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Introduction

At Karlsruhe Institute of Technology, there is a significant

interest in analyzing SMR cores; For this, It will be used the

AZTRAN code (SN) [1] and the in-house PARAFISH code

(PN) [2].

AZTRAN is a deterministic three-dimensional time-dependent

parallel neutron transport code based on spatial domain

decomposition.

For verification, the well-known C5G7-TD Benchmark [3]

was considered for testing the AZTRAN transient capabilities

since it provides a complex and heterogeneous core without

spatial homogenization.
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Conclusions

• The results obtained by AZTRAN achieve good agreement and consistent results

compared with the well-known MPACT code.

• Increasing the spatial-angular resolution can minimize the differences observed in the 3D

case, but this will increase the computational burden (A powerful workstation is required).

• The Flux Weighting method can mitigate the cusping effect efficiently without significant

compuational effort.

• The verification demostrates AZTRAN´s capability to simulate transient calculations with

acceptable accuracy, making it a reliable tool for nuclear analysis.
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TD3 exercise (2D): Varation of moderator density in the 

fuel assiemblies.

TD4 exercise (3D): Insertion/withdrawal of one or several 

control rod banks.

Convergence criteria: Steady-state= 10-08 Time-dependent= 10-06

The results were compared with the MPACT code [5].


