

Karlsruhe Institute of Technology

Analysis of C5G7-TD benchmark with the AZTRAN code

Julian Duran-Gonzalez^{*1}, Victor Sanchez-Espinoza¹, Armando Gomez-Torres², Edmundo del Valle-Gallegos³

¹ Karslruhe Institute of Technology, INR, Hermann-von-Helmhholtz-Platz 1,76344 Eggenstein-Leopoldshafen, Germany ² Instituto Nacional de Investigaciones Nucleares, DSN, Carretera México-Toluca S/N, 52750 Ocoyoacac, Mexico ³ Instituto Politécnico Nacional, ESFM, Avenida IPN S/N, 07738 Gustavo A. Madero, Mexico * Corresponding author: julian.gonzalez@kit.edu, +49 721 608-22638

Introduction

At Karlsruhe Institute of Technology, there is a significant interest in analyzing SMR cores; For this, It will be used the AZTRAN code (S_N) [1] and the in-house PARAFISH code (P_N) [2].

AZTRAN Discretization

Boltzmann equation

AZTRAN is a deterministic three-dimensional time-dependent parallel neutron transport code based on spatial domain decomposition.

For verification, the well-known C5G7-TD Benchmark [3] was considered for testing the AZTRAN transient capabilities since it provides a complex and heterogeneous core without spatial homogenization.

Model

Exercise	TD3	TD4*
Spatial configuration	5×5	3×3
Angular approximation	C	C

Results

Exercise

TD3-1

TD3-2

TD3-3

TD3-4

C5G7-TD3 exercises

Conclusions		References	
•	The results obtained by AZTRAN achieve good agreement and consistent results compared with the well-known MPACT code.	[1] J. A. Duran-Gonzalez. Development of an Upgraded Version of AZTRAN: A 3D Parallel Sn Transport Code for Light Water Reactor Analysis. Ph.D. thesis, Instituto Politécnico Nacional (2021).	
•	Increasing the spatial-angular resolution can minimize the differences observed in the 3D case, but this will increase the computational burden (A powerful workstation is required).	[2] S. Van Criekingen, F. Nataf, and P. Have. "PARAFISH: A parallel FE–PN neutron transportsolver based on domain decomposition." Annals of Nuclear Energy, 38(1), pp. 145-150(2011).	
•	The Flux Weighting method can mitigate the cusping effect efficiently without significant compuational effort.	 [3] J. (Jia) Hou, K. N. Ivanov, V. F. Boyarinov, and P. A. Fomichenko. "OECD/NEA benchmark for time-dependent neutron transport calculations without spatial homogenization." Nuclear Engineering and Design, volume 317, pp. 177–189 (2017). [4] J. C. Gehin. A quasi-static polynomial nodal method for nuclear reactor analysis. Ph.D. 	
•	The verification demostrates AZTRAN's capability to simulate transient calculations with acceptable accuracy, making it a reliable tool for nuclear analysis.	[5] Q. Shen, Y. Wang, D. Jabaay, B. Kochunas, and T. Downar. "Transient analysis of C5G7- TD benchmark with MPACT." Annals of Nuclear Energy, volume 125, pp. 107–120 (2019).	

