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Abstract

As a joint explanation for the dark matter (DM) problem and the muon (g − 2)
anomaly, we propose a simplified model of lepton-flavoured complex scalar DM with
couplings to both the left- and right-handed leptons of the Standard Model (SM).
Both interactions are governed by the same new flavour-violating coupling matrix λ,
however we allow for a relative scaling of the coupling strength. The SM is further
extended by two fermion representations, transforming as an SU(2)L doublet and
singlet, respectively, and mediating these interactions. The fermions additionally
couple to the SM Higgs doublet via a new Yukawa coupling. To study the model’s
phenomenology we first investigate constraints from collider searches, flavour exper-
iments, precision tests of the SM, the DM relic density, and direct as well as indirect
detection experiments individually. We then perform a combined analysis by demand-
ing that all mentioned constraints are satisfied simultaneously. We use the results of
this combined analysis and examine if the model is capable of accommodating the
(g − 2)µ anomaly within its viable parameter space without introducing fine-tuned
lepton masses. For all benchmark scenarios we consider, we find that the central
value of ∆aexpµ can be reached without generating too large corrections to the lep-
ton masses. We hence conclude that this model qualifies as a viable and attractive
lepton-flavoured DM model that at the same time solves the (g − 2)µ anomaly.
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1 Introduction

Within the wide range of different DM candidates [1], those predicted by models which are
capable of addressing other problems, puzzles or anomalies of physics appear particularly
appealing. Among the latter, the discrepancy between experimental measurements [2] and state
of the art SM predictions [3] of the muon anomalous magnetic dipole moment aµ currently
constitutes one of the most significant hints at new physics (NP) and is referred to as the
muon (g − 2) anomaly. In order to reconcile solutions to these two problems, models of DM
coupling to the leptonic sector of the SM are worth investigating. In fact, flavoured dark matter
(FDM) models, coupling to either SM quarks or leptons, have proven to generally exhibit a
rich phenomenology and have been the subject of many previous studies [4–13].

In FDM models the DM field – as the name already suggests – carries flavour and thus
comes in multiple (usually three) generations. As this potentially also allows for strongly
constrained new sources of flavour violation, early studies of such models have been restricted
to the Minimal Flavour Violation (MFV) framework [14–19] in which all new flavour violating
interactions are expressed in terms of the SM Yukawa couplings. As this approach yields a
highly constrained flavour structure for the coupling matrix λ that governs the interactions
between DM and the SM, more general studies [20–26] have been performed within the Dark
Minimal Flavour Violation (DMFV) framework presented in [20]. This framework allows for
a generic flavour structure of λ by proposing that it constitutes the only new source of flavour
violation besides the SM Yukawa couplings.

Within the context of the muon (g − 2) anomaly, lepton-flavoured DM models [27–30] are
of particular interest, since they assume the DM field to couple to leptons and can therefore
generate potentially sizable contributions to (g − 2)µ. Thus, the main subject of the present
study is a lepton-flavoured DM model which extends the model presented in our previous pa-
per [26]. There we had studied a lepton-flavoured complex scalar DM model within the DMFV
framework in which DM coupled to the right-handed charged leptons through the exchange of
a charged vector-like fermion. While that model has a rich and interesting phenomenology, due
to the chiral structure of the model, we found the new contributions to the muon anomalous
magnetic moment to be negligible. Hence, in this paper we extend the model from [26] by
an additional mediator field and its interactions: the field content is extended by a vectorlike
fermionic SU(2)L doublet containing one neutral and one charged state which couple DM to
the SM left-handed lepton doublets. We further couple this new fermionic doublet and the
charged fermion singlet mediating the DM interactions with the right-handed charged leptons
to the SM Higgs doublet through a new Yukawa coupling yψ.

1 This model does not belong to
the DMFV class as its coupling structure is inconsistent with the DMFV flavour symmetry as-
sumptions, due to the additional left-handed interactions. Yet, in order to keep the number of
new coupling parameters manageable, we assume the interaction between DM and left-handed
leptons to be governed by the same coupling matrix λ as the right-handed interactions. How-
ever, we allow for a scaling of this coupling in terms of a parameter ξ in order to overcome the
ad-hoc nature of choosing the couplings of right- and left-handed interactions to be equal.

We start our analysis by introducing the details of the model described above and especially
presenting its mass spectrum. We then study its phenomenology by subsequently analysing
constraints from collider searches, flavour experiments, precision tests of the SM, the DM relic

1A solution to the (g − 2)µ anomaly with similar field content, but without the flavour structure and DM
interpretation, has previously been investigated in [31,32].
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density, and direct as well as indirect DM detection experiments. Subsequently, we perform a
combined analysis in which we demand that all constraints are satisfied simultaneously in order
to determine the viable parameter space of the model. Finally we examine if this model can
generate sizeable contributions to the muon anomalous magnetic moment aµ, keeping an eye on
potentially large accompanying corrections to the muon mass that could introduce fine-tuning
and hereby render this solution to the (g − 2)µ anomaly unattractive.

2 Model Setup

We use this section to present our simplified lepton-flavoured DM model coupling to both left-
and right-handed leptons, pointing out important differences to DMFV models and discussing
its mass spectrum in particular.

2.1 Lepton-Flavoured DM with Left- and Right-Handed Couplings

We propose a simplified model which extends the SM by three complex scalar fields and
two fermion representations. The scalar fields are contained in the dark flavour triplet ϕ =
(ϕ1, ϕ2, ϕ3)

T and have quantum numbers (1,1, 0)0, where we use the short-hand notation
(SU(3)c, SU(2)L, U(1)Y )spin. They couple to the SM’s left- and right-handed lepton fields
through the doublet Ψ = (ψ0, ψ

′
1)
T with quantum numbers (1,2,−1/2)1/2 and the singlet ψ′

2

which transforms as (1,1,−1)1/2, respectively. The two new fermion fields are additionally
Yukawa-coupled to the SM Higgs doublet H. We assume that the lightest generation of ϕ
constitutes the observed DM in the universe. An overview of the NP fields and their represen-
tations under the SM gauge group is given in Table 2.1. We further assume the new fields ϕ,
Ψ and ψ′

2 to be charged under a discrete Z2 symmetry. The Lagrangian of this model reads

L =LSM + Ψ̄(i /D −mΨ)Ψ + ψ̄′
2(i /D −mψ)ψ

′
2 + (∂µϕ)

†(∂µϕ)− ϕ†M2
ϕϕ

− (λRij ℓ̄Riψ
′
2 ϕj + λLij L̄iΨϕj + yψ Ψ̄ψ

′
2H + h.c.)

+ λHϕ ϕ
†ϕH†H + λϕϕ

(
ϕ†ϕ

)2
. (2.1)

Here, the couplings λR/L are complex 3× 3 matrices. In order to keep the total number of free
parameters manageable, we assume that the left-handed coupling λL is related to λR through

λL = ξ λR = ξ λ , (2.2)

i.e. left- and right-handed couplings are equal up to a scaling parameter ξ. In this way we ensure
that the NP couplings to the SM lepton sector are governed by a single new flavour-violating
matrix λ. We note that, while similar to the DMFV ansatz, this simplifying assumption can
not be traced back to a new flavour symmetry. To overcome its rather ad-hoc nature and to
ensure that the entirety of the model’s phenomenology is captured in our analysis, we allow
ξ to be a complex number such that effects due to a relative phase between λR and λL can
still be present. Note that the scaling parameter ξ is particularly relevant in Section 4, where
we discuss constraints from lepton flavour violating (LFV) decays, as large contributions from
diagrams with a chirality flip in the loop can be suppressed through ξ. At the same time
ξ should not suppress left-handed interactions too strongly, as equivalent chirality-flipping
contributions to the muon anomalous magnetic moment aµ are needed in order to generate

4



Field Definition SU(3)C SU(2)L U(1)Y Spin

ϕ (ϕ1, ϕ2, ϕ3)
T 1 1 0 0

Ψ (ψ0, ψ
′
1)
T 1 2 −1/2 1/2

ψ′
2 – 1 1 −1 1/2

Table 2.1: NP fields and their definitions as well as their representations under the SM gauge
group.

sizeable NP effects within the mass ranges allowed by collider searches. We provide a detailed
discussion of this interplay of different constraints and their impact on the scaling parameter
ξ in our phenomenological analysis.

The mass parameters mΨ and mψ as well as the mass matrix Mϕ are discussed in detail in
Section 2.2. While the coupling λϕϕ is only given for completeness here and has no impact
on our analysis, the Higgs portal coupling λHϕ actually bears relevance that we comment on
whenever necessary.

Contrary to the models studied in [20–25] and especially in [26], where the DM triplet had
purely right-handed interactions with the SM fermion sector, in the present model, there is no
flavour symmetry that the DM flavour triplet ϕ can be associated with, due to its couplings to
both left- and right-handed leptons in eq. (2.1). Thus, all parameters of the matrix λ remain
physical, and we write it in terms of nine real parameters and nine complex phases, i.e.

λij = |λij | ei δij . (2.3)

This yields a total number of 18 physical parameters that the coupling matrix λ depends on,
which together with the mass parameters mΨ, mψ and the three mϕi as well as the Yukawa
coupling yψ and the scaling parameter ξ amounts to a total number of 26 free parameters. To
ensure perturbativity and avoid a double-counting of the parameter space we will scan over
the ranges

|λij | ∈ [0, 2] , δij ∈ [0, 2π) , yψ ∈ [0, 2] , |ξ| ∈ (0, 1] , δξ ∈ [0, 2π) , (2.4)

in our phenomenological analysis. Note that the Yukawa coupling yψ can be taken real and
non-negative without loss of generality. We restrict the absolute value of ξ to be smaller
than one, since we consider this model as an extension of the one studied in Reference [26] to
reproduce the experimental value of the muon anomalous magnetic moment (g−2)µ. Therefore
we assume the right-handed lepton coupling to be dominant, i.e. |ξ| ≤ 1.

2.2 Mass Spectrum and DM Stability

The Yukawa interaction between Ψ, ψ′
2 and the Higgs doublet H in eq. (2.1) introduces a

mixing of the charged fermions ψ′
1 and ψ′

2 with the corresponding mass matrix

Mψ =

(
mΨ

v yψ√
2

v yψ√
2

mψ

)
, (2.5)
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where v = 246GeV is the vacuum expectation value of the Higgs field. Using the ansatz(
ψ′
1

ψ′
2

)
=

(
cos θψ − sin θψ
sin θψ cos θψ

)(
ψ1

ψ2

)
, (2.6)

we diagonalize this mass matrix to find the eigenvalues

mψ1 =
1

2

(
mΨ +mψ +

√
(mΨ −mψ)2 + 2 y2ψv

2
)
, (2.7)

mψ2 =
1

2

(
mΨ +mψ −

√
(mΨ −mψ)2 + 2 y2ψv

2
)
, (2.8)

with the corresponding mixing angle

θψ =
1

2
arccos

 (mΨ −mψ)√
(mΨ −mψ)2 + 2 y2ψv

2

 . (2.9)

We can then write the Lagrangian from eq. (2.1) in terms of the mass eigenstates ψ1 and ψ2

and find

L =LSM + ψ̄0(i /D −mψ0)ψ0 + ψ̄1(i /D −mψ1)ψ1 + ψ̄2(i /D −mψ2)ψ2 + (∂µϕ)
†(∂µϕ)

− ϕ†M2
ϕϕ+ λHϕ ϕ

†ϕH†H + λϕϕ

(
ϕ†ϕ

)2
−
{
ξλij ν̄iPRψ0ϕj + h.c.

}
−
{
λij ℓ̄i [(cos θψPL − ξ sin θψPR)ψ2 + (sin θψPL + ξ cos θψPR)ψ1]ϕj + h.c.

}
− yψ√

2

{
sin 2θψ

[
ψ̄1ψ1 − ψ̄2ψ2

]
h+ cos 2θψ

[
ψ̄1ψ2 + ψ̄2ψ1

]
h
}
, (2.10)

where we additionally defined mψ0 = mΨ. The absence of a global flavour symmetry also has
implications for the DM mass matrixM2

ϕ, as it cannot be parametrized by λ through the usual

DMFV spurion expansion [20]. We thus choose M2
ϕ to be diagonal by writing

M2
ϕ = diag(m2

ϕ1 ,m
2
ϕ2 ,m

2
ϕ3) , (2.11)

which we complement by the conventional hierarchy mϕ1 > mϕ2 > mϕ3 .
2 Note that in contrast

to the models presented in [20–26], here the masses mϕi are free parameters3 which in turn
means that the mass splittings between different dark flavours are not restricted. However,
to keep the results of our analysis comparable to the studies performed in [20–26] we restrict
them to a maximum of 30%. To ensure that the lightest state ϕ3 is stable we additionally
impose a Z2 symmetry under which only the new fields ϕi and ψα

4 are charged, such that their
decays into SM-only final states are forbidden. This guarantees that ϕ3 is stable as long as it
constitutes the lightest NP state. We further choose to work with the convention mψ1 ≥ mψ2 .
Since the mixing between the two charged mediators ψ1,2 implies that one of them is heavier

2In general, M2
ϕ receives a correction from the Higgs portal coupling λHϕ after EW symmetry breaking.

Since we assume λHϕ to be negligible throughout our analysis, we omit this term here.
3We assume the masses mϕi to include radiative corrections, i. e. we take them to be the renormalised

on-shell masses.
4We use Greek indices when generally referring to any of the mass eigenstates ψ0, ψ1 and ψ2 throughout

this analysis. This should not be confused with the usual convention of using Greek letters as spinor indices.
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Figure 3.1: Feynman diagrams for the production of ψ̄αψβ pairs through a Drell-Yan process
mediated by electroweak gauge bosons or by a Higgs boson produced by gluon
fusion.

than the neutral state ψ0 while the other is lighter, we thus always have the hierarchy

mψ1 ≥ mψ0 ≥ mψ2 > mϕ3 . (2.12)

Recall that ψ0 is neutral while ψ1,2 carry electric charge -1. We further work in the limit of
zero neutrino masses mνi throughout this analysis, which holds to an excellent approximation.

3 Collider Phenomenology

Collider searches place important constraints on the mass parameters of the new particles
ψα and ϕi. We use this section to discuss the implications of LHC searches for the parameter
space of our model. To reconcile our analysis with results from the LEP experiments [33,34] we
assume that the charged mediators are heavier than 100GeV, i.e. we choose mψ1/2

> 100GeV.

3.1 Relevant LHC Signatures

The annihilation of a quark and an antiquark from the initial state protons into an off-shell
electroweak boson or photon gives rise to the production of mediator pairs ψ̄αψβ with α, β ∈
{0, 1, 2}. This is shown in Figure 3.1. Here the indices depend on the off-shell s-channel
boson—mixed pairs of ψ0 and either ψ1 or ψ2 can only be produced if the Drell-Yan process
is mediated by a W boson, while the production of mixed pairs of ψ1 and ψ2 is mediated by
h or Z. Also, only a Z boson can decay into the state with a ψ0 pair.
The subsequent decay of the fermions ψα shown in Figure 3.2 then gives rise to several

signatures depending on the constellation of the intermediate state explained above. While
the charged mediators ψ1,2 decay into a charged lepton and a dark scalar, the neutral mediator
ψ0 decays into a neutrino and a dark scalar and leaves no trace in the detector. We thus
obtain mono- as well as di-lepton signatures in association with missing transverse energy.
Other possible signatures arise from cascade decays of the heavier mediators ψα into lighter
mediators ψβ and a W , Z or Higgs boson. The subsequent decay of the gauge boson into
leptons and the lighter mediator’s decay into a lepton and a dark scalar then give rise to
signatures with three or more charged leptons and missing energy. Collecting all these decay
channels, we find the following relevant processes for LHC searches:

pp → ψ̄0ψα → ν̄iℓjϕ
†
kϕl ,

pp → ψ̄αψβ → ℓiℓ̄jϕ
†
kϕl ,

7



�j, νj

φi

ψα

ψβ

W,Z

ψα

Figure 3.2: Feynman diagrams for the decay of ψα into leptons and dark matter (left) and
gauge bosons and lighter mediators ψβ with mψβ < mψα (right). For the latter
we only show decays into electroweak gauge bosons and ψβ while decays into a
Higgs boson and ψβ are possible as well.

pp → ψ̄0ψ1 → ν̄iℓ̄jℓjℓkϕ
†
lϕm ,

pp → ψ̄0ψ2 → ℓ̄j ν̄iℓiℓkϕ
†
lϕm , (3.1)

where α, β ∈ {1, 2} and i, j, k, l and m are flavour indices. Here we have omitted charge
conjugated processes and final states with more than three leptons for brevity. In total these
processes yield the signatures ℓi + /ET , ℓiℓ̄j + /ET , ℓ̄iℓiℓj + /ET and ℓ̄iℓjℓk + /ET .

Since existing searches for the mono-lepton signature [35,36] consider NP cases with different
kinematics, a proper recasting would be in place in order to derive meaningful constraints on
our model’s parameter space. Additionally, the mono-lepton signature suffers from a large
SM background stemming from s-channel W production with subsequent decay into a charged
lepton and a neutrino. We thus expect this signature to yield subleading constraints and
therefore ignore it in our analysis. The signatures ℓ̄iℓiℓj + /ET and ℓ̄iℓjℓk + /ET only differ by
the case with i ̸= j ̸= k, i.e. the case with an electron, a muon and a tau in the final state. The
latter final states are correlated with the strongly constrained LFV decays in many models, such
as supersymmetry, and therefore no dedicated LHC searches are available. Existing searches
for the signature ℓ̄iℓiℓj + /ET again exhibit different final state kinematics [37], such that a
thorough recasting is necessary in order to derive applicable constraints for our model, which
we leave for future work. We thus focus on the di-lepton+/ET signature in this work.
Lastly, we neglect mixed-flavour final states with i ̸= j in this analysis although, in contrast

to non-flavoured DM models, these signatures do not require flavour violation in the coupling
matrix that governs the interaction between DM and the SM in our model. In doing so, we
follow the results of our analysis in [26] stating that searches in same-flavour final states already
exclude the region of the parameter space in which the mixed-flavour final states yield rates
comparable to the SM background. This leaves us with the signatures eē + /ET , µµ̄ + /ET
and τ τ̄ + /ET . As we showed in [26], searches for final states with a pair of taus [38] can
be neglected as well, since they yield significantly weaker limits than searches for final states
with light leptons. Those final states are constrained by searches for supersymmetric scalar
leptons (sleptons) of the first and second generation, which in SUSY models are pair-produced
and subsequently decay into a neutralino and a charged lepton. This leads to the relevant
signature ℓℓ̄ + /ET with ℓ = e, µ, where in the experimental analyses µ − e universality is
commonly assumed.

8



3.2 Recast of LHC Limits

Amongst several experimental searches for sleptons in final states with two charged leptons and
missing transverse energy [39–42] the CMS search in [39] places the strongest constraints on
the parameter space of our model. This search uses the full run 2 data set with an integrated
luminosity of 137 fb−1. In order to properly recast the bounds from [39] which we obtained
from the SModelS [43] database, we implement the Lagrangian from eq. (2.1) in FeynRules [44].
Using this implementation we generate a UFO file [45] and calculate the leading-order signal
cross section of the relevant process in MadGraph 5 [46]. To constrain the parameter space of
our model we then compare the signal cross section to the experimental upper limit obtained
from the above mentioned searches. In doing this, we neglect the impact of the potentially
different final-state kinematics due to the different spin-statistics in our model relative to the
SUSY case.

In our numerical analysis of the LHC constraints we follow [20–26] and ignore possible
mass splittings between the different dark flavours mϕi discussed in Section 2.2, as small
splittings only lead to additional soft and therefore difficult-to-detect decay products. We
further neglect flavour-violating effects and consider a diagonal coupling matrix λ. Allowing
for flavour-violating effects, i.e. off-diagonal elements in λ would reduce the branching ratio of
a given flavour-conserving final state and therefore reduce its signal cross section. This in turn
weakens the exclusion in the mψ1,2 −mϕ plane, which we are primarily interested in. Finally,
we set |λe1| = |λµ2| = |λℓℓ| as required by the assumption of µ − e universality in the CMS
analysis.
Note that the value of the scaling parameter ξ defined in eq. (2.2) has no impact on the

signal cross section, as the relative size of left- and right-handed couplings does not change
the hierarchy between the couplings |λii| to different lepton flavours. This in turn means that
the branching ratios of the charged mediators are independent of ξ. We furthermore assume
the mixing between the charged mediators ψ1 and ψ2 to be maximal with θψ = π/4 which
corresponds to the case of equal gauge eigenstate mass parameters mΨ = mψ.
Also note that due to the existence of two charged mediators ψ1,2 in our model the limits

from the search mentioned above cannot be straightforwardly applied to our case. As a leading
order estimate we calculate the signal cross sections of the two processes pp→ ψ1ψ̄1 → ℓℓ̄+ /ET
and pp → ψ2ψ̄2 → ℓℓ̄+ /ET and compare each signal with the experimental upper limits from
Reference [39] to draw exclusion contours in both the mψ1 − mϕ and the mψ2 − mϕ plane5.
In doing so we neglect the contribution from the other mediator’s pair production as well as
the off-diagonal production of ψ1ψ2 pairs, which we expect all to only marginally increase the
exclusion in the above mentioned NP mass planes.
The results are shown in Figure 3.3. Here we overlay the exclusion in the mψ1 −mϕ as well

as the mψ2 −mϕ plane in a single graph by using the linear connection between the masses of
both charged mediators. In all four figures the excluded region shrinks for growing values of
|λτ3| as this increases the branching ratio of the charged mediators’ decay into a tau-antitau
pair and missing energy. The concomitant decrease of the decay rate into light lepton final
states yields a smaller exclusion. While increasing the value of the Yukawa coupling yψ has
no impact on the maximum extension of the exclusion contour, it has significant implications
for the exclusion of DM near the equal-mass threshold mϕ ≈ mψ2 . The former behaviour
indicates that the contributions to the signal cross section from Higgs mediated Drell-Yan

5Remember that for a maximum mixing angle θψ = π/4 the masses mψ1 and mψ2 are linearly connected
through mψ1 = mψ2 +

√
2yψv.

9



200 400 600 800 1000

mψ2 /GeV

200

400

600

800

m
φ
/

G
eV

mφ
=
mψ

2

|λτ3| = 0.5

|λτ3| = 1.0

|λτ3| = 1.5

|λτ3| = 2.0

200 400 600 800 1000

mψ1 /GeV

(a) yψ = 0.25

200 400 600 800 1000

mψ2 /GeV

200

400

600

800

m
φ
/

G
eV

mφ
=
mψ

2

|λτ3| = 0.5

|λτ3| = 1.0

|λτ3| = 1.5

|λτ3| = 2.0

400 600 800 1000

mψ1 /GeV

(b) yψ = 0.50

200 400 600 800 1000

mψ2
/GeV

200

400

600

800

m
φ
/

G
eV

mφ
=
mψ

2

|λτ3| = 0.5

|λτ3| = 1.0

|λτ3| = 1.5

|λτ3| = 2.0

400 600 800 1000 1200

mψ1 /GeV

(c) yψ = 0.75

200 400 600 800 1000

mψ2
/GeV

200

400

600

800

m
φ
/

G
eV

mφ
=
mψ

2

|λτ3| = 0.5

|λτ3| = 1.0

|λτ3| = 1.5

|λτ3| = 2.0

600 800 1000 1200

mψ1 /GeV

(d) yψ = 1.00

Figure 3.3: Constraints on the final state ℓℓ̄ + /ET for several values of yψ, |λℓℓ| = 2.0 and
maximum mixing with mΨ = mψ and θψ = π/4. The areas under the curves are
excluded.

processes are negligible. The exclusion in the soft final state region is due to contributions
from the heavier charged mediator ψ1. Due to the mass splitting between ψ1 and ψ2 given
as ∆mψ = mψ1 −mψ2 =

√
2yψv, the final state leptons are not produced softly if they stem

from the decay of the heavier mediator ψ1. In this part of the parameter space, we find that
the exclusion grows for increasing Yukawa couplings up to yψ ≃ 0.50, where the strongest
exclusion is obtained, as can be seen in Figure 3.3b. We further see in Figure 3.3b, Figure 3.3c
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and Figure 3.3d that the exclusions in the near-degenerate region reach their maximum for
0.50 ≲ yψ ≲ 1.00 and extend up to mϕ ≈ mψ2 ≃ 400GeV. Even larger values yψ ≳ 1.00 tend
to reduce the exclusion in this region, since they at the same time increase the mass splitting
∆mψ between ψ1 and ψ2. This means that for such large values of yψ even if mψ2 is small the
mass mψ1 grows sufficiently large to suppress the ψ̄1ψ1 pair production cross section below the
excluded range. Away from the equal mass threshold, we find that constraints from ℓℓ̄ + /ET
searches reach up to mediator masses mψ2 ≃ 750GeV, or mψ2 ≃ 400GeV if mϕ ≳ 400GeV.

4 Flavour Physics Phenomenology

Constraints from flavour physics experiments generally have a significant impact on the pa-
rameter space of flavoured DM models [20–26]. For the case of lepton-flavoured DM these
constraints come from LFV decays, in particular ℓi → ℓjγ, and have proven to be even
stronger [21, 26] than constraints from neutral meson mixing, which are relevant for quark
flavoured DM [20, 22–25]. As in our model the DM triplet couples to both right- and left-
handed leptons, the NP contribution to these decays gets enhanced by contributions with a
chirality flip inside the loop. In this section we carefully analyse the constraints and determine
which part of our model’s parameter space is consistent with experimental limits.

4.1 Lepton Flavour Violating Decays

In our analysis in Reference [26] we discussed the decay rates for the LFV process shown in
Figure 4.1 based on References [47,48] for a generic interaction Lagrangian of the form

Lint = cRij ℓ̄Riψϕj + cLij ℓ̄Liψϕj + h.c. , (4.1)

where ψ is a Dirac fermion with electric charge Qψ = −1 and the fields ϕi are scalars. For the
relevant branching ratios we found

BR(ℓi → ℓjγ) =
e2

64π

mℓi

Γℓi

(
|aRℓiℓjγ |

2 + |aLℓiℓjγ |
2
)
, (4.2)

with the coefficients6

aRℓiℓjγ =
mℓi

16π2

∑
k

(
mℓi

12m2
ϕk

cR∗
ik c

R
jkF (xk) +

mψ

3m2
ϕk

cL∗ik c
R
jkG(xk)

)
, (4.3)

aLℓiℓjγ =
mℓi

16π2

∑
k

(
mℓi

12m2
ϕk

cL∗ik c
L
jkF (xk) +

mψ

3m2
ϕk

cR∗
ik c

L
jkG(xk)

)
, (4.4)

where xk = m2
ψ/m

2
ϕk
. The loop functions F (x) and G(x) are defined in [47, 48] and can also

be found in [26]. Since our model contains two charged mediators, we obtain a total of four
coefficients, which read

aR,1ℓiℓjγ
=

mℓi

16π2

∑
k

(
mℓi sin

2 θψ
12m2

ϕk

λ∗ikλjkF (xk,1) +
mψ1ξ

∗ sin θψ cos θψ
3m2

ϕk

λ∗ikλjkG(xk,1)

)
, (4.5)

6Note that we use the convention in which the superscript refers to the chirality of the final state.
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�i �j

γ
ψα

φk

Figure 4.1: Feynman diagram for the LFV decay ℓi → ℓjγ. The index α here only refers
to the charged mediators, i.e. α ∈ {1, 2} while the indices i, j and k are flavour
indices. The contribution from the photon coupling to one of the SM leptons is
not shown.

aR,2ℓiℓjγ
=

mℓi

16π2

∑
k

(
mℓi cos

2 θψ
12m2

ϕk

λ∗ikλjkF (xk,2)−
mψ2ξ

∗ sin θψ cos θψ
3m2

ϕk

λ∗ikλjkG(xk,2)

)
, (4.6)

aL,1ℓiℓjγ
=

mℓi

16π2

∑
k

(
mℓi |ξ|2 cos2 θψ

12m2
ϕk

λ∗ikλjkF (xk,1) +
mψ1ξ sin θψ cos θψ

3m2
ϕk

λ∗ikλjkG(xk,1)

)
, (4.7)

aL,2ℓiℓjγ
=

mℓi

16π2

∑
k

(
mℓi |ξ|2 sin2 θψ

12m2
ϕk

λ∗ikλjkF (xk,2)−
mψ2ξ sin θψ cos θψ

3m2
ϕk

λ∗ikλjkG(xk,2)

)
, (4.8)

where xk,α = m2
ψα
/m2

ϕk
. The relevant branching ratio is given in this notation as

BR(ℓi → ℓjγ) =
e2

64π

mℓi

Γℓi

(
|aR,1ℓiℓjγ

+ aR,2ℓiℓjγ
|2 + |aL,1ℓiℓjγ

+ aL,2ℓiℓjγ
|2
)
. (4.9)

We use these expressions to constrain the parameter space of our model in the following section.

4.2 Constraints from LFV Decays

For the numerical analysis of constraints from LFV decays we calculate the relevant branching
ratios using eq. (4.9) and compare them with the respective experimental bounds. The latter
exist in form of 90% C.L. upper limits on the LFV branching ratios and read [49–51]

BR(µ→ eγ)max = 4.2× 10−13 , (4.10)

BR(τ → eγ)max = 3.3× 10−8 , (4.11)

BR(τ → µγ)max = 4.2× 10−8 . (4.12)

The values for lepton masses and decay widths are taken from [52].
To obtain a rough estimate of the size of the contributions from diagrams with a chirality flip

in the loop, we expand eq. (4.9) for mψ1,2 ≫ mϕ while at the same time ignoring contributions
from chirality preserving decays by setting the first summand in eqs. (4.5)–(4.8) to zero. We
further assume maximum mixing between ψ1 and ψ2, i.e. we set θψ = π/4. In this limit the
experimental bound on the decay µ→ eγ reduces to the condition√

(λλ†)µe ≲
1

2200TeV

√
mψ1mψ2

yψ|ξ|
, (4.13)

which for a NP scale mψ1 of order O(1TeV) together with an order O(1) Yukawa coupling yψ
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yields an upper limit on the couplings of√
(λλ†)µe ≲ 3.7× 10−4√

|ξ|
. (4.14)

While this estimate gives us a decent understanding of the strength of the LFV constraint, in
our subsequent numerical analysis we use the full quantitative expression of Section 4.1.

To get a more thorough insight on how strongly the LFV decays constrain the coupling
matrix λ, in the contour plots of Figure 4.2 we show the maximum possible couplings |λℓi|
for varying values of yψ and |ξ| by comparing the full expression from eq. (4.9) with the
respective experimental upper limit quoted above. To this end we assume universal couplings
|λℓi| of all DM flavours i = 1, 2, 3. Concerning the mass spectrum, we take the mixing to be
maximal, θψ = π/4, and set mψ2 = 1300GeV as well as mϕ = 200GeV in all three figures.
Depending on the value of yψ, this leads to a maximal mass of the heavier mediator ψ1 of
roughly mψ1 = 2000GeV.

In Figure 4.2a we have set the DM–muon couplings to |λµi| = 1 to not suppress NP effects
in (g− 2)µ. Thus, Figure 4.2a shows the largest possible values for the DM–electron couplings
|λei| which can be reconciled with the experimental upper bound on the strongly constrained
LFV decay µ → eγ. As expected and as our rough estimate from eq. (4.13) already suggests,
the upper limit on |λei| carries a strong dependence on |ξ| while the yψ dependence is rather
mild for values of |ξ| ∼ O(10−4 − 100) in which the chirality flipped contributions dominate.
This is due to our fixing of the light charged mediator mass to mψ2 = 1300GeV. Growing
values of yψ increase the mass splitting ∆mψ = mψ1 − mψ2 since they increase the value of
mψ1 . As the branching ratio from eq. (4.9) is roughly proportional to this mass splitting, this
leads to a growth of the branching ratio, while the growing value of mψ1 at the same time
suppresses the contributions coming from diagrams with ψ1 in the loop. In combination we
find that growing values of yψ still lead to a mild overall growth of BR(µ → eγ). For values
|ξ| ≲ 0.5× 10−4 the right-handed chirality-preserving contributions, i.e. the first summands of
eq. (4.5) and eq. (4.6) are dominant, as all other contributions are suppressed by the small
value of |ξ|. In this region increasing values of yψ allow for larger couplings |λei| as mψ1 grows

with yψ, which in turn suppresses the chirality preserving contribution aR,1µeγ through the loop
function F . Figure 4.2a also shows that depending on the choice of yψ and |ξ| the DM–electron
couplings vary between values |λei| ∼ O

(
10−4 − 10−1

)
. As smaller mediator masses demand

even smaller values of |λei|, we will restrict the range of these couplings to |λei| ∈ [10−6, 10−1]
when scanning over the parameter space of our model in the remainder of our analysis.

Figure 4.2b displays the constraints that the LFV decay τ → eγ places on the parameter
space of our model. Here we set the DM–electron couplings to |λei| = 0.1 in order to quantify
how strongly this decay constrains the DM–tau couplings. The yψ and |ξ| dependence are
qualitatively the same as in Figure 4.2a with the only difference that the chirality-preserving
contribution starts to dominate for values |ξ| ≲ 10−3 in this case. This is due to the fact that
the latter is proportional to m2

ℓi
while the muon mass is roughly a factor of 17 smaller than

the tau mass. The white dashed line in Figure 4.2b indicates in which part of the |ξ| − yψ
plane we expect constraints on |λτi| from the decay τ → eγ, as we have generally limited
the couplings to |λij | ∈ [0, 2] in Section 2. We find that this LFV decay only constrains the
DM–tau couplings for values |ξ| ≳ 5× 10−2.

The constraints from the LFV decay τ → µγ are shown in Figure 4.2c. In order to not
suppress NP effects in (g − 2)µ we have once more set |λµi| = 1. Again the yψ and |ξ|
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(c) τ → µγ

Figure 4.2: Constraints from LFV decays on the coupling matrix λ. In all three plots
maximum mixing with θψ = π/4 is assumed. We further set mϕ = 200GeV,
mψ2 = 1300GeV and the value of mψ1 varies according to the value of yψ.

dependence is the same as for the previous cases. We find that in spite of its comparably weak
upper limit this decay restricts the DM–tau couplings to the range |λτi| ∼ O(10−1 − 100).

5 Precision Measurements

An important feature of lepton-flavoured DM models is that they are subject to limits from
precision measurements of leptonic electric dipole moments (EDM) dℓ and anomalous magnetic
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dipole moments (MDM) aℓ. We found in [26] that for purely right-handed interactions between
the SM and DM these constraints are not relevant for masses allowed by collider searches due
to the lack of a chirality flip enhancement. In contrast, in the present study the DM triplet
is coupled to both right- and left-handed leptons, so that NP contributions to dℓ and aℓ
can become sizeable even for large mediator masses allowed by collider searches. While this
opens the possibility to explain the discrepancy between theory and experiment in aµ, it also
constrains the parameter space of the model through the EDM and MDM of the electron.
We use this section to discuss the latter, while NP effects in aµ will be treated separately in
Section 9. We start with a general discussion of the possible NP contributions to both dℓ and
aℓ and then present a numerical analysis specific to our model.

5.1 Lepton EDM and MDM

The Feynman diagram inducing one-loop contributions to the EDM dℓ and MDM aℓ is obtained
when setting i = j in the radiative process ℓi → ℓjγ illustrated in Figure 4.1. Following our
notation from the previous section and [53] we can write for its amplitude

Mℓiℓiγ =
e

2mℓi

ϵ∗αūℓi

[
iσβαq

β
(
aRℓiℓiγPL + aLℓiℓiγPR

)]
uℓi + ϵµ∗ūℓi [σνµγ5q

νdℓi ]uℓi , (5.1)

where σβα = i[γα, γβ]/2, ϵ is the photon polarization vector, q is the photon momentum and
PR/L = (1±γ5)/2 are projection operators. For the generic Lagrangian introduced in eq. (4.1)
the NP contribution ∆aℓi to the MDM aℓi and the EDM dℓi

7 of the lepton ℓi then read [53,56]

∆aℓi = aRℓiℓiγ + aLℓiℓiγ ,

=
mℓi

16π2

∑
k

(
mℓi

12m2
ϕk

(|cRik|2 + |cLik|2)F (xk) +
2mψ

3m2
ϕk

Re
[
cL∗ik c

R
ik

]
G(xk)

)
, (5.2)

and
dℓi = − e

16π2

∑
k

mψ

3m2
ϕk

Im
[
cRikc

L∗
ik

]
G(xk) . (5.3)

Here, the coefficients a
R/L
ℓiℓiγ

as well as the loop functions F and G are the same as in eq. (4.3)
and eq. (4.4). Note that an EDM dℓi is only induced if the couplings defined in eq. (4.1) satisfy

Im
[
cRcL∗

]
̸= 0 , (5.4)

i.e. if the Lagrangian Lint from eq. (4.1) violates CP symmetry [57].
As there are two charged mediators ψ1 and ψ2 in our model, we define the two coefficients

∆a1ℓi = aR,1ℓiℓiγ
+ aL,1ℓiℓiγ

, (5.5)

∆a2ℓi = aR,2ℓiℓiγ
+ aL,2ℓiℓiγ

, (5.6)

7Note that since leptonic EDMs arise at the four-loop level [54] in the SM, estimates [55] provide an upper
limit of dSMe < 10−38e cm. We hence ignore SM contributions to the lepton EDMs dℓi .
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which when mapping the expressions from above to our model read

∆a1ℓi =
mℓi

16π2

∑
k

(
mℓi |λik|2
12m2

ϕk

(s2θ + |ξ|2c2θ)F (xk,1) +
2mψ1cθsθ |λik|2

3m2
ϕk

Re ξ G(xk,1)

)
, (5.7)

∆a2ℓi =
mℓi

16π2

∑
k

(
mℓi |λik|2
12m2

ϕk

(c2θ + |ξ|2s2θ)F (xk,2)−
2mψ2cθsθ |λik|2

3m2
ϕk

Re ξ G(xk,2)

)
. (5.8)

Here we have used sθ = sin θψ and cθ = cos θψ for brevity of notation. The total NP contribu-
tion to aℓi is then defined as

∆aℓi = ∆a1ℓi +∆a2ℓi . (5.9)

Similarly, in our model the EDMs dℓi can be defined as dℓi = d1ℓi + d2ℓi , with

dℓi = − e

16π2

∑
k

cθsθ |λik|2
3m2

ϕk

Im ξ
(
mψ2G(xk,2)−mψ1G(xk,1)

)
. (5.10)

Note that a negative scaling parameter ξ implies positive contributions to both the lepton
MDMs and EDMs. As we are ultimately interested in solving the (g − 2)µ anomaly which
requires sizeable positive NP contributions to aµ, we only consider the case ξ < 0 throughout
the rest of this analysis. In the following we use the expressions provided above to determine
the constraints that precision measurements of the electron EDM and MDM place on our
model’s parameter space.

5.2 Constraints from Dipole Moments

The most stringent constraints from precision tests of the SM exist for the electron EDM de
and MDM ae. Constraints on the muon EDM dµ [58] and tau EDM dτ [59] are ten orders
of magnitude weaker than the current 90% C.L. upper limit on the electron EDM de, which
reads [60]

dmax
e = 1.1× 10−29e cm . (5.11)

Concerning MDMs, the tau MDM aτ has not been measured precisely enough yet [52, 61, 62]
to provide a meaningful constraint on NP contributions. In spite of having been measured at
a very high precision [63], the electron anomalous magnetic moment ae on the other hand is
subject to a tension caused by disagreeing measurements of the fine-structure constant αem.
Predicting aSMe based on a measurement [64] of αem using 133Cs atoms yields a difference of [65]

∆aexpe (Cs) = (−8.8± 3.6)× 10−13 , (5.12)

which corresponds to a deviation of 2.4σ between theory and experiment. However, predicting
aSMe based on a measurement [66] of αem in 87Rb atoms yields [67]

∆aexpe (Rb) = (4.8± 3.0)× 10−13 , (5.13)

corresponding to a deviation of 1.6σ in the opposite direction. Due to our choice ξ < 0, the NP
contributions to ae are positive in our model. Hence, as a conservative approach we use the
limit from eq. (5.13) based on the measurement of αem using 87Rb atoms in order to constrain
the DM–electron couplings further.
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Figure 5.1: Constraints from precision measurements on the coupling matrix λ. In both pan-
els maximum mixing with θψ = π/4 is assumed. We further set mϕ = 200GeV,
mψ2 = 1300GeV and the value of mψ1 varies according to the value of yψ. The
white dashed line in the left figure shows the contour with |λei| = 2.0.

For the numerical analysis of constraints from electron dipole moments we use the same
approach as for the flavour constraints in Section 4. To study the bounds that the electron
MDM ae and EDM de place on the DM–electron couplings, we have set them to a universal
value |λei| and generated the contour plots shown in Figure 5.1. In both figures we have again
set mϕ = 200GeV, mψ2 = 1300GeV and use maximum mixing with θψ = π/4. The mass mψ1

varies according to the value of yψ.
In Figure 5.1a the contours show which values of |λei| are maximally allowed to stay in the

2σ-band of ∆aexpe in the |ξ|−yψ plane. The white dashed line again shows the contour with the
maximally allowed value of 2.0 for |λei|. We find that in comparison to the LFV constraints,
restrictions on |λei| from measurements of the electron anomalous magnetic moment are less
severe. Satisfying the constraints from LFV decays while allowing for order O(1) DM–muon
couplings already forces the DM–electron couplings to be so small that restrictions on |λei|
from ae are rendered irrelevant.

The constraints from measurements of the electron EDM de are shown in Figure 5.1b. Here,
the contours show the maximum possible values for |λei| to still reconcile with the experimental
upper limit dexp in the |Imξ| − yψ plane. Since a non-zero EDM requires the violation of CP
symmetry, we here show the absolute value of the imaginary part of the scaling parameter
ξ instead of the absolute value of ξ itself. We find that a relative phase between the DM
triplet’s coupling to right-handed and left-handed leptons, which is generated by Imξ is strongly
constrained by the electron EDM de. For values |λei| ∼ O(10−4 − 10−1) which are necessary
to fulfil the flavour constraints it allows for |Imξ| ∼ O(10−4 − 100). We conclude that in spite
of the strength of the EDM constraint, it still allows for a relative CP phase between the
left-handed and right-handed couplings to leptons provided that the absolute strength of the
coupling to electrons, |λei|, is sufficiently suppressed.
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5.3 Electroweak precision observables

Before concluding this section we want to also comment on possible constraints on the param-
eter space of our model coming from electroweak precision observables.

Firstly, the new particles contribute to the oblique parameters S and T , with the largest
contribution from the electroweak doublet Ψ [68, 69]. However, as our model does not violate
custodial symmetry, the latter are small. The contributions to S are moderate as well, since
the electroweak interactions of Ψ are vectorlike. In conjunction with the NP scale well above
the electroweak scale, as found in our global analysis (see Section 8), we estimate the currently
available constraints to not be competitive.

Secondly, the new interactions with the Higgs may lead to virtual corrections to Higgs boson
couplings. Like throughout the rest of our analysis, we neglect the impact of the Higgs portal
coupling λHϕ here and focus on the new Yukawa coupling yψ. In Reference [68], a very similar
model setup with a fermionic doublet and singlet was studied. In that analysis the respective
Yukawa coupling y was found to be unconstrained by current data in the region y ≤ 3. With
our choice of parameter range yψ ≤ 2, see Equation (2.4), our model is thus safe from current
Higgs data.

Finally, the leptonic NP interactions of our model can induce vertex corrections to the
couplings of leptons to electroweak gauge bosons at the one-loop level. These corrections in
turn have an impact on the Fermi constant GF as well as the Z boson couplings to leptons
which potentially poses a problem for the global electroweak fit. However, we estimate these
contributions to be safely small since they are suppressed by a loop factor as well as the NP
scale mNP ∼ O(1TeV).

We note that due to the significant improvements expected in Higgs and electroweak precision
data from future hadron and lepton colliders, these observables might become a powerful tool
to test our model. A detailed study of the reach of future colliders is beyond the scope of our
work and we refer the reader to [68,69] for results within similar models.

6 DM Relic Density

As we are not only proposing the model presented in Section 2 as a solution to the (g − 2)µ
anomaly but also as a viable DM model, its parameter space is also subject to constraints from
cosmological determinations of the DM relic density [70]

Ωch
2 = 0.120± 0.001 . (6.1)

In this section we discuss the impact of the required DM relic density on the parameter space
of our model.

6.1 DM Thermal Freeze-Out

For the analysis of the relic density constraints we assume a thermal freeze-out of DM at
Tf ≈ mϕ3/20. At this time in the early universe the DM production and annihilation rates
approach zero, leading to a decoupling of the dark species from thermal equilibrium. Hence,
the co-moving number density of DM resulting from this freeze-out process depends on the
effective annihilation rate of DM ⟨σv⟩eff.
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As the splittings between the masses8 mϕi determine the relative number density of the
different dark flavours ϕi at Tf , their contributions to the freeze-out also depends on the
mentioned splittings. The most generic dynamics of flavoured DM freeze-out is rather involved
and is the subject of a separate ongoing study [71]. In this work we are interested in the
main phenomenological features of the model which can be captured by the study of two
simplifying benchmark scenarios, following the approach in [20–26]. This also allows for a
direct comparison of our results with the ones for lepton-flavoured scalar DM coupling only
to right-handed leptons [26]. We hence restrict our study to the following two benchmark
scenarios for the freeze-out.

• We call the scenario with a near-degenerate mass spectrum mϕi the Quasi-Degenerate
Freeze-Out (QDF). As the splittings between the two heavier states and the lightest
state are assumed to be very small in this scenario, the co-moving number densities of
all three dark flavours are roughly equal at the time Tf such that all of them equally
contribute to the freeze-out. As the mass splittings between the heavy states ϕ1,2 and
the lightest state ϕ3 are not zero, the heavy states eventually decay into the lightest
state at lower temperatures after the freeze-out. Note that these decays still happen at
a sufficient rate to not affect big bang nucleosynthesis or yield energy injections into the
cosmic microwave background [20].

• We further consider a benchmark scenario in which the masses of the lightest and the
heavier states are significantly split. In this scenario, which we refer to as the Single-
Flavour Freeze-Out (SFF) scenario, the lifetime of the heavy states ϕ1 and ϕ2 is short
in comparison to the time of the freeze-out. As the rate of flavour changing scattering
processes are much larger than the Hubble rate9, a relative equilibrium between different
dark species is maintained, but the number density of the heavy states is strongly sup-
pressed by a Boltzmann factor with the respective mass splitting as its argument. Thus,
only the lightest state ϕ3 contributes to the freeze-out in this scenario.

Numerically we define the two scenarios through the mass splittings

∆mi3 =
mϕi

mϕ3

− 1 , (6.2)

between the heavier states with i ∈ {1, 2} and the lightest state ϕ3. In the QDF scenario ∆mi3

may not be larger than 1%, while we demand 10% < ∆mi3 < 30% for the SFF scenario, where
the upper limit is applied in order to keep our results comparable to previous studies in the
DMFV framework, see Section 2.2. Remember that as discussed in Section 2.2 in contrast to
the studies performed in [20–26] the splittings ∆mi3 are not parametrized through the DMFV
spurion expansion in our model, due to the absence of a flavour symmetry. Thus, they are
independent of the coupling λ.

In Figure 6.1 we gather possible tree-level annihilations of the NP fields into SM fields. Only
if the virtual particle in Figure 6.1a is ψ0, the DM pair ϕiϕj annihilates into a pair of neutrinos
ν̄kνl. In the coannihilation diagram of Figure 6.1b a neutrino in the final state is only produced
for β = 0 together with a W boson for α ∈ {1, 2} or a Z for α = 0. The cases α = 1, β = 2

8In order to avoid ambiguities, the mass parameterss mϕi include potential loop corrections, i. e. they are
renormalised on-shell masses.

9We have checked the accuracy of this approximation in an ongoing analysis [71] by numerically solving the
coupled three-flavour Boltzmann equations.
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Figure 6.1: Representative Feynman diagrams for annihilations of the new particles into SM
matter. Here, V represents any of the SM electroweak bosons γ,W,Z and h (we
use a wiggly line as most of them are vector bosons).

and vice versa produce either of the final states ℓjZ or ℓjh, while the case α = β ∈ {1, 2} can
additionally produce the final state ℓjγ. The annihilation between ψα and ψβ can produce
final states with either two charged leptons, two neutrinos or one neutrino and one charged
lepton.

Note that the coannihilation channels shown in Figure 6.1b suffer from a Boltzmann sup-
pression by the factor

kα = e
−
mψα

−mϕ3
Tf ≃ e

−20
mψα

−mϕ3
mϕ3 , (6.3)

while the annihilations of Figure 6.1c receive an even stronger suppression by kαkβ. These
processes are thus irrelevant outside of the highly fine-tuned parameter region mϕ3 ≃ mψ2

which we omit in our analysis. Also note that there exist additional annihilation processes
that we do not show in Figure 6.1, related to the Higgs portal coupling λHϕ. The annihilation
of DM into a pair of Higgs bosons is governed by this quartic coupling and is proportional to
λ2Hϕ. It also gives rise to the annihilation of a pair of dark scalars into a virtual Higgs boson in
the s-channel which subsequently decays into SM fermions. Annihilations into a top–antitop
pair in this channel are thus proportional to λ2Hϕy

2
t and can generally become sizable, due to the

large top Yukawa coupling. We follow our arguments from [26] and assume the (renormalised)
coupling λHϕ to be sufficiently small such that these diagrams can be neglected. Recall that
in our analysis we are primarily interested in the structure of the flavour-violating coupling
matrix λ.

We are thus left with the t-channel annihilation processes shown in Figure 6.1a. Its total
flavour-averaged squared amplitude reads

|M |2 = |M0|2 + |M1|2 + |M2|2 + 2Re
(
M12

)
, (6.4)

where the index corresponds to the index of the mediator ψα exchanged in the t-channel. The
expressions for the individual contributions Mα and the interference term M12 are given as

|M0|2 =
1

9

∑
ij

∑
kl

|λik|2|λjl|2
(t−m2

ψ0
)2
f0ij , (6.5)

|M1|2 =
1

9

∑
ij

∑
kl

|λik|2|λjl|2
(t−m2

ψ1
)2
f1ijkl , (6.6)

|M2|2 =
1

9

∑
ij

∑
kl

|λik|2|λjl|2
(t−m2

ψ2
)2
f2ijkl , (6.7)
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M12 =
1

9

∑
ij

∑
kl

|λik|2|λjl|2
(t−m2

ψ1
)(t−m2

ψ2
)
f12ijkl , (6.8)

with the functions fα defined as

f0ij = |ξ|4
((
m2
ϕj

− t
) (
t−m2

ϕi

)
− ts

)
, (6.9)

f1ijkl = Aijkl (s
4
θ + |ξ|4c4θ) + c2θs

2
θ (2|ξ|2Ckl +m2

ψ1
Dkl)

+ 2cθsθmψ1 ReBijkl (s
2
θ + |ξ|2c2θ) , (6.10)

f2ijkl = Aijkl (c
4
θ + |ξ|4s4θ) + c2θs

2
θ (2|ξ|2Ckl +m2

ψ2
Dkl)

− 2cθsθmψ2 ReBijkl (c
2
θ + |ξ|2s2θ) , (6.11)

f12ijkl = s2θc
2
θ

(
Aijkl(1 + |ξ|4)−mψ1mψ2Dkl

)
+ Ckl|ξ|2 (c4θ + s4θ)

+ cθsθ
(
Bijklc

2
θ

(
mψ1 − |ξ|2mψ2

)
−B∗

ijkls
2
θ

(
mψ2 − |ξ|2mψ1

))
. (6.12)

Here we have again used sθ = sin θψ and cθ = cos θψ for brevity of notation, and the indices
i, j, k and l are flavour indices. The functions Aijkl, Bijkl, Ckl and Dkl depend on the masses
mϕi ,mϕj ,mℓk and mℓl as well as the Mandelstam variables s = (p1 + p2)

2 and t = (p1 − p3)
2.

Their full expressions can be found in Appendix A.
In order to constrain our model based on the observed DM relic density, we compute the

low-velocity expansion [72,73] of the effective thermally averaged annihilation cross section

⟨σv⟩eff =
1

2
⟨σv⟩ = 1

2

(
a+ b⟨v2⟩+O(⟨v4⟩)

)
, (6.13)

with ⟨v2⟩ = 6Tf/mϕ3 ≃ 0.3. The factor of two for the conversion between ⟨σv⟩eff and ⟨σv⟩
is due to ϕ being a complex scalar. The coefficients a and b are calculated for equal initial
and distinct final state masses using the techniques provided in [73,74]. Note that using equal
initial state masses mϕi = mϕj is justified in both freeze-out scenarios we consider, as the
QDF scenario is defined through near-degenerate masses mϕi ≈ mϕj of different dark flavours,
and since the only flavour contributing to the freeze-out in the SFF scenario is ϕ3. Thus, in
the latter case, the mass parameters mϕi and mϕj in the functions Aijkl and Bijkl need to be
replaced with mϕ3 and the sum over initial state flavours as well as the averaging factor of 1/9
need to be omitted. In what follows we therefore use mϕ3 whenever we refer to the DM mass
in both freeze-out scenarios. In spite of the fact that setting the masses of charged leptons to
zero is a very good approximation, we use the expressions for a and b with the full final state
mass dependence in our numerical analysis.
In contrast to our findings in [26], the annihilation rate is no longer p-wave suppressed in this

model for equal initial and zero final state masses. The mentioned p-wave suppression in the
model of [26] is due to a chirality suppression [75], and thus adding couplings to left-handed
leptons trivially lifts this suppression [76]. The leading contribution is then given by the s-wave
term and reads

a =
1

9

∑
ij

∑
kl

|λik|2|λjl|2
16πm2

ϕ3

(µ2 − µ1)
2 (µ1µ2 − 1)2 |ξ|2 sin2 2θψ(
1 + µ21

)2 (
1 + µ22

)2 , (6.14)

which due to eq. (2.2) depends on the scaling parameter ξ. Here we have used µα = mψα/mϕ3 .
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The p-wave contribution for a non-vanishing ξ can be found in Appendix A. If the left-handed
coupling is suppressed, i.e. if ξ approaches zero, we re-encounter the aforementioned p-wave
suppression of the annihilation rate. In this case the coefficients read

a = 0 , (6.15)

b =
1

9

∑
ij

∑
kl

|λik|2|λjl|2
32πm2

ϕ3

(
2 + µ21 + µ22 +

(
µ21 − µ22

)
cos 2θψ

)2(
1 + µ21

)2 (
1 + µ22

)2 , (6.16)

which in the limit of equal charged mediator masses mψ1 = mψ2 , i.e. in the limit yψ = 0,
reduces to the expressions found in our analysis in [26]10.

6.2 Constraints from the DM Relic Density

In order to determine the bounds from the observed DM relic density on the DM–lepton
coupling λ, we calculate the effective thermally averaged annihilation cross section through
the partial wave expansion in eq. (6.13) and compare with the experimental limit on ⟨σv⟩eff.
The latter is derived based on the DM relic density from eq. (6.1). It is roughly constant for
DM masses mϕ3 > 10GeV and reads [77,78]

⟨σv⟩expeff = 2.2× 10−26 cm3 s−1 . (6.17)

In the numerical analysis we calculate the annihilation rate for random points of the parameter
space. When generating random points we restrict the DM–electron couplings to |λei| ∈
[10−6, 10−1] in order to comply with the flavour constraints without precluding a solution to
the (g − 2)µ anomaly. We further demand that the annihilation rate equals the experimental
value from above within a 10% tolerance region. The lepton masses are again adopted from [52].
In terms of the scaling parameter ξ we restrict the analysis to the two cases |ξ| = 0.01 and
|ξ| = 1.00, i.e. to the two limiting cases of a significant suppression and no suppression of left-
handed interactions between DM and leptons. The value of yψ is randomly generated within
the range yψ ∈ [0, 2].
The results are shown in Figure 6.2 and Figure 6.3, where in the former we have assumed

maximum mixing, i.e. we have set mΨ = mψ and θψ = π/4. The DM mass is fixed to
mϕ3 = 600Gev and the mass parameters mΨ = mψ vary. In the limit mϕ3 ≫ mℓi , the bound
from the relic density constraint in the SFF scenario reduces to the spherical condition

|λe3|2 + |λµ3|2 + |λτ3|2 ≈ const. (6.18)

This explains the outer edge of the bands that can be seen in Figure 6.2. The inner edge is
due to the flavour constraints, which force the DM–electron coupling |λe3| to be small. We
further find that larger couplings |λµ3| and |λτ3| are necessary in order to comply with the relic
density constraint for the case |ξ| = 0.01 shown in Figure 6.2b. This is due to the chirality
suppression explained above, which for the case of non-suppressed left-handed interactions
shown in Figure 6.2a is lifted. Thus, in this case the viable couplings are smaller than in
the case of suppressed left-handed interactions. Note that the additional annihilation channel
into a pair of neutrinos, which does not exist for the model analyzed in [26], only yields sub-

10Note the different definitions of the mass ratio µ, which in Reference [26] is defined as the inverse squared
of the definition we use in this work.
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(a) |ξ| = 1.00 (b) |ξ| = 0.01

Figure 6.2: Constraints on |λµ3| and |λτ3| from the observed DM relic density in the SFF
scenario for maximum mixing with θψ = π/4. The DM mass is set to mϕ3 =
600GeV and the mass parameters mΨ = mψ vary.

dominant contributions to the annihilation rate for both choices of |ξ|. As this annihilation
channel is purely governed by left-handed interactions, it is still chirality-suppressed and only
contributes to the p-wave. Hence, for |ξ| = 1.00 this contribution is sub-leading to the s-wave
contribution of annihilations into a pair of charged leptons given in eq. (6.14). If on the other
hand left-handed interactions are suppressed, i.e. we set |ξ| = 0.01, the additional annihilation
channel into a pair of neutrinos suffers from a |ξ|4 suppression as it is proportional to the
left-handed coupling of DM to leptons. As for the mass dependence with respect to mψ or mΨ,
respectively, we find that larger masses require larger couplings for both choices of |ξ|, which
is due to the 1/m2

ψα
suppression of the s-wave contribution a and the 1/m4

ψα
suppression of

the p-wave contribution b to the annihilation rate. Moving away from maximum mixing, i.e.
allowing for different values mΨ ̸= mψ has no qualitative impact on the results. For the case
of suppressed left-handed interactions the restrictions in the |λµ3| − |λτ3| plane trivially only
depend on the parameter mψ, which is the mass parameter of the gauge eigenstate ψ′

2 that
couples the DM triplet to right-handed leptons. If on the other hand left-handed interactions
are not suppressed, choosing different values for mΨ and mψ increases the mass difference
∆mψ = mψ1 − mψ2 which the s-wave contribution a depends on, while also increasing the
1/m2

ψα
suppression of a. We find that these concurring effects only lead to a very small shift

of the contours from Figure 6.2a to larger couplings, i.e. the increased 1/m2
ψα

suppression
dominates over the growth in ∆mψ when choosing mΨ ̸= mψ.

We do not show the results of the QDF scenario here as the relevant parameter space in this
case is nine-dimensional and the resulting constraints are less apparent. Here, the relic density
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(a) QDF scenario (b) SFF scenario

Figure 6.3: Allowed masses mψ2 and mϕ3 for both freeze-out scenarios. The red points cor-
respond to the case of a significant suppression of left-handed interactions and
the blue points correspond to the case of no suppression.

limit reduces for negligible lepton masses to the condition∑
ij

|λij |2 ≈ const. (6.19)

which corresponds to the shell of a nine-dimensional sphere. Thus, the outer edge of the
contours that can be seen in Figure 6.2 is also present in the QDF scenario, while there is no
inner edge due to the sum over initial state flavours. However, the QDF scenario generally
requires larger couplings than the SFF scenario in order to satisfy the constraint, since in this
case the DM annihilation rate is smaller than in the SFF case due to the flavour-averaging
factor in eqs. (6.5) –(6.8).

This can also be seen in Figure 6.3, where we show the allowed masses mψ2 and mϕ3 for
both freeze-out scenarios. For the case of suppressed left-handed interactions between DM and
leptons the lower limit on mϕ3 for a given value of mψ2 is larger in the QDF scenario than in
the SFF scenario. This is illustrated by the red points in Figure 6.3a for the QDF scenario
and Figure 6.3b for the SFF scenario. The leading contribution to the annihilation rate in this
case is given by the p-wave from eq. (6.16). For masses mℓ ≪ mϕ3 ≪ mψ2 it behaves like

b =
1

9

∑
ij

∑
kl

|λik|2|λjl|2
16π

m2
ϕ3

m2
ψ1
m2
ψ2

. (6.20)

As the overall annihilation rate suffers from the above mentioned p-wave suppression in this
case, growing values for mψ2 require growing values for mϕ3 in order to not yield a too small
annihilation rate or too large relic density, respectively. This explains the lower edge that can
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be seen for the case |ξ| = 0.01 in Figure 6.3 for both freeze-out scenarios. This lower limit
on mϕ3 is larger for the QDF scenario than for the SFF scenario because as mentioned above
the overall annihilation rate is smaller in the QDF scenario due to the flavour-average. Hence,
in the QDF scenario even larger values of mϕ3 are required in order to yield the correct relic
density for a fixed value of mψ2 . For non-suppressed left-handed interactions between DM and
leptons the annihilation rate is no longer chirality-suppressed and thus there is no lower limit
on mϕ3 in this case. This is shown by the blue points in Figure 6.3a and Figure 6.3b and
we find that in this case even very large values for mψ2 allow for any DM mass mϕ3 < mψ2 .
Note that we only show the mψ2 −mϕ3 plane in Figure 6.3 as the largest contributions to the
annihilation rate come from processes where the light charged mediator ψ2 is exchanged in the
t-channel. Diagrams with a ψ1-exchange suffer from an additional suppression by a larger NP
scale since we conventionally choose mψ1 > mψ2 .

7 DM Detection Experiments

DM detection and especially direct detection experiments have generally proven to yield strong
constraints on flavoured DM models [20–26]. While for lepton-flavoured DM contributions to
DM–nucleon scattering are only generated at the one-loop level, in [26] we still found that
restrictions coming from direct detection experiments rank among the strongest constraints.
There, we had studied a version of this model with purely right-handed interactions between
DM and leptons, i.e. the case ξ = yψ = 0. While indirect detection constraints were found
to have a significantly smaller impact on the parameter space of that model, we expect them
to gain relevance in this analysis due to our findings from Section 6. As the annihilation
rate of DM into SM particles does not necessarily suffer from a chirality suppression in this
analysis, relevant contributions to the production rate of electron-positron pairs and photons
can become sizeable. We thus use this section to discuss constraints coming from direct and
indirect detection experiments.

7.1 Direct Detection

For the discussion of direct detection constraints we follow the procedure in [26], adopted
from [79], and ignore constraints from DM–atom, inelastic DM–electron as well as elastic DM–
electron scattering. The former two can be neglected as in these cases DM needs to scatter
off bound electrons with a non-negligible momentum of order pe ∼ O(1MeV) in order to
generate a sizeable signal. Thus, both processes suffer from a wave-function suppression and
can be neglected. The constraints on elastic DM–electron scattering on the other hand, are
only relevant for sub-MeV DM [80] that we do not consider in this analysis.
Thus, we are left with DM–nucleon scattering. Relevant contributions to the scattering

rate between DM and nucleons arise through the one-loop penguins shown in Figure 7.1. The
process shown in Figure 7.1a can only be mediated by a photon γ if α = β ∈ {1, 2}, while
the case with two neutral mediators in the loop α = β = 0 is mediated by a Z boson and
has a neutrino νi in the loop. Additional diagrams exist for the Z boson mediated case for
α, β ∈ {1, 2}. Since the Z penguin contribution is proportional to the external momentum, its
contribution to DM-nucleon scattering can safely be neglected. In the diagram of Figure 7.1b
the indices are restricted to α, β ∈ {1, 2}. While the diagram where the Higgs boson h is
emitted from two charged leptons in the loop is proportional to yℓiyN |λi3|2 and can thus be
neglected, the diagram with two charged mediators in the loop is proportional to yψyN |λi3|2,
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(b) one-loop DM–nucleon scattering me-
diated by h

Figure 7.1: Representative Feynman diagrams of relevant interactions for direct detection
signals. Note that for both penguins there is also a diagram with two leptons and
one mediator in the loop where the bosons are emitted from the two leptons.

which can generally become large. Here, yN ≃ 0.3 is the Higgs-nucleon coupling [81]. In fact
we find that the latter diagram’s amplitude is divergent and contributes to the renormalization
of the Higgs-portal coupling λHϕ. This coupling gives rise to a tree-level scattering process
proportional to yNλHϕ where DM scatters off a nucleon through a t-channel Higgs exchange11.
We follow the same arguments as in Section 6 and in [25, 26] and use the freedom to choose
λHϕ such that the tree-level and one-loop contributions cancel.

This leaves the photon-mediated one-loop penguin from Figure 7.1a as the only relevant
contribution to DM–nucleon scattering, which is induced by the charge-radius operator

Oγ = ∂µϕ∂νϕ†Fµν . (7.1)

In the limit of small lepton masses the matched Wilson coefficients fγ,α of the contribution
with the charged mediator ψα in the loop read [27]

fγ,1 = −
∑
i

e |λi3|2
(
s2θ + |ξ|2c2θ

)
16π2m2

ψ1

[
1 +

2

3
ln

(
m2
ℓi

m2
ψ1

)]
, (7.2)

fγ,2 = −
∑
i

e |λi3|2
(
c2θ + |ξ|2s2θ

)
16π2m2

ψ2

[
1 +

2

3
ln

(
m2
ℓi

m2
ψ2

)]
. (7.3)

Here we have neglected contributions to fγ,α with a chirality flip on the lepton line, as these
are suppressed by the negligible lepton masses. In the expressions above the mass me needs to
be replaced by the momentum transfer |q⃗| = O(3− 10)MeV for i = 1, i.e. for first generation
leptons in the loop [27], as the electron mass is smaller than |q⃗|.

Using the expressions from above we write for the spin-independent averaged DM–nucleon
scattering cross section

σNSI =
Z2 e2 µ2

8π A2
|fγ,1 + fγ,2|2 , (7.4)

where Z and A are the atomic and mass number of the nucleon while µ is the reduced mass
of the DM–nucleon system defined as µ = mNmϕ3/(mN + mϕ3). In the numerical analysis
we use limits obtained from the XENON1T experiment [82] and again use the lepton masses

11For large parts of the parameter space this contribution is comparable to the photon penguin for λHϕ ∼ O(1)
couplings, see Appendix B for details.
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(a) |ξ| = 1.00 (b) |ξ| = 0.01

Figure 7.2: Allowed couplings |λµ3| and |λτ3| for both choices of |ξ| and various values for
mΨ = mψ, while assuming maximum mixing with θψ = π/4. The DM mass
is fixed to mϕ3 = 200GeV. The value of yψ in randomly generated within the
interval yψ ∈ [0, 2].

from [52]. The momentum transfer mentioned above is set to |q⃗| = 10MeV and for the atomic
and mass numbers of Xenon we use Z = 54 and A = 131, i.e. we ignore the impact of Xenon
isotopes as their effect on the overall DM–nucleon scattering cross section was found to be
small in [22]. Recall that due to the absence of a flavour symmetry in this model, the mass
splittings between the different dark scalars do not depend on the coupling matrix λ. Hence,
the direct detection constraints carry no dependence on the freeze-out scenario.

The results are shown in Figure 7.2 for maximum mixing between the charged mediators
ψ1 and ψ2. The value of the mass parameters mΨ = mψ varies and the DM mass is fixed to
mϕ3 = 200GeV. Note that while σNSI does not depend on the DM mass, the XENON1T upper
limit on the DM–nucleon scattering cross section reaches its minimum at mϕ3 ≃ 30GeV and
increases for increasing values of mϕ3 . Hence, increasing DM masses generally allow for larger
couplings. The same behaviour holds true for increasing values of the charged mediator masses
mψ,α, as the amplitudes fγ,α are suppressed by 1/m2

ψα
. This can be seen in Figure 7.2 where

we show the distribution of allowed points in the |λµ3| − |λτ3| plane. For both choices of |ξ|
growing mediator masses mψα allow for larger couplings. Trivially, the case of non-suppressed
left-handed interactions shown in Figure 7.2a requires smaller couplings than the suppression
case with |ξ| = 0.01 shown in Figure 7.2b, due to additional contributions from left-handed
leptons in the loop. In terms of the sizes of |λµ3| and |λτ3| we find that the DM–tau coupling
may grow larger than the DM–muon coupling. This is due to the logarithm of the lepton
mass mℓi in eqs. (7.2) and (7.3). Smaller masses mℓi lead to an enhancement of the scattering
amplitude fγ,α and hence the DM–muon coupling suffers from stronger limits than the DM–tau
couplings, due to mµ being much smaller than mτ . We do not show the DM–electron coupling
here as we assumed it to be small in order to fulfil the stringent flavour constraints discussed
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Figure 7.3: Representative Feynman diagrams for relevant higher-order annihilation pro-
cesses. The index only refers to charged mediators, i.e. α ∈ {1, 2}.

in Section 4.

7.2 Indirect Detection

We now turn to the discussion of constraints from indirect DM detection experiments. While
in our model DM couples to both left- and right-handed leptons, in the case of suppressed
left-handed couplings, |ξ| = 0.01, the annihilation rate of DM into SM matter still suffers from
a chirality suppression. We hence follow our analysis from [26] and include additional diagrams
to its calculation in order to lift this suppression. This is necessary in order to properly analyse
the indirect detection constraints since the p-wave contribution to the annihilation rate suffers
from a severe velocity suppression as the DM halo velocity in the Milky Way today is roughly
⟨v2⟩ ≃ 10−6.

The additional diagrams that we consider are shown in Figure 7.3. The annihilation of two
dark scalars ϕ3 into a pair of leptons and an additional photon from Figure 7.3a is referred to as
internal bremsstrahlung and lifts the chirality suppression of the annihilation rate in the chiral
limit mℓ → 0 [75]. It is proportional to αem/π ∼ 10−3 while the box diagram of Figure 7.3b
is even further suppressed by α2

em/(4π)
2 ∼ 10−7, but gives comparable contributions to the

overall annihilation rate in parts of the parameter space. Note that both diagrams are not
relevant for the thermal freeze-out, as the DM halo velocity at Tf reads ⟨v2⟩ ≃ 0.3 and hence
the p-wave annihilation into ℓ̄iℓj is much less suppressed than today.

The annihilation rate for the process of Figure 7.3b reads

⟨σv⟩γγ = ⟨σv⟩1γγ + ⟨σv⟩2γγ + 2⟨σv⟩12γγ , (7.5)

where the superscript denotes the contributions from diagrams where either ψ1 or ψ2 is ex-
changed in the loop as well as the interference term. For the same reason as for the one-loop
photon penguin in Figure 7.1a the contributions with a chirality flip on a lepton line vanish in
the chiral limit mℓ → 0 [83]. In this limit, the expressions from eq. (7.5) are given by [83]

⟨σv⟩1γγ =
α2
em

(
s2θ + |ξ|2c2θ

)2
64π3m2

ϕ3

(∑
i

|λi3|2
)2

|B(µ1)|2 , (7.6)

⟨σv⟩2γγ =
α2
em

(
c2θ + |ξ|2s2θ

)2
64π3m2

ϕ3

(∑
i

|λi3|2
)2

|B(µ2)|2 , (7.7)

28



⟨σv⟩12γγ =
α2
em

(
c2θ + |ξ|2s2θ

) (
s2θ + |ξ|2c2θ

)
64π3m2

ϕ3

(∑
i

|λi3|2
)2

|B(√µ1µ2)|2 . (7.8)

The loop function B is defined as

B(µα) = 2− 2 log

[
1− 1

µα

]
− 2µα arcsin

[
1√
µα

]2
. (7.9)

where µα = ψ2
α/m

2
ϕ3
.

Similarly, we decompose the annihilation rate into the three-body final state of Figure 7.3a
and write

⟨σv⟩ℓℓ̄γ = ⟨σv⟩1ℓℓ̄γ + ⟨σv⟩2ℓℓ̄γ + 2⟨σv⟩12ℓℓ̄γ . (7.10)

For this process, the contributions with a chirality flip on any of the external fermion lines
vanish in the limit of zero lepton masses. On the other hand, diagrams with a chirality flip on
the virtual mediator in the t-channel only lead to p-wave suppressed and therefore negligible
contributions.12 However, the calculation of the interference term between the two diagrams
with either a ψ1 or a ψ2 in the t-channel is less trivial than for ⟨σv⟩γγ due to the three-body
phase space. Following the procedure presented in [86,87] we have obtained an expression for
⟨σv⟩12

ℓℓ̄γ
that can be found in Appendix C and was tested to yield the correct total annihilation

rate ⟨σv⟩ℓℓ̄γ in the limit |ξ| = yψ = 0. The other two contributions read [75,88]

⟨σv⟩1ℓℓ̄γ =
αem

(
s2θ + |ξ|2c2θ

)2
32π2m2

ϕ3

∑
ij

|λi3|2|λj3|2A(µ1) , (7.11)

⟨σv⟩2ℓℓ̄γ =
αem

(
c2θ + |ξ|2s2θ

)2
32π2m2

ϕ3

∑
ij

|λi3|2|λj3|2A(µ2) , (7.12)

and the phase space function A(µα) is defined according to

A(µα) = (µα + 1)

(
π2

6
− log2

[
µα + 1

2µα

]
− 2Li2

[
µα + 1

2µα

])
+

4µα + 3

µα + 1
+

4µ2α − 3µα − 1

2µα
log

[
µα − 1

µα + 1

]
. (7.13)

Here, Li2(z) is the dilogarithm and we have again used µα = m2
ψα
/m2

ϕ3
.

Last but not least, the tree-level rate of DM annihilating into a pair of leptons ℓ̄iℓj is given
by the expression for the SFF scenario’s thermal annihilation rate from Section 6.

To study the indirect detection constraints numerically we use limits obtained from the
AMS experiment [89] and from measurements by the Fermi-LAT satellite [90] as well as the
H.E.S.S. telescope [91]. Reference [92] calculated an upper limit ⟨σv⟩max

ē on the annihilation
rate of Majorana DM into an electron-positron pair with a branching fraction of 100% based on
AMS-02 measurements of the positron flux. While this signal generally includes prompt as well

12This p-wave suppression is due to the conservation of the total angular momentum, since the annihilation
of two scalars in the s-wave implies J = 0 while the photon only has two polarizations with Jz ∈ {−1, 1}. Note
that the same finding also holds true for the annihilation of neutralinos into a pair of fermions and a photon,
see [84,85].

29



as secondary positrons stemming from decays of heavy charged leptons, the energy spectrum of
the latter is shifted towards lower energies compared to prompt positrons. Further, secondary
positrons additionally suffer from a smeared momentum distribution so that the AMS-02 limit
⟨σv⟩max

ē mainly constrains prompt positrons. We thus sum over the annihilation rates of all
processes with a positron in the final state and compare with the experimental upper limit. Here
we follow our analysis in [26] and also include the radiative corrections shown in Figure 7.3a,
i.e. we compare the sum

⟨σv⟩ē =
∑
ℓ

⟨σv⟩ℓē + ⟨σv⟩ℓēγ , (7.14)

with the upper limit ⟨σv⟩max
ē . In doing so we ignore the shift in the mϕ3 dependence of the

three-body final state with comparison to the two-body final state, as we assume it to be small.
Using measurements of the γ-ray continuum spectrum by Fermi-LAT, Reference [93] provides

an equivalent limit ⟨σv⟩max
τ on the annihilation of Majorana DM into a tau-antitau pair. Just

as the constraints from the positron flux are most sensitive to prompt signals, this upper limit
is dominated by annihilations into taus, as such final states produce more photons through
subsequent decays than final states with muons or electrons. Hence we only focus on final states
with at least one tau or antitau and compare the total annihilation rate with the experimental
upper limit ⟨σv⟩max

τ . To this end we define

⟨σv⟩τ = ⟨σv⟩τ τ̄ + ⟨σv⟩τ τ̄γ +
1

2

∑
ℓ=e,µ

(
⟨σv⟩ℓτ̄ + ⟨σv⟩ℓ̄τ + ⟨σv⟩ℓτ̄γ + ⟨σv⟩ℓ̄τγ

)
, (7.15)

which in total gives five annihilation channels with a tau or antitau in the final state and five
radiative corrections, respectively. Here we have included a factor of 1/2 for final states with
a single tau or antitau, since ⟨σv⟩max

τ was derived for the final state consisting of a tau-antitau
pair.

Finally, we also consider indirect detection limits obtained by Fermi-LAT and H.E.S.S.
measurements of the γ-ray line spectrum. The energy spectrum of γ-rays produced by the
process shown in the box diagram of Figure 7.3b trivially peaks at the energy Eγ = mϕ3 due
to energy-momentum conservation. The internal bremsstrahlung process on the other hand is
dominated by hard photons [94] with Eγ ≈ mϕ3 emitted by the charged mediator ψα. This
process is referred to as virtual internal bremsstrahlung and exhibits a line-like γ-ray energy
spectrum with a sharp peak at energies slightly below the DM mass [90, 94]. Reference [94]
provided a limit ⟨σv⟩max

γ based on searches for such lines in the γ-ray spectrum performed by
the Fermi-LAT satellite and the H.E.S.S. telescope which is derived for the annihilation rate

⟨σv⟩γ =
∑
ℓ

⟨σv⟩ℓℓ̄γ + 2⟨σv⟩γγ . (7.16)

We use these expressions in our numerical analysis of indirect detection constraints to further
restrict the parameter space of our model.
In order to identify the mass region in the mψ2 − mϕ3 plane in which indirect detection

constraints are relevant, we set the DM–lepton couplings to a universal value |λi3| = |λℓ3| and
check how large it may maximally grow. To this end we allow the annihilation rates ⟨σv⟩ē, ⟨σv⟩τ
and ⟨σv⟩γ to grow as large as the respective experimental upper limit. The resulting contours
are shown in Figure 7.4 for all three constrained annihilation rates. We show the case of non-
suppressed left-handed interactions between DM and leptons and maximum mixing between ψ1
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(b) constraints from the γ continuum spectrum
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(c) constraints from the γ line spectrum

Figure 7.4: Restrictions on the model parameters from indirect detection experiments for
non-suppressed left-handed interactions. In all three plots we assume a maximum
mixing with θψ = π/4. The area included by the white dashed line, the horizontal
axis and the equal mass diagonal indicates in which mass regime the constraints
are relevant.

and ψ2. The annihilation rates ⟨σv⟩ē and ⟨σv⟩τ are dominated by the s-wave annihilation from
eq. (6.14), which is proportional to the mass difference ∆mψ = mψ1 −mψl2 =

√
2yψv. Hence,

we set yψ = 2.0 in Figure 7.4a and 7.4b to determine the largest possible constraints. The
annihilation rate ⟨σv⟩γ on the other hand, does not depend on ∆mψ and grows for decreasing
values of yψ and a fixed mediator mass mψ2 , since decreasing Yukawa couplings yψ reduce the
mass mψ1 . This leads to larger contributions to ⟨σv⟩γ from the diagrams of Figure 7.3 with
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ψ1 in the t-channel or loop, respectively. In all three figures the white dashed line indicates
where the respective constraint forces the DM–lepton coupling to be |λℓ3| ≤ 2.0, i.e. constraints
are only relevant in the areas included by the horizontal axis, the equal mass threshold and
this line. We find that the indirect detection constraints are dominated by limits obtained
from measurements of the γ-ray spectrum shown in Figure 7.4b and Figure 7.4c. The former
limits are relevant for DM masses mϕ3 ≲ 600GeV and over the complete range of mψ2 , while
searches for line features of the γ-ray spectrum generally become relevant close to the equal
mass threshold. For mediator masses mψ2

≲ 1200GeV this limit can also become relevant
for larger mass splittings between mψ2 and mϕ3 . We do not show the case of suppressed left-
handed interactions with |ξ| = 0.01 here but relegate it to Appendix C, since this case yields
exactly the same contours as for the purely right-handed version of this model studied by us
in [26]. There we found the constraints from the positron flux as well as the continuum γ-ray
spectrum to be much weaker, due to the chirality suppression of the annihilation rate into
ℓiℓ̄j mentioned above. In total we conclude that in spite of yielding much stronger restrictions
on the parameter space for the case of unsuppressed left-handed couplings, |ξ| = 1.00, the
indirect detection constraints are weaker than limits from direct detection, LFV or the DM
relic density.

8 Combined Analysis

In order to obtain a global picture of the viable parameter space of our model we use this
section to perform a combined analysis of all constraints discussed in the previous sections.
To do so, we generate random points in the parameter space and demand that all constraints
are simultaneously fulfilled. The results of this combined numerical analysis are gathered in
Figure 8.1, Figure 8.2 and Figure 8.3.

Figure 8.1 shows the viable parameter space in the mψ2 − mϕ3 plane for both freeze-out
scenarios and both cases of |ξ|. We further show the largest possible exclusion13 in this plane
stemming from the LHC searches discussed in Section 3 and find that for both choices of
|ξ| they only lead to an additional exclusion for the QDF scenario. For the SFF scenario
we find that the allowed masses are roughly the same for both choices of |ξ| and are mainly
determined by the interplay of the relic density and direct detection constraints. While the
annihilation rate for the case |ξ| = 1.00 is not chirality suppressed, it still suffers from a

suppression by ∆m2
ψ/(mψ1mψ2) with ∆mψ = mψ1 − mψ2 =

√
(mΨ −mψ)2 + 2y2ψv

2. Thus,

either large couplings or large DM masses are needed in order to push the annihilation rate
high enough to not yield over-abundant DM. At the same time, large couplings are subject
to strong constraints from direct detection experiments and thus both constraints can only
be fulfilled for masses mψ2

≳ 800GeV and mϕ3 ≳ 600GeV. In these ranges, either the DM
annihilation rate is sufficiently enhanced by the DM mass mϕ3 , such that couplings small
enough to pass the direct detection constraint are viable, or the DM–nucleon scattering rate
is sufficiently suppressed by the mediator mass mψ2 such that large couplings necessary for
the correct relic density are allowed. In the QDF scenario the relic density constraint can in
principle be fulfilled by annihilations of the heavier dark species ϕ1 and ϕ2 alone, while the

13Note that strictly speaking these limits do not straightforwardly apply here, since they assume e − µ
universality while we have fixed the DM–electron couplings to |λei| ∈ [10−6, 10−1] in the combined analysis. We
hence expect the actual exclusion from LHC searches to be smaller than the curve shown in Figure 8.1 and only
include it here for illustration purposes.
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(a) |ξ| = 1.00 (b) |ξ| = 0.01

Figure 8.1: Allowed masses mψ2 and mϕ3 while satisfying all constraints. We show both
freeze-out scenarios and both cases of |ξ|. The grey area shows the largest possible
exclusion from LHC searches for same-flavour final states ℓℓ̄ + /ET with ℓ = e, µ
discussed in Section 3 and corresponds to the case |λℓ3| = 2, |λτ3| = 0 and
yψ = 0.25.

direct detection constraints only restrict the couplings of the lightest state ϕ3. Hence, small
mediator masses mψ2

≲ 800GeV also become viable for this freeze-out scenario. However,
we still encounter a lower limit on mϕ3 for both cases of |ξ|. For non-suppressed left-handed
interactions this limit is due to the suppression of the s-wave annihilation proportional to
v2/(mψ1mψ2). Growing values of mψα further suppress the annihilation rate and thus one
needs correspondingly growing DM masses mϕ3 in order to compensate for this suppression.
Such a lower limit does not arise from the relic density constraint alone, as the direct detection
constraints force the couplings of ϕ3 to the SM to be small and therefore significantly reduce
the overall annihilation rate. For |ξ| = 0.01 on the other hand, we re-encounter the lower limit
on mϕ3 from Figure 6.3, which was due to the chirality suppression of the annihilation rate and
the accompanying velocity suppression of the p-wave. This again gives rise to a lower limit on
mϕ3 in order to compensate for this suppression. Note that for both freeze-out scenarios and
both choices of |ξ|, growing values of mϕ3 do not only enhance the annihilation rate but also
reduce the relevance of the direct detection constraint as the XENON1T upper limit grows for
increasing DM masses.
Figure 8.2 shows the implications of our combined analysis for the couplings |λτ3| and |λµ3| in

the SFF scenario, for both choices of |ξ|. The overall picture is dominated by the relic density,
flavour and direct detection constraints. Since, in order to suppress the LFV constraints studied
in Section 4, we chose the DM–electron coupling |λe3| to be small, the couplings |λτ3| and |λµ3|
have to be large according to the spherical condition

|λe3|2 + |λµ3|2 + |λτ3|2 ≈ const. , (8.1)
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(a) |ξ| = 1.00 (b) |ξ| = 0.01

Figure 8.2: Allowed couplings |λτ3| and |λµ3| while satisfying all constraints in the SFF sce-
nario for both cases of |ξ|. We assume maximum mixing with θψ = π/4. The
DM mass is fixed to mϕ3 = 700GeV and the mass parameters mΨ = mψ vary.

which needs to be satisfied in order to yield the correct relic density. Thus, the interplay of
these two constraints leads to the bands of Figure 8.2, where the flavour constraints cause
their inner edge due to the suppressed DM–electron coupling. The outer edge of the bands
on the other hand, is mainly determined by the relic density constraint for sufficiently small
couplings |λµ3|. Once an mψ2-dependent threshold is exceeded with respect to the value of
|λµ3|, the direct detection constraint starts to dominate over the relic density limit, giving rise
to the spikes at the upper end of the bands. The direct detection constraint only dominates
for large |λµ3| as it is more stringent for light leptons in the loop. This is due to the logarithm
of the mass mℓi in eqs. (7.2) and (7.3). In terms of the scaling parameter |ξ| we find that the
case of suppressed left-handed interactions shown in Figure 8.2b allows for larger couplings
|λτ3| and |λµ3|. This is due to softened restrictions from direct detection together with the
above-mentioned chirality suppression of the annihilation rate in this case and has important
implications for the flavour of ϕ3. For the case |ξ| = 0.01 we find that µ-flavoured DM is viable
for masses mψ ≳ 1000GeV. DM with a predominant coupling to the muon is even equally
favoured as τ -flavoured DM for masses mψ ≳ 1400GeV. If left-handed interactions between
DM and leptons are not suppressed, on the other hand, we find that large parts of the viable
parameter space correspond to τ -flavoured DM. Here, µ-flavoured DM only becomes viable
in a tiny part of the parameter space for masses mψ ≳ 1300GeV. In both cases e-flavoured
DM is excluded by our choice to accomodate the strong flavour constraints by suppressing the
DM–electron coupling. The latter is necessary in order to be able to obtain a large contribution
to the anomalous magnetic moment of the muon and thereby solve the (g − 2) anomaly.

The effects of the combined analysis on the |λτ3|−|λµ3| plane for the QDF scenario are shown
in Figure 8.3. Here, the direct detection constraint dominates for large parts of the parameter
space, as the correct relic density can generally also be obtained through annihilations of the
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(a) |ξ| = 1.00 (b) |ξ| = 0.01

Figure 8.3: Allowed couplings |λτ3| and |λµ3| while satisfying all constraints in the QDF
scenario for both cases of |ξ|. We assume maximum mixing with θψ = π/4. The
DM mass is fixed to mϕ3 = 700GeV and the mass parameters mΨ = mψ vary.

heavier states ϕ1 and ϕ2 alone. This is especially the case for |ξ| = 1.00 which we show in
Figure 8.3a and where the direct detection constraint dominates for each choice of mΨ = mψ.
While this also holds true for large parts of the parameter space for the case of suppressed
left-handed interactions shown in Figure 8.3b, we here find that for large mediator masses
mψ ≳ 1600GeV the relic density constraint yields a lower limit on the couplings |λτ3| and
|λµ3|. As for the flavour of ϕ3, we find that the QDF scenario allows for both µ- and τ -
flavoured DM. Here, the latter case is slightly favoured over the former, due to stronger direct
detection constraints for DM coupling predominantly to muons.

9 Muon Anomalous Magnetic Moment

As already mentioned in the introduction we propose this model as a joint solution for the
DM problem and the long-standing discrepancy between experimental measurements and the
theory prediction of the muon anomalous magnetic moment aµ. After having identified viable
regions of the parameter space of our model, we are now prepared to determine if sizeable NP
contributions to aµ can be generated.

9.1 Theoretical Approach

Precision measurements of the muon anomalous magnetic moment [2, 95, 96] yield a world
average of

aexpµ = (116592059± 22)× 10−11 , (9.1)

35



while state-of-the-art SM calculations [97–116] predict the value [3]

aSMµ = (116591810± 43)× 10−11 . (9.2)

The difference between the theory prediction and measurement reads

∆aexpµ = aexpµ − aSMµ = (2.49± 0.48)× 10−9 , (9.3)

and corresponds to a significance of 5.1σ.14 We interpret this tension between theory and
experiment as a NP contribution potentially originating from our model.

Such contributions ∆aµ are generated through the diagram shown in Figure 4.1 with ℓi =
ℓj = µ and they read

∆aµ = ∆a1µ +∆a2µ , (9.4)

where the expressions for ∆aαµ are given in eqs. (5.7) and (5.8). Due to the chirality-flipping
nature of the anomalous magnetic moment, NP contributions with a chirality flip inside the
loop can receive a strong enhancement. In our model, its source is the Yukawa coupling yψ,
which couples the fields Ψ and ψ′

2 to the SM Higgs doublet and induces a mixing between the
two charged mediators. Thus, in the limit of approximately equal mediator mass parameters
mΨ ≈ mψ, the scale of the relevant NP giving rise to the chirality flip is given by the mass
splitting

∆mψ = mψ1 −mψ2 =
√
2yψv , (9.5)

and satisfies ∆mψ ≫ mµ if yψ ≳ 10−3.
Neglecting hence the first terms of eqs. (5.7) and (5.8) and writing

∆aµ =
mµ

16π2

∑
k

sin 2θψ |λµk|2
3m2

ϕk

Re ξ
(
mψ1G(xk,1)−mψ2G(xk,2)

)
, (9.6)

gives a very good approximation of the NP contributions to aµ. Note that θψ as defined
in eq. (2.9) lies within 0 ≤ θψ ≤ π/4 such that sin 2θψ > 0 in the equation above. As we
additionally have

mψ2G(xk,2) > mψ1G(xk,1) , (9.7)

a positive NP contribution ∆aµ requires a negative scaling parameter, ξ < 0.
At the same time the Yukawa coupling yψ also generates potentially sizeable NP contribu-

tions ∆mµ to the muon mass through the processes depicted in Figure 9.1. The total muon
mass is given by the relation

mµ =
yµv√
2
+ ∆mµ , (9.8)

inducing a potential fine-tuning problem. A general parametric estimate of the NP contribu-
tions to aµ and mµ gives [124,125]

∆aµ = CNP

m2
µ

m2
NP

, (9.9)

14Using recent lattice determinations of the hadronic vacuum polarisation significantly softens the tension
between data and the SM [117–120]. However, in that case, a tension emerges in low-energy σ(e+e− → hadrons)
data [121–123] that requires further investigation. In the present paper, we hence disregard the lattice results
and consider the discrepancy as given in eq. (9.3).
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∆mµ = O (CNP)mµ , (9.10)

where the factor CNP depends on the details of the model. These expressions can be used in
order to derive an upper limit on the NP scale mNP up to which the experimental value ∆aexpµ

can be accommodated without introducing fine-tuning. To this end, we follow the convention
from [124] and consider scenarios in which corrections to the muon mass are larger than the
physical muon mass as fine-tuned, which yields an upper limit of [124]

mNP ≲ 2100GeV . (9.11)

To complement this general estimate we also check numerically which parts of our model’s
viable parameter space correspond to fine-tuned scenarios by calculating ∆mµ through [125]

∆mµ = −sin 2θψRe ξ

16π2

∑
k

|λµk|2
(
mψ1B0(0,mψ1 ,mϕk)−mψ2B0(0,mψ2 ,mϕk)

)
, (9.12)

where the function B0(p
2,m1,m2) is a standard Passarino–Veltman two-point function renor-

malised according to the MS scheme. Here we only consider contributions to ∆mµ from the
process with a chirality flip in the loop depicted in Figure 9.1b. The process with a chirality
flip on an external muon line shown in Figure 9.1a is proportional to mµ and can hence be
safely neglected.

In passing we note that one-loop contributions to the lepton Yukawa couplings are generated
by diagrams analogous to Figure 9.1. The leading contribution, however, affects the lepton
mass and the respective Yukawa coupling equally and therefore does not modify the Higgs decay
rates to leptons. Corrections to the latter receive an additional v2/m2

ψα
suppression factor and

are hence smaller than the LHC sensitivity. These conclusions agree with the findings of [32].

9.2 Results

In order to determine the size of our model’s contributions to aµ, we calculate ∆aµ in the
regions of its parameter space that we have identified as viable in the combined analysis of
Section 8. For the calculation of ∆aµ we use the full expression from eq. (9.4) including
diagrams with chirality flips on external muon lines. The NP contributions to the muon mass
are calculated through eq. (9.12). The results are gathered in Figure 9.2–9.4. In all plots we
assume maximum mixing with θψ = π/4.

Figure 9.2 shows which values of the Yukawa coupling yψ and the scaling parameter |ξ| can
solve the (g− 2)µ anomaly in the two freeze-out scenarios. We find that for the case |ξ| = 1.00

μR μL

ψα

φkμL

v

(a) chirality flip on external muon line

μL

ψα

φkμR

v

(b) chirality flip in the loop

Figure 9.1: Representative Feynman diagrams for NP contributions ∆mµ to the muon mass.
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(a) SFF scenario (b) QDF scenario

Figure 9.2: Viable points in the |ξ| − yψ plane while demanding that ∆aµ lies within the 2σ
band of ∆aexpµ .

one needs small Yukawa couplings yψ ≲ 10−1 in order to stay within the 2σ band of ∆aexpµ ,
while suppressed left-handed interactions with |ξ| = 0.01 require yψ ≳ 0.3, with values as
large as yψ = 2.0 possible. Comparing the two freeze-out scenarios, we find that the allowed
points are slightly shifted to smaller values of |ξ| for the QDF scenario, due to the slightly
larger couplings allowed in this case. Increasing the value of mΨ = mψ shrinks the area in the
|ξ| − yψ plane for which the experimental 2σ band can be reached. As large values mΨ = mψ

generally lead to larger couplings |λµi| the upper edge of the area of allowed points is shifted
towards smaller values of both yψ and |ξ|, as growing couplings |λµi| need either decreasing
values of yψ or |ξ| in order to not yield a too large ∆aµ. Since increasing mediator masses also
suppress ∆aµ, the lower edge is shifted towards larger values of yψ and |ξ|.

The dependence of ∆aµ on the Yukawa coupling yψ is shown for the SFF scenario in Fig-
ure 9.3a and Figure 9.3b. Here, the central value of ∆aexpµ can be reproduced for both choices
of |ξ|. For |ξ| = 0.01 and masses mψ = 1100GeV this minimally requires yψ ≃ 0.6 while larger
masses mψ = 1700GeV require yψ ≃ 0.8. If left-handed interactions are non-suppressed on
the other hand, yψ needs to be much smaller and we find yψ ≃ 0.006 for mψ = 1100GeV while
one needs yψ ≃ 0.008 for mψ = 1700GeV. This can be seen in Figure 9.3a. We further find
that large values of mΨ = mψ shrink the area of possible values for ∆aµ, while for |ξ| = 0.01
and a given value of yψ it even leads to a lower limit on ∆aµ. This limit arises because large
mediator masses mψ ≳ 1500GeV demand large DM–muon couplings |λµ3| ≳ 1.0, as can be
seen in Figure 8.2b. Such a lower bound is not present for |ξ| = 1.00 as in this case even large
mediator masses allow for small couplings |λµ3|, as can be seen in Figure 8.2a. Since growing
mediator masses at the same time suppress ∆aµ, the upper edge of accessible values shrinks
for both cases of |ξ| for increasing mediator masses.

We find the same behaviour also for the QDF scenario shown in Figure 9.3c and Figure 9.3d.
Here, for |ξ| = 0.01 the central value of ∆aexpµ can be reproduced for minimal values yψ ≃ 0.5
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(a) SFF scenario with |ξ| = 1.00 (b) SFF scenario with |ξ| = 0.01

(c) QDF scenario with |ξ| = 1.00 (d) QDF scenario with |ξ| = 0.01

Figure 9.3: Dependence of the NP contributions ∆aµ on the Yukawa coupling yψ for both
freeze-out scenarios and both choices of |ξ|. The red dashed line shows the mean
value of ∆aexpµ and the orange and yellow areas show the 1σ and 2σ bands,
respectively.

and massesmψ = 1100GeV, while we find yψ ≃ 0.7 formψ = 1700GeV. In the non-suppressed
case we find yψ ≃ 0.008 for mψ = 1100GeV and yψ ≃ 0.01 for mψ = 1700GeV. We further
find that for |ξ| = 0.01 and mψ = 1700GeV the lower limit on ∆aµ is larger than for the SFF
scenario, while the upper limit is smaller. The larger lower limit can be explained through the
relic density constraint which requires all couplings |λµi| to be large, in order to compensate for
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(a) SFF scenario with |ξ| = 1.00 (b) SFF scenario with |ξ| = 0.01

(c) QDF scenario with |ξ| = 1.00 (d) QDF scenario with |ξ| = 0.01

Figure 9.4: Correlation between ∆aµ and |∆mµ| in both freeze-out scenarios and for both
choices of |ξ|. The greyed-out area indicates the region with |∆mµ|/mµ > 1 which
we consider fine-tuned. The red dashed line shows the mean value of ∆aexpµ and
the orange and yellow areas show the 1σ and 2σ bands, respectively.

the flavour-averaging factor and not yield over-abundant dark matter. The reduced upper limit,
on the other hand, is due to the fact that even for comparably small masses mψ = 1100GeV
the QDF scenario allows for close-to-maximal couplings |λµ3| ≃ 1.7. Hence, the increased
suppression of ∆aµ for increased values of mψ is less compensated by growing couplings |λµ3|
as they can maximally grow as large as |λµ3| = 2.0.
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Finally, we also examine the correlation between NP contributions to aµ and mµ in Fig-
ure 9.4. To this end we show how large the corrections ∆aµ are for a given value of |∆mµ|
normalized to the physical muon mass mµ. We find that for both choices of |ξ| the central
value of ∆aexpµ can be reached for corrections |∆mµ|/mµ < 1 in the SFF scenario, i.e. without
introducing a fine-tuned muon mass. This also holds true for both choices ofmψ that are shown
in Figure 9.4a and Figure 9.4b. We further find that non-suppressed left-handed interactions
generally lead to larger corrections |∆mµ| for sizeable NP effects in aµ. In this case most of the
viable parameter points found by the combined analysis lie in the rage yψ ∼ O(10−4 − 10−1).
As small values of yψ increase the mass of the lightest charged mediator mψ2 , this suppresses
both ∆aµ as well as ∆mµ. However, since the function

mψ1

m2
ϕk

G(xk,1)−
mψ2

m2
ϕk

G(xk,2) , (9.13)

responsible for the suppression of ∆aµ is steeper than

mψ2B0(0,mψ2 ,mϕk)−mψ1B0(0,mψ1 ,mϕk) , (9.14)

which causes the suppression of |∆mµ|, the slope of the distribution is steeper in Figure 9.4b
than in Figure 9.4a. For the same reason we find an equivalent behaviour for increasing
mediator masses, i.e. they again lead to larger contributions to |∆mµ| for a given value of ∆aµ.
The correlation between ∆aµ and |∆mµ| is shown for the QDF scenario in Figure 9.4c and

Figure 9.4d. Again, for both choices of |ξ| the central value of ∆aexpµ can be reached without
exceeding the threshold |∆mµ| > mµ, i.e. without introducing a fine-tuned muon mass. While
the correlation between ∆aµ and |∆mµ| qualitatively shows the same behaviour as in the SFF
scenario, we find that in the QDF scenario the allowed values lie on a thin band for the case
of non-suppressed left-handed interactions shown in Figure 9.4c. This is due to the very small
range of yψ values that allow for sizeable ∆aµ in this case, as can be seen in Figure 9.3c. In
that range the ratio ∆aµ/|∆mµ| is roughly constant in this freeze-out scenario, leading to the
thin strips of Figure 9.4c. Note that we also checked if sizeable contributions to the electron
or tau mass are generated and found those effects to be negligibly small. Hence, we conclude
that in both scenarios and for both cases of |ξ| our model is capable of accommodating ∆aexpµ

without introducing fine-tuned lepton masses and a fine-tuned muon mass in particular.

10 Summary and Outlook

In this work we studied a simplified model of lepton-flavoured DM, in which a complex scalar
DM flavour triplet couples to both right- and left-handed leptons. The interactions between
DM and right-handed leptons are mediated by a vector-like charged Dirac fermion and governed
by the 3× 3 complex coupling matrix λ. Interactions between DM and left-handed leptons, on
the other hand, are mediated by an SU(2)L doublet containing one charged and one neutral
vector-like Dirac fermion. We assumed the coupling matrix of these interactions to be given
by the same flavour-violating matrix λ times a scaling parameter ξ. The presence of both left-
and right-handed interactions between DM and the SM was found to lead to the absence of a
dark flavour symmetry, implying that it does not fall into the DMFV class [20–26]. In turn,
the DMFV connection between the coupling matrix λ and the DM mass spectrum is lifted in
this model. Further, the two mediator fields interact with the SM Higgs doublet through the
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Yukawa coupling yψ.
To examine the structure of the coupling matrix λ, determine the model’s viable parameter

space and subsequently examine whether it is capable of generating sizeable effects in the muon
anomalous magnetic moment aµ, we studied limits from collider searches, flavour experiments,
precision tests of the SM, the DM relic density as well as DM detection experiments.

In Section 3 we explored constraints from LHC searches for sleptons in the same-flavour final
state ℓℓ̄+ /ET with ℓ = e, µ. We found that the interplay between contributions from processes
with the two charged mediators leads to an exclusion of DM masses close to the equal mass
threshold mϕ3 ≈ mψ2 for values 0.5 ≲ yψ ≲ 1.00, while this near-threshold exclusion tends to
decrease with increasing values yψ ≳ 1.00. We obtained the largest exclusion in the mψ2 −mϕ3

plane for vanishing couplings |λτ3| and maximum couplings to electrons and muons |λℓ3| = 2.0.
In this case the LHC constraints exclude mediator masses up tomψ2 ≃ 750GeV and DMmasses
up to mϕ3 ≃ 400GeV.

To determine the flavour structure of λ we then studied limits from LFV decays in Section 4.
Due to the contribution with a chirality flip in the loop governed by the Yukawa coupling yψ,
the LFV decays ℓi → ℓjγ yield stringent bounds. The strongest limit is placed on the model by
the decay µ→ eγ and we estimated the resulting constraint on the coupling matrix. Motivated
by our goal to solve the (g− 2)µ anomaly, we satisfied this constraint by suppressing the DM–
electron couplings and choosing |λei| ∼ O(10−6 − 10−1). Other LFV decays less severely
constrain the coupling matrix λ due to weaker experimental limits.

We continued to restrict the coupling matrix λ in Section 5 by using constraints from pre-
cision tests of the SM. Here we particularly discussed the electron electric dipole moment de
as well as the electron magnetic dipole moment ae, with NP contributions to the latter having
the same sign in our model as the NP effects in aµ. We found that once the DM–electron cou-
plings are suppressed according to the LFV constraints, the EDM constraint allows for O(1)
imaginary parts of the scaling parameter ξ. Moreover, for accordingly suppressed DM–electron
couplings the constraints on the electron MDM ae are automatically fulfilled.
In Section 6 we studied in which part of our model’s parameter space the observed DM relic

density can be reproduced. We investigated two benchmark scenarios for the thermal freeze-
out: the QDF scenario in which negligible mass splittings lead to the presence of all dark
flavours during freeze-out, and the SFF scenario where due to a significant mass splitting be-
tween the DM flavours only the lightest state contributes to the freeze-out. For both scenarios,
we studied the two cases of suppressed and non-suppressed left-handed interactions between
DM and the SM with |ξ| = 0.01 and |ξ| = 1.00, respectively. For small left-handed couplings
the DM annihilation rate is p-wave suppressed while for sizeable left-handed interactions this
suppression is lifted. Still the relic density constraint allows for large couplings |λij | ∼ O(1) in
both freeze-out scenarios and both cases for ξ.
The direct detection phenomenology of our model was studied in Section 7.1, where we

used XENON1T data to constrain the coupling matrix λ. As the photon penguin that domi-
nates DM–nucleon scattering is proportional to the logarithm of the mass of the lepton in the
loop, the restrictions on λ were found to increase for decreasing lepton masses. The largest
constraints were thus found for the DM–muon coupling, since the DM–electron coupling is
already suppressed due to the flavour constraints.
Section 7.2 was dedicated to the limits from indirect detection experiments. Here we focussed

on limits from AMS measurements of the positron flux as well as measurements of the γ-ray
line and continuum spectrum performed by the Fermi-LAT satellite and the H.E.S.S. telescope.
For non-suppressed left-handed interactions the constraints from measurements of the positron
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flux and the γ-ray continuum spectrum are restrictive for DM masses mϕ3 ≲ 500GeV and
mϕ3 ≲ 700GeV, respectively. The γ-ray line spectrum generally leads to relevant constraints
in the near-degeneracy region mϕ3 ≈ mψ2 . In total, constraints from indirect detection were
still found to be weak in comparison to other limits.
To obtain our model’s viable parameter space we then performed a combined analysis in

Section 8 by demanding that all constraints are simultaneously fulfilled at the 2σ level. The
global picture is mainly determined by flavour, relic density and direct detection constraints.
For the SFF scenario the combination of flavour and relic density constraints forces the allowed
points to lie in a band in the |λτ3|−|λµ3| plane, while the direct detection constraint dominates
in a small part of the parameter space over the relic density constraint. In these regions, the
outer edge of the mentioned bands shrinks toward the inner band for growing values of |λµ3|.
For the QDF scenario we found that for large parts of the parameter space the direct detection
constraint dominates over the relic density constraint. Consequently the combined analysis
also allows for simultaneously small values of |λτ3| and |λµ3|, since the relic density constraint
in this case can also be fulfilled through annihilations of the heavier states ϕ1 and ϕ2 alone,
provided that the mediator mass is sufficiently small, mψ2

≲ 1500GeV. Generally the case of
non-suppressed left-handed interactions with |ξ| = 1.00 allows for smaller couplings |λτ3| and
|λµ3| than the case with |ξ| = 0.01.

Finally, we used our results from Section 8 to examine in Section 9 if our model is able to
account for the discrepancy between the SM and experiment in the muon anomalous magnetic
moment aµ. To this end we calculated ∆aµ in the regions identified as viable in the combined
analysis and compared it with the experimental value. We further evaluated accompanying
corrections ∆mµ to the muon mass and checked if sizeable effects in aµ introduce a fine-
tuned muon mass. We found that in both freeze-out scenarios the central value of ∆aexpµ can
be reached within the region of parameter space that we regard as non-fine-tuned for both
cases of ξ, requiring different values for the mediator-Higgs coupling yψ. Noteworthy, for non-
suppressed left-handed interactions larger corrections to the muon mass are generated for a
given value of ∆aµ than for |ξ| = 0.01.

We conclude that lepton-flavoured DM with couplings to both left- and right-handed leptons
accompanied by Higgs portal interactions of the corresponding mediators elegantly connects
the current most convincing hints at NP: the DM problem and the muon (g − 2) anomaly. In
spite of exhibiting a very rich phenomenology spanning over several branches of particle physics
and thus being subject to many constraints, this model still allows for a joint explanation of
both. Hence, it qualifies as an attractive DM candidate waiting to be further probed with
increased sensitivity by future experiments.
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A Relic Density

The functions Aijkl, Bijkl, Ckl and Dkl from eqs. (6.9) –(6.12) read

Aijkl = (m2
ϕj

−m2
ℓl
− t)(t+m2

ℓk
−m2

ϕi
)− t(s−m2

ℓk
−+m2

ℓl
) , (A.1)

Bijkl = ξ∗mℓl(m
2
ϕi

−m2
ℓk

− t) + ξmℓk(m
2
ϕj

−m2
ℓl
− t) , (A.2)

Ckl = −2mℓkmℓlt , (A.3)

Dkl = 2|ξ|2(s−m2
ℓk

−m2
ℓl
)− 2mℓkmℓl

(
ξ∗2 + ξ2

)
. (A.4)

The p-wave contribution to the thermally averaged annihilation cross section from eq. (6.13)
for ξ ̸= 0 is given by
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µ20 + 1
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2

]}
, (A.5)

in the limit of equal initial state masses and vanishing final state masses. Here we have used
µα = mψα/mϕ3 .

B Direct Detection

The DM–nucleon cross section for t-channel scatterings through the Higgs portal reads [81]

σN,HϕSI =
λ2Hϕy

2
N

4π

µ2m2
N

m4
Hm

2
ϕ3

, (B.1)

where mN is the nucleon mass and µ = mϕ3mN/(mϕ3 + mN ) is the reduced mass of the
DM–nucleon system. In order to estimate in which parts of the parameter space these con-
tributions grow larger than the photon one-loop penguin from Figure 7.2a that we consider
in the numerical analysis, we set the couplings to |λi3| = 2 and |ξ| = 1 as well as yψ = 0
in eq. (7.4) for maximum mixing with θψ = π/4. Comparing with eq. (B.1) then gives the
maximum allowed value of the Higgs portal coupling λHϕ for at most equal scattering cross
sections. This illustrated by the contours shown in Figure B.1.
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Figure B.1: Maximum allowed values of λHϕ in order to give at most equal contributions to
the DM–nucleon scattering cross section as the photon penguin diagram.

C Indirect Detection

The expression for the interference term of ψ1 and ψ2 for the internal bremsstrahlung process
of Figure 7.3a is given by

⟨σv⟩12ℓℓ̄γ =
∑
ij
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128m2
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2
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2
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l2(−3 + l1 − l3 − 4l4 + 4l7 + l8))µ1))

}
, (C.1)

with the logarithms li and polylogarithms pi defined as

l1 = log(1 + µ2) , l2 = log(µ1 − 1) , l3 = log(µ2 + µ1) ,

l4 = log(1 + µ1) , l5 = log(µ2 − 1) , l6 = log(µ2) ,

l7 = log(µ1) , l8 = log(16) , l9 = log(256) , (C.2)

and
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The constraint coming from indirect detection experiments for the case of suppressed left-
handed interactions is shown in Figure C.1.
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Figure C.1: Restrictions on the model parameters from indirect detection experiments for
suppressed left-handed interactions. In all three plots we have assumed maximum
mixing with θψ = π/4. The area included by the white dashed line and the equal
mass diagonal indicates in which mass regime the constraints are relevant.
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H. Stöckinger-Kim, New physics explanations of aµ in light of the FNAL muon g − 2
measurement, JHEP 09 (2021) 080 [2104.03691].
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