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Abstract
In this article we consider the two-dimensional Navier–Stokes equations with
variable viscosity depending on the vertical position. As our main result we
establish linear enhanced dissipation near the non-affine stationary states repla-
cing Couette flow. For instance, these shear flows may grow exponentially.
Moreover it turns out that, in contrast to the constant viscosity case, decreasing
viscosity leads to stronger enhanced dissipation and increasing viscosity leads
to weaker dissipation.
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1. Introduction

In the present paper we are concernedwith the two-dimensional incompressible Navier–Stokes
equations in the presence of large (stratified) viscosity variations{

∂tv+ v ·∇v− div(µSv)+∇p= 0,

divv= 0.
(1)

Here t ∈ [0,∞) and

(
x
y

)
∈ T×R denote the time and space variables respectively. The

vector-valued function v= v(t,x,y) : [0,∞)×R2 → R2 and the scalar function p= p(t,x,y) :

∗
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[0,∞)×R2 → R denote the unknown velocity vector field and the unknown pressure of the
two-dimensional flow, respectively.

The symmetric part of the velocity gradient

1
2
Sv :=

1
2

(
∇v+(∇v)T

)
denotes the symmetric deformation tensor. The viscosity coefficient µ is a given non-constant
positive scalar function, and in the present paper we consider the case of stratified viscosity

µ= µ(y)

depending on the vertical direction only, and study its interplay with 2D shear flows.
Viscous stratification is a typical phenomenon not only in nature (e.g. in the atmosphere

and ocean flows) but also in industrial application (e.g. in the chemical and food industry). The
(in)stabilities in viscosity-stratified flows have attracted large interest in the physics community
[Cra69, GS14, Hei85, Lin44, HB87, Yih67].While additional dissipation at first sight suggests
stabilization1, in experiments viscosity exhibits dual roles [Dra02, chapter 8, p 160]:

(R1) A stabilizing role due to the dissipation of energy;
(R2) A more subtle destabilizing role.

Yih [Yih67] showed that the instability in a low Reynolds number flow can be caused by
viscosity stratifications (see also Craik [Cra69] for the study of flows with continuous viscosity
stratification). These results motivated decades of active research on the instability caused by
viscosity interfaces, see [GS14] for a review paper on this topic.

In this paper we aim to show (R2) by investigating the stability (R1) for the case of two-
dimensional shear flows. More precisely, we consider the model (1) of the fluids with equal
density/temperature but different viscosities, which can for instance be used to describe the
transport of the highly viscous oil and an immiscible low viscous lubricant (see e.g. [JRR84,
PV91] for the relevant instability analysis). We then study the asymptotic behaviour of per-
turbations to the shear flow solutions

µ= µ(y) , v=

(
U(y)
0

)
, (2)

which satisfy the hydrostatic balance

∂y (µ∂yU) = 0. (3)

As a consequence of (3), one already observes that the variable viscosity coefficient changes
the slope of the underlying velocity profile, such that the viscous stratification comes into play,
even at high Reynolds numbers µ� 1.2

In recent years there has been extensive research on the stability study of the shear flows (2)
for the inviscid fluids with

1 TheOrr–Sommerfeld eigenvalue problem has only positive eigenvalues for Couette flows, which implies the stability
of Couette flows for all Reynolds number, but experiments showed instability under small but finite perturbations.
2 The viscosity variations increase the order of the Orr–Sommerfeld equation from two to four, which makes a dif-
ference in the dynamics even at high Reynolds numbers (contrary to the intuitive expectation of negligible viscous
effect).
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µ= 0,

and for the viscous fluids with constant viscosity

µ= const.> 0.

Since the literature is extensive, we here do not provide a complete overview but refer the
interested readers to the following recent works for further discussion [Jia20, LX19, WZZ18,
IJ20a, IJ20b, Wid18, YL18, BMV16, EW15, LZ11, WZZ20, BGM17, BM15, DWZ21]. We,
in particular, recall that for linearized equations around Couette flow

µ= µ1 > 0,U(y) = y,

it can be shown by explicit calculations that the interplay of shearing and dissipation leads to
damping with a rate

exp
(
−C(µ1)

1
3 t
)
, (4)

and thus on a time scale (µ1)
− 1

3 much smaller than the dissipation time scale (µ1)
−1, if µ1 > 0

is a small constant. This phenomenon is hence called enhanced dissipation (see [BVW18] for
further discussion and the analysis of the nonlinear problem), which highlights the stabilizing
role (R1) of the viscosity: the larger the viscosity is, the stronger dissipation the flow exhibits,
and hence the more stable the shear flows are.

We remark that settings of large dissipation, µ� 1, can be treated by energy estimates
in a rather straightforward way. Hence, a main focus in this article is on the setting of small
dissipation, µ< 1. Our main questions in this article are:

• (R1): Does enhanced dissipation also hold in settings where µ can vary by many orders of
magnitude and, if so, in which spaces?

• (R2): How does the enhanced dissipation rate depend on µ? In particular, given µ(y) in some
region, how much should µ increase or decrease to change the (local) enhanced dissipation
rate by a given factor?

In view of the non-local structure of the Biot–Savart law, one cannot simply ‘localize’ estim-
ates, making both questions a very challenging problem. As we will discuss in section 4, a
natural (sufficient) compatibility condition to connect adapted estimates with the non-local
Biot–Savart law is given by a control of the Lipschitz constant of

log(µ) .

We remark that by the balance relation (3), this also implies a control of log(∂yU(y)). However,
we stress that we will not require that µ is close to constant or that U(y) is close to Couette
flow. Indeed, a prototypical example is given by

µ(y) = µ0e
δy,U(y) = U0e

−δy, y ∈ R, (5)

where U0, δ ∈ R, µ0 > 0 are constants and |δ| is small (see remark 1.1 for further discussion).
This profile is locally bilipschitz and we may thus construct ‘localized’ Fourier weights (see
section 3) which can then be ‘glued’ together (see section 4).
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Recall that by the hydrostatic balance (3):

µ∂yU= const.=: σ 6= 0,

and hence the above heuristic from the constant viscosity case suggests that the ‘local damping
rate’ should be given by(

µ(∂yU)
2
) 1

3
=

σ
2
3

µ
1
3 (y)

.

It can thus vary by arbitrarily many orders of magnitude and is proportional to an enhanced,
negative power of µ(y). This dependence shows both the stabilizing role (R1) for µ> 0, as
well as ‘a subtle destabilizing role’ (R2) in the sense that the larger the viscosity is, the weaker
dissipation the flow exhibits and hence the less stable the shear flows are. This also helps
to explain wall heating or cooling techniques (corresponding to the liquid flows or gas flows
respectively) in industrial application, which produce less viscous flow near thewall, and hence
stabilize the flows [BG81].

Theorem 1.1. Let µ= µ(y) ∈ C2(R) with µ> 0 be a given stratified viscosity profile. Then a

shear flow v= v(x,y) =

(
U(y)
0

)
, (x,y) ∈ T×R such that

µ∂yU= const (6)

is a stationary solution of the Navier–Stokes equation (1), and the linearized equations around
this solution in vorticity formulation read

∂tω+U∂xω = U ′ ′v2 + div(µ∇ω)− div(µ ′∇v1)−µ ′ ′∂xv2,

v=

(
v1
v2

)
=−∇⊥ (−∆)

−1
ω, (7)

where U ′ = ∂yU, U ′ ′ = ∂2
yU, µ

′ = ∂yµ, µ ′ ′ = ∂2
yµ denote y derivatives, and ∇=

(
∂x
∂y

)
,

∇⊥ =

(
−∂y
∂x

)
, div=∇·.

Suppose also that µ> 0 only varies gradually, in the sense that

‖(lnµ) ′ ‖W1,∞ = ‖µ
′

µ
‖L∞(R) + ‖∂y

µ ′

µ
‖L∞(R) < 0.0001, (8)

and let a(y)> 0 be a weight function that also only varies gradually (e.g. a= µ, a= 1 or a=
1
µ ). Then the linearized equation (7) are stable in L

2(a dxdy) and exhibit enhanced dissipation.
More precisely, there exist a time-dependent family of operators A(t) with

0.1‖ω (t)‖2L2(T×R,a dxdy) ⩽ ‖A(t)ω (t)‖2L2(T×R,a dxdy) ⩽ ‖ω (t)‖2L2(T×R,a dxdy),

and a constant C> 0, such that, if the x-average of the initial vorticity vanishes:
´
Tω0dx= 0,

then for all times t> 0 it holds that

d
dt
‖A(t)ω (t)‖2L2(T×R,a dxdy) ⩽−C‖

√
µ+

(
µ(U ′)

2
)1/3

A(t)ω‖2L2(T×R,a dxdy). (9)
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Moreover, under further regularity assumptions these results also extend to stability of the
‘profile’ W(t,x,y) := ω(t,x+ tU(y),y) in higher Sobolev norms HN (see proposition 5.1 for a
precise statement).

Remark 1.1. Let us comment on these results:

• While ln(µ) is only allowed to vary gradually, µ may be arbitrarily large or small and grow
or decrease at an up to exponential rate (with a small constant). A prototypical model case
here is given by (5):

µ(y) = µ0e
δy, U(y) = U0e

−δy.

In particular, µ is not close to constant and can vary by many orders of magnitude.
• A key challenge of the analysis lies in the fact that in view of the big changes in the size

of µ we require suitably ‘localized’ estimates, which also hold for the case when µ is not
close to constant. On the other hand the non-local structure of the Biot–Savart law implies
that purely local estimates are not possible. We thus combine robust elliptic estimates (see
section 3) and ‘gluing’ results (see section 4) to construct global energy functionals.

• That is, we note that for any given interval Ij = (aj,bj) the restriction of U to Ij is bilipschitz
and similarly the restriction of µ is bounded above and below. In section 3, as a model case
we thus consider (smooth) affine/constant extensions

∂yUj (y) =


∂yU(y) in Ij,

∂yU(bj) if y� bj,

∂yU(aj) if y� aj,

µj (y) =
σ

∂yUj (y)
.

Unlike U and µ, these functions are globally bilipschitz or bounded above and below,
respectively, and hence allow for an explicit construction of (localized) pseudo-differential
operators Aj.

In a second step, in section 4, we partition and ‘glue’ the localized models of section 3.
More precisely, given U and µ, we partition R into intervals Ij and introduce an associated
partition of unity

∑
jχ

2
j = 1. Using the results of section 3, we then define the operator

A=
∑
j

χjAjχj.

While this partition, of course, introduces several error and commutator terms, we show that
these terms can be controlled (in suitably weighted L2,H1 and H−1 spaces) even if U is not
globally bilipschitz and µ is not globally bounded away from 0 and ∞. Instead we only
require smallness of the logarithmic derivative

∂yµ(y)
µ(y)

=−
∂2
yU(y)

∂yU(y)
,

which in the prototypical case (5) reduces to the constant function δ.

6075



Nonlinearity 36 (2023) 6071 X Liao and C Zillinger

• For this prototypical case the local dissipation rate in (9) is given by

µ0e
δy+

(
µ0U

2
0

)1/3
δ

2
3 e−

1
3 δy. (10)

In particular, this rate may vary by many orders of magnitude and the enhanced dissipation
effect is visible in those regimes where both horizontal and vertical dissipation are much
smaller than 1 and hence(

µ0U
2
0

)1/3
δ

2
3 e−

1
3 δy � µ0U

2
0δ

2e−δy.

We stress that this enhanced vertical rate (not just for this example) is proportional to µ−1/3.
In particular, a decrease of µ by a factor 1000 corresponds to an increase of the ‘local’
dissipation rate by a factor 10. Conversely, increasing the viscosity corresponds to weaker
dissipation.

• The small absolute constant C> 0 in (9) accounts for losses of factors due to error terms.
That is, given a localized bound with constant C1 for the ‘main dissipation term’ (see lemma
3.4 of section 3), we obtain a slightly worse constant at least of size C1/10 for the full
localized problem (see proposition 3.1) and finally a constant C⩾ C1/100 with a possible
loss due to gluing errors (see proposition 4.1). In order to simplify notation we do not track
these absolute constants throughout the article, and they may change from line to line.

• Unlike in the constant viscosity setting, for the shear flow considered in this article the second
derivative of the shear U′′ is non-trivial and does not approach zero under the (variable
viscosity) heat flow.

• The nonlinear stability problem of the Navier–Stokes equations with constant viscosity has
been studied in [BVW18]. This article extends these results in the linearized case to the strati-
fied viscosity problem. In particular, we extend the by now common Cauchy–Kowalewskaya
approach to the setting where U ′(y) and µ(y) may vary by many orders of magnitude (but
may do so only gradually). We expect these methods to be of interest of their own for the
wider community and applicable also to other related problems (e.g. the well-posedness
issue of the variable viscosity Boussinesq equations).

Remark 1.2. Based on the local dissipation rate in theorem 1.1, at first sight one might also
conjecture an estimate of the form

‖exp(νt)ω (t)‖L2 ⩽ C‖ω (0)‖L2 .

However, such an estimate cannot be expected to hold in general, since the Biot–Savart law
is non-local and not decaying fast enough. More precisely, if ω is highly localized in a region
M, then the velocity field generated by ω exhibits decay away fromM in terms of a power law
of the distance dist(y,M). In particular, if M′ is a different region with much higher damping
rate, then the decay of the Biot–Savart law in terms of dist(M,M ′) is not sufficiently strong to
compensate for the difference in dissipation rates.

The remainder of our article is structured as follows:

• In section 2 we introduce function spaces, changes of variables and notational conventions
used throughout the article.

• As a first model setting in section 3 we establish linear L2 stability for the case when µ varies
only by a bounded factor: sup(µ)

inf(µ) ⩽ 2. This allows us to more transparently present the main
tools of our proofs and discuss the necessity of assumptions.
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• In section 4 we extend these L2 stability results to the general setting by constructing local
versions of several estimates. Here the non-local structure of the Biot–Savart law and the
interaction of the localization and dissipation require careful analysis.

• Using the linear L2 stability results as a building block, in section 5 we establish linear
stability in HN and thus prove theorem 1.1.

2. Stationary solutions and notation

In this section we establish that the shear flow (U(y),0)T given in theorem 1.1 indeed is a
stationary solution. Furthermore, we derive the linearized equation around this state in vorticity
formulation.

In our analysis of the Navier–Stokes equations it is often convenient to work in Lagrangian
coordinates moving with the underlying shear flow (U(y),0)T. Moreover, since we assume that
U is strictly monotone there exists a change of coordinates y 7→ z= U(y) which straightens
out the flow lines. However, as we discuss in section 4 this change of variables may be highly
degenerate (not Lipschitz). For this reason, in the latter section we instead introduce families
of bilipschitz changes of coordinates, which locally agree with z up to a factor.

Lemma 2.1 (Stationary solution). Let µ= µ(y) ∈ C2(R) be a given function with µ> 0. Let
σ ∈ R \ {0}, and let U= U(y) ∈ C3(R) satisfy

µ(y)U ′ (y) = σ.

Then v(x,y) = (U(y),0)T ∈ C3(T×R;R2) is a stationary solution of the Navier–Stokes
equation (1) with viscosity µ.
The linearized equations in vorticity formulation around this stationary solution are

given by

∂tω+U∂xω−U ′ ′v2 = div(µ∇ω)− div(µ ′∇v1)−µ ′ ′∂xv2,

v= (v1 v2)
T
=∇⊥∆−1ω. (11)

Proof of lemma 2.1. Following theorem 1.1 we make the ansatz

µ= µ(y) , v=

(
U(y)
0

)
. (12)

The Navier–Stokes equation (1) then reduce to the following equations(
−∂y (µ∂yU)+ ∂xp

∂yp

)
=

(
0
0

)
.

The second equation ∂yp= 0 implies p= P(x) for some function P depending only on x, while
∂y(µ∂yU) depends only on y. Hence, both functions need to equal a common constant, which
yields the hydrostatic balance relation

∂y (µ∂yU) = C0 (13)

and p= P(x) = C0x+C1, where C0,C1 ∈ R are constants. In particular, specializing to the
case C0 = 0, we verify that our choice of U yields a stationary solution.
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If we also allow for C0 to be possibly non-trivial there are many solutions of potential
interest:

• The Uniform flow: U= const.
• The Couette flow: U= y, with µ= const. or µ= C0y+C2.
• The Poiseuille flow: U= y(1− y), with µ= const., y ∈ [0,1].
• The shear layer: U= tanh(y), with µ= sech−2(y).
• The jet or wake: U= sech2(y), with µ= ycosh2(y)coth(y).

In this article we restrict to the case C0 = 0 since then for non-vanishing viscosity the (non-
trivial) shear flowU has no critical points, which would pose an obstacle to damping estimates.
Furthermore, in view of physical applications we are mainly interested in the case when the
effective damping rate µ(∂yU)2 is not large (indeed extremely small).

In the following letU,µ be solutions of (13) which hence are solutions of the Navier–Stokes
equations in velocity formulation. We may then obtain the equation for the vorticity

ω =∇⊥ · v, with ∇⊥ =

(
−∂y
∂x

)
,

by applying the operator ∇⊥· to the velocity equation (1). Notice that

div(µSv) =

(
2∂xµ∂xv1 ∂yµ∂yv1 + ∂yµ∂xv2

∂xµ∂xv1 + ∂xµ∂xv2 2∂yµ∂yv2

)
,

v=∇⊥∆−1ω =

(
−∂y∆−1ω
∂x∆

−1ω

)
.

We may calculate (see also [HL20])

∇⊥ · div(µSv) = [(∂yy− ∂xx)µ(∂yy− ∂xx)+ (2∂xy)µ(2∂xy)]∆
−1ω,

which can be equivalently expressed as

∆(µω)− 2µ ′ ′∂xv2 = div(µ∇ω)− div(µ ′∇v1)−µ ′ ′∂xv2.

Thus we arrive at the vorticity formulation for the Navier–Stokes equations with viscosity µ:

∂tω+ v ·∇ω =∆(µω)− 2µ ′ ′∂xv2 ≡ div(µ∇ω)− div(µ ′∇v1)−µ ′ ′∂xv2. (14)

Finally, we linearize the vorticity equation (14) around this shear flow to arrive at the fol-
lowing linearized equation

∂tω+U(y)∂xω−U ′ ′ (y)v2 =∆(µω)− 2µ ′ ′∂xv2
≡ div(µ∇ω)− div(µ ′∇v1)−µ ′ ′∂xv2. (15)

In the following we introduce some equivalent reformulations of linearized equation (11)
in order to simplify our notation. We first observe that in the equation (11), all coefficient
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functions do not depend on the x variable. Hence the evolution of the x-average of the vorticity
which we denote by ω= decouples as

∂tω= = ∂y (µ∂yω=)+ ∂y (µ
′ω=) = ∂yy (µω=) .

The x average hence evolves as in a variable coefficient heat equation and does not influence
the evolution of the orthogonal complement

ω̸= = ω−ω=.

For this reason we in the following without loss of generality assume that initially

ω= = 0, (16)

which then remains the case for all times.
As another consequence of the lack of x-dependence, the equations decouple after a Fourier

transform in x, which we denote by

ω̂ (t,k,y) =
1
2π

ˆ
T
e−ikxω (t,x,y)dx.

Our equations read:

∂tω̂+ ikU(y) ω̂−U ′ ′ (y)
ik

−k2 + ∂yy
ω̂ =

(
−k2 + ∂yy

)
(µω̂)+ 2µ ′ ′ k2

−k2 + ∂yy
ω̂.

We may further consider the vorticity moving with the underlying shear

W(t,x,y) = ω (t,x+ tU(y) ,y) . (17)

Expressed in Fourier variables it holds that

FxW(t,k,y) = eiktU(y)ω̂ (t,k,y) ,

and hence

∂t (FxW)− ikU ′ ′ (y)

−k2 +(∂y− iktU ′ (y))2
(FxW) =

(
−k2 +(∂y− iktU ′ (y))

2
)
(µFxW)

+
2µ ′ ′k2

−k2 +(∂y− iktU ′ (y))2
(FxW) . (18)

Notice that after the Fourier transform with respect to the x variable, the equation (18) for
(FxW)(t,k,y) are decoupled with respect to k. Since

‖W(t,x,y)‖L2 =
∥∥‖(FxW)(t,k,y)‖L2(R,dy)

∥∥
ℓ2k(Z)

,

it suffices to consider the evolution of the norm

‖(FxW)(t,k,y)‖L2(R,dy).

In the remainder of the article we will thus focus on the evolution of W which is localized at
an arbitrary but fixed frequency k 6= 0.
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In the following sections we establish asymptotic stability ofW in Sobolev regularity. More
precisely, we will first consider the special case where U is globally bilipschitz with compar-
able upper and lower Lipschitz constants in section 3. Building on these results, in section 4 we
consider the general case, where we further introduce modified changes of coordinates adapted
to the local behaviour of the coefficient functions. We remark already here that this construc-
tion requires further refinement for the general situation, but provides a good description if one
additionally assumes that µ is globally comparable to a constant, which is the model setting
of section 3. In section 4 we replace this global change of variables by a family of suitably
localized coordinate changes, which accounts for the fact that µ and hence U′ may change
by many orders of magnitude. Finally, in section 5 we bootstrap the stability results in L2 to
establish stability in HN.

3. A model case and L2 estimates

In this section we impose the additional assumption that µ(y) is bounded above and below and
require that

sup(µ)
inf(µ)

⩽ 2, (19)

and we also impose such an assumption on the weight a. As we discuss in section 4 this can, of
course, not be expected to hold in general. However, since µ(y) is assumed to be slowly vary-
ing, it does hold when restricting to suitable intervals (see remark 1.1 and lemma 4.2). A main
challenge of the latter section is thus to ‘localize’ and ‘glue’ estimates in a way compatible
with non-local interaction by the Biot–Savart law.

We remark that by the hydrostatic balance (6), the condition (19) also implies that U′ is
bounded above and below (and without loss of generality strictly positive) and

sup(U ′)

inf(U ′)
⩽ 2.

Therefore, with this additional assumption the change of variables

y 7→ z=
U(y)
u

with

u := inf U ′, (20)

is globally bilipschitz with constants bounded by 1
2 and 2.

Given a solution ω of the linearized Navier–Stokes equation (11), we may thus equivalently
consider

W(t,x,z) := ω (t,x+ tU(y) ,y) (21)

and study stability in L2(dxdz) in place of L2(dxdy). Here, with slight abuse of notation com-
pared to (17), we identify W depending on y and on z, respectively.

For this unknown the linearized Navier–Stokes equations read as in (18):

∂tW= U ′ ′V2 + divt (µ∇tW)− divt (µ
′∇tV1)−µ ′ ′∂xV2, (22)
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where ∇t :=

(
∂x

U ′

u (∂z− tu∂x)

)
and V denotes the velocity in these new coordinates. We here

note that U
′

u is comparable to 1 and that (∂z− tu∂x) is a Fourier multiplier.
The following proposition summarizes our main results for this section and employs a by

now common Lyapunov functional/energy approach (see for instance [MSHZ20, BMV16,
TW19, Lis20]), where a key challenge lies in constructing a suitable time, frequency and
space-dependent operator A which captures possible growth in the evolution of solutions.

Proposition 3.1. Let µ ∈ C2(R; (0,∞)),U ∈ C3(R;R), a ∈ C2(R; (0,∞)) satisfy the assump-
tions of theorem 1.1 and additionally suppose that µ and a are bounded above and below and
satisfy (19). Then the results of theorem 1.1 hold.
More precisely, let W be a solution of the linearized Navier–Stokes equation (22). Then

there exists a time-dependent family of operators A(t) such that for any initial data ω0 ∈ L2

with
´
Tω0dx= 0, it holds that

c‖W(t)‖L2(T×R;adxdz) ⩽ ‖A(t)W(t)‖L2(T×R;adxdz) ⩽ ‖W(t)‖L2(T×R;adxdz),

for some positive constant c ∈ [ 12 ,1] (see lemma 3.3 below for details). Furthermore, there
exists a constant C> 0 such that

d
dt
∥AW∥2L2(T×R;adxdz) ⩽−C∥a∥L∞

∑
k

ˆ
R

(
inf(µ)k2 +

(
νk2
) 1

3
+ ν

(
ξ

u
− kt

)2

+
u

1+(ξ− ktu)2

)
× |Fx,z (AW) |2dξ, (23)

where the effective damping rate ν is defined as

ν := inf µ(U ′)
2
, (24)

and u denotes the infimum of U′ as in (20).

Let us comment on these results:

(1) In this model case all of a,µ,U ′ are additionally assumed to be bounded and comparable
to their supremum and infimum. The general case, where these quantities may slowly vary,
is established in section 4.

(2) The operator A(t) will be constructed in terms of a Fourier multiplier in definition 3.2 in
section 3.1.

(3) The decay rate inf(µ)k2 +(νk2)
1
3 + ν( ξu − kt)2 quantifies the enhanced dissipation mech-

anism. More precisely, the first term corresponds to horizontal dissipation, which is not
enhanced. For the vertical dissipation we distinguish between frequency regions. If ξ is
far from resonant, that is, | ξuk − t|≳ (νk2)−

1
3 , then the latter term dominates. If instead ξ

is close to resonant, we still obtain a dependence on (νk2)
1
3 .

(4) The last multiplier u
1+(ξ−ktu)2 allows us to control the error due to U ′ ′V2. We remark that

in regimes of large enhanced dissipation this error can be easily absorbed. It is hence only
of relevance in regimes where νk2 is very small.

In order to obtain the estimate of proposition 3.1, we need to control various error terms
appearing in
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1
2
d
dt
‖AW‖2L2(T×R;dxdz) =

〈
ȦW,AW

〉
+ 〈AW,AU ′ ′V2〉

+ 〈AW,Adivt (µ∇tW)〉
− 〈AW,Adivt (µ ′∇tV1)〉
− 〈AW,Aµ ′ ′∂xV2〉 . (25)

In particular, these include various commutation errors involving the multiplier A and the vari-
able coefficients in the differential operators. We thus split the proof of proposition 3.1 into
the following subsections.

3.1. The Fourier multiplier m and operator A

Based on the heuristics of the constant viscosity case, a major stabilizing effect in (25) is
expected to be given by the dissipation term

−〈∇tAW,µ∇tAW〉 ,

where we also need to control several commutator errors. In particular, in view of the time
dependence of ∇t, this dissipation is very strong when considering frequencies very far from
resonant, |ξ − ukt| � 1. If instead |ξ− ukt|≲ 1, this term is possibly too small to control errors
and we therefore need to rely on〈

ȦW,AW
〉
⩽ 0

to absorb errors. Moreover, also in case where the (vertical) dissipation is small, we need
control the velocity error term

〈AW,AU ′ ′V2〉=
〈
AW,A

U ′ ′

U ′ U
′V2

〉
by the decay of A. This motivates the following definition.

Definition 3.2 (Decreasing multiplier and Fourier sets). Let µ,U ′ be given as in proposition
3.1, and let ν,u be the local dissipation rate and the local shear rate defined in (24) and (20)
respectively.

We define the good set Gt ⊂ Z×R in the frequency space with respect to (x, z) by

Gt =

{
(k, ξ) ∈ Z×R

∣∣∣k 6= 0,
∣∣∣ ξ
ku

− t
∣∣∣⩾ 0.1

(
νk2
)− 1

3

}
,

and the bad set Bt as the complement (excluding k= 0)

Bt =

{
(k, ξ) ∈ Z×R

∣∣∣k 6= 0,
∣∣∣ ξ
ku

− t
∣∣∣< 0.1

(
νk2
)− 1

3

}
.

For any fixed k, if Bt ∩{k}×R is non-empty, the set Gt ∩{k}×R has two connected com-
ponents, where we denote by G−

t ⊂ Gt such that

G−
t ∩{k}×R= {k}× (−∞,ktu− 0.1|ku|(νk2)− 1

3 ]
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the half-line extending to −∞, and by G+
t ⊂ Gt such that

G+
t ∩{k}×R= {k}× [ktu+ 0.1|ku|(νk2)− 1

3 ,+∞)

the half-line extending to +∞.
Associated with this partition we define a Fourier multiplier m= m(t,k, ξ) by

∂tm(t,k, ξ) =

m(t,k, ξ)

(
−
(
νk2
) 1

3 − 0.1 u

1+u2( ξ
ku−t)

2

)
, if (k, ξ) ∈ Bt,

0, else,
(26)

and the asymptotic condition limt→−∞m(t,k, ξ) = 1.
We denote the operator associated with the Fourier multiplier m by A(t):

Aϕ = F−1mFϕ,

where F denotes the Fourier transform with respect to (x,z) ∈ T×R.

Remark 3.1. This multiplier combines features of the inviscid multiplier of [Zil17] and the
constant viscosity multiplier of [Lis20, BVW18].

• The relative decay of m by−(νk2)1/3 compensates for the relatively weak dissipation in the
bad Fourier region. Here the decay of A allows to establish damping of ‖AW‖2L2 .

• The term − u
1+u2( ξ

ku−t)2
allows us to estimate contributions by U ′ ′V2. As we discuss in

Subsection 3.4, unlike in the constant viscosity setting here U′′ might be very large.
However, by our assumption that U′ is slowly varying, we can exploit some smallness of
U ′ ′

U ′ in our estimates.

As we prove in the following subsection the multiplier m (and hence the operator A) satis-
fies several useful bounds and, in particular, serves to control various error terms when W is
concentrated in the bad set.

Lemma 3.3. Let m be as in definition 3.2. Then m satisfies the following estimates:

(1) There exists a constant c ∈ [0.5,1] independent of ξ and t such that

c⩽ m⩽ 1.

(2) The multiplier m is constant (independent of ξ and t, but might depend on k) for large
positive or negative times. By the conventions of our definition one of these constants is
chosen as 1 and the other as c:

m(t,k, ξ) = c if t>
ξ

ku
+ 0.1

(
νk2
)− 1

3 ,

m(t,k, ξ) = 1 if t<
ξ

ku
− 0.1

(
νk2
)− 1

3 .

(3) The operator A is a continuous invertible operator from L2 to L2 and satisfies

c‖ϕ‖L2 ⩽ ‖Aϕ‖L2 ⩽ ‖ϕ‖L2

for all ϕ ∈ L2(dxdz).
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We begin by discussing the properties of the multiplier m, which may be computed expli-
citly in terms of integrals.

Proof of lemma 3.3. By definition it holds that ∂tm⩽ 0 and hence

m(t) = m(−∞)+

ˆ t

−∞
∂tm⩽ m(−∞) = 1.

Furthermore, we may explicitly compute m as

m(t,k, ξ) = exp

(ˆ t

−∞

∂tm
m

1Bτ
(k, ξ) dτ

)
, (27)

where we used that m(−∞,k, ξ) = 1. Since ∂tm
m =−((νk2)

1
3 + 0.1 u

1+u2( ξ
ku−t)2

) inside Bt such

that −0.1(νk2)−
1
3 < t− ξ

ku < 0.1(νk2)−
1
3 while ∂tm

m = 0 outside Bt, we define the constant c
to be

c := exp

−
ˆ 0.1(νk2)

− 1
3

−0.1(νk2)−
1
3

((
νk2
) 1

3 + 0.1
u

1+ u2t2

)
dt

 ,
such that (1) and (2) in lemma 3.3 hold. We now estimate the size of c: Since

−
ˆ 0.1(νk2)

− 1
3

−0.1(νk2)−
1
3

(
νk2
) 1

3 dt=−0.2,

−
ˆ 0.1(νk2)

− 1
3

−0.1(νk2)−
1
3

u
1+ u2t2

dt=−arctan(τ) |0.1u(νk
2)

− 1
3

τ=−0.1u(νk2)−
1
3
⩾−π,

we have

c⩾ exp(−0.2− 0.1π)> 0.5.

Finally, by Parseval’s identity these bounds for the multiplierm are equivalent to L2 bounds
for the operator A.

3.2. Proof of proposition 3.1

Given our multiplier m in definition 3.2, our main task in the following is to establish suitable
estimates for (25):

1
2
d
dt
‖AW‖2L2 =

〈
AW, ȦW

〉
+ 〈AW,Adivt (µ∇t)W〉
− 〈AW,Adivt (µ ′∇t)V1〉− 〈AW,Aµ ′ ′∂xV2〉
+ 〈AW,AU ′ ′V2〉 . (28)

More precisely, we need to show that the dissipation and the decay of m(t) are strong enough
to absorb possible growth and that hence ‖AW‖2 is non-increasing in time. Integrating these
estimates we thus obtain a Lyapunov functional, which allows us to prove proposition 3.1.
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The following lemmas summarize our estimates for the main dissipation term, the error due
variable viscosity and the error due to the non-affine shear profile, which will allow us to prove
proposition 3.1. The proof of each lemma is then given in the following subsections.

Lemma 3.4. Let µ,U,W be as in proposition 3.1 and let A be given as in definition 3.2. Then
for all times t> 0 the following dissipation estimate holds:

0.2
〈
AW, ȦW

〉
+ ⟨AW,A(divt (µ∇t)W)⟩

⩽−0.001
∑
k

ˆ
R

inf(µ)k2 +
(
νk2
) 1

3
+ ν

(
ξ

u
− kt

)2

+
0.1u

1+ u2
(

ξ
ku − t

)2
 |Fx,z (AW) |2dξ.

(DE)

Lemma 3.5. Let µ,U,W be as in proposition 3.1 and let A be given as in definition 3.2. Then
for all times t> 0 the following viscosity error estimate holds:

0.2
〈
AW, ȦW

〉
−
〈
AW,A

(
divt

(
µ ′∇t

)
V1 +µ ′ ′∂xV2

)〉
⩽ 0.0005

∑
k

ˆ
R

inf(µ)k2 +
(
νk2
) 1

3
+ ν

(
ξ

u
− kt

)2

+
0.1u

1+ u2
(

ξ
ku − t

)2
 |Fx,z (AW) |2dξ .

(EE)

Lemma 3.6. Let µ,U,W be as in proposition 3.1 and let A be given as in definition 3.2. Then
for all times t> 0 the following velocity error estimate holds:

0.2
〈
AW, ȦW

〉
+ 〈AW,AU ′ ′V2〉⩽ 0. (VE)

Before proceeding to the proof of these lemmas, let us discuss how they can be used to
establish proposition 3.1.

Proof of proposition 3.1. LetW be a given solution, let A be as in definition 3.2 and consider
the time derivative of the energy ‖AW‖2L2 as computed in (28). Then by the results of lemmas
3.4–3.6 it holds that

1
2

d
dt
∥AW∥2L2

⩽−10−5
∑
k

ˆ
R

inf(µ)k2 +
(
νk2
) 1

3
+ ν

(
ξ

u
− kt

)2

+
0.1u

1+ u2
(

ξ
ku − t

)2
 |Fx,z (AW) |2dξ,

which is the desired estimate. Moreover, by the results of lemma 3.3 it holds that

c2‖W‖2L2 ⩽ ‖AW‖2L2 ⩽ ‖W‖2L2 .
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3.3. Proof of the dissipation estimate, lemma 3.4

We recall that by definition 3.2, at any time t> 0 the frequency space can be decomposed into
the three regionsG+

t ,Bt,G
−
t and that the operatorA is a multiple of the identity, when restricted

to G+
t or G−

t . We therefore also split

W=W1 +W2 +W3 (29)

according to these Fourier regions and study

〈AWi,Adivt (µ∇t)Wj〉 , i, j ∈ {1,2,3} .

As we discuss in the following steps, here the ‘diagonal terms’ i= j are well behaved, while
terms with i 6= j require us to exploit some cancellation properties (for the case of constant
viscosity and affine shear these terms identically vanish due to the disjoint Fourier support).

3.3.1. Estimates for
〈
AWj,Adivt(µ∇t)Wj

〉
, j=1 or 3. Since AW1 =W1, we may explicitly

compute that (with a= 1)

⟨AW1,Adivt (µ∇t)W1⟩= ⟨W1,divt (µ∇t)W1⟩

=

〈
W1,µ∂

2
xW1 +U ′

(
1
u
∂z− t∂x

)
µU ′

(
1
u
∂z− t∂x

)
W1

〉
=−⟨∂xW1,µ∂xW1⟩−

〈
U ′
(

1
u
∂z− t∂x

)
W1,µU

′
(

1
u
∂z− t∂x

)
W1

〉
−
〈

1
u
∂zU

′W1,µU
′
(

1
u
∂z− t∂x

)
W1

〉
=−∥√µ∂xW1∥2L2 −∥√µU ′

(
1
u
∂z− t∂x

)
W1∥2L2 −

〈
∂zU ′

u
√
µW1,

√
µU ′

(
1
u
∂z− t∂x

)
W1

〉
.

We thus obtain both the desired horizontal and vertical dissipation terms, as well as one error
term. For the error term, we use the fact that by the chain rule

1
u
∂zU

′ =
U ′ ′

U ′ |z

and that this factor is thus small by assumption. Furthermore, since
´
Wdx= 0, we may apply

Poincaré’s inequality in x and thus estimate∣∣∣∣〈∂zU ′

u
√
µW1,

√
µU ′

(
1
u
∂z− t∂x

)
W1

〉∣∣∣∣⩽ ∥1
u
∂zU

′∥L∞∥√µ∂xW1∥L2∥√µU ′
(

1
u
∂z− t∂x

)
W1∥L2

and use Young’s inequality to absorb this error into the decay. The estimate for AW3 = cW3 is
analogous.

If the weight a is not constant, we additionally obtain contributions in the error term:
ˆ
T×R

W1µ
U ′

u
∂za
a
U ′
(

1
u
∂z− t∂x

)
W1 adxdz⩽ 2∥∂za

a
∥L∞∥√µ∂xW1∥L2∥√µU ′

(
1
u
∂z− t∂x

)
W1∥L2 ,

and 〈
AW1,

1
a
[A,a]divt (µ∇t)W1

〉
⩽
∥∥∥1
a
[A,a]

∥∥∥
L∞

〈W1,divt (µ∇t)W1〉 ,
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where A is a Fourier multiplier with a Lipschitz symbol m such that

‖1
a
[A,a]‖L∞ ⩽ Cm‖

∂za
a

‖L∞ .

Since ‖∂za
a ‖L∞ = ‖ u

U ′
∂ya
a ‖L∞ � 1 if a is gradually varying, this term can be easily absorbed

into the dissipation terms with a very small loss of constant. For simplicity of presentation, in
the following we thus focus on the case a≡ 1.

3.3.2. Estimates for
〈
AWi,Adivt(µ∇t)Wj

〉
with (i, j) = (1,3) or (i, j) = (3,1). WhileW1,W3 are

disjointly supported in Fourier space, since µ andU′ are not constant, the L2 product in general
does not vanish. In the following we simply take a= 1.

We observe that

〈AWi,Adivt (µ∇t)Wj〉=
〈
A2Wi,divt (µ∇t)Wj

〉
and that A2 is a multiple of the identity. In the following we may thus for simplicity of notation
instead consider

〈Wi,divt (µ∇t)Wj〉=−〈∂xWi,µ∂xWj〉−
〈
U ′
(
1
u
∂z− t∂x

)
Wi,µU

′
(
1
u
∂z− t∂x

)
Wj

〉
+

〈
1
u
∂zU

′Wi,µU
′
(
1
u
∂z− t∂x

)
Wj

〉
.

By the same argument as above, the quantity∣∣∣∣〈1
u
∂zU

′Wi,µU
′
(
1
u
∂z− t∂x

)
Wj

〉∣∣∣∣⩽ ‖1
u
∂zU

′‖L∞‖√µ∂xWi‖L2‖√µU ′
(
1
u
∂z− t∂x

)
Wj‖L2

can be considered a negligible error term.
For the remaining terms, a simple estimate by Hölder’s or Young’s inequality is not

sufficient and we hence instead need to exploit that the Fourier supports of W1,W3 are
contained in

G−
k,t :=

{
ξ ∈ R | ξ

u
− kt⩽−0.1ν−

1
3 |k| 13

}
,

G+
k,t :=

{
ξ ∈ R | ξ

u
− kt⩾ 0.1ν−

1
3 |k| 13

}
,

and are hence very well separated. In particular, by Plancherel’s theorem, we may intro-
duce a (smooth Littlewood–Payley) frequency projection operator P to frequencies larger than
0.1ν−1/3u (a lower bound on the distance between G−

k,t and G
+
k,t). Then it holds that

〈∂xWi,µ∂xWj〉= 〈∂xWi,(Pµ)∂xWj〉⩽ ‖Pµ‖L∞‖∂xWi‖L2‖∂xWj‖L2 .

Recalling the fact that in this section we assume that µ is comparable to its supremum by (19)
it thus suffices to show that

‖Pµ‖L∞/‖µ‖L∞ (30)

is small, which then allows us to absorb this error term using Young’s inequality.
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Indeed, if χ denotes the smooth Fourier multiplier corresponding to P, then we may write

Pµ= F−1

(
χ
ξ

ξ
Fµ
)

to bound this by a constant times

ν1/3‖1
u
∂zµ‖L∞ = ν1/3‖ µ

U ′
∂yµ

µ
‖L∞ ⩽ 2‖

( µ
U ′

) 1
3 ‖L∞‖µ

∂yµ

µ
‖L∞ .

As previously remarked, in regimes of large horizontal dissipation the proof greatly simplifies.
Hence, without loss of generality, here and in the following we restrict to the regime, where

µ�
(
µU ′2

) 1
3 ⇔ µ

U ′ � 1, (31)

such that ν1/3‖ 1
u∂zµ‖L∞ is much smaller compared to µ, by our assumption that µ is slowly

varying.
The estimates for〈
U ′
(
1
u
∂z− t∂x

)
Wi,µU

′
(
1
u
∂z− t∂x

)
Wj

〉
= µU ′

〈(
PU ′)(1

u
∂z− t∂x

)
Wi,

(
1
u
∂z− t∂x

)
Wj

〉
are analogous.

3.3.3. Estimates for terms involving W2. It remains to discuss the influence of the Fourier-
localized part W2 in the bad set. We still take a= 1.

We first study the self-interaction term:

〈AW2,Adivt (µ∇t)W2〉= 〈AW2,A∂xµ∂xW2〉

+

〈
AW2,A

(
1
u
∂z− t∂x

)
U ′µU ′

(
1
u
∂z− t∂x

)
W2

〉
−
〈
AW2,A

(
1
u
∂zU

′
)
µU ′

(
1
u
∂z− t∂x

)
W2

〉
.

Since none of A, µ andU′ are constant, we cannot easily appeal to the negativity of the elliptic
operator in this regime. Instead, we use that the dissipation is small and can hence be controlled
by the decay of A.

More precisely, we note that the differential operator ( 1u∂z− t∂x) is bounded on the bad
set with ∥∥∥∥(1

u
∂z− t∂x

)
1Bt (Dx,z)

∥∥∥∥
L2→L2

⩽ 0.1
(
νk2
)− 1

3 |k|= 0.1ν−
1
3 |k| 13 . (32)

We thus may estimate〈
AW2,A

(
1
u
∂z− t∂x

)
U ′µU ′

(
1
u
∂z− t∂x

)
W2

〉
L2
z

⩽ c−1 · ν ·
(
0.1ν−

1
3 |k| 13

)2
‖AW2‖2L2

z

= 0.02
(
νk2
) 1

3 ‖AW2‖2L2
z
.
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Recalling the decay of A and that〈
AW2, ȦW2

〉
L2
z
⩽−

(
νk2
) 1

3 ‖AW2‖2L2
z
,

the above contribution can hence be absorbed.
Concerning the horizontal dissipation term, we note that if the horizontal dissipation is

larger than the vertical dissipation, wemay simply replaceA by the identity in our construction.
It hence suffices to consider the case where µk2 (recall that we assume that µ is comparable to
its supremum (19)) is much smaller than (νk2)1/3, similar as in (31). In this case, we simply
estimate ‖A‖L2→L2 by a constant and use that µ is independent of x to obtain that

〈AW2,A∂xµ∂xW2〉⩽ sup(µ)c−1‖∂xAW2‖2L2 < 0.01
(
νk2
) 1

3 ‖AW2‖2L2

and similarly control∣∣∣∣〈AW2,A

(
1
u
∂zU

′
)
µU ′

(
1
u
∂z− t∂x

)
W2

〉∣∣∣∣
⩽ ‖1

u
∂zU

′‖L∞2‖√µU ′
(
1
u
∂z− t∂x

)
W2‖L2‖√µAW2‖L2

⩽ 0.001
(
νk2
) 1

3 ‖AW2‖2L2 .

These terms can hence be absorbed into the decay due to Ȧ.
Finally, it remains to discuss the cross terms

〈AWi,Adivt (µ∇t)Wj〉= 〈AWi,A∂xµ∂xWj〉

+

〈
AWi,A

(
1
u
∂z− t∂x

)
U ′µU ′

(
1
u
∂z− t∂x

)
Wj

〉
+

〈
AWi,A

(
1
u
∂zU

′
)
µU ′

(
1
u
∂z− t∂x

)
Wj

〉
,

where one i, j equals 2. By the preceding arguments we may again control the operator norm
of A by a constant and use Hölder’s inequality to obtain estimates involving, for instance,

‖√µA∂xW2‖L2‖√µA∂xW1‖L2 .

We thus use Young’s inequality with factors 10 and 1
10 , where the contribution by W2 is

absorbed into the decay ofA and the contribution byW1 is absorbed into the damping estimated
established previously.

3.4. Proofs of lemmas 3.5 and 3.6

In the previous subsection we have established a dissipation estimate (DE) due the ‘main’
terms of the dissipation operator. This decay lies at the core of our damping mechanism. In
the following we show that all other contributions to d

dt‖AW‖2,

−〈AW,Adivt (µ ′∇t)V1〉− 〈AW,Aµ ′ ′∂xV2〉
+ 〈AW,AU ′ ′V2〉 ,
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can be considered as errors. In particular, all terms involving higher derivatives of µ can be
considered as lower order.

We first recall that by definition of the vorticity

W=−U ′
(
1
u
∂z− t∂x

)
V1 + ∂xV2,

and that 1
u∂zµ

′ = µ ′ ′

U ′ . We may hence eliminate V1 from this equation:

〈AW,A(divt (µ ′∇tV1)+µ ′ ′∂xV2 −U ′ ′V2)〉

=

〈
A2W,µ ′∂xxV1 +U ′

(
1
u
∂z− t∂x

)
µ ′U ′

(
1
u
∂z− t∂x

)
V1 +µ ′ ′∂xV2 −U ′ ′V2

〉
=

〈
A2W,µ ′

(
∂xx+

(
U ′
(
1
u
∂z− t∂x

))2
)
V1

〉

+

〈
A2W,U ′

(
1
u
∂zµ

′
)
U ′
(
1
u
∂z− t∂x

)
V1 +µ ′ ′∂xV2 −U ′ ′V2

〉
=

〈
A2W,−µ ′U ′

(
1
u
∂z− t∂x

)
W

〉
+
〈
A2W,−µ ′ ′W

〉
+
〈
A2W,2µ ′ ′∂xV2 −U ′ ′V2

〉
.

The first two terms can be absorbed into the horizontal and vertical dissipation by
recalling that

µ ′ =
µ ′

µ
µ� µ

and that

µ ′ ′ =

(
∂y
µ ′

µ
+

(
µ ′

µ

)2
)
µ� µ.

Concerning the V2-terms, we argue similarly as in the inviscid case [CZZ19]. That is, the
control of V corresponds to an elliptic estimate of the stream function(

∂2
x +

(
U ′
(
1
u
∂z− t∂x

))2
)
ϕ =W,

where we use that

V=∇⊥
t ϕ =

(
−U ′

(
1
u
∂z− t∂x

)
,∂x

)T

ϕ.

Thus, if we define another simpler stream function and modified velocity by(
∂2
x + u2

(
1
u
∂z− t∂x

)2
)
ψ =W,

with the constant u= inf U ′ and

Ṽ= ∇̃⊥
t ψ = (−(∂z− tu∂x) ,∂x)

T
ψ,
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then these are comparable quantities in the sense of bilinear forms. More precisely, testing
these equations with either ψ or ϕ one obtains that the energies satisfy

‖Ṽ‖2L2 = ‖(∂x,∂z− ut∂x)ψ‖2L2 = 〈W,−ψ〉=

〈(
∂2
x +

(
U ′
(
1
u
∂z− t∂x

))2
)
ϕ,−ψ

〉

= 〈∂xϕ,∂xψ〉+
〈
U ′
(
1
u
∂z− t∂x

)
ϕ,U ′

(
1
u
∂z− t∂x

)
ψ

〉
+

〈
U ′
(
1
u
∂z− t∂x

)
ϕ,

(
1
u
∂zU

′
)
ψ

〉
,

‖V‖2L2 = ‖
(
∂x,U

′
(
1
u
∂z− t∂x

))
ϕ‖2L2 = 〈W,−ϕ〉=

〈(
∂2
x +(∂z− ut∂x)

2
)
ψ,−ϕ

〉
= 〈∂xψ,∂xϕ〉+

〈
u

(
1
u
∂z− t∂x

)
ψ,u

(
1
u
∂z− t∂x

)
ϕ

〉
.

Hence, by Hölder’ inequality and using that supU ′ ⩽ 2inf U ′ = 2u, we deduce that

‖V‖L2 = ‖
(
∂x,U

′
(
1
u
∂z− t∂x

))
ϕ‖L2 ≈ ‖

(
∂x,u

(
1
u
∂z− t∂x

)
ψ‖L2 = ‖Ṽ‖L2 (33)

are indeed comparable.
With this preparation we may express

〈
A2W,−U ′ ′V2

〉
=

〈
A2

(
∂2
x + u2

(
1
u
∂z− t∂x

)2
)
ψ,−U ′ ′V2

〉
,

where the constant coefficient operator now commutes with A and integrate by parts. We thus
obtain a bound by

‖U ′ ′‖W1,∞‖A∂xṼ‖2L2 = ‖U
′ ′

u
‖W1,∞u‖∂xAṼ‖2L2 .

The estimate thus follows by the explicit characterization

u‖∂xAṼ‖2L2 =
∑
k

ˆ
uk2

k2 + u2
(
1
uξ− kt

)2 |FAW|2dξ

and the fact that ‖U ′ ′/u‖W1,∞ is small by assumption.
For the last remaining term, we may simply estimate ‖∂xV2‖L2 ⩽ ‖∂xW‖L2 and use the

smallness of µ ′ ′ to bound this contribution by the horizontal dissipation.

4. Localization and non-local Interactions

In this section we continue to consider the linearized equation (11) for the vorticity. Unlike in
section 3 we here allow for µ (and hence also U′) to vary by many orders of magnitude and
also allow for a slowly varying weight a.

Since U(y) is not Lipschitz and U′ may vary by many orders of magnitude, this setting
cannot be treated perturbatively and we cannot introduce a change of variables z= U

u as in
section 3.
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Instead we need to:

• partition R into suitable regions where µ is controlled. That is, µ can be arbitrarily large or
small and need not be close to constant, but the infimum and supremum in a given region
are comparable.

• extend each localized problem to a global problem and construct robust energy functionals.
Here we also construct localized changes of variables zj.

• show that all localized estimates can be ‘glued’ together in such a way that estimates close,
even though the Biot–Savart law is non-local. Here is where we require that log(µ) is slowly
varying.

In order to prove these results we rely on robust comparison arguments for elliptic operators,
which allow us to treat the case where µ is far from constant and on partition of unity methods
for H−1 estimates. The latter method is shown to naturally involve a size constraint on U ′ ′

U ′ =

−µ ′

µ and on a ′

a , but does not require any smallness of U′′ itself.
Our main result of this section are summarized in the following proposition.

Proposition 4.1. Letµ,Uand a satisfy the assumptions of theorem 1.1. Letω0 ∈ L2 with zero x-
average be any initial data. LetW(t,x,y) := ω(t,x+ tU(y),y) solves the linearized equation (7)
with the initial data ω0 in the new coordinates:

∂tW= U ′ ′V2 + divt (µ∇tW)− divt (µ
′∇tV1)−µ ′ ′∂xV2, (34)

where ∇t :=

(
∂x

∂y− tU ′∂x

)
and V denotes the velocity in these new coordinates.

Then there exists a time-dependent family of operators A(t) such that

c‖W(t)‖L2 ⩽ ‖A(t)W(t)‖L2 ⩽ ‖W(t)‖L2 .

Furthermore, there exists an absolute constant C> 0 such that

d
dt
‖AW‖2L2 ⩽−C

(
‖√µ∂xW‖2L2 + ‖

(
µ(U ′)

2
) 1

6 (−∂2
x

) 1
6 W‖2L2 + ‖√µ(∂y− tU ′∂x)W‖2L2

)
.

We recall the smallness assumptions (8) on µ ′

µ =−U ′ ′

U ′ :

|
∂yU ′

U ′ |+ |∂y
∂yU ′

U ′ |= |
∂yµ

µ
|+ |∂y

∂yµ

µ
|< 0.0001. (35)

This quantifies the requirement that µ may only change gradually, but since R is unbounded
µ may change by many orders of magnitude over all. However, this constraint on the relative
rate of change then further implies that when restricted to any interval I of suitable size, it
holds that

maxIµ
minIµ

⩽ 2.

Thus, if we extend the restrictions µ|I,U|I by constants to functions µI,UI on all of R, then
these extensions satisfy the assumptions (19): sup(µI)

inf(µI)
⩽ 2 of section 3. Thus we may ‘locally’

reduce to that model setting. However, these restrictions and extensions have to be related
to the actual whole space problem (22) (see lemma 4.4) and have to be combined to control
growth of the whole space problem (see lemmas 4.5–4.7).

6092



Nonlinearity 36 (2023) 6071 X Liao and C Zillinger

Our main challenges in the following are to formalize this intuition and to control non-local
errors. More precisely, since the velocity is non-local and so are several commutator terms, it
is not possible to just restrictW and reduce estimates to the ones of section 3. Instead we will
show that in the sum over all localized estimates still holds.

The following lemma establishes the existence of a partition of R such that on each inter-
val of the partition µ (and hence U′) is comparable to a constant. Furthermore, the sizes of
these intervals is bounded from below and hence cut-off functions and partitions of unity cor-
responding to this partition have controlled Wk,∞ norms. Using these partitions we may also
construct extensions of the restrictions of µ,U which satisfy the assumptions of the model
setting studied in section 3.

Lemma 4.2 (Partitions). Let µ= µ(y) ∈ C2(R;R+), U= U(y) ∈ C3(R;R) be as in the-
orem 1.1 and, in particular, assume that

‖(lnµ) ′ ‖W1,∞ < 0.0001. (36)

Then there exits a partition (Ij)j∈Z, Ij = [yj,yj+1) of R into intervals such that

sup3Ij µ

inf3Ij µ
⩽ 1.5 (37)

for all j, where 3Ij denotes the rescaled intervals with the same center. Furthermore, the length
of each interval Ij is bounded from below by 1000.
Associated with this partition there exists a family of non-negative functions χj ∈ C∞

c with
supp(χ2

j )⊂ 3Ij such that χ2
j is a partition of unity and all the derivatives are uniformly small:

‖∂yχj‖W1,∞ ⩽ 0.001, (38)

and all higher derivatives are bounded uniformly in j.
Moreover, for each j there exist µj ∈ C2(R),Uj ∈ C3(R) such that

µj = µ,Uj = Uin Ij,

µjU
′
j = const.in R

and so that µj and U ′
j are constant outside 3Ij and

maxRµj
minRµj

⩽ 2.

If furthermore µ= µ(y) ∈ CN+2, U= U(y) ∈ CN+3 for some N⩾ 1 then µj ∈ CN+2,Uj ∈
CN+3.

As an example, if µ(y) = µ0eδy, then

Ij =
1
δ
[j, j+ 1)

is of size δ−1 and hence |∂yχj|=O(δ) is small.

Proof of lemma 4.2. In the case thatµ is monotone, wemay simply define 3Ij as the preimages
of (1.5j,1.5j+1) if U ′(yj)⩾ 1. Since log(µ)(y) is slowly varying by assumption (8), it follows
that the size of Ij is bounded below by a large constant, say 1000, and hence our partition
covers all of R. And if U ′(yj)< 1, then we rescale the preimage by (U ′(yj))−1.
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More generally, we can define Ij greedily. That is, given a point yj we define yj+1 and

Ij = [yj,yj+1)

as the largest interval such that

1
1.5

µ(yj)⩽ µ(y)⩽ 1.5µ(yj) , ∀y ∈ Ij.

In case this definition yields an unbounded interval, we may truncate it.
It is a classical result that given such a partition into intervals, there exists a partition of

unity for which the square root of each function is still smooth and such that bounds on Ck

norms are uniform in j (since they only depend on the size of each Ij, which is bounded from
below).

Furthermore, given this partition of unity, we may construct µj as agreeing with µ on Ij
and constant when a distance away from this support. The associated shear profile Uj is then
constructed by integrating

∂yUj :=
const.
µj

with the constant of integration chosen such that Uj(y) = U(y) in Ij.
This then directly implies the desired bounds, where we used that the derivatives of the

partition of unity are bounded and hence the estimate (37) only possibly deteriorates by a
small factor under this extension.

We remark that by construction for each j it holds thatU ′
j is comparable to a constantU ′

j (yj).
Therefore we may introduce the localized change of coordinates

y 7→ zj :=
Uj (y)
uj

where uj := inf U ′
j ,

which is globally bilipschitz with constants between 1
2 and 1. We note that the shear flow

Uj (y) = ujzj

is affine in these coordinates. Furthermore, for any j ∈ Z and any function f ∈ C∞
c (T×R) it

holds that

1
2
‖f‖L2(adxdzj) ⩽ ‖f‖L2(adxdy) ⩽ 2‖f‖L2(adxdzj). (39)

Given these partitions we may naturally define operators acting on χjW by using the results
of section 3.

Definition 4.3 (Localized Fourier weights). Let χ2
j be the partition of unity of lemma 4.2 and

let µj,Uj be the collection of viscosities and shear associated with these partitions.
We then define Aj to be the operator as given in definition 3.2 for µ,U replaced by µj,Uj.

Furthermore, we define

Wj (t,x,zj) := χj (y)W(t,x,y)
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and the energy functional

E(t) =
∑
j

〈AjWj,AjWj〉L2(dzj)
. (40)

In case of a non-constant weight a as in theorem 1.1 we instead consider

E(t) =
∑
j

aj 〈AjWj,AjWj〉L2(dzj)
.

with aj = infIj a⩾ 1
2 supIj a.

We remark that here for each interval Ij we consider the L2 inner product with respect to
zj so that Aj indeed is a Fourier multiplier. However, by (39) each L2 norm is comparable to
the one for L2(dy). Hence, we may transparently switch between these spaces in our estimates
and for simplicity of notation do not explicitly note the j dependence of our inner products.

Since χ2
j is a partition of unity, the norms of W and the sum of the norms of Wj are com-

parable.

Lemma 4.4 (Norm estimates). Let χj and Wj be as in definition 4.3.
Then there exist constants 0< c1 < c2 <∞ such that the L2 norms satisfy

c1‖W‖2 ⩽
∑
j

‖Wj‖2 ⩽ c2‖W‖2.

Moreover, for any N ∈ N there exist constants d0, . . . ,dN with dN = 1 and c1,c2 such that

c1‖W‖2HN ⩽
N∑
l=0

∑
j

∑
|α|=l

dl‖∂αy Wj‖2 ⩽ c2‖W‖2HN .

We remark that here ‖W‖HN consists of norms ‖∂kyW‖L2(ady), where a is a slowly varying
weight. Moreover, using our assumption that µ and hence U′ is slowly varying, in the above
estimates we may freely replace ∂y by ∂zj for any j.

Proof of lemma 4.4. Since χ2
j is a partition of unity,

W2 =W
∑
j

χ2
jW=

∑
j

W2
j

and hence the estimate for N= 0 trivially holds true with c1 = c2 = 1 and equality; also for
arbitrary weighted L2 norms.

For the case N⩾ 1 we instead need to exploit the size of the derivative of χj and of ln(a).
For instance, we may express

ˆ
a|∂yW|2 =

∑
j

ˆ
a∂yW∂y (χjWj) =

∑
j

ˆ
a∂yWχj∂yWj+ a∂yWχ

′
jWj

=
∑
j

ˆ
a|∂yWj|2 − aχ ′

jW∂yWj+ a∂yWχ
′
jWj.

Since ‖χ ′
j ‖W1,∞ is bounded (and even small) we may use Young’s inequality to absorb the last

two terms as an error, provided d0 is large enough.
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For N> 1 we argue by induction. More precisely, for any given index α we may expand

∂αy Wj = ∂αy (χjW) = χj∂
α
y W+

∑
β+γ=α

(
∂βy χj

)
∂γy W.

By the same argument as in the L2 case it holds that∑
j

‖χj∂αy W‖2L2 = ‖∂αy W‖2L2 .

For all other terms we note that by (38) and the smallness condition (36)

|∂βy χj|<∞

is bounded uniformly in j and is supported in the same bounded region asχj. Since the supports
of the functions χj cover R at most twice, we thus may use Hölder’s inequality to control∑

β+γ=α

‖
(
∂βχj

)
∂γW‖2L2 ⩽ Cα

∑
m<N

‖W‖2Hm ,

which can be controlled in terms of

N−1∑
l=0

∑
j

∑
|α|=l

dl‖∂αWj‖2

by the induction assumption.

Given this definition of an energy (40), we next need to verify that it indeed is a Lyapunov
functional and thus study (according to the vorticity equation (22))

d
dt
E/2=

∑
j

〈
ȦjWj,AjWj

〉
+
∑
j

〈AjWj,Ajχj∂tW〉

=
∑
j

〈
ȦjWj,AjWj

〉
+
∑
j,j ′

〈AjWj,Ajχj (divt (µ∇tχj ′Wj ′))〉

−
∑
j

〈AjWj,Ajχj (divt (µ
′∇tV1)+µ ′ ′∂xV2 −U ′ ′V2)〉 . (41)

Compared to the results of section 3 we here encounter several additional challenges:

• The Biot–Savart law is non-local. Therefore χjV depends on all (Wj ′)j ′ not justWj. We thus
need to compare various localizations of the Biot–Savart law, while at the same time also
localizing in frequency.

• The evolution of Wj hence also depends on all (Wj ′)j ′ .
• In the dissipation term we have a double sum with respect to j and j′. Here we observe

that for |j− j ′|⩾ 2 the support of χj and χj ′ are disjoint and hence we only need to consider
j ′ ∈ {j− 1, j, j+ 1} (only neighbours instead of full non-local interaction as for the velocity).
However, the coupling introduced by this interaction implies that we cannot hope to control
〈AjWj,AjWj〉 in terms of itself, but rather have to control sums over all j.

The following lemma generalizes lemma 3.4 to the present setting.
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Lemma 4.5 (Localized dissipation estimates). Let W ∈ S , then it holds that

0.2
∑
j

〈
ȦjWj,AjWj

〉
+
∑
j

〈AjWj,Ajχj (divt (µ∇tW))〉

⩽−0.001
∑
j

(
‖√µjU ′

j

(
1
uj
∂zj − t∂x

)
Wj‖2

+‖
(
µj
(
U ′
j

)2)1/6 (
−∂2

x

)1/6
Wj‖2 + ‖√µj∂xWj‖2

)
. (42)

Proof of lemma 4.5. We note that in (42) the dissipation involves W and not just Wj and we
thus have to control the interaction with other intervals. However, by construction only neigh-
bouring functions χj,χj ′ with j ′ ∈ {j− 1, j, j+ 1} have intersections of their supports.

We thus expand

χj (divt (µ∇tW)) = divt (µ∇tWj)+ [divtµ∇t,χj]
∑

j ′∈{j−1,j,j+1}

χ ′
jWj ′ .

Here the ‘diagonal term’

〈AjWj,Ajdivt (µ∇tWj)〉

can be controlled by using lemma 3.4 of section 3.
For the other terms we note that

[divtµ∇t,χj] = [(∂y− tU ′∂x)µ(∂y− tU ′∂x) ,χj]

=
(
µχ ′

j

) ′
+
(
µχ ′

j +(µχj)
′)
(∂y− tU ′∂x)

where (∂y− tU ′∂x) = U ′(
U ′
j

U ′
1
uj
∂zj − t∂x) is a first order differential operator and U ′

j is equal to

U′ on the support of χj. We can use Young’s inequality to absorb these terms into the dissipa-
tion, by the slow variations (36) and (38) in µ and χj.

Similarly, lemma 3.6 is generalized as follows.

Lemma 4.6 (Non-local velocity estimates). Let W ∈ S , then it holds that∑
j

0.2
〈
AjWj, ȦjWj

〉
+
∑
j

〈AjWj,Ajχj (U
′ ′V2)〉⩽ 0.

Proof of lemma 4.6. We observe that unlike in lemma 4.5, here χjV2 depends on Wj ′ for all
j′ and not just j ′ ∈ {j− 1, j, j+ 1}.

Instead of estimating in terms of j′ as in lemma 4.5, we generalize the elliptic estimates of
[CZZ19] to the present setting.

More precisely, let ϕj be the stream function generated by Wj:

∆jϕj =Wj = χjW,with ∆j = ∂2
x +
(
∂zj − tuj∂x

)2
,

and let ϕ denote the stream function generated by W:

∆tϕ =W=
∑
j

χjWj,with ∆t = ∂2
x +(∂y− tU ′∂x)

2
.
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Then by testing the above equations with −ϕj and −ϕ, respectively, we observe that

‖∇jϕj‖2 ⩽ 〈∇tϕ,∇j (χjϕj)〉
⩽ ‖∇tϕ‖L2(supp(χj))

(
‖∇jϕj‖+ ‖χ ′

j ‖L∞‖ϕj‖
)

and

‖∇tϕ‖2 ⩽
∑
j

〈∇t (χjϕ) ,∇jϕj〉

⩽
√∑

j

‖∇jϕj‖2
√∑

j

‖∇t (χjϕ)‖2,

where we used that ∇t and ∇j agree on the support of χj. Using the fact that derivatives of
χj are bounded, it thus follows that (recalling Poincaré’s inequality for functions with zero
x-average)

‖∇tϕ‖2 ≈
∑
j

‖∇jϕj‖2.

Thus errors in velocity can be controlled in terms of sums of ∇jϕj (see also lemma 4.4). In
order to conclude, we note that by the definition of Uj,µj and Wj each such contribution can
be controlled in terms of the decay of the multiplier Aj and the dissipation. Hence the velocity
errors can be absorbed.

We remark that this proof also immediately extends to the case of L2(adxdy) for a slowly
varying. That is, testing the equation

∆tϕ =W

with −aϕ instead, we obtain
ˆ
a|∇tϕ|2 +

a ′

a
aϕ (∂y− tU ′∂x)ϕ.

Since | a
′

a | � 1, we may use Young’s inequality and the Poincaré inequality to show that this
energy remains positive definite and comparable to

ˆ
a|∇tϕ|2

for any choice of a.

Lemma 4.7 (Viscosity errors). Let W ∈ S , then it holds that

0.2
∑
j

〈
AjWj, ȦjWj

〉
−
∑
j

〈AjWj,Ajχj (divt (µ
′∇t)V1 +µ ′ ′∂xV2)〉

⩽ 0.0005
∑
j

(
‖
(
µj
(
U ′
j

)2)1/6 (
−∂2

x

)1/6
Wj‖2

+‖√µj∂xWj‖2 + ‖√µjU ′
j

(
1
uj
∂zj − t∂x

)
Wj‖2

)
.
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Proof of lemma 4.7. In order to prove these estimates we employ a combination of the meth-
ods used in the proofs of lemmas 3.5, 4.5 and 4.6.

More precisely, we first use the structure of the Biot–Savart law to express

(divt (µ
′∇t)V1 +µ ′ ′∂xV2)

in terms ofW and lower order terms. For the terms involvingW we can then argue analogously
as in lemma 3.5, using the decoupling of χj and χj ′ if j and j′ are far apart as in lemma 4.5.

Finally, for the remaining terms involving the velocity, we argue as in lemma 4.6 and thus
reduce to estimating∇jϕj in place of V. Summing over the ‘diagonal’ estimates as established
in lemma 3.5 then concludes the proof.

Having established these estimates, we are now ready to prove proposition 4.1 and thus also
prove part of theorem 1.1. An extension of these results to higher Sobolev norms HN is given
in section 5, which then completes the proof of theorem 1.1.

Proof of proposition 4.1. Let ω0 ∈ L2(ady) be a given initial datum with zero x-average, let
µ,U,a satisfy the assumptions of theorem 1.1 and let W denote the solution of (34) with this
initial data.

Then by lemma 4.2 there exists a partition of R into intervals Ij and an associated partition
of unity χ2

j . We then define Aj and Wj := χjW as in definition 4.3, and study the evolution of
the energy E(t) :=

∑
j aj 〈AjWj,AjWj〉 .

Inserting the estimates derived in lemmas 4.4–4.7 to the time derivative of E in (41), we
deduce that

d
dt
E(t)⩽−10−5

∑
j

aj

(
‖
(
µj
(
U ′
j

)2)1/6 (
−∂2

x

)1/6
Wj‖2 + ‖√µj∂xWj‖2

+‖√µjU ′
j

(
1
uj
∂zj − t∂x

)
Wj‖2

)
.

Finally, by lemma 4.4 the energy E(t) is comparable to ‖W(t)‖2L2(ady). This hence concludes
the proof of proposition 4.1 where the symmetric operator A is defined such that

‖A(t)W(t)‖2 := E(t) .

5. Stability in HN

As the last step of our proof of theorem 1.1, in this section we extend the stability and damp-
ing estimates in L2 established in section 4 to estimates in HN. Here we follow an inductive
approach introduced in [Zil21] in the inviscid setting.We consider the linearized equation (34)

∂tW= U ′ ′V2 + divt (µ∇tW)− divt (µ
′∇tV1)−µ ′ ′∂xV2 =: LW,

V1 =
−(∂y− tU ′∂x)

∂2
x +(∂y− tU ′∂x)

2W, V2 =
∂x

∂2
x +(∂y− tU ′∂x)

2W, (43)

where we introduced the time-dependent linear operator L for brevity of notation. We remark
that derivatives with respect to x can be identified with multiplication by ik, since the linearized
equations decouple with respect to k. Hence higher derivatives in x can be estimated using the
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L2 energy. In the following we hence only consider derivatives with respect to y. Applying N
derivatives to (43) we obtain that

∂t∂
N
y W= L∂Ny W+

[
L,∂Ny

]
W. (44)

In the following lemma we will show that the commutator term can be considered as an error
term involving fewer than N derivatives, while L∂Ny W can be treated in the same way as in the
L2 estimate. In this sense the L2 estimate in section 4 forms the core of our argument.

Proposition 5.1. Let µ,U,a satisfy the assumptions of theorem 1.1. In particular, let N ∈ N
and suppose that ∂y ln(µ) ∈WN+1,∞. Let A be as in proposition 4.1, then there exist constants
c0,c1, . . . ,cN > 0 depending only on the WN+1,∞ norms of ∂y ln(µ) such that

EN (t) =
∑
l⩽N

cl
〈
A∂lyW,A∂

l
yW
〉

is a Lyapunov functional and satisfies for some positive constant C> 0

d
dt
EN (t)⩽−C

∑
l⩽N

∥∥∥(√µ∂x∂lyW,√µ(∂y− tU ′∂x)∂
l
yW,

(
µ(U ′)

2
) 1

6 (−∂2
x

) 1
6 ∂lyW

)∥∥∥2
L2
.

We remark that here we only require that the WN+1,∞ norm of ∂y lnµ is finite. Only the
W1,∞ norm needs to be small in order to establish the L2 stability estimate.

Proof of proposition 5.1. The caseN= 0 has been established in proposition 4.1 with c0 = 1.
We aim to proceed by induction. Hence, suppose that the estimates have been established

for the case N− 1 and consider

EN (t) = cN
〈
A∂Ny W,A∂

N
y W
〉
+EN−1 (t)

with cN to be determined later.
Then by the induction assumption it holds that

d
dt
EN−1 (t)

⩽−C
∑
l⩽N−1

∥∥∥(√µ∂x∂lyW,√µ(∂y− tU ′∂x)∂
l
yW,

(
µ(U ′)

2
) 1

6 (−∂2
x

) 1
6 ∂lyW

)∥∥∥2
L2
. (45)

In particular, all derivatives ofW up to order N− 1 can be controlled by the induction assump-
tion. We thus turn to the control of the ‘leading order’ term involving ∂Ny W. Here, by the L2

estimates of proposition 4.1 it holds that

d
dt
cN
〈
A∂Ny W,A∂

N
y W
〉

= 2cN
〈
Ȧ∂Ny W,A∂

N
y W
〉
+ 2cN

〈
A∂Ny W,AL∂

N
y W
〉
+ 2cN

〈
A∂Ny W,A

[
L,∂Ny

]
W
〉

⩽−10−5cN
∥∥∥(√µ∂x∂Ny W,√µ(∂y− tU ′∂x)∂

N
y W,

(
µ(U ′)

2
) 1

6 (−∂2
x

) 1
6 ∂Ny W

)∥∥∥2
L2

+ 2cN
〈
A∂Ny W,A

[
L,∂Ny

]
W
〉
. (46)
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Combining the estimates (46) and (45) it thus suffices to show that for a suitable choice of cN
we may absorb the commutation error

2cN
〈
A∂Ny W,A

[
L,∂Ny

]
W
〉
.

into the decay in (45) and (46).
Let us first discuss the main dissipation term of L. Here we may iteratively expand[

divt (µ∇t) ,∂
N
y

]
W= [divt (µ∇t) ,∂y]∂

N−1
y W

+
[
divt (µ∇t) ,∂

N−1
y

]
∂1
yW−

[[
divt (µ∇t) ,∂

N−1
y

]
,∂y
]
W

=
∑
l<N

Bl∂
l
yW,

where the operators Bl are second order elliptic operators whose coefficient functions may be
explicitly computed in terms of derivatives of U′ and µ up to order N− l. In order to estimate

〈
A∂Ny W,A

[
divt (µ∇t) ,∂

N
y

]
W
〉
=
∑
l<N

〈
A∂Ny W,ABl∂

l
yW
〉

we may thus argue as in the proof of lemma 4.5 and control

cN
∑
l<N

〈
A∂Ny ,ABl∂

l
yW
〉
⩽ cN‖

√
µ∇t∂

N
y W‖L2

∑
l<N

dl‖
√
µ∇t∂

l
yW‖L2 . (47)

Similarly we may iterative expand the equation satisfied by derivatives of the stream
function

∆t∂
N
y ϕ = ∂Ny W+

[
∆t,∂

N
y

]
ϕ

and thus obtain that

∂Ny ϕ =∆−1
t ∂Ny W+∆−1

t

∑
l<N

B̃l∆
−1
t ∂lyW,

where the second order operators B̃l may again be explicitly computed. Thus, we may argue as
in the proofs of lemmas 4.6 and 4.7 and again use Hölder’s and Young’s inequality to control〈

A∂Ny W,A
[
divt (µ

′∇t)(∂y− tU ′∂x)∆
−1
t +µ ′ ′∂x∆

−1
t −U ′ ′∂x∆

−1
t ,∂Ny

]
W
〉

⩽ ‖
(
√
µ∂x∂

N
y W,

√
µ(∂y− tU ′∂x)∂

N
y W,

(
µ(U ′)

2
) 1

6 (−∂2
x

) 1
6 ∂Ny W

)
‖L2

×
∑
l<N

‖
(
√
µ∂x∂

l
yW,

√
µ(∂y− tU ′∂x)∂

l
yW,

(
µ(U ′)

2
) 1

6 (−∂2
x

)1/6
∂lyW

)
‖L2 . (48)

We may thus conclude our estimate by using Young’s inequality. More precisely, we first
apply Young’s inequality to the estimates (47) and (48) so that the contributions due to ∂Ny W
can be bounded by

10−6cN‖
(
√
µ∂x∂

N
y W,

√
µ(∂y− tU ′∂x)∂

N
y W,

(
µ(U ′)

2
) 1

6 (−∂2
x

) 1
6 ∂Ny W

)
‖L2
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and can thus be absorbed into the decay in estimate (46). Then, choosing cN sufficiently small
the remaining terms obtained in the application of Young’s inequality can be absorbed into the
decay by (45). This concludes the proof.
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