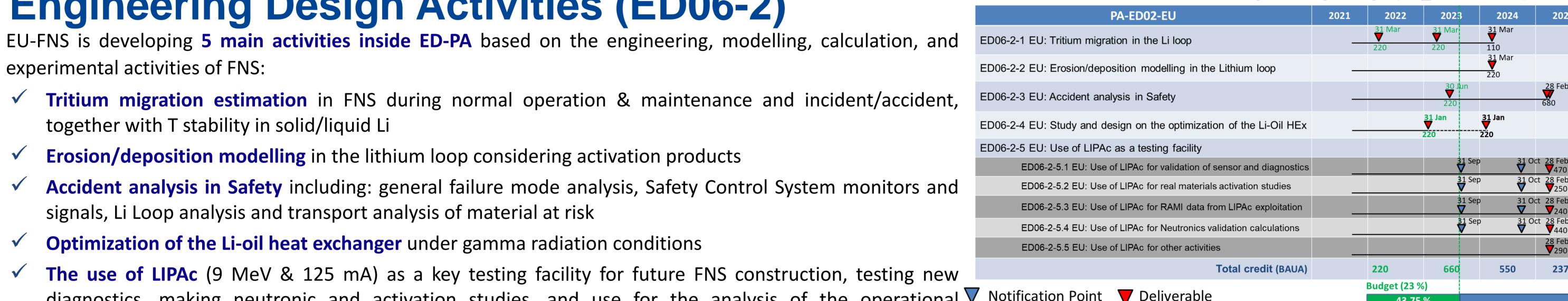


Overview of European Fusion Neutron Source activities within the **ISFNT-15** IFMIF/EVEDA Project

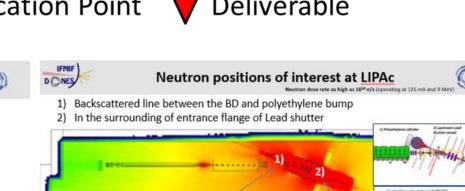
D. Jimenez-Rey^{1,2*}, H. Dzitko², Y. Carin^{2,3}, S. Becerril⁴, P. Cara², D.N. Dongiovani⁵, F. Martin-Fuertes¹, F. S. Nitti⁵, T. Pinna⁵, Y. Qiu⁶, B. Renard^{3,7}, and EU-FNS team

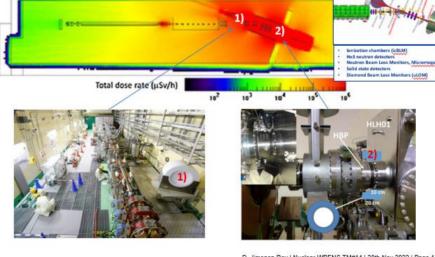
¹CIEMAT, Madrid, Spain. ²IFMIF/EVEDA Project Team, Rokkasho-mura, Aomori, Japan. ³Fusion for Energy (F4E), BA/IFMIF, Garching, Germany. ⁴IFMIF-DONES consortium. ⁵ENEA, Brasimone, Italy. ⁶KIT, Karlsruhe, Germany. ⁷IRFU, CEA, Université Paris-Saclay, France

*d.Jimenez@ciemat.es & David.Jimenez@ext.f4e.europa.eu


Introduction

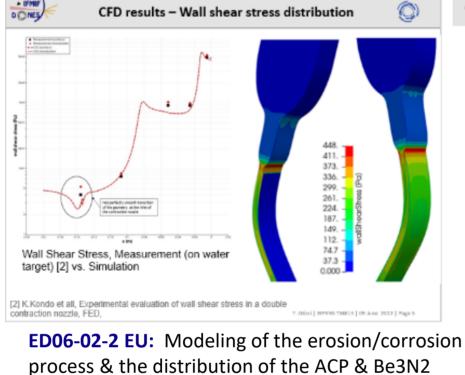
See PL5 contribution, Hervé Dzitko "Overview of Broader Approach activities" (13-Sep) See P5B2 contribution, Yann Carin "IFMIF/EVEDA achievements overview" (14-Sep) See PL9 contribution, Angel Ibarra "Status of IFMIF-DONES Project" (15-Sep)


- The EU fusion roadmap defines as a key facility for the fusion development the fusion-like neutron source for testing the candidate materials for fusion reactors
- The Fusion Neutron Source (FNS) is conceived to generate fusion-relevant neutrons through Li(d,xn), by means of a linear particle accelerator to obtain an intense deuteron beam (125 mA, 40 MeV) impinging onto a liquid lithium target
- High Neutrons flux, up to 10¹⁴ n/(cm²·s), will irradiate, under controlled conditions, the candidate samples in the Test System
- Since 2021 EU and JA have been developing different FNS facilities
- Common Europa (EU)-Japan (JA) FNS design activities have been defined in the frame of a new international collaboration, the Broader Approach Phase Two (BA-II), in addition to IFMIF Engineering Validation and Engineering Design Activities (IFMIF/EVEDA)
- Several EU Engineering Design (ED) and Lithium Facilities (LF) design activities required for advancement in an FNS design are being developed from **2022 to 2025** under two Procurement Arrangements (PAs)


Deliverables Timeline of Engineering Design (PA_ED-06-2 EU)

Facility – Demo Oriented NEutron Source

diagnostics, making neutronic and activation studies, and use for the analysis of the operational \overline{V} Notification Point \overline{V} Deliverable

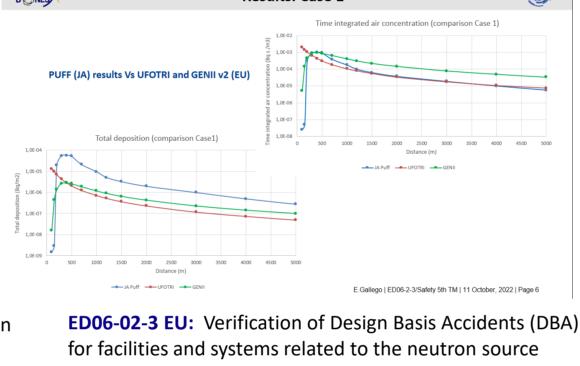

experience reliability data collection (RAMI)

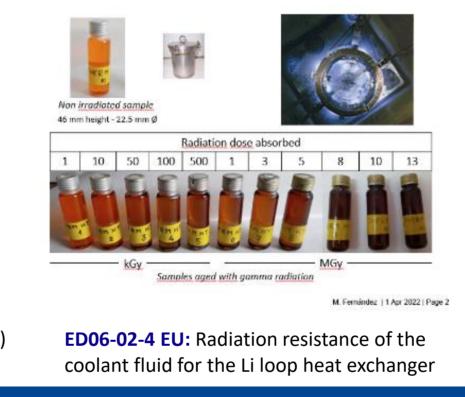
ED06-02-1 EU: A complete EcosimPro model of Li Loop

to predict the T transfers in the Li loop & Li rooms

experimental activities of FNS:

together with T stability in solid/liquid Li



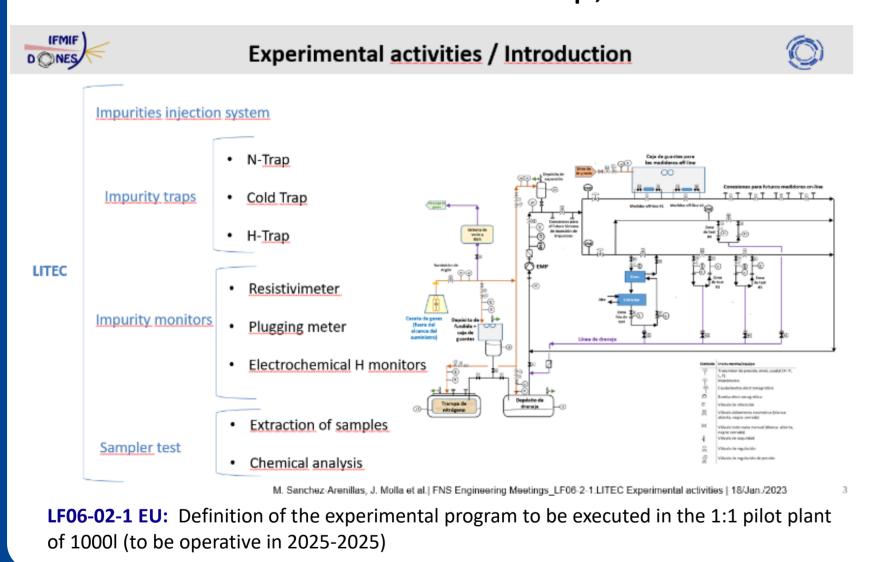

Engineering Design Activities (ED06-2)

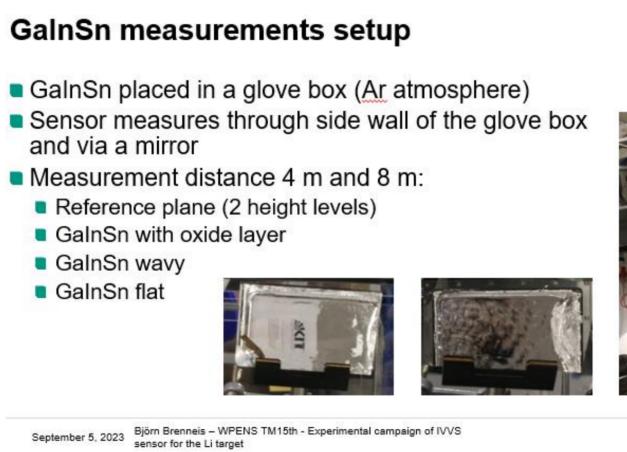
Erosion/deposition modelling in the lithium loop considering activation products

Optimization of the Li-oil heat exchanger under gamma radiation conditions

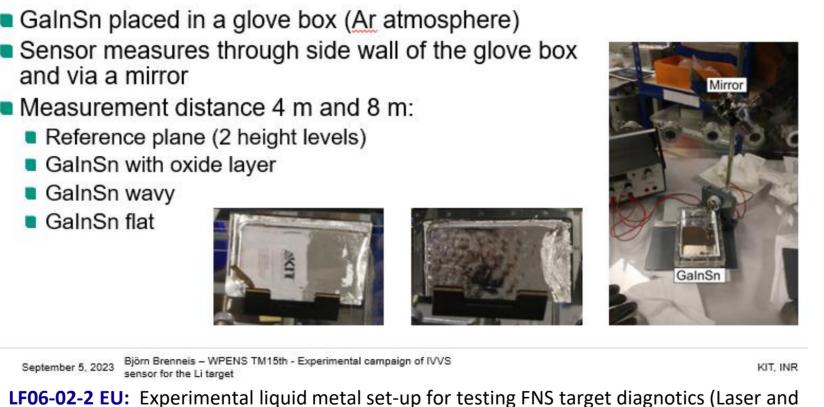
signals, Li Loop analysis and transport analysis of material at risk

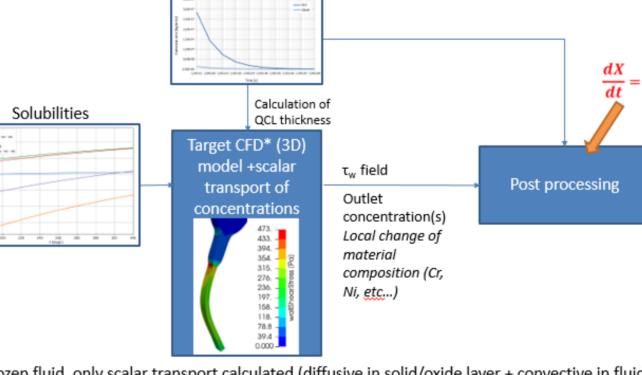
ED06-02-5 EU:use of LIPAc for material activation analysis & neutronic validations

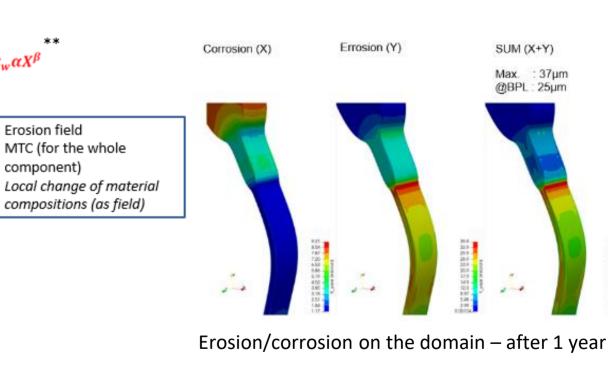

Lithium Design Activities (LF06-2)


- LF-PA activities of EU-FNS includes 3 main activities inside ED-PA:
 - Li purification system validation activities by means of pilot plants 1:1
 - Li target diagnostics design and validation by laser for thickness measure
 - Erosion/corrosion analysis and modelling materials of a dismantled test loop, the EVEDA Lithium Test Loop (ELTL)

Images of the free surface lithium flow in ELTL taken with 2 s and 10 μs exposure time [Kondo et al. (2015), Wakai et al. (2016)]


PA-LF02-EU 2022 2023 2024 2025 28 Feb LF06-2-1 EU: Li purification system validation activity 2480 28 Feb LF06-2-1 EU: Li target diagnostics design and validation LF06-2-1 EU: Erosion/corrosion analysis on ELTL materials **Total credit (BAUA)** 110 3250 **Budget (2.8%)** ▼ Notification Point ▼ Deliverable 43.75%


Deliverables Timeline of Lithium Design (PA_LF-06-2 EU)



ITER in Vessel Viewing System (F4E)) for Li thickness measurement

Frozen fluid, only scalar transport calculated (diffusive in solid/oxide layer + convective in fluid) **Calibrating the parameters based on the measurements

LF06-02-3 EU: Development of 3D CFD quasi-experimental model of the ELTL TA section for prediction of the wall shear stress distribution

Beyond 2025 (ED06-03 & LF06-3)

- The content (modelling, calculation, engineering and experimental activities) of both new PAs and budget are being defined, in order to be agreed early 2024:
 - LF06-3: Lithium Target Enhancement Part 2 (EU)
 - **ED06-3: Design feedback for neutron source Part 2 (EU)**
- The LF06-3 activities are linked to experimental Li loop facilities operation under nominal conditions
- The ED06-3 activities are strongly correlated with LIPAc commissioning/operation schedule and advances

FACILITIES of common interest by JA-EU to be used:

- LIPAc as the unique world d+@125 mA experimental facility for perform FNS studies on instrumentation, activation studies, safety, control, tested operational procedures, RAMI, extraction of lessons learned, etc
- LITEC Li Loop and experiments for impurities studies
- QST purification loop
- OSAKA Li Loop for free surface Li diagnostics (laser and radar) experiment
- LIFIRE for LI extreme conditions studies

Summary

- Activities on engineering design, modelling, calculation and experimental studies are being performed by EU-HT for the fast track of the FNS (based on IFMIF) of common interest for EU and JA
- Highly interesting and fruitful bidirectional R&D collaboration between JA-EU for the development of future FNSD
- The activities continuation beyond 2025 (ED/LF06-3) are being drafted and will discussed in the ISFNT Satellite Meeting "FNS-Technical Meeting#2 (FNS-TM#2)"