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ABSTRACT
Cahn introduced the concept of wall energy to describe the interaction between two immiscible fluids and a solid wall [J. W. Cahn, J. Chem.
Phys. 66, 3667–3672 (1977)]. This quintessential concept has been successfully applied to describe various wetting phenomena of a droplet
in contact with a solid surface. The usually formulated wall free energy results in the so-called surface composition that is not equal to the
bulk composition. This composition difference leads to a limited range of contact angles which can be achieved by the linear/high-order
polynomial wall free energy. To address this issue and to improve the adaptability of the model, we symmetrically discuss the formula-
tion of the wall free energy on the Young’s contact angle via Allen–Cahn model. In our model, we modify the calculation of the fluid-solid
interfacial tensions according to the Cahn’s theory by considering the excess free energy contributed by the distorted composition pro-
file induced by the surface effect. Additionally, we propose a semi-obstacle wall free energy which enforces the surface composition to
be the bulk composition within the framework of bulk obstacle potential. By this way, the accuracy of the contact angle close to 0○ and
180○ is significantly improved in the phase-field simulations. We further reveal that the volume preservation term in the conservative
Allen–Cahn model has a more significant impact on the wetting behavior on superhydrophobic surfaces than on hydrophilic surfaces, which is
attributed to the curvature effect. Our findings provide alternative insights into wetting behavior on superhydrophilic and superhydrophobic
surfaces.
© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0168394

I. INTRODUCTION

When a drop is deposited on a homogeneous solid surface,
it spreads over the surface to minimize the total surface energy
when there is no phase transformation. At the equilibrium state,
the liquid either becomes a spherical cap with a finite contact
angle or forms a thin film on the surface, which is called as par-
tial wetting and complete wetting, respectively. The static wetting
state of a droplet on a homogeneous surface is well described by
Young’s law. However, the dynamic wetting process is influenced by
various factors, including the surface tensions, viscosity, chemical

composition, and the roughness of the solid surface. Understand-
ing the wetting behavior is crucial for many industrial applica-
tions, such as high-performance coatings,1,2 electrochemical energy
systems,3,4 functional devices and surfaces,5,6 and catalyst surfaces
treatment.7

The investigation of dynamic wetting phenomena is highly
interdisciplinary which involves physical chemistry, statistical
physics, thermodynamics, and fluid dynamics.8,9 To study the
complex dynamic wetting phenomenon, theoretical and numerical
methods have been widely conducted. The theoretical methods can
be divided into two principal categories, namely molecular kinetic
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theory in the microscopic level10 and hydrodynamic theory in the
macroscopic scale.11 Due to the rapid development of comput-
ing resources in recent years, numerous numerical methods have
been implemented to investigate the wetting phenomena.12 Typical
methods are the volume-of-fluid (VOF),13 the level-set (LS),14 the
front-tracking (FT),15 lattice-Boltzmann (LB),16–18 and phase-field
(PF)19 methods. Among these methods, different wetting boundary
conditions (WBCs) have been constructed. The typically used WBCs
include two forms: surface energy form and geometric form. The
former one is based on Cahn’s theory in terms of the surface free
energy.20 Herein, the surface free energy has two contributions. The
first contribution comes from the appearance of the composition
gradient due to the distortion of the concentration profile;21 the sec-
ond contribution is the interaction between the fluids and the solid
wall due to direct contact. The second contribution is also called
wall free energy, denoted as Γs. Despite the general form of Cahn,22

de Gennes8 expands Γs as a power series with respect to the surface
composition ϕs. Based on previous works, Jacqmin19 described the
wall free energy Γs in the form of

∫
S

fw(ϕs)dS, (1)

which is adopted in this work. Here, S represents the solid substrate
within the spatial domain Ω, and ϕs is the surface composition. The
integrand fw(ϕs) denotes the wall free energy density and describes
the interfacial tension in the vicinity of the contact line. Based on
these ideas, many early studies employed the formulation of the wall
free energy density fw(ϕs) with linear form,16–18 cubic form,23–31

and high-order polynomial form.32–34 In contrast to the direct
application of the expansion form,35,36 Jacqmin19 implemented the
microscale contact angle as a prescribed simulation parameter into
fw(ϕs), which facilitates the efficient study for wetting behavior.
Here, we denote the prescribed contact angle as θ (Young’s contact
angle) and the contact angle from simulation as θsim. As revealed by
Qian et al.37 and Ding and Spelt,38 there exist non-neglected devi-
ations between the simulated and prescribed contact angles. Ding
et al. proposed a geometric form which is strictly derived from the
geometry in the vicinity of the contact line. As proved by Ding
and Spelt,38 the geometric wetting boundary condition (WBC) can

be transformed into the surface energy form. Liang et al.30 found
that the geometric form is unstable when the static contact angle is
beyond the range (20○, 160○). In the present work, we will system-
atically investigate how the formulation of the wall energy density
influences the wetting behaviour in the diffuse interface model.
In our previous work,39 the simulation results reveal that the sur-
face composition significantly influences the wetting behavior by
introducing additional energetic contributions, known as the sur-
face excess energy. This finding implies that the interfacial tension is
comprised of both the wall free energy and the excess surface energy,
when the surface composition deviates from the bulk value. Without
considering the latter part leads to deviations between the prescribed
and simulated contact angles. Building upon this work, we further
investigate the modification for the theoretical calculation of contact
angles with the WBC via high-order polynomial wall energy den-
sity.33 In the current paper, different formulations of wall free energy
density will be applied to the WBCs; numerical simulations based
on the conservative Allen–Cahn model, which is a specialized PF
model utilizing the antiforcing free energy term to ensure volume
conservation,40 will be performed to confirm the theoretical calcu-
lations. However, it is worth emphasizing that the conclusions in
terms of WBCs presented in this study are applicable to other diffuse
interface models, provided that the fundamental concept of wall free
energy proposed by Cahn22 is embraced.

Table I lists the related articles in recent years discussing the
wall free energy density with different forms. Qian et al.37 introduced
uncompensated Young stress into the WBC to address the devia-
tions between prescribed and simulated contact angles. As Ding and
Spelt38 pointed out, this method mitigates the deviations and the
problem is not able to be fully solved. Later on, Wiklund et al.28

pointed out that the linear form introduces a nonphysical film and
proposed a cubic form to eliminate this nonphysical layer. In this
approach, the concentration profile in the vicinity of the contact line
is theoretically solved and is substituted into the WBC so that the
wall energy density is obtained. The elimination of the nonphysical
layer via the cubic wall energy density has also been noticed by Con-
nington and Lee36 However, extending the cubic wall energy density
to a more general principle for different bulk free energy densities
remains an unsolved issue. Moreover, the applied wall energy den-
sity is not implemented with prescribed contact angle θ as the input

TABLE I. Summary of recent works for the wall energy density forms.

Authors (publication year) fw(ϕs) forms Input parameter(s) for θsim

Qian et al. (2006)37 Sinusoidal form cos θ
Wiklund et al. (2011)28 Cubic form cos θ
Connington and Lee (2013)36 Cubic form ⋅ ⋅ ⋅

a

Ben Said et al. (2014)32 High-order polynomial form γls and γgs
Huang et al. (2015)41 Linear, cubic and sinusoidal forms cos θ and ϕs
Liang et al. (2019)30 Linear and cubic forms cos θ
Yue (2020)31 Cubic form cos θ
Huang et al. (2022)42 Hyperbolic tangent form cos θ, KEOS and KINT

Oktasendra et al. (2023)34 High-order polynomial form μlr(r)b or cos θc

aGiving coefficients, which do not prescribe contact angle.
bFor long-range interactions.
cFor short-range interactions.
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parameter. In fact, as will be shown in the current work, the appear-
ance of the nonphysical layer comes from the deviation of surface
composition from the bulk value. We will elucidate the construction
of the wall free energy density for different bulk free energy densi-
ties. We adopt a straightforward and universally applicable principle
to ensure that the surface composition equals to the bulk value and
avoid the nonphysical layer. Huang et al.41 systematically compared
the performance of linear, cubic, and sinusoidal wall energy density
forms in terms of static and dynamic contact angles. However, when
the prescribed contact angle θ is not equal to 90○, the implementa-
tion of WBCs in this article requires explicitly calculating the surface
composition ϕs as an input parameter. Noteworthily, the calculation
of ϕs in Ref. 41 is achieved by assuming a quadratic function of ϕs in
the normal direction of the wall, which is purely a numerical treat-
ment. This numerical treatment significantly differs from the present
work.

Liang et al.30 compared the performance of the geometric and
cubic energy forms for the static and dynamic contact angles. They
found that the geometric form is unstable on the superhydrophilic
substrates and that the cubic form, while performing better for
the static contact angle on superhydrophilic substrates, is not as
good as the geometric form for dynamic contact angles near 180○.
In 2020, Yue31 proposed a cubic form with prescribed microscale
contact angle θ, which is derived by substituting the equilibrium
bulk profile of the phase-field parameter into the natural boundary
condition. More importantly, this form is proved to satisfy a dis-
sipative energy law. The present concept of the semi-obstacle wall
free energy is similar to Yue’s work, where the surface composition
effect is eliminated. In contrast to the double-well potential in Yue’s
work, an obstacle potential is employed in the current work, which
can significantly save the computational time. Another difference
is that we adopt two prescribed parameters as input parameters in
the model, namely the interfacial tension parameters between fluids
and solid, γls and γgs, to give the prescribed contact angle. Utiliz-
ing this method, we can achieve the simulated contact angle close to
0○ and 180○. As Yue pointed out that the other wall energy density
forms37,43,44 may result in the distortions of concentration profile,
we will discuss in detail from the physical perspective in the present
work. In 2022, Huang et al.42 reformulated the wall energy density
function as a hyperbolic tangent form with two independent para-
meters KEOS and KINT . By adjusting these two parameters, the shape
of the wall energy density is changed, leading to surface composi-
tions close to the bulk values. As a result, the deviations between the
surface composition and the bulk value can be dramatically reduced.
However, as will demonstrated in the following, the same effect
can be achieved in our proposed wall energy density without intro-
ducing additional independent parameters. In 2023, Oktasendra
et al.34 introduced the long-range interactions between liquid and
solid surfaces into the WBC and discussed its influence on wetting
behaviors for partial wetting, complete wetting, and pseudo-partial
wetting scenarios. When specifically considering the influence of
short-range interactions, a quadratic form of the wall free energy
density is employed. Although they demonstrated better accuracy
in terms of prescribed contact angle θ and simulated contact angle
θsim compared to the explicitly given ϕs methods with linear/cubic
forms,41,45 they did not discuss the impact of surface composition
on the static contact angle. The superiority of the quadratic form

over other forms arises from its ability to ensure that the surface
compositions equal to bulk values for the given bulk free energy
density.

All the aforementioned boundary conditions yield nearly iden-
tical results when the static contact angle is around between 50○

and 130○. For dynamic wetting processes, the scope of the contact
angles is reduced. Larger deviations between simulated and pre-
scribed contact angles can be observed for superhydrophilic (with
θ ≲ 30○) and superhydrophobic (with θ ≳ 150○) substrates. The pri-
mary cause for the deviations can be attributed to the presence of
surface composition ϕs, which exists either beneath the droplet or at
the interface of the gas and solid, denoted as ϕs1 and ϕs0 , respectively
(cf. Fig. 1). When using these WBCs to address wetting problems
on superhydrophobic/superhydrophilic substrates, a modification of
the prescribed interfacial tension parameters for liquid-solid and
gas-solid is essentially required according to the theory of Cahn.
Without the modification by considering the additional excess free
energy, it is difficult to accurately and directly reproduce a contact
angle close to 0○ or 180○. Herein, we systematically study different
formulations of the wall free energy density by considering the sur-
face composition and the related excess free energy. In addition, we
propose a new wall energy density in the form of semi-obstacle to
enforce the order parameter to be the bulk values. By this way, we
eliminate the surface composition effect. This allows us to improve
the performance of simulating the wetting phenomenon on super-
hydrophobic/superhydrophilic substrates. Specifically, we focus on
discussing the accuracy of different typical wall energy density
forms for superhydrophilic and superhydrophobic wetting condi-
tions, and demonstrate the validity and robustness of the modified
WBCs.

The rest of the paper is organized as follows. In Sec. II, the
PF model with Allen–Cahn type and the three typical wall free
energy density forms will be described and discussed. In Sec. III,
the respective simulated results of surface compositions and static
contact angles for different wall energy formulations in WBCs are
presented, the analytical solutions with or without the contribution
of the volume-preservation term fvp are compared, and the effect
of the initial droplet shapes is discussed. The conclusion is given in
Sec. IV.

FIG. 1. Schematic of the diffuse interface model: a liquid drop deposited on a solid
substrate. The surface compositions ϕs vary within the range of [0, 1]. Specifically,
ϕs1 and ϕs0 denote the equilibrium surface composition beneath the droplet and
at the interface of gas-solid, respectively. m is the normal vector of the liquid-gas
interface.
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II. NUMERICAL MODEL
A. Allen–Cahn model and liquid-gas surface tension

We consider a system consisting of two immiscible flu-
ids in contact with a solid flat substrate. The volume-preserved
Allen–Cahn model is applied to simulate the equilibrated droplet on
a solid substrate with the Young’s contact angle of θ. In our model,
we introduce an order parameter ϕ to characterize the phase state.
In particular, the states ϕ = 0 and 1 stand for the pure gas and pure
liquid phase, respectively. By this way, the physical interpretation
of the order parameter ϕ could be the local volume fraction of the
liquid phase. Inside the gas-liquid interface, the order parameter ϕ
varies gradually between 0 and 1. Denoting the fluid domain by Ω,
the free energy functional of the system reads

Ψ(ϕ) = ∫
Ω
[

γlg

ϵ
w(ϕ) + ϵγlg ∣∇ϕ∣2 + fvp(ϕ)]dΩ, (2)

where ϵ is related to the width of the diffuse interface. The selection
criterion for the interface width and its ratio to the droplet size is
shown in the supplementary material document. The bulk energy
density w(ϕ) is described by the obstacle potential as

w(ϕ) =
⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

16
π2 ϕ(1 − ϕ) if 0 ≤ ϕ ≤ 1

+∞ otherwise.
(3)

When the value of ϕ is less than 0 or exceeds 1, it is reset to 0 or 1,
respectively, due to the infinite energy barrier. The infinite energy
barrier is motivated by the infinite entropy of pure materials. This
physically motivated numerical technique significantly reduces the
computational overhead in comparison with the hyperbolic tan-
gent interface profile when using double well potential. The term
ϵγlg∣∇ϕ∣2 denotes the gradient energy density. The third term fvp

ensures the volume preservation of the droplet and is expressed as40

fvp(ϕ) = χ1g(ϕ) + χ2[1 − g(ϕ)], (4)

where g(ϕ) is an interpolation function, expressed as g(ϕ)
= ϕ3
(6ϕ2

− 15ϕ + 10). The weights χ1 and χ2 are interpreted as the
partial pressure of the liquid and the gas phases, respectively. More
discussions are shown in Ref. 40. As will be discussed in the fol-
lowing, the difference of χ1 − χ2 has a significant influence on the
interfacial energy.

According to the hypothesis of van der Waals,46 the interface
profile is obtained by minimizing the free energy functional, Eq. (2).
Applying the variational calculus to Ψ, we obtain the chemical
potential μ with the following equation:

μ =
δΨ
δϕ
=

γlg

ϵ
w′(ϕ) − 2ϵγlg∇

2ϕ + f ′vp(ϕ). (5)

Utilizing the steepest descent method to extend the hypothesis as a
time-dependent model, we obtain the following governing equation
of the system:

τϵ∂tϕ = −
γlg

ϵ
w′(ϕ) + 2ϵγlg∇

2ϕ − f ′vp(ϕ), (6)

where τ is a positive time relaxation coefficient. When the time
tends to be large, we have ∂tϕ = 0 and the equilibrium state given

by Eq. (5) is replicated. In the present study, our emphasis is on
the derivation of the equilibrium contact angle attributed to the
surface effect. The impact of τ on the dynamic wetting behavior
demands a further meticulous examination, which is out of the scope
of the current work. For a more comprehensive understanding on
the dynamic wetting and the parameter τ, we refer to Refs. 47 and 48.
By setting μ = 0 with the far field condition, we obtain the following
equilibrium condition

γlg

ϵ
w′(ϕ) + f ′vp(ϕ) = 2ϵγlg∇

2ϕ. (7)

In one dimension with zero mean curvature, the contribution of fvp
to the energy functional vanishes since the pressure is uniform and
can be any arbitrary value as a reference state. In this case, the sur-
face tension of the liquid-gas interface can be analytically obtained
as follows. Multiplying by ∂ϕ

∂x in Eq. (7) and integrating from −∞ to
x, we obtain

ϵγlg(
∂ϕ
∂x
)

2
=

γlg

ϵ
Δw(ϕ), (8)

where Δw(ϕ) = w(ϕ) −w(ϕ0) − (ϕ − ϕ0)w
′
(ϕ0) = w(ϕ) with

w(ϕ0) = 0, w′(ϕ0) = 0 and ϕ0 standing for the value of ϕ in bulk
phases. Here, we define the value in bulk phase as: ϕ0 = 0 and ϕ1 = 1.
A further simplification of Eq. (8) leads to

∂ϕ
∂x
= ±

√

1
ϵ2 Δw(ϕ). (9)

Here, the positive gradient signifies the calculating direction point-
ing to liquid phase, and vice versa. The fluid-fluid interfacial tension
equals to the integration of the excess bulk free energy density
through the interface plus the gradient energy density. By this way,
the formulation for the surface tension reads20

σ = ∫
+∞

−∞
[

γlg

ϵ
Δw(ϕ) + ϵγlg(

dϕ
dx
)

2

]dx

= 2γlg∫

ϕ1

ϕ0

√

Δw(ϕ)dϕ, (10)

where ∫
+∞
−∞ dx means the integration over the interface from one

bulk phase to the other one. As sketched in Fig. 2(b), the integra-
tion in the phase-field space is represented by the hatched area for
γlg = 1.

B. The natural wetting boundary condition
Following the theory of Cahn,22 the substrate energy is com-

posed of two parts. The first part is the liquid-solid interfacial
energies, namely the wall free energy Γs. The second contribution
arises from the distortions of ϕ(x) profile as the order parameter ϕ
changes from the bulk compositions ϕ0/ϕ1 to the substrate compo-
sition ϕs, resulting from the joint equilibrium of bulk and substrate,
as will be demonstrated in the following. It is important to empha-
size that the volume conservative term fvp is deliberately omitted
in the substrate energy. This exclusion stems from two key con-
siderations. Firstly, the boundary is treated as a single layer in the
current model. Consequently, the consideration of mass conserva-
tion becomes unnecessary due to the substantial ratio of the droplet
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FIG. 2. (a) The graphic description of three typical types of the wall energy function
h(ϕs), namely H0: linear, H1: high-order polynomial, and H2: semi-obstacle. (b)
Illustration for the determination of the surface composition given by the intersec-
tion of the two curves Π1 and Π2, with Π1 = 2γlg

√

Δw(ϕs), Π2 = −Δγh′(ϕs),
and Δγ = γgs − γls. The intersections between the solid curve Π1 and non-solid
curves Π2 determine the possible surface compositions ϕs. The appropriate solu-
tions of ϕs1 corresponding to a local energy minimum are highlighted by different
colored symbols.

volume to the surface area of the single layer. Secondly, we focus on
the static equilibrium, a non-conservative boundary condition with-
out fvp is applicable in line with the treatment of Jacqmin.19 Thus,
the free energy functional at the substrate reads

Ψs = ∫
Ω

ϵγlg(∇ϕs)
2dΩ + ∫

S
fw(ϕs)dS, (11)

where S is the substrate in contact with the fluid phases. The com-
position ϕs denotes the order parameter on the surface. The term
fw(ϕs) represents the wall free energy density which describes
the short-range interaction between the fluids and solid substrate.
In accordance with literature,32,33 the wall free energy density is
formulated as

fw(ϕs) = γlsh(ϕs) + γgs[1 − h(ϕs)]. (12)

Here, h(ϕs) is a wall energy density function. γls and γgs are
respectively the interfacial tensions of the liquid-solid and gas-
solid interfaces. The specific form of h(ϕs) will be discussed in the
following.

The local equilibrium on the substrate requires δΨs/δϕs = 0.
After transforming the volume integration to the surface integral by
using the divergence theorem, we obtain the following equation for
the equilibrium condition on the substrate

2ϵγlg∇ϕs ⋅ n − f ′w(ϕs) = 0, (13)

where n is the normal vector of the substrate pointing to fluids.
When an appropriate wall energy function h(ϕs) is chosen, the so-
called “wall layer”25 can be avoided and the surface compositions ϕs
equal to the equilibrium values of bulk phases, namely ϕs = 0 or 1. In
this case, the natural boundary condition, Eq. (13) is consistent with
Yong’s law, and the static contact angle obeys cos θ = (γgs − γls)/γlg.
The derivation is shown in the supplementary material (section:
Derivation of Young’s law in diffuse interface model). More details
can be found in Ref. 49. Therefore, the static contact angle θ can
be simply determined by the three interfacial tension parameters,
σ (with σ = γlg), γgs, and γls. However, when the surface composi-
tions ϕs deviate from the bulk compositions, the above derivation
has to be amended. In this case, the interfacial tensions of the liquid-
solid and gas-solid interface have to be modified due to the existence
of additional excess energy.8,22,39 By considering the bulk equilib-
rium, Eq. (9) and the substrate equilibrium, Eq. (13), the surface
composition ϕs can be analytically solved as following

±2γlg
√

Δw(ϕs) = f ′w(ϕs). (14)

The sign of − and + indicates hydrophobic and hydrophilic wetting
situations, respectively. The intersection of the curve 2γlg

√

Δw(ϕs)

with f ′w(ϕs) leads to two equilibrium surface compositions in the
droplet and in the surrounding phase. We use ϕs1 and ϕs0 to indi-
cate the equilibrium surface composition beneath and outside of the
droplet, respectively (see schematic Fig. 1). The modified interfa-
cial tensions γ∗gs and γ∗ls include the contribution of wall free energy
density at the substrate as well as the excess free energy due to the
distribution of the non-uniform compositions from the substrate to
the bulk phase. Thus, the modified interfacial tensions read

γ∗gs = fw(ϕs0) + 2γlg∫

0

ϕs0

√

Δw(ϕ)dϕ, (15)

γ∗ls = fw(ϕs1) + 2γlg∫

1

ϕs1

√

Δw(ϕ)dϕ. (16)

Applying the solution of Eq. (14) to the above equations, the modi-
fied interfacial tensions are obtained. Through linking the modified
interfacial tensions to the equilibrium contact angle, we now have
the modified contact angle θ∗ calculated via cos θ∗ = (γ∗gs − γ∗ls)/γlg
in a closed form. The consistency of the new formulation with the
Young’s law is derived as follows. Multiplying by ∂ϕ

∂x in Eq. (13) and
integrating it across the interface on the substrate, we obtain

∫

+∞

−∞
2ϵγlg

∂ϕ
∂n

∂ϕ
∂x
−
∂ fw
∂ϕ

∂ϕ
∂x

dx = 0. (17)

Via the definition of integral calculus, the second term can be readily
simplified as ∫

+∞
−∞

∂ fw
∂ϕ

∂ϕ
∂x dx = fw(ϕs1) − fw(ϕs0). Comparing with

the derivation by Xu and Wang,49 the key modification here is the
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first term in Eq. (17). The integration boundary must be changed to
ϕs0 and ϕs1 . By dividing the new integral boundary into three parts,
we obtain the following equation for the first term in Eq. (17)

∫

+∞

−∞
2ϵγlg

∂ϕ
∂n

∂ϕ
∂x

dx = ∫
0

ϕs0

2ϵγlg
∂ϕ
∂n

dϕ

+ ∫

1

0
2ϵγlg

∂ϕ
∂n

dϕ + ∫
ϕs1

1
2ϵγlg

∂ϕ
∂n

dϕ. (18)

According to Fig. 1, we have the following geometrical relation ∂ϕ
∂n

= −
∂ϕ
∂m cos θ∗. Substituting this geometrical relation into Eq. (18)

and using the definition of γ∗gs and γ∗ls given by Eq. (16), we obtain
the following equality

∫

1

0
2ϵγlg

∂ϕ
∂n

dϕ = ∫
1

0
2ϵγlg

∂ϕ
∂m

dϕ cos θ∗ = γ∗gs − γ∗ls.

With the calculation of the surface tension σ of Eq. (10), we achieve
the modified Young’s equation in terms of the amended interfacial
energies as

cos θ∗ =
γ∗gs − γ∗ls

γlg
. (19)

1. Discussion of the wall energy density
function h (ϕs )

In the following discussion, we define γgs − γls as Δγ and the
derivative of the wall free energy as Π2 = −Δγh′(ϕs). The integrand
for the fluid-fluid surface tension is defined as Π1 = 2γlg

√

Δw(ϕs).
As pointed out by de Gennes,8 any form of the wall energy density
function h(ϕs) in Cahn’s approach22 is deemed acceptable. To accu-
rately describe the van der Waals interaction between liquid and gas
and between fluid and solid, the sub-regular solution model with
∑i,jχijϕ

i
(1 − ϕ) j

+ ∑iχiϕ
i
+∑jνj(1 − ϕ) j has often been applied in

statistical mechanics.50,51 The first, second and third term depicts the
van der Waals interaction between liquid and gas, liquid and solid,
and gas and solid, respectively. Here, the parameters χij, χi, and νj

represent the intermolecule potential. In line with the sub-regular
solution model, we introduce three typical types of wall energy den-
sity function h(ϕs), namely, H0: linear, H1: high-order polynomial,
and H2: semi-obstacle, as shown in Fig. 2(a). Within this context, the
different power series indicate distinct van der Waals interactions
between the liquid molecules and the solid atoms. We systemati-
cally change the value of Δγ and investigate how the chosen wall
energy function affects the wetting contact angles. The advantages
and shortcomings for each wall energy function are discussed in the
following. Our emphasis is the static contact angles at the equilib-
rium states while the dynamic effect is out of the scope of the present
work.

As shown in Fig. 2(a), the wall energy function h(ϕs) ful-
fills h(ϕs = 1) = 1 and h(ϕs = 0) = 0 to ensure fw(ϕs = 1) = γls and
fw(ϕs = 0) = γgs. The choice of h(ϕs) determines the surface com-
positions, as graphically illustrated in Fig. 2(b) for different types of
h(ϕs). The intersections between the black solid curve Π1 [left hand
side of Eq. (14)], and the other colored curves Π2 represent the var-
ious solutions of the substrate composition ϕs. When Δγ = −0.8, the

function f ′w(ϕs) = −Δγh′(ϕs) for different h(ϕs) = Hi (i = 0, 1, 2)
is indicated by the dashed, dot, and dot dashed curves with different
colors.

a. H0: Linear type.
h(ϕs) = ϕs. (20)

As shown in the Fig. 2(b), when applying Δγ = −0.8 correspond-
ing to a hydrophobic setup, the Π1 curve (black solid) and the Π2
curve (red dashed) have two intersection points. The right one is
the appropriate solution of ϕs1 marked with the red circle. The other
one corresponds to a higher energy state and is physically unstable.
If the curves Π1 and Π2 are well-defined and finite out of the phase
space range, namely ϕs > 1 and ϕs < 0, we should have another sur-
face composition ϕs0 out of the interval [0, 1], as demonstrated in
Refs. 8 and 20. However, due to the specificity of the obstacle form
of the bulk free energy density rather than the double well poten-
tial, the solution of ϕs0 must be 0 to reach a minimum of the surface
energy. For the hydrophilic wetting with Δγ > 0, the surface compo-
sition is reversed. The minimization of the surface energy leads to
ϕs1 = 1 and ϕs0 < 0.5 corresponding to the left intersection point of
Π1 and Π2 in Fig. 2(b). In the special case Δγ = 0, we have θ = 90○.
When applying H0 with ∣Δγ∣ > max(Π1), such as Δγ = −1.5 here,
it results in no mathematical solution for ϕs on the substrate; this
means that there is non intersection between the curve Π1 and Π2.
In this situation, the model of the WBC is not physically meaningful
anymore.

b. H1: High-order polynomial type.

h(ϕs) = ϕ3
s (6ϕ2

s − 15ϕs + 10). (21)

When applying Δγ = −0.8 to H1 wall energy formulation, there exist
four possible solutions, as depicted by the four intersection points of
the black line and the green dashed line. The appropriate solution
of ϕs1 = 0.37 (green circle) and ϕs0 = 0 (black circle) corresponds to
a local minimum of the surface energy (see supplementary material
document). Noteworthily, this result is affected by the initial state.
In the present work, we firstly adopt a complete circle as the initial
droplet state to mimic the down-bottom deposition of a droplet in
experiments. When other initial conditions are adopted, the appro-
priate solution of ϕs1 equals to 1 and the wall layer is eliminated.
For the sake of clarity, when not specified, the simulation results
in the present work refer to a complete circular initial state. In
Sec. III C, we will present the results with a half circle as the initial
state. For superhydrophilic and superhydrophobic substrates, the H2
form leads to a wall layer, resulting from the surface composition
ranging between 0 and 1. In this case, the related interfacial tensions
between fluids and solid should be modified according to Eqs. (13)
and (16). The modified value ∣Δγ∗∣ = ∣γ∗gs − γ∗ls ∣ for H1 is always
smaller than 1, as constrained by the limitation of the excess free
energy and the maximum value of the wall energy. However, apply-
ing H1 requires a very large value of the input parameter ∣Δγ∣, such
as 100 or more, in order to achieve complete wetting or complete
dewetting.

c. H2: Semi-obstacle type.

h(ϕs) =
2
π
[arcsin (

√

ϕs) + (2ϕs − 1)
√

ϕs(1 − ϕs)]. (22)
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The proposed semi-obstacle form satisfies the condition
h′(ϕs) ∼ κ

√

Δw(ϕs), where κ is a scaling factor and determines the
contact angle. This ensures that the solutions of Eq. (14) are limited
to 0 and 1. As shown in Fig. 2(b), the surface composition ϕs1 for H2
is either 1 or 0 with Δγ = −0.8 or −1.1, respectively, as indicated by
the black circles. As a result, the wall layer along the substrate van-
ishes and there is no need to modify the interfacial tensions between
liquid/gas and solid. However, as the volume-preserved Allen–Cahn
model is used in this work, the influence of fvp leads to changes
in the concentration profile ∂ϕ

∂n in Eq. (13) and the related ϕs may
deviate slightly from 0 or 1. Taking this into consideration, the the-
oretical analysis of the impact of fvp on the wetting behavior will be
discussed in the following.

2. Discussion for the influence of fvp(ϕ)
To obtain a more accurate analytical solution, this section dis-

cusses the influence of the volume preserve term fvp(ϕ) on the
interfacial tensions of fluid-solid interface in the vicinity of the con-
tact line. Although the term fvp(ϕ) is not explicitly exhibited in
the substrate energy in Eq. (11), it is computed in the bulk domain
and thus implicitly affects the composition profile of ϕ(x), leading
to the changes of gradient term (∇ϕs)

2 involved in the substrate
energy. Equation (7) is rewritten in the polar coordinate to con-
sider the influence of fvp in 2D domain. Due to the axisymmetric
property of this problem, the composition profile can be consid-
ered along r in any direction. Thus, the bulk equilibrium condition
reads:

γlg

ϵ
w′(ϕ) + f ′vp(ϕ) = 2ϵγlg[

∂2ϕ
∂2r
+

1
r
∂ϕ
∂r
]. (23)

Multiplying by ∂ϕ
∂r on both sides and integrating from −∞ to r0, we

obtain

ϵγlg(
∂ϕ
∂r
)

2
+ 2ϵγlg∫

r0

−∞
1
r
(
∂ϕ
∂r
)

2
dr =

γlg

ϵ
Δw(ϕ) + Δ fvp, (24)

where r0 represents any specific location within the domain. The
term Δ fvp is defined as follows

Δ fvp =

⎧
⎪⎪
⎨
⎪⎪
⎩

fvp(ϕ) − fvp(ϕ0) = Δχg(ϕ);
fvp(ϕ1) − fvp(ϕ) = Δχ(1 − g(ϕ)),

(25)

with Δχ = χ1 − χ2, ϕ0 = 0, and ϕ1 = 1. Here, Δχg(ϕ) represents the
deviation of fvp(ϕ) from the bulk term fvp(ϕ0) on hydrophilic sub-
strate, namely the part between the solid and gas phases outside of
the droplet for hydrophilic wetting behavior, and vice versa. Since
the 2D profile of ϕ(r) is unknown, the term ∫

r0
−∞2ϵγlg

1
r (

∂ϕ
∂r )

2dr
is neglected for simplifying the following analysis. Nevertheless,
despite this assumption, the analysis provides a calibrating value to
be compared with the numerical simulations.

By equating the derivative of ϕ via comparing Eqs. (13) and
(24), we obtain an alternative equation for the surface composition

± 2
√

γ2
lgΔw(ϕs) + ϵγlgΔ fvp(ϕs) = f ′w(ϕs). (26)

The difference of Eq. (26) from Eq. (14) is the contribution of the
volume preservation term. In this case, the integrand for the excess

free energy at the substrate has to be modified. With the notation
Φ = 2

√

γ2
lgΔw(ϕs) + ϵγlgΔ fvp(ϕs), the modified interfacial tensions

by considering the volume preservation term are written as

γ∗gs = fw(ϕs0) + ∫

0

ϕs0

Φdϕ, (27)

γ∗ls = fw(ϕs1) + ∫

1

ϕs1

Φdϕ. (28)

Note that although fvp(ϕ) does not contribute to the wall free
energy, Eq. (11), it implicitly affects the substrate composition at
equilibrium via Eq. (26) and thus changes the related interfacial ten-
sion, γ∗ls and γ∗gs. To address the effect of the volume preservation
term Δ fvp, we present an estimation of the weight parameters χ1
and χ2. The difference of the coefficient Δχ is expressed in the polar
coordinate (see the supplementary material for detailed derivation)
as follows

Δχ = 2
∫
∞

0 −
γlg
ϵ w

′
(ϕ)dr + 2ϵγlg∫

∞
0 (

∂2ϕ
∂r2 +

1
r
∂ϕ
∂r )dr

∫
∞

0 g′(ϕ)dr
. (29)

Multiplying by ∂ϕ
∂r on both sides of Eq. (23) and integrating from

−∞ to∞ yield

Δχ̄ = χ1 − χ2 = ∫

∞

−∞
2ϵγlg

1
r
(
∂ϕ
∂r
)

2
dr ≈

σ
r̄

. (30)

At equilibrium, the radius r can be taken as a constant averaged value
r̄ of the diffuse interface with ϕ = 0.5. In this work, we apply a con-
stant positive value Δχ̄ to Eq. (25) to obtain the analytical solution
for the surface composition ϕs in Eq. (26).

III. RESULTS AND DISCUSSION
In this section, simulation results with three different wall

energy formulations are compared to theoretical results in terms of
surface composition ϕs and contact angles. The effect of the vol-
ume preservation term fvp and the initial droplet shapes will be
elucidated as well.

A. Surface composition
We systematically change the parameter Δγ and conduct a

series of 2D simulations with different formulations for the wall
free energy. The surface compositions ϕs,sim are measured when the
droplet is at the equilibrium state. The theoretically solved surface
compositions with and without the effect of fvp are denoted by ϕ∗s
and ϕs, respectively. The former one is obtained via solving Eq. (26),
while the latter one is solved via the natural boundary conditions
Eq. (14). To ensure conciseness, we adopt the notation of ϕs1 and
ϕs0 to distinguish the surface compositions beneath and outside the
droplet, respectively. Following this way, ϕ∗s1 and ϕ∗s0 denote the
equilibrium composition beneath the droplet and at the interface
of gas-solid, respectively. Table II tabulates the surface composi-
tions from simulation and theoretical results for a wide range of
Δγ including superhydrophobic and superhydrophilic surfaces. In
general, the theoretical results are well consistent with the sim-
ulation results and the maximum absolute deviation is less than
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TABLE II. Simulation and analytical results of surface compositions for three different formulations of the wall energy density. The analytical surface compositions with and
without the effect of the volume preservation term fvp are denoted as ϕ∗s and ϕs. Specifically, ϕ∗s1

and ϕ∗s0
denote the equilibrium ϕ∗s beneath the droplet or at the interface of

gas-solid, respectively.a

Hydrophobic Hydrophilic

Δγ −1.5 −1.1 −1.0 −0.9 −0.4 0.0 0.4 0.9 1.0 1.1 1.5

H0

(ϕs1 , ϕs0)sim (0, 0) (0.78, 0) (0.83, 0) (0.87, 0) (0.97, 0) (1, 0) (1, 0.03) (1, 0.13) (1, 0.17) (1, 0.23) (1, 1)
(ϕs1 , ϕs0) ⋅ ⋅ ⋅

b (0.75, 0) (0.81, 0) (0.85, 0) (0.97, 0) (1, 0) (1, 0.03) (1, 0.15) (1, 0.19) (1, 0.25) ⋅ ⋅ ⋅

(ϕ∗s1 , ϕ∗s0) ⋅ ⋅ ⋅ (0.77, 0) (0.81, 0) (0.86, 0) (0.98, 0) (1, 0) (1, 0.03) (1, 0.15) (1, 0.19) (1, 0.25) ⋅ ⋅ ⋅

H1

(ϕs1 , ϕs0)sim (0.19, 0) (0.26, 0) (0.28, 0) (0.31, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0.73) (1, 0.75) (1, 0.81)
(ϕs1 , ϕs0) (0.18, 0) (0.24, 0) (0.26, 0) (0.29, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0.74) (1, 0.76) (1, 0.82)
(ϕ∗s1 , ϕ∗s0) (0.19, 0) (0.25, 0) (0.27, 0) (0.31, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0.74) (1, 0.76) (1, 0.82)

H2

(ϕs1 , ϕs0)sim (0.01, 0) (0.07, 0) (0.96, 0) (0.96, 0) (0.99, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 1) (1, 1)
(ϕs1 , ϕs0) (0, 0) (0, 0) (1, 0)c (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 1) (1, 1)
(ϕ∗s1 , ϕ∗s0) (0.02, 0) (0.11, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 1) (1, 1)

aThis labeling convention is applicable to the simulated surface compositions as well, namely ϕs1 ,sim and ϕs0 ,sim . For the sake of brevity, we designate (ϕs1 ,sim , ϕs0 ,sim) as (ϕs1 , ϕs0)sim for
the remainder of this manuscript.
b
⋅ ⋅ ⋅ represents the absence of a theoretical solution when Δγ = ±1.5.

cWhen Δγ = ±1, ϕs could be any value in the range of [0, 1].

6.5%. For the linear wall free energy H0, as Δγ increases from −1.1
to 1.1, the surface composition beneath the droplet ϕs1 increases
until ϕs1 = 1 is achieved. With increasing Δγ, the surface compo-
sition ϕs0 at the surrounding-substrate interface becomes non-zero
starting from Δγ = 0.4, and then increases until a complete wetting
where the surface composition ϕs0 equals to the bulk of the droplet,
namely ϕs0 = 1. Note that for a large absolute value of Δγ [namely
Δγ > max(Π1), e.g., ∣Δγ∣ = 1.5], the two curves Π1 and Π2 do not
intersect [see Fig. 2(b)]. In this case, the wetting can only be either
complete wetting with (ϕs1 , ϕs0 ) = (1, 1) or dewetting with (ϕs1 , ϕs0 )
= (0, 0). Therefore, attention should be paid carefully on the interfa-
cial tension parameters when H0 is utilized. For the H1 form, there
are always at least two intersection points of the curves Π1 and Π2
that are physically meaningful to describe the wetting behavior irre-
spective of the value of Δγ. This is a significant difference of H1 from
H0. Specifically, the wetting is affected only by the derivative of the
wall energy rather than the wall energy itself. The linear form H0
loses its generality as its derivative is a constant which has no depen-
dence on the phase-field variable. In the case of H1, for a relatively
small value of ∣Δγ∣ (∣Δγ∣ ≤ 0.4), the solutions for the surface com-
position are 0 and 1. In this case, no modification to the interfacial
tensions between liquid/gas and solid is needed. While for a rela-
tively large value of ∣Δγ∣, one of the solutions for ϕs lies between
0 and 1 and the surface composition effect appears. In contrast to
the above two wall energy functions H0 and H1, H2 ensures that the
surface composition is always identical to the bulk values which are
either 0 or 1 (i.e., ϕ0 or ϕ1), eliminating the need for modification
of the interfacial tensions γgs and γls. In particular, when ∣Δγ∣ = 1,
the two curves Π1 and Π2 overlap exactly with each other, result-
ing in that the theoretical substrate composition ϕs can be any value
between 0 and 1. Thus, the application of H2 should avoid the input
parameters with ∣Δγ∣ = 1, which corresponds to the case of θ = 0○ or
180○.

Upon a closer examination of the results in Table II for the
case of H2, a small deviation between the simulation and theoretical
surface compositions is observed, which is possibly due to the influ-
ence of fvp. To understand this deviation, we compare the difference
between the simulated surface composition ϕs,sim with analytical
surface compositions ϕ∗s and ϕs for different values of Δγ. The
surface composition difference is defined as Δϕ∗s = ∣ϕsim − ϕ∗s ∣ and
Δϕs = ∣ϕsim − ϕs∣, corresponding to the case with and without fvp in
the theory, respectively. From Table II, we see that Δϕ∗s is smaller
than Δϕs especially in the hydrophobic situation. This result veri-
fies the validity of our analysis for the effect of fvp. The negligible
difference between Δϕ∗s and Δϕs of hydrophilic area indicates that
the influence of fvp is less significant in hydrophilic wetting sce-
nario. This is reasonable, since a greater tendency to spread in
the hydrophilic case results in smaller curvature. According to the
definition of fvp

40 and the derivation of Eq. (30), the value of fvp is
closely related to the curvature of the droplet base. Thus, the volume
preservation term fvp plays a relatively minor role in the hydrophilic
situation. In the hydrophobic case, the mean curvature of the droplet
involving in the volume preservation leads to the deviation of the
simulation and the theory.

To provide a clearer visualization of the surface compositions,
Fig. 3 shows snapshots for the simulated 2D droplets on hydropho-
bic and hydrophilic substrates with three different wall energy forms
H0, H1, and H2. The color bar at the right side presents the value
of the order parameter ranging from 0 to 1. As described in the
Table II, when ∣Δγ∣ is greater than a certain threshold, the surface
compositions ϕs for H0 and H1 deviate from 0 or 1, resulting in
a wall layer beneath the droplet for a superhydrophobic surface or
outside the droplet for a superhydrophilic surface. The wall layers
beneath and outside the droplet are exemplarily demonstrated in the
top and middle panels of Fig. 3(b). Conversely, by using H2 in the
WBC, the substrate composition ϕs is identical to 0 or 1, resulting
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FIG. 3. (a) Simulation results for three different forms of Hi in the wall free energy density: top-H0; middle-H1; bottom-H2. The wettability is varied by varying the parameter Δγ
and θ indicates the expected contact angle. (b) Zoomed-in of the triple junction area illustrating the introduced wall layer for superhydrophobic and superhydrophilic wetting
behavior for H0 and H1 forms (top and middle panels). The wall layer is avoided by using the H2 form (bottom panel).

in the absence of the wall layer, as illustrated in the bottom panel of
Fig. 3(b).

B. Static contact angle
Next, we present three different measurement criteria for the

contact angle, as depicted in Fig. 4. The current methodologies
include macroscopic measurement [Fig. 4(a)], semi-macroscopic
measurement [Fig. 4(b)], and microscopic measurement [Fig. 4(c)].
Figure 4(a) illustrates the macroscopic contact angle measurement
technique. The droplet-gas contour line is defined by the locus of
ϕ = 0.5. Three random points P0 at the contour line are selected to fit
a circle of the cap; the cap radius R and the height H from the circle-
center to the substrate are subsequently determined. The contact
angle is determined via arccos (H

R ). Figure 4(b) demonstrates the
semi-macroscopic measurement, where the contact angle is defined
by arctan (H

L ). The base radius L is obtained from the triple junc-

tion P1 with the condition of ϕ = (ϕs1+ϕs0 )sim

2 on the substrate layer.
Figure 4(c) presents the microscopic interpretation of the contact
angle, where the coordinates of X1 and X2 are the contour lines of
ϕ = (ϕs1+ϕs0 )sim

2 in the first (boundary) and of ϕ = 0.5 in the second
layer of the discrete grids, respectively. When the interface point
does not coincide with the center of the cell, a linear interpolation
is employed to calculate the coordinates. We expect that these three
criteria can be applied to experimental graphs as well if ϕ represents
the gray scale of the image.

Figure 4(d) depicts the comparison between theoretical and
simulation results for contact angle greater than 150○ with three
different measurements. As an example, the wall energy formula-
tion H1 is considered here for the comparative study. The solid and
dashed lines represent the theoretical results without and with the
influence of fvp, denoted as θ∗ and θ∗fvp

, respectively. The theoret-
ical results are obtained via Eq. (19) with the modified interfacial
tensions γ∗gs and γ∗ls . The circle, square, and triangle symbols indi-
cate the PF simulation results corresponding to macroscopic, semi-
macroscopic, and microscopic measurements, which are denoted as
θsim0 , θsim1 , and θsim2 , respectively. It is observed that the microscopic

FIG. 4. (a)–(c) Schematics of three different measurements of the contact angle for
the simulation results: (a) Macroscopic contact angle via θsim0

= arccos ( H
R
). The

parameters R and H are determined by fitting a circle of the interface with three ran-
dom points P0 given by the locus of ϕ = 0.5. (b) Semi-macroscopic contact angle
θsim1

= arctan ( H
L
), where the base radius L is determined by the local interface

point P1 on the substrate with the condition of ϕ = (ϕs1
+ϕs0

)sim

2
. (c) Microscopic

contact angle via θsim2
= arctan ( 1

X2−X1
), where X1 and X2 are the X -coordinates

of the interface points with ϕ = (ϕs1
+ϕs0

)sim

2
and ϕ = 0.5, respectively. (d) Contact

angle as a function of the parameters Δγ for the wall energy type of H1. Theo-
retical results are shown by the dashed and solid lines, denoted as θ∗ and θ∗fvp

,

respectively, with and without the influence of volume preservation term fvp. Sim-
ulation results are represented by circles (θsim0

), squares (θsim1
), and triangles

(θsim2
) corresponding to the measurements (a)–(c), respectively.

contact angle θsim2 significantly deviates from the theoretical results.
Consequently, in the subsequent discussion, we exclude the micro-
scopic measurement and focus on the other two techniques. The
macroscopic and semi-macroscopic methods both provide accurate
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FIG. 5. Comparison of the simulated and theoretical contact angle for three different wall energy forms. Here, θ∗fvp
stands for the theoretical contact angle with the consideration

of the influence of the volume preserve term fvp. (a) and (b) are for H0 and H1, where the modified Young’s law is applied; (c) is for H2, the wall layer is eliminated.

representations of the contact angle in comparison with the theo-
retical value. A closer look at Fig. 4(d) shows that the macroscopic
contact angle θsim0 is closer to the theoretical values θ∗fvp

with the
effect of fvp. This outcome can be attributed to the fact that the vol-
ume preservation term fvp is associated with the redistribution of the
mean curvature, resulting in a circular arc at the equilibrium state,
which essentially echoes the macroscopic measurement. The semi-
macroscopic contact angle θsim1 shows a better accordance with θ∗,
since the consideration of the surface composition can lead to a devi-
ation of the interface from a circular shape in the vicinity of the triple
junction.

Figure 5 compares the theoretical and simulation results for the
contact angles as a function of Δγ for three different formulations
of the wall free energy. In Figs. 5(a)–5(c), the dotted lines depict
the expected contact angle θ calculated through Young’s law with
cos θ = Δγ

γlg
. In this case, the interfacial tensions do not include the

additional excess energy. The solid and dashed lines represent the
theoretical results θ∗ and θ∗fvp

. The theoretical results are obtained
by applying Young’s law with the modification of the interfacial
tensions γ∗gs and γ∗ls when surface composition appears. The right-
half-circle and left-half-square symbols indicate the PF simulation
results corresponding to the macroscopic and semi-macroscopic
measurements, respectively. Both theoretical contact angles show
very good agreement with the simulation results for all three types
of the wall free energy. Noteworthily, in Fig. 5(b), the dashed line
(θ∗fvp
) and solid line (θ∗) display relatively larger deviations when

Δγ < −0.8. A magnification of this area has been shown in Fig. 4(d).
The difference of θ∗fvp

and θ∗ when Δγ > 0.8 is less than that for
Δγ < −0.8. This observation demonstrates that fvp plays a more
important role on superhydrophobic substrates than on superhy-
drophilic substrates due to the different mean curvature of the
droplet associated with the volume preservation.

It should be noted that in Figs. 5(a) and 5(b), within the range
of θ ∈ [50○, 130○], the simulation results are well consistent with the
unmodified Young’s law cos θ = Δγ

γlg
and the deviation is less than

2○. We denote the range of θ ∈ [50○, 130○] as region I; outside this
range is depicted by region II. In I, the desired contact angle can
be achieved by directly applying Δγ since the modification of the

interfacial tensions γgs and γls is not needed. In II, the contact angle
θsim from simulation deviates from the expected value calculated
through cos θ = Δγ

γlg
and the modification of the interfacial tensions

γgs and γls is essential. Without the modification, the resulting con-
tact angles (θsim, θ∗) significantly deviate from θ [see Figs. 5(a) and
5(b)]. The contact angle should be amended as cos θ∗ = Δγ∗

γlg
. For the

wall energy formulations with H0 and H1, the simulation results θsim0

exhibit excellent agreement with the theoretical results θ∗fvp
with a

deviation less than 3.2○. The best agreement between θsim, θ, and
θ∗ is observed for the wall energy formulation with H2, as demon-
strated in Fig. 5(c). The reason is that the excessive free energy at

TABLE III. The difference between the desired θ via Young’s law and obtained by
simulation θsim with different wall energy formulations.

θsim
b

Δγ θa H0 H1 H2

−1.50 180.00 180.00 165.01 178.30
−1.10 180.00 176.84 158.99 179.02
−0.98 168.52 156.89 156.4 165.27
−0.90 154.16 147.37 154.86 152.09
−0.80 143.13 138.96 152.07 142.02
−0.60 126.87 125.63 126.6 127.27
−0.40 113.58 113.33 113.45 114.34
0.00 90.00 90.13 89.87 90.21
0.40 66.42 66.93 67.54 66.65
0.60 53.13 55.04 53.80 52.69
0.80 36.87 41.84 38.36 39.34
0.90 25.84 34.03 28.94 30.59
0.96 16.26 28.55 26.60 24.54
1.10 0.00 9.83 24.48 1.20
1.50 0.00 0.97 20.74 0.76

acos θ = Δγ
γlg

, when ∣Δγ∣ ≥ 1, considered as complete wetting.
bFor brevity, we here adopt θsim0 as simulation results.
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the substrate is removed by properly formulating the wall energy
density.

Table III illustrates the disparity between the simulated contact
angle θsim and the expected contact angle θ. Significant differences
are only observed in II. Although the results for H0 show good
consistency with Young’s law, the applicability of H0 is limited
to a specific range of ∣Δγ∣. A large value [∣Δγ∣ > max(Π1)] leads
to the absence of solutions in Eq. (14) in region II for H0 wall
energy form. The wall energy density with H1 exhibits the great-
est deviation between the desired contact angle θ and θsim in the
complete wetting regions. The complete wetting behavior must be
achieved by utilizing a very large value of ∣Δγ∣. The H2 form demon-
strates the highest consistency with Young’s law. Directly applying
Δγ into the WBC with H2 wall energy form can yield a small dif-
ference Δθ = ∣θ − θsim∣, even in superhydrophobic/superhydrophilic
situations. However, it is worth mentioning that when applying
H2 in the WBC, one should avoid the singularity with ∣Δγ∣ = 1.
As depicted in Table III, except for the point where ∣Δγ∣ ≃ 1, the
difference Δθ between the desired and simulated contact angles is
within 4.8○.

C. Initial states
In this section, we compare simulations initially with a com-

plete circle and a half circle on the substrate. For both initial
conditions, the final equilibrium states are most identical except
when the H1 wall energy is applied. As a typical example, the sim-
ulation snapshots for H1 form with Δγ = −0.8 with different initial
shapes of droplets are displayed in Fig. 6. The black dashed line in
the left panel of Fig. 6 depicts an initial state of a complete circle,
leading to the surface composition ϕs1 ,sim = 0.37, and a contact angle
of θsimI = 150.4○ at equilibrium state. The black dashed line in the
right panel of Fig. 6 illustrates an initial state of a half circle, which
results in the surface composition ϕs1 ,sim = 1 and the contact angle
θsimII = 141.4○ in the final state. In the former case, one has to mod-
ify the liquid-solid interfacial tension by taking the surface excess
energy into account, leading to the deviation of θsimI from θ. In the
latter case, there is no need to modify the liquid-solid interfacial ten-
sion and the simulation results θsimII show good agreement with θ.
The noteworthy disparity between θsimI and θsimII is about 9○, high-
lighting the sensitivity of the final equilibrium state to the initial
shapes of the droplet when the wall free energy formulation of H1 is
applied. The reason for the difference of θsimI and θsimII is that there
are two local minima for the surface energy when applying the H1
form wall free energy, as depicted in Fig. S3(a) (see supplementary
material).

When applying the H1 form as the WBC for a dynamic wetting
process, it is worth to discuss the influence of the initial state and
dynamics on the apparent contact angle [see Eq. (17) of Ref. 47].
A change in the equilibrium contact angle will definitely affect the
relaxation process towards the equilibrium state. Moreover, within
the context of dynamic wetting processes, a slip/wall velocity is often
applied to emulate the wetting phenomena, as described in previous
studies.19,47,48 In accordance with Jacqmin’s discussion [Eq. (2.16) in
Ref. 19], the slip velocity is proportional to the gradient of the wall
chemical potential, which is nothing but the variational derivative of
the wall free energy with respect to the composition. Therefore, the
wall velocity and the associated dynamics are crucially affected by

FIG. 6. Simulation results of two distinct initial states for H1 wall free energy with
Δγ = −0.8. Left: the initial droplet is a complete circle; right: the initial droplet is a
half circle. The resulting equilibrium contact angles are denoted as θsimI and θsimII .
By modifying the initial filling from a complete circle to a half circle, the surface
composition transforms from 0.37 to 1, and the equilibrium contact angle changes
from 150.4○ to 141.4○.

the formulation of the wall free energy and the resulting wall chemi-
cal potential. Notably, the utilization of the H1 form within the WBC
allows the surface composition effect, exhibiting distinct character-
istics when compared to the wall energy formulations employed in
Refs. 19, 47, and 48, where the surface compositions are constrained
to match the bulk values. Thus, these corresponding effects on
the dynamic wetting process warrant further exploration in future
studies.

IV. CONCLUSION
In this work, an Allen–Cahn type phase-field model with three

different formulations of wall free energy is used to investigate the
equilibrium wetting state of a droplet on a solid substrate. All of the
wall energy formulations have an excellent consistency with Young’s
law within the range of 50○ ≲ θ ≲ 130○. Within this range, we can
directly obtain the desired contact angle in accordance with Young’s
law by applying the input parameter Δγ = γgs − γlg in simulations.
Beyond this range, due to the existence of the surface composition
and the associated excess free energy, the parameter Δγ can not be
directly used to calculate the contact angle. Instead, by modifying
the interfacial tensions γgs and γls, the contact angle θ∗ can be calcu-
lated through applying the modified parameter γ∗gs − γ∗lg to Young’s
law. It has been proved that simulation results for the contact angles
show very good agreement with the theoretical contact angle θ∗.
Additionally, we investigate the influences of the volume preserve
term fvp of the Allen–Cahn model in wetting scenarios, which is
proved to play a significant role in superhydrophobic situations. This
conclusion aligns with the definition of fvp, which reflects the cur-
vature effect. For a droplet with the same volume, the equilibrium
base radius for superhydrophobic setup is smaller than that for a
superhydrophilic surface, so that the influence of fvp is more pro-
found for superhydrophobic setups. The three wall energy forms in
WBCs show different advantages and shortcomings. Both H0 and
H1 allow the existence of surface compositions, therefore, to real-
ize the desired contact angle, the interfacial tensions between solid
and liquid/gas (γls and γgs) should be carefully calculated and Δγ
should be accordingly adjusted in the simulation setup. H2 provides
a suitable alternative that aligns well with Young’s law results and
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avoid the surface composition effect so that no modification to γls
and γgs is needed. However, it is worth noting that applying H2 into
the WBC should avoid the singularity point with Δγ ≃ 1. Finally, the
evident difference of the equilibrium contact angle for the two dif-
ferent initial states when applying H1 wall free energy casts light on
the contact angle hysteresis. It is worth to further discuss the influ-
ences of this form of wall free energy on the contact angle relaxation
process during dynamic wetting process by allowing the existence
of surface compositions in next steps. To sum up, our investiga-
tion in this work discusses the disparity between the commonly
used WBCs and the Young’s law. Through appropriate modification
to the model, a significant increase in the precision of the contact
angles in simulations can be achieved. Our work provides essential
guidelines for improving the accuracy of modeling of the wetting
contact angles for a wide range, especially in superhydrophobic and
superhydrophilic situations.

SUPPLEMENTARY MATERIAL

The supplementary material document presents the numerical
convergence of the model, the solution of the surface composition,
the derivation of Young’s law and the parameter Δχ for the diffuse
interface model, and a table showing the surface compositions in
different WBCs with varying Δγ.
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