: 34.1% for EFs, which were 
measured in several seasons, and 48.3% for EFs measured in 
just one season. All tested interaction terms explained only a 
small part of the total variation of the EFs (Fig. 1).

Different variables explained the variation of EFs in dif-
ferent classes of EFs. For example, for invasion resistance and 
plant productivity, species richness explained a large propor-
tion of the variation (on average, 23.1 and 21.0%; Fig. 1, 
green). For consumer-related functions, year explained a large 
proportion (on average 11.9%; Fig. 1, red). For plant nutri-
ents, plot identity explained, on average, 38% of the variation 
(Fig. 1, blue). This means that classes of EFs were differently 
affected by biological and environmental conditions (classes 
of EF: F7,245 = 4.2, p = < 0.01; Driver F12,245 = 38.35, p < 
0.01; classes of EF: Driver: F60,245 = 5.4, p < 0.01, where 
‘driver’ represents the year, season, SR, plotID and their 
interactions).

Variation in EF correlations

Positive correlations (indicating synergies) and negative cor-
relations (indicating tradeoffs) were observed across all mea-
sures (Fig. 2, upper triangle). For instance, plant height and 
shoot biomass showed a synergy, while soil-dissolved carbon 
and plant height showed a tradeoff in their mean correlations. 
The strength of these correlations (defined after Cohen 2013) 
differed among pairs of EFs, with some EF pairs showed no 
correlation, while others showed weak, moderate, or strong 
correlations. We observed no strong negative correlations. All 
EFs showed positive correlations to some and negative cor-
relations to other EFs (according to their mean correlation) 
(Fig. 2, upper triangle), with EFs in some classes showing 
predominantly positive correlations (plant productivity and 
invasion resistance) and others mostly negative correlations 
(plant productivity and plant nutrients). The EF correla-
tions were robust against the method of calculating corre-
lations, i.e. whether we used mean correlations (correlation 
coefficient averaged across time points), grand-total cor-
relations (one correlation coefficient using all data from all 
time points), or between-group correlations (one correlation 
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coefficient calculated with data points averaged across time 
points) (Supporting information). As expected, EF correla-
tions tended to be stronger when the variation of individual 
measurements across time points was removed, i.e. for the 
between-group correlations (Supporting information).

The variation per EF pair was quantified by the standard 
deviation of correlation coefficients, which were calculated 
for every time point when the two EFs were measured in the 
same year and season. Overall, there was considerable varia-
tion in EF correlations (mean SD = 0.16, mean correlation 
coefficient = 0.14) (Fig. 2, lower triangle). We tested if the 
variation in the EF correlations depended on the correla-
tion’s average strength. EF pairs generally showed a higher 
variation in their correlation when they showed a stronger 
correlation irrespective of this correlation being positive 
or negative (F5,281 = 9.4, p < 0.001, Supporting informa-
tion). Additionally, we tested if the variation in the EF cor-
relations depended on the number of times the EF-pair 
was measured (number of years × number of seasons). EF 
pairs generally showed an increasing variation in their cor-
relations with a higher number of times the EF-pair was 
measured (F1,572 = 120.91, p < 0.001) (Supporting informa-
tion). Lastly, we checked whether the variation in correla-
tions among EFs depended on the identity of time points 

they were measured. These ranges of temporal variation were 
rather small, on average showing a SD ± 0.08 (Supporting 
information). Furthermore, the range of temporal variation 
of correlations was different for the individual EF-pairs, some 
EF-pairs showed a strong identity effect of time points (e.g. 
SoilNH4__SoilNmin, PlantCover__WeedCover) and some a 
weak identity effect of time points (e.g. ShootBM__SoilN, 
PlantC__SoilCorg) (Supporting information).

Drivers of the covariance of EF pairs

To test if the drivers year or season, species richness, and plot 
identity affect relationships among EFs, we quantified the 
covariance between all pairs of EFs and the contribution of 
each driver to these covariances in percentage. These percent-
ages were signed because the drivers can contribute to the 
EF covariances by affecting the underlying EFs synergisti-
cally (signed positive) or antagonistically (signed negative). 
Importantly, the contribution of individual drivers can have 
antagonistic (more negative covariance) or synergistic (more 
positive covariance) effects irrespective of the overall relation-
ship between the respective EF being a synergy or a tradeoff.

All tested drivers (year, season, SR and plot ID) affected the 
covariances between EFs. The largest fraction of covariance 

Table 2. Variation in ecosystem functions (EF) expressed as standard deviation. The standard deviation over all measurements and the aver-
age standard deviation per class of EF correlations are listed. The table also lists the number of years and seasons the EFs were measured.

Classes of EF EF n years n seasons Standard deviation Average standard deviation per class of EF

Consumer Herbivory 5 2 0.12 0.2
Predation 7 2 0.27

Invasion resistance WeedBM(−1) 16 2 0.18 0.18
WeedCover(−1) 18 2 0.19
WeedSPrnw

(−1) 5 2 0.16
WeedSPrw

(−1) 5 2 0.19
Plant productivity RootBM 7 2 0.17 0.17

ShootBM 18 2 0.16
BareGround(−1) 18 2 0.25
PlantCover 18 2 0.14
PlantHeight 18 2 0.15
LAI 18 2 0.13

Plant nutrients PlantC 10 2 0.07 0.16
PlantCa 5 2 0.09
PlantK 5 2 0.16
PlantMg 5 2 0.14
PlantN 10 2 0.14
PlantNa 5 2 0.38
PlantP 5 2 0.12

Soil carbon SoilCinorg 5 1 0.28 0.23
SoilCorg 5 1 0.18
SoilDIC 4 1 0.28
SoilDOC 4 1 0.17

Soil microbes MicrobeBM 17 1 0.13 0.14
SoilResp 17 1 0.14

Soil nitrogen SoilN 5 1 0.20 0.12
SoilNH4 16 1 0.17
SoilNmin 16 1 0.12
SoilNO3 16 1 0.14

Soil properties SoilDensity(−1) 5 1 0.17 0.16
SoilH2O 15 1 0.07
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Figure 1. Percentage of variation in individual EFs that was explained by year, season, species richness (SR), plot identity (plotID), and 
the interaction among these variables. The influence of the explanatory terms is plotted in% of the total sum of squares, corresponding to 
increments in multiple R2 × 100. Explanatory terms are plotted for individual effects > 5%. All effects less < 5% were summarised as 
‘other’, e.g. various interaction effects. Hatched barplots represent a simpler model, including only year, SR, plotID and their interactions 
for EF, which were measured in only one season. Non-hatched barplots represent full models, including all terms. The graph corresponds 
to a hierarchical partitioning of type one, but because explanatory terms were not correlated, there was no need to average across different 
fitting sequences.

Figure 2. Variation in the correlations between pairs of ecosystem functions (EFs) (lower triangle) and average correlation between these EFs 
(upper triangle). The different EFs (list in Table 1) were grouped into classes. Mean correlations were calculated using Fisher’s Z transforma-
tion of EF correlations per season and year that were averaged over time. The standard deviation of the EF correlations per year and season 
was calculated to estimate the variation of EF correlations. When no average correlation is shown, the respective EF was not measured in 
the same season and year. A missing standard deviation for an EF pair shown to have a correlation coefficient represents cases where a cor-
relation coefficient could only be calculated for a single time point.

 16000706, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/oik.10096 by K

arlsruher Institution F. T
echnologie, W

iley O
nline L

ibrary on [13/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Page 10 of 15

among EFs was explained by SR and plotID. However, 
effects differed between EF pairs in synergies and tradeoffs 
(defined by the sign of the mean correlation, Fig. 2, upper 
triangle). For synergies, most of the covariance was explained 
by SR (26.8%). In contrast, for tradeoffs, most of the covari-
ance was explained by plot identity (–18.3%, Fig. 3), with 
the negative value indicating that the individual EFs were 
driven antagonistically, causing a tradeoff. When further 
investigating plotID, the proportion of herbs and legumes 
already explained half of the effect of plot ID in tradeoffs 
(Supporting information). In more detail, the proportion 
of legumes and herbs seemed to have a positive effect on 
many tradeoffs. However, there are strong negative effects 
on a few EF pairs, resulting in a negative mean (legumes: 
mean −5.83% median −0.7%, herbs: mean –8.21% median 
–6.05%). For synergies, plot ID had intermediate positive 
effects (12.9%), partially due to the proportion of grasses and 
legumes. Also, here, it seems that the effect of grasses and 
legumes is positive for the majority of EF pairs. However, 
there are a few strong negative effects, causing a negative 
trend in EF relationships (grasses: mean 1.43% median 
0.13%, legumes: mean 2.35% median 0.27%). Year and 

season caused both positive and negative covariances so that 
the average percentages explained by year and season were 
low (3.1 and –0.6%). For tradeoffs, the average percentage 
of explained covariance by SR was low (–1.6%), contributing 
positively and negatively to covariance. Season contributed 
an additional –12.1% to covariance, while year explained 
very little (–3.7%). Interactions between drivers explained 
very little covariance (Supporting information). Unexplained 
residual covariance was, on average, |1.9%| of the covariance 
(for synergies 2.1% and for tradeoffs –1.6%), suggesting a 
low amount of random covariation between EFs.

To test whether the pattern in the drivers depend on the 
identity of the EF-pairs included, we did a sensitivity analysis 
resulting in an average effect per driver and per correlation 
type, and a range of minimum- and maximum values per 
driver and correlation type, both indicating how much the 
results of the decomposition were influenced by the identity 
of the EF-pairs and therefore the number of EF-pairs within 
one combination of EF-classes. The results of the sensitivity 
analysis showed that the average effect per driver in the sensi-
tivity analysis (Supporting information) is comparable to the 
average effect per driver shown in the results of the decompo-
sition on all EF pairs (Fig. 3). Synergies were less influenced 
by the identity of EF-pairs than the tradeoffs, indicated by 
the range of effect per driver (Supporting information). For 
the tradeoffs, the explained covariance in% showed a higher 
variability per driver, especially the drivers plotID and sea-
son depended more on the identity of the EF-pairs present 
(Supporting information). However, differences and patterns 
between the drivers are strong for both synergies and tradeoffs.

Discussion

We investigated the variation in the correlations between dif-
ferent EFs and the drivers of these relationships. We found 
that correlations were variable, and correlations between two 
particular EFs could range from weak to strong or from nega-
tive to positive among the repeated measurements. Overall, 
EF pairs generally showed an increasing variation in their 
correlations with a higher number of times the EF-pair was 
measured. The correlations among pairwise EFs were differ-
ently affected by the identity of time points (years and sea-
sons). That means that some EF-pairs showed more stable 
correlations throughout time, whereas other EF-pairs were 
more affected by differences in years and seasons and there-
fore showed a higher temporal variation. Species richness 
and plot identity (including the proportions of legumes, 
grasses, and herbs) explained the largest fraction of covari-
ance among EFs, while the effects of time (year, season and 
their interaction) explained little covariance. We found that 
most of the covariance for synergies was explained by spe-
cies richness (26.8%), whereas for tradeoffs, most covariance 
was explained by plot identity (−18.3%). Time explained 
−15.8% of covariance for tradeoffs but little for synergies 
(|3.7%|). Correlations among EFs and the drivers of these 
correlations varied over time. These results indicate the 

Figure 3. The contribution of SR, plotID, season and year to total 
covariance between the 116 pairs of EFs, separated for EF pairs 
showing positive relationships (synergies, 78 pairs) and negative 
relationships (tradeoffs, 38 EF pairs) according to their mean cor-
relation. The violin plots show for each driver the mean (solid line), 
the standard error, and the distribution of contributions to the 
covariance of EF pairs. Positive contributions indicate that the 
driver causes positive covariances between pairs of EFs, synergisti-
cally driving the two individual EFs. Negative contributions indi-
cate that the driver causes negative covariances between pairs of 
EFs, driving the two individual EFs antagonistically. Results are 
derived by partitioning overall covariances into contributions of the 
different drivers; see the method section for the explanation. In this 
graph, only effects are shown, which on average, explain > 5% of 
covariance. In the Supporting information, the same graph with all 
variables (including FGR and the proportion of grasses, legumes 
and herbs) is shown.
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importance of repeated measurements of ecosystem functions 
(EFs) over time to avoid spurious conclusions. Furthermore, 
they suggest that land management practices that promote 
biodiversity and reduce negative identity effects can enhance 
multifunctionality in grasslands. Our finding that the pro-
portion of legumes and herbs contributed to identity effects 
driving tradeoffs suggests the potential presence of unfavour-
able plant species or combinations of plant species that could 
be managed to enhance multifunctionality in grasslands.

We found that even under the controlled conditions of our 
experiment, correlations among EFs were variable. High tem-
poral variation of individual EFs had been documented before 
(Carpenter  et  al. 2009, Cardinale  et  al. 2012, Gaglio  et  al. 
2020, Qiu et  al. 2020, van der Plas  et  al. 2020). However, 
until now, inconsistent correlations between EFs or ESs have 
only been found when different studies were compared (Lee 
and Lautenbach 2016). Although all functions were measured 
with a consistent methodology at a single field site, tradeoffs 
were as variable as synergies (Supporting information), and 
relationships for many pairs of functions could range from 
synergy to tradeoff when correlations were calculated for dif-
ferent time points, which confirms the previous study of Lee 
and Lautenbach (2016), investigating ES relationships. Lee 
and Lautenbach (2016) found that the agreement on the 
type of relationship for a particular pair of ES, i.e. synergy, 
tradeoff, or no-effect relationship, decreased the more often 
the relationships were measured. Similarly, we found that the 
variability of EF relationships increased with the number of 
measurements (Supplementary information), which indicates 
that single measurements can be misleading when EF rela-
tionships are identified. Furthermore, we showed that not the 
identity of time points (years and seasons) but the identity of 
EF pairs were associated with a high variation in EF relation-
ships (Supporting information). That means that it depends 
on the particular EF pair whether their correlation was highly 
variable because of differences between years or seasons. One 
explanation could be that ecosystem processes vary caused by 
a change or adjustment of biotic assemblages as a response to 
their environmental conditions (Turner and Chapin 2005), 
leading to changes in EF relationships or -multifunctionality 
with changing environmental conditions (Zirbel et al. 2019). 
In our study, the variation in relationships between EFs origi-
nated from the temporal variation in EF drivers (possible rea-
sons could be inter-annual variation in rainfall, temperature 
or other cyclic patterns such as boom and bust cycles of her-
bivory), while in Lee and Lautenbach (2016), the variation in 
the relationships among ESs was introduced by different stud-
ies, and therefore additional site-dependent contexts.

Regarding the identified EF relationships (mean correla-
tions among all the different EFs), we found both synergies 
and tradeoffs that can be explained by biological processes 
and therefore confirm other studies investigating the indi-
vidual EFs (Jarrell and Beverly 1981, Allan  et  al. 2013). 
For example, EFs of the classes plant nutrients, and plant 
productivity often showed a tradeoff, indicating a dilution 
effect. i.e. when plant growth improved, plant nutrient con-
centrations decreased in the plant tissue (Jarrell and Beverly 

1981). However, the carbon concentration of plants (PlantC) 
showed mainly synergies with EFs of the class plant pro-
ductivity. One reason could be that high biomass reflects a 
high nutrient efficiency and thus comparatively low nutrient 
concentrations and correspondingly high C concentrations 
(Allan et al. 2013). Furthermore, the organic carbon in the 
soil (SoilDOC, SoilCorg) was positively related to plant pro-
ductivity (Fig. 2). This is consistent with studies showing that 
high biomass production leads to an accumulation of dead 
plant material in the soil (Post and Kwon 2000) or root exu-
dation of plants (Raich and Tufekciogul 2000). As the Jena 
Experiment was established on depleted arable soil, a higher 
carbon concentration in the soil occurred faster with higher 
biomass production, but in the end, the carbon concentra-
tion might be the same on all plots due to accelerated litter 
decomposition (Weisser et al. 2017). EFs of the class Invasion 
resistance showed synergies with EFs of the class plant pro-
ductivity. This is consistent with former studies, showing that 
high biomass of the native species suppressed invasive species 
(Yannelli  et  al. 2020, Rojas-Botero  et  al. 2022), often due 
to complete use of available resources (Hector  et  al. 2001, 
Roscher et al. 2009). Summarising these examples, the rela-
tionships identified here for the classes of EFs are consistent 
with the underlying biological processes.

We found that synergies and tradeoffs have different driv-
ers. Species richness is a known driver of many EFs (Gamfeldt 
and Roger 2017, Weisser et al. 2017, Craven et al. 2018) and 
ESs (van der Plas 2019). When two EFs improve with higher 
SR, a positive covariance is introduced, strengthening their 
relationship.

We showed that an increase in SR had a predominantly 
positive impact on the investigated EFs (Fig. 3). This suggests 
that the positive effects of SR on the covariance between EFs 
were widespread, with synergistic EFs being more strongly 
influenced by SR compared to EFs involved in tradeoffs. 
However, the relationship between two EFs weakens when 
SR has contrasting effects on the two EFs, as indicated by a 
few pairs of EFs for which we showed SR to cause negative 
covariance. In our study, plot identity represents all differ-
ences among plots. This encompasses differences arising from 
diverse plant communities, such as FGR, the proportion of 
different functional groups (Supporting information), and 
the presence of other groups of organisms (e.g. microbes, 
insects) associated with particular plant communities. While 
the experimental design ensures that stochastic variation is 
reduced by standardising abiotic conditions, including initial 
conditions and management practices, across all plots, abi-
otic factors cannot fully be excluded. Within the long-term 
experiment, species composition may have changed over time 
(Wagg et al. 2022). For instance, we observed significant vari-
ations among plots with identical compositions, such as the 
four plots of the 60-species mixture. In addition to chang-
ing plant communities, abiotic factors could change due to 
feedback at the plot level. Several long-term studies have 
shown that abiotic parameters such as pH and nitrogen min-
eralisation can change over time, even at the plot/ treatment 
level (Weisser  et  al. 2017, Cusser  et  al. 2021). As a result, 
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we interpret plot identity as the distinctions attributed to the 
different plant communities and changed abiotic conditions 
induced through feedback loops present in the study. These 
identity effects were mostly positive for EFs in synergies and 
mostly negative for EFs in tradeoffs. This can be explained by 
selection effects, which have been documented repeatedly by 
comparing the performance, such as biomass production, of 
plant communities (Marquard  et  al. 2009). A high perfor-
mance of a plant community may be associated with a high 
abundance of certain species (Loreau and Hector 2001) and, 
therefore, with many simultaneously occurring EFs (many 
synergies). Our finding that the proportion of legumes can 
drive synergies is one indicator of the positive selection effect. 
Low performance is associated with a negative selection 
effect (Loreau and Hector 2001) and could be related to the 
occurrence of just a few EFs, as they are restricted by trad-
eoffs. Our finding that the proportion of herbs and legumes 
drive tradeoffs is an indicator of the negative selection effect. 
Outside an experimental setup, the equivalent of SR and 
plotID would be the different communities associated with 
landscape patches. As a consequence of different biotic com-
munities and abiotic conditions, different levels of individual 
EFs would occur in these patches, and different correlations 
among EFs could be identified. While the effect of differ-
ent aspects of SR and plotID (such as FGR, or proportions 
of functional groups) on individual EFs is frequently inves-
tigated, further research is needed to identify how different 
SR/ plotID impacts the relationships between EF.

Time (year, season and their interaction) explained some, 
albeit little, covariance among EFs and affected synergies and 
tradeoffs differently. Time can become a driver of EF relation-
ships when environmental conditions vary over time, e.g. tem-
perature and extreme events, affecting the biological activity 
of organisms. Tradeoffs were more affected by temporal effects 
than synergies. The season was among the main drivers of 
tradeoffs, reflecting the pronounced change in abiotic condi-
tions among seasons in the temperate zone. As an example, 
soil microbial activity strongly responds to climatic conditions, 
affecting carbon and nutrient cycling (Frey et al. 2013). Further, 
competition strongly affects tradeoffs, which can be changed 
by altering the environmental conditions, such as the availabil-
ity of water or light that fluctuate with time. Consequently, 
temporal variability in these drivers can induce variability in 
EF correlations underlying the importance of repeated mea-
surements to identify the true relationships between EF.

When investigating the drivers of EF correlations, we found 
that some covariance among EFs could not be explained by 
any of the drivers tested in our study. We interpret this unex-
plained covariance as EF pairs affected by the ecological-con-
straints mechanism. Plants have access to a limited pool of 
resources they can invest in, e.g. in growth or defence against 
natural enemies, resulting in a growth-defence tradeoff 
(Karasov et al. 2017). Because providing unlimited resources 
within a local patch is impossible, ecological tradeoffs result-
ing from resource limitation are inevitable. Further, the 
simultaneous provision of EFs can be limited by competi-
tion. For example, in our study, improved plant productivity 

was associated with higher invasion resistance (considered 
good), likely due to intensified competition for space and 
light between the resident plant community and potential 
invading plant individuals in our plots. Furthermore, the 
higher the root biomass was, the lower the soil nutrient con-
centrations, implying competition among plant species for 
available nutrients. Resource limitations and competition 
may limit biological activities, leading to tradeoffs between 
EFs. These tradeoffs can be weakened when competition in 
diverse communities is reduced by complementarity between 
species (Weisser et al. 2017). Understanding how ecological 
constraints affect relationships between EFs is an important 
topic for further investigation. 

Our results have implications for land management aim-
ing at promoting ES multifunctionality. Relationships among 
EFs affect EF multifunctionality since they can either pro-
mote (synergies) or limit (tradeoffs) EF multifunctionality. 
Analysing the drivers of relationships between EFs, we showed 
that species richness can promote synergies among EFs, 
resulting in increased EF multifunctionality. Consequently, 
promoting diversity is a means to foster EF multifunctional-
ity, confirming previous empirical biodiversity EF multifunc-
tionality relationships (Isbell et al. 2011, Lefcheck et al. 2015, 
Meyer  et  al. 2018). Further, we showed that plot identity 
effects, including functional group richness and the propor-
tion of individual functional groups, were important driv-
ers for tradeoffs between EFs. While we tested for identity 
effects of plots, there are likely individual plant species that 
cause these tradeoffs by maximising some EFs at the expense 
of other EFs. When future research can identify such plant 
species with strong effects on tradeoffs, land management can 
target low densities of these disadvantageous species to reduce 
tradeoffs between EF and promote EF multifunctionality. 
Nevertheless, competition for resources and the resulting 
ecological tradeoffs between EFs are challenging to resolve. 

Alternative viewpoints

There are two topics authors disagree on in the interpretation: 
first, there is an ongoing debate regarding the interpretation 
of plotID in our study. Some argue that in our controlled 
experiment with similar starting conditions for each plot, 
plotID primarily reflects plant community identities, which 
can influence abiotic conditions. Consequently, this inter-
pretation indicates that any abiotic differences among plots 
were caused by the plant communities and their changes over 
time. Others contend that it encompasses both composition 
effects and unexplained environmental variations. However, 
it is important to acknowledge that certain factors, such as 
environmental variations in the field site, are beyond our 
control, even with the inclusion of experimental blocks. 

Second, it should be noted that there is an uneven represen-
tation of different EFs within each EF class. This disparity in 
representation has the potential to influence the identification of 
important drivers for EF relationships. Despite conducting a sen-
sitivity analysis on the drivers, it is possible that with a different 
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set of EFs, certain drivers may assume greater influence on EF 
relationships or lose their effects. However, it is important to 
acknowledge that our study is limited by the available data and 
the resources to measure EFs simultaneously in the same year.

Conclusions

Our study showed that even under the controlled conditions 
of a single experimental field site, correlations among EFs 
were variable over time. Consequently, repeated measure-
ments of EF are needed to avoid spurious and non-generalis-
able conclusions about relationships among EFs. 

Moreover, our results show the potential for land man-
agement to promote EF multifunctionality during estab-
lishment and management by incorporating two principles. 
First, maintaining or increasing the biodiversity of grasslands 
to increase synergies among EFs; second, reducing the pro-
portion of disadvantageous species or functional groups and 
assembling communities to reduce tradeoffs, to promote EF 
multifunctionality.

Future studies should continue to investigate the drivers 
of EF relationships to identify common drivers causing trad-
eoffs and separate common drivers from potential ecological 
constraints. Importantly, these studies should also address 
how environmental conditions can change these relation-
ships and identify influential species enabling recommen-
dations on how to adapt management for maximising EF 
multifunctionality.
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