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Abstract

The study focuses on the model reduction of an internally damped
chain of particles confined within a weakening potential well sub-
jected to polyharmonic excitation to investigate the chain’s escape
dynamics. The chain features strong linear coupling between par-
ticles and non-negligible viscous damping forces arising from their
relative motion. The potential well is modeled to have no energy
dissipation, which means that damping arises solely from the inter-
nal interactions among particles and not from their motion through
a resisting medium. Polyharmonic excitation frequencies are chosen
to excite both the center of mass of the chain and at least one of
the internal resonant frequencies, which are significantly higher than
the linearized eigenfrequency of the center of mass within the well.

The relative motion of the particles quickly reaches a steady state because
of the non-small internal damping, allowing for the derivation of an
efficient force field for the center of mass. Eliminating fast dynamics
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reduces the system’s degrees of freedom to one, employing a prob-
abilistic approach based on the relative motion’s probability density
function. The reduced 1 DoF model is appropriate to further investigate
with various methods established in the literature (e.g., transformation
to action-angle coordinates and subsequent averaging; multiple scales).

Keywords: escape, potential well, particle chain, polyharmonic excitation,
model reduction, averaging, classical probability density

1 Introduction

Escape from a potential well is an extensively researched topic in the field
of nonlinear dynamic systems [1–5], finding applications in various domains
including chemical reactions [6, 7], physics of Josephson junctions [8], MEMS
devices [9–14], celestial mechanics, and gravitational collapse. It also plays a
crucial role in energy harvesting [15] and is closely related to the dynamics of
oscillatory systems [16, 17], as well as specific phenomena such as ship capsizing
[4, 18]. Despite the significant body of previous research, unresolved issues still
require further investigation [19].

Various aspects of the escape phenomenon have been studied. For example, the
problem of the sharp minimum of the critical excitation amplitude near the
primary resonance has been examined under unlimited potential and homoge-
neous initial conditions [20]. Another area of research focuses on determining
safe basins, which represent non-escaping initial conditions under specific exci-
tations, and investigating integrity measures that quantify the size of the
non-escaping set [2, 21–23]. However, providing accurate analytic results for
nonquadratic potential wells is challenging. Approximation methods such as
Melnikov’s method [2] or the use of adiabatic invariants and action-angle vari-
ables [24] offer formulas suitable for small excitation values but lose accuracy
away from the 1:1 resonance.

Previous studies have addressed the escape problem of weakly damped par-
ticles from truncated quadratic potential wells under harmonic excitation,
focusing on the location and size of safe escape basins in the initial conditions
plane [25]. The escape problem of two strongly coupled particles in a truncated
quadratic potential under biharmonic excitation has also been investigated
[26]. When the relative vibrations of the particles are significantly faster than
the oscillation of the particle’s center of mass within the potential, the system
can be effectively reduced to a one-degree-of-freedom system by introducing
an effective potential. The effective force field is derived by cross-correlating
the original potential with the probability density function of the fast rela-
tive motion [27]. This study expands the scope of previous investigations by
focusing on a strongly coupled n-particle chain subjected to polyharmonic
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Fig. 1: Problem setting of an internally damped, coupled n-particle system in a
potential well, where particles have an equilibrium distance of zero, implying the
possibility for mutual penetration without physical constraints

excitation. Additionally, we provide a more rigorous analytical foundation for
the method previously employed on a heuristic basis.

The structure of this paper is as follows. Sect. 2 discusses the problem setting
and provides the solution for relative vibrations in a chain of n particles. Sect.
3 delves into the model reduction approach based on averaging. Sect. 4 illus-
trates these concepts with an example involving a three-particle chain. Sect.
5 contains a comprehensive discussion, and, finally, Sect. 6 offers conclusions
and highlights the scope for future research.

2 Problem setting

We consider the following problem setting depicted in Fig. 1. The movement
is one-dimensional and occurs along the x axis. The masses of the n individual
particles are denoted by m1, m2, ... , mn. The damping coefficient of the n−1
dashpot dampers is represented by k1, k2, ... , kn−1, while the stiffness of
the n − 1 linear springs between the particles is denoted by c1, c2, ... , cn−1.
Each particle can be stimulated by a polyharmonic force, which is expressed
as F1(t), F2(t), ... , Fn(t). Initially, the particles are situated in a potential
well. For each particle, this is individually given by V1(x), V2(x), ... , Vn(x),
where Vi(x) = miV (x), with V (x) defined in more detail below.

Additionally, it is essential to note that, in this system, the particles can pene-
trate each other, reflecting that the equilibrium distance between the particles
is zero.
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2.1 Equations of motion

Applying the Euler-Lagrange equations, we can derive the equations of motion
of the above system.

d

dt

∂T

∂q̇i
(t, q̇(t)) = −∂U

∂qi
(t,q(t))− ∂D

∂q̇i
(t, q̇(t)) +Q∗

i (t) for i = 1, ..., n, (1)

where the general coordinates are chosen to be qi = xi and

T =

n∑
i=1

1

2
miẋ

2
i , (2)

U =

n−1∑
i=1

1

2
ci(xi+1 − xi)

2 + Vi(xi), (3)

D =

n−1∑
i=1

1

2
ki(ẋi+1 − ẋi)

2, (4)

Q∗
i (t) = Fi(t) = Fi,0 sin(Ω0t+ βi,0) +

P∑
p=1

Fi,p sin(Ωi,pt+ βi,p), (5)

where P ∈ N+. We require that the general potential V (x) is bounded above,
i.e., it fulfills

lim
|x|→∞

V (x) ≤ C, for some C ∈ R. (6)

Furthermore, we require that the potential well has a stable equilibrium at
x = 0, and its linearized eigenfrequency around this equilibrium is 1, i.e.:

V ′(x = 0) = 0, (7)

V ′′(x = 0) = 1. (8)

Additionally, we assume that V (x) is softening and has a single well, i.e.

V ′′(x) ≤ V ′(x)

x
≤ 1. (9)

Ineq. (9) is obtained from the definition of a ”softening characteristic,” that
is, the stiffness of the potential c(x) := V ′(x)/x decreases monotonically as
the distance from the bottom of the well |x| increases. On the other hand, the
maximum stiffness at x = 0 is given by

lim
x→0

V ′(x)

x
= lim

x→0

V ′(x)− V ′(0)

x− 0
= V ′′(x)|x=0 = 1. (10)
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. . . .

Fig. 2: Example of a feasible potential. The interior of the potential stretches from
xl to xr

Given that V (x) is bounded above, we define the location of the left supremum
of V (x) as xl, where xl ∈ R−∪{−∞}, and the location of the right supremum
as xr, where xr ∈ R+∪{∞}. We refer to the interval (xl, xr) as the interior of
the well. The term escape is used when the chain exits this region. For a detailed
definition of escape, see Sect. 2.2.1. Fig. 2 shows a graphical representation of
a feasible potential.

We assume that the masses mi are of magnitude O(1) and that the forces
of the coupling springs are much greater than those of the potential, that is,
ci ≫ 1 ≥ maxx∈(xl,xr) V

′′
i (x), or equivalently ci ∈ O(ε−1). Additionally, we

assume the existence of non-small damping, denoted by ki ∈ O(1). With the
above assumptions on ci and ki, the chain’s internal modes are underdamped
(cf. Sect. 2.4). Thus, the corresponding receptance frequency response function
has n−1 local maxima (cf. Fig. 3). We refer to the location of the local maxima
as resonant frequencies. We postulate that the lowest resonant frequency of
the relative movements in the particle chain significantly exceeds the linearized
eigenfrequency of any singular particle in the potential well.

Each particle is excited by up to P + 1 harmonic forces. We assume low-
frequency excitation for each particle with possibly different amplitudes Fi,0

and initial phases βi,0, but with identical frequency Ω0 ∈ O(1).

The rest of the excitation frequencies are considered significantly higher than
the base frequency, i.e., Ωi,p ≫ Ω0, and are not necessarily identical for all
particles, i.e., Ωi,p is independent of Ωj,p.

Such excitation patterns are relevant in models of cantilever beams used as sen-
sors in Micro-Electro-Mechanical Systems (MEMS). An important application
of this can be found in Atomic Force Microscopy (AFM), where a transcen-
dental equation determines the eigenfrequencies of the cantilever beam and
are linearly independent over the rational numbers (cf. Def. 2). This example
reflects a realistic physical situation where the proposed can be helpful.

Insertion of Eqs. (2-5) in Eq. (1) yields the nonlinear differential equation
system

Mẍ+Kẋ+Cx+ v′(x) = f(t), (11)
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where the matrices and vectors are

M =



m1 0 . . . 0
0 m2

m3
. . .

...
...

. . .
. . .

mn−1 0
0 . . . 0 mn


, (12)

K =



k1 −k1 0 . . . . . . 0

−k1 k1 + k2 −k2
. . .

...

0 −k2 k2 + k3 −k3
...

...
. . .

. . .
. . . 0

...
. . . −kn−2 kn−1 + kn−2 −kn−1

0 . . . . . . 0 −kn−1 kn−1


, (13)

C =



c1 −c1 0 . . . . . . 0

−c1 c1 + c2 −c2
. . .

...

0 −c2 c2 + c3 −c3
...

...
. . .

. . .
. . . 0

...
. . . −cn−2 cn−1 + cn−2 −cn−1

0 . . . . . . 0 −cn−1 cn−1


, (14)

x =



x1

x2

x3

...
xn−1

xn


, v′(x) =



V ′
1(x1)

V ′
2(x2)

V ′
3(x3)
...

V ′
n−1(xn−1)
V ′
n(xn)


, f(t) =



F1(t)
F2(t)
F3(t)
...

Fn−1(t)
Fn(t)


. (15)

Furthermore, bold lowercase symbols denote vectors in the time domain, while
bold uppercase symbols indicate matrices. Consistent with the standard lit-
erature, vectors containing the Laplace transforms of vector values are also
represented using bold uppercase letters. The reader is respectfully reminded
to be mindful of this notation to avoid any confusion.
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2.2 Decoupling coordinate transformation

In the present form, the differential equation is strongly coupled. However,
with an appropriate coordinate transform, we can get a system that is only
weakly coupled and much easier to handle analytically. We introduce the new
coordinates, η and yi for i ∈ {2, . . . , n}, as follows:

η =

∑n
i=1 mixi∑n
i=1 mi

, (16)

yi = xi − xi−1, for i ≥ 2. (17)

Thus, the first coordinate represents the center of mass of the chain, and
the rest of the coordinates are the relative distances between two consecutive
particles. By defining M =

∑n
i=1 mi we can write the transformation as

y =


η
y2
y3
...
yn

 =



m1

M
m2

M
m3

M . . . mn

M
−1 1 0 . . . 0

0 −1 1
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 −1 1


︸ ︷︷ ︸

=:S−1


x1

x2

x3

...
xn

 . (18)

Introducing the notation Mkl =
∑l

i=k mi, with l > k ∈ N+, finally we can
derive an expression for the matrix S:

S =
1

M



M −M2n −M3n . . . . . . . . . −Mnn

M M11 −M3n . . . . . . . . . −Mnn

M M11 M12 −M4n . . . . . . −Mnn

...
. . .

...
M M11 . . . M1(k−1) −M(k+1)n . . . −Mnn

M M11 . . . . . . . . . M1(n−2) M1(n−1)


. (19)

Inserting x = Sy into Eq. (11), we can write the equations of motion in the
new coordinates as

MSÿ +KSẏ +CSy + v′(Sy) = f(t), (20)

ÿ + S−1M−1KS︸ ︷︷ ︸
=:K̃

ẏ + S−1M−1CS︸ ︷︷ ︸
=:C̃

y + S−1M−1v′(Sy) = S−1M−1f(t)︸ ︷︷ ︸
=:f̃(t)

. (21)
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After some calculations, we obtain the following.

K̃ = S−1M−1KS =



0 0 0 . . . . . . 0

0 k1

m1
+ k1

m2
− k2

m2
0 . . . 0

... − k1

m2

k2

m2
+ k2

m3
− k3

m3

. . .
...

. . .
. . . 0

... 0 − kn−3

mn−2

kn−2

mn−2
+ kn−2

mn−1
− kn−1

mn−1

0 . . . 0 − kn−2

mn−1

kn−1

mn−1
+ kn−1

mn


.

(22)

It is clear that in the new coordinates, the inner viscous damping has no more
effect on the center of mass η. In the same manner, the calculation of the
matrix S−1M−1CS can be performed resulting in

C̃ = S−1M−1CS =



0 0 0 . . . . . . 0
0 c1

m1
+ c1

m2
− c2

m2
0 . . . 0

... − c1
m2

c2
m2

+ c2
m3

− c3
m3

. . .
...

. . .
. . . 0

... 0 − cn−3

mn−2

cn−2

mn−2
+ cn−2

mn−1
− cn−1

mn−1

0 . . . 0 0 − cn−2

mn−1

cn−1

mn−1
+ cn−1

mn


.

(23)

Further, we calculate

S−1M−1v′(Sy) = S−1M−1


m1V

′(s1y)
m2V

′(s2y)
m3V

′(s3y)
...

mnV
′(sny)

 =



∑n
i=1 miV

′(siy)

M
V ′(s2y)− V ′(s1y)
V ′(s3y)− V ′(s2y)

...
V ′(sny)− V ′(sn−1y)

 , (24)

using the notation S = (s1, s1, . . . , sn)
T with si ∈ Rn.

Based on [28] and [29], the particular solutions of y2...yn are only negligi-
bly influenced by their coupling to η, which is due to the strong damping
between the particles and the fact that the coupling to the ”outer” potential
field is weak since ci/mi ∈ O(ε−1), while maximal stiffness of the potential
maxx∈(xl,xr) V

′(x)/x is of magnitude O(1).

Considering small relative displacements, i.e., |yi| < 1 for i = 2...n, and
assuming that the particles are primarily inside of the potential well, i.e.,
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xi ∈ (xl, xr), the force of the potential can be linearized around xi−1 as

V ′(x) ≈ V ′(xi−1) + V ′′(xi−1)(x− xi−1), (25)

and by siyi = xi we find

V ′(siy)− V ′(si−1y) ≈ V ′(xi−1) + V ′′(xi−1)(xi − xi−1)− V ′(xi−1) (26)

= V ′′(xi−1)yi, (27)

which we can neglect since V ′′(x) ≤ 1 ≪ ci by our assumptions. Thus, the
vector can be rewritten as

S−1M−1v′(Sy) ≈



∑n
i=1 miV

′(siy)

M
0
0
...
0

 . (28)

Similarly, we obtain

f̃(t) = S−1M−1f(t) =



∑n
i=1 Fi(t)

M
F2(t)
m2

− F1(t)
m1

F3(t)
m3

− F2(t)
m2

...
Fn(t)
mn

− Fn−1(t)
mn−1


. (29)

2.2.1 Escape definition

The definition of escape is, in general, problem-specific, depending on V (x).
The following one is suitable for a particle chain in a single-welled potential
(i.e., the potential has only one local minimum). The chain escapes if ”∃i ∈
{1, . . . , n} such that limt→∞|yi(t)| = ∞”. This definition allows for the escape
of the whole chain in one direction limt→∞|η(t)| = ∞, or for the splitting of the
chain for i ∈ {2, . . . , n}. Due to the strong coupling between the particles, this
second scenario is possible for certain potentials, but only with unrealistically
large excitation values; therefore, we do not consider it in the following.

The definition of escape can differ for particles or particle chains in a multi-
welled potential since the previous definition must not or cannot hold. For
example, in the case of a ship capsize, the dynamics is described in angle
coordinates, and escape means going from the upright well into a lateral well,
but not into infinity.
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2.3 The steady-state solutions of y2(t)...yn(t)

In general, an analytic expression for the eigenmodes and eigenfrequencies, and
so, for the particular solutions of y2(t)...yn(t), cannot be given with a closed
formula. Thus, we limit the investigation to a special case where the masses,
the dampers, and the strings are all equal, that is, mi = m for all i ∈ 1, . . . , n
and ki = k and ci = c for all i ∈ 1, . . . , n− 1. The equation of motion of the
center of mass becomes

η̈ +

∑n
i=1 V

′(siy)

n
=

∑n
i=1 Fi(t)

nm
. (30)

To address Eq. (30), it is essential first to obtain solutions for y2, . . . , yn,
which necessitates focusing on the submatrix formed by excluding the first row
and column of our current matrices, which leads to the following simplified
expressions.

ȳ = [y2 y3 . . . yn]
⊤ ∈ Rn−1, (31)

K̄ = K̃2:n,2:n ∈ R(n−1)×(n−1), (32)

C̄ = C̃2:n,2:n ∈ R(n−1)×(n−1), (33)

f̄ = f̃2:n ∈ Rn−1, (34)

where p : q in the vector index denotes the vector obtained by taking the
entries from the pth row to the qth row. Similarly, p : q, r : s in the matrix
index denotes the matrix block obtained by taking the entries between the
rows p and q and between the columns r and s. The equations of motion of
the reduced system can be written as

¨̄y + K̄ ˙̄y + C̄ȳ = f̄(t), (35)

where K̄ and C̄ are tridiagonal Toeplitz matrices.

As the chosen damping value is non-small, the homogeneous equation will
decay rapidly. Hence, we are only interested in the particular solution given
to the polyharmonic excitation. Using the linearity of the problem, we can
obtain the solution by applying the Laplace transform. Assuming zero initial
conditions, the Laplace transform of Eq. (35) becomes

s2Ȳ(s) + sK̄Ȳ(s) + C̄Ȳ(s) = F̄(s), (36)

where Ȳ(s) = L{ȳ(t)} and F̄(s) = L{f̄(t)}, which is equivalent to
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s2 + 2 k
ms+ 2 c

m − k
ms− c

m 0 . . . 0

− k
ms− c

m

. . .
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . − k

ms− c
m

0 . . . 0 − k
ms− c

m s2 + 2 k
ms+ 2 c

m


︸ ︷︷ ︸

=:A(s)


Y2
Y3
...

Yn−1

Yn

 =


F̄2

F̄3

...
F̄n−1

F̄n

 .

(37)

Let us denote the values of the main diagonal with a = s2 + 2 k
ms + 2 c

m and

with b = − k
ms − c

m the values of the sub and superdiagonals. Based on [30]
the eigenvalues λk, k = 1...n− 1 of the matrix are given as

λk = a− 2b cos

(
kπ

n

)
, (38)

and the eigenvectors are

vk =

[
sin

(
πk

n

)
, . . . , sin

(
(n− 1)πk

n

)]⊤
, for k ∈ {1, . . . , n− 1}. (39)

The eigenvectors do not have a unit length in this representation, so the next
step is to normalize them:

∣∣vk
∣∣ =√sin2

(
πk

n

)
+ sin2

(
2πk

n

)
+ · · ·+ sin2

(
(n− 1)πk

n

)
, (40)

and using the trigonometrical identity sin2 x = 1−cos 2x
2 we obtain

∣∣vk
∣∣ =

√√√√1− cos
(
2πk
n

)
2

+
1− cos

(
4πk
n

)
2

+ · · ·+
1− cos

(
2(n−1)πk

n

)
2

, (41)

∣∣vk
∣∣ =

√√√√√√n− 1

2
− 1

2

n−1∑
l=1

cos

(
2πlk

n

)
︸ ︷︷ ︸

=-1

, (42)

∣∣vk
∣∣ =√n

2
, (43)

where the sum with the cosine term is −1 since the sum consists of all the n
roots of unity except the root one. As it is well known, the roots of unity add
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up to zero. Therefore, the above sum always adds up to −1. The matrix

Q =

√
2

n

[
v1, v2, . . . , vn−1

]
(44)

is orthogonal and symmetric, i.e., Q = Q−1 = Q⊤. The matrix
A ∈ C(n−1)×(n−1) can be written as

A = QΛQ⊤ = QΛQ, (45)

and so due to the above-mentioned properties the inverse of A can be written
as

A−1 = QΛ−1Q. (46)

We can give the entries of A−1 as follows.

A−1
ij (s) =

2

n

n−1∑
k=1

sin
(
iπk
n

)
sin
(

jπk
n

)
a+ 2b cos

(
kπ
n

) , (47)

where i, j = 1...n− 1. After substituting the values of a and b, we can write

A−1
ij (s) =

2

n

n−1∑
l=1

sin
(
iπl
n

)
sin
(

jπl
n

)
s2 + 2 k

ms+ 2 c
m − 2

(
k
ms+ c

m

)
cos
(
πl
n

) . (48)

The particular solution can be found using the system’s linearity for polyhar-
monic excitation. We can first calculate the effect of a harmonic excitation and
then take the superposition of all excitations that act on the particle chain.

To start with, we investigate the response to the harmonic Fi sin(ωit + βi),
acting at the ith ∈ {1, . . . , n− 1} reduced coordinate, not to be confused with
the ith particle. We find

Ȳ(s = jωi) = A−1(jωi)


0
...

Fie
jβi

...
0

 = Fie
jβia−1

i (jωi), (49)

where a−1
i denotes the ith column of the matrix A−1 and j is the imaginary

unit. Then the kth row of vector ȳ(t) has the form

ȳk(t) =
∣∣Ȳk(ωi)

∣∣ sin(ωit+ Ψ̄k(ωi)), (50)
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where Ψ̄k(ωi) = ∠Ȳk(ωi) is the phase angle.

If we excite the ith particle according to Eq. 5 in the y coordinates, this exci-
tation manifests twice, as indicated by Eq. 29, except at the chain ends where
it occurs only once. Consequently, we have 2(P + 1)(n− 1) distinct harmonic
terms superimposed.

Let us define Ȳi,p,+ and Ȳi,p,− as the complex amplitudes of the simple har-
monic excitation caused by the pth harmonic excitation, p ∈ {0, . . . , P}, of the
ith particle, i ∈ {1, 2, . . . , n} when having a plus or minus sign as in Eq. (29):

Ȳi−1,p,+(jΩi,p) = Fi,pe
jβi,pa−1

i (jΩi,p), i ∈ {2, . . . , n}, p ∈ {0, 1, . . . , P},
(51)

Ȳi,p,−(jΩi,p) = −Fi,pe
jβi,pa−1

i (jΩi,p), i ∈ {1, 2, . . . , n− 1}, p ∈ {0, 1, . . . , P}.
(52)

The particular solution of the relative distances become

yk(t) =

n−1∑
i=1

P∑
p=0

∑
q∈{−,+}

∣∣Ȳi,p,q,k−1(jΩi,p)
∣∣ sin(Ωi,pt+ Ψ̄i,p,q,k−1(jΩi,p)), (53)

with k ∈ {2, . . . , n}, and Ȳi,p,q,k−1 denoting the (k − 1)th row of the vector
Ȳi,p,q. Thus, we obtain accurate estimates for y2(t), . . . , yn(t).

2.4 Resonant frequencies

We are generally interested in the system’s behavior near its resonant fre-
quencies. Therefore, we derive the frequencies of the resonance peaks and the
relative amplifications at these points. In order to do that, it is enough to
examine the system with a single harmonic excitation, as given in Eq. (49),
which acts on the ith reduced coordinate (not on the ith particle). Writing the
explicit expression for the kth row of the vector, we have

Ȳk(jωi) =
2

n

n−1∑
l=1

sin
(
iπl
n

)
sin
(
kπl
n

)
s2 + 2 k

ms+ 2 c
m − 2

(
k
ms+ c

m

)
cos
(
πl
n

) ∣∣∣∣
s=jωi

Fie
βi (54)

=
2

n

n−1∑
l=1

sin
(
iπl
n

)
sin
(

jπl
n

)
[
2 c
m

(
1− cos

(
πl
n

))
− ω2

i

]
− j

[
2ωi

k
m

(
1− cos(πln

)]Fje
βj .

(55)

Large vibrations can occur when |Yi| is large, that is, when at least one of the
denominators in the sum approaches zero in its absolute value. The absolute
value of the denominator is∣∣∣∣ [2cm

(
1− cos

(
πl

n

))
− ω2

i

]
− j

[
2ωi

k

m

(
1− cos

(
πl

n

))] ∣∣∣∣ = (56)√[
2c

m

(
1− cos

(
πl

n

))
− ω2

i

]2
+ 4ω2

i

k2

m2

(
1− cos

(
πl

n

))2

= (57)
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ω4
i + 4

(
1− cos

(
lπ

n

))[
k2

m2

(
1− cos

(
lπ

n

))
− c

m

]
ω2
i +

(
2c

m

(
1− cos

πl

n

))2

.

(58)

Since k > 0, the absolute value of the denominator is a continuously differen-
tiable function for any ωi ∈ R, and we can find its minimum value by setting
its derivative equal to zero.

Fig. 3: Amplification and phase depicted against the excitation frequency with n = 4
particles for m = 1, k = 0.8, c = 1000. The second particle of the chain is excited.
The analytic peak frequencies given by Eq. (60) are depicted with dashed black lines

Moreover, since the square root function is monotonic, the expression attains
its minimum value, where the fourth-order polynomial inside the root reaches
its minimum. Given that this polynomial is symmetric and ω4

i has a positive
coefficient, two scenarios can be anticipated. In the first scenario, the poly-
nomial reaches its local maximum at ωi = 0, and its two local minima occur
symmetrically around this point. In the second scenario, there is a single local
minimum at ωi = 0, and as we move away from zero, the function values
increase monotonically. The latter case corresponds to a strongly overdamped
aperiodic system, which is not within the focus of our study (cf. Eq. (65)).
We obtain the following result upon differentiating the expression inside the
square root.

4ω3
i + 8

(
1− cos

(
lπ

n

))(
k2

m2

(
1− cos

(
lπ

n

))
− c

m

)
ωi = 0, (59)
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which is solved by

ωi,12 = ±

√
2

(
1− cos

(
lπ

n

))(
c

m
− k2

m2

(
1− cos

(
lπ

n

)))
, (60)

ωi,3 = 0. (61)

Substituting values for l = 1...n − 1, we obtain reasonable analytic estimates
for the resonant frequencies of the particle chain. A graphical example with
n = 4 particles is shown in Fig. 3.

Based on Eq. (60), we can also give an estimate for the maximal value of
the damping coefficient kcrit, for which all internal modes of the chain are
oscillatory. If the expression under the square root for all l ∈ {1, . . . , n− 1} is
real, all resonant peaks exist. Which is the case for

c

m
>

k2

m2

(
1− cos

(
lπ

n

))
, ∀l ∈ {1, . . . , n− 1}, (62)

cm > k2
(
1− cos

(
(n− 1)π

n

))
, (63)

cm > k2
(
1 + cos

(π
n

))
, (64)√

cm

2
>

√
cm

1 + cos π
n

=: kcrit > k. (65)

Possible values of n range from 2 to ∞, thus the critical damping coefficient
has the range

kcrit ∈

(√
cm

2
,
√
cm

]
. (66)

2.5 Special case: harmonic excitation

In the equations of relative motion, the potential force is of the order O(1)
and considered negligible compared to the forces of linear springs of order
O(ε−1). Consequently, the equations are linearized. Owing to the validity of the
superposition principle for this simplified linear system, our primary interest
is directed towards the behavior of the ith body when it undergoes simple
harmonic excitation.

In order to examine the motion relative to the common center of mass of the
particles, it is necessary to find the analytic solutions for y2(t), . . . , yn(t) under
excitation solely by the high-frequency force Fi,p sin(Ωi,pt + βi,p), where p ∈
{1, . . . , P}. The equation governing η is an undamped second-order nonlinear
differential equation. The absence of damping implies that the motion never
settles into a steady state. In contrast, the system of equations that describe
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the evolution of y2(t), . . . , yn(t) can be well approximated by a damped linear
second-order differential equation system. Due to the significant damping, the
motion rapidly converges to the steady-state solution as given by Eq. (53). In
the case of single harmonic excitation, steady-state solutions y2(t), . . . , yn(t)
are all pure harmonics. The following gives the oscillations around the center
of mass η(t).

z(t) : = x(t)− η(t)e (67)

= Sy(t)− η(t)e, (68)

=
1

n


−(n− 1) −(n− 2) . . . −1

1 −(n− 2) . . . −1
1 2 . . . −1
...

...
. . .

...
1 2 . . . n− 1


︸ ︷︷ ︸

∈Rn×(n−1)


y2
y3
...
yn

 , (69)

with e = [1 1 ... 1]⊤. Due to Eq. (69), the entries of z are all linear
combinations of y2, . . . , yn. The sum consists of n− 1 sine functions with dif-
ferent amplitudes and phases but with identical frequency Ωi,p. The following
trigonometric identity is helpful for such an addition of sine functions.

n∑
i=1

Ai sin(ωt+ φi) = A sin(ωt+ φ), (70)

with

A =

√√√√( n∑
i=1

Ai cosφi

)2

+

(
n∑

i=1

Ai sinφi

)2

, (71)

φ = atan2

(
n∑

i=1

Ai sinφi,

n∑
i=1

Ai cosφi

)
, (72)

where atan2(y, x) denotes the two-argument arctangent, a more precise version
of arctan(y/x), by providing phase information on (−π, π), rather than only on
(−π/2, π/2). To determine the amplitude and phase of the harmonic oscillation
of the jth body, the use of complex numbers is advantageous, using the solution
obtained in Eq. (49) for Ȳ(jΩj2):

Z(jΩj2) = S̄Ȳ(jΩj2), (73)

Ak = |Zk(jΩj2)|, (74)

Ψk = ∠Zk(jΩj2), (75)
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zk(t) = Ak sin(Ωj2t+Ψk). (76)

These equations indicate that the relative motions of the particles around the
center of mass are expressible as sinusoidal functions. Although these functions
share the same frequency, their amplitude and phase values differ.

When subjected to multiple harmonics simultaneously, the linearity of Eq. (35)
allows the development of complex relative motions z(t) within the particle
chain around its center of mass. These motions result from the superposition
of sinusoidal functions of varying frequencies. The number of frequencies in the
excitation force directly equates to the number of sinusoidal functions involved.

Furthermore, given our strong coupling assumption between the particles, it
becomes clear that the frequencies that excite the center of mass of the particle
chain within the potential well are significantly lower than those that provoke
internal vibrations. Consequently, we can effectively neglect the low-frequency
excitation terms in calculating z. For a graphical illustration, refer to Fig. 5
in Sect. 4.

Considering this, we can now revisit Eq. (30). To simplify the equation, we
will employ a method proposed by Genda et al. [26], which models the high-
frequency oscillations based on the classical probability density of the position
of the particles. This approach offers a straightforward means of capturing the
system’s dynamics.

3 Averaging-based model reduction

In the previous section, we have derived analytic expressions for the motion of
particles around their common center of mass. These can be substituted into
Eq. (30). Making use of Eq. (69), we obtain

η̈ +

∑n
i=1 V

′(η + zi(t))

n
=

∑n
i=1 Fi(t)

nm
. (77)

Considering that zi(t) and Fi,p sin(Ωi,pt + βi,p) are ”fast,” we can average
the equation and keep only the ”slow” dynamics of the system. To denote
the averaged position of the center of mass, we introduce ξ := ⟨η⟩. The fast
harmonic forces all vanish, and we obtain the following result.

ξ̈ +

〈∑n
i=1 V

′(ξ + zi(t))

n

〉
=

∑n
i=1 Fi,0 sin(Ω0t+ βi,0)

nm
. (78)

Using Eq. (70) we can reduce Eq. (78) further as

ξ̈ +

〈∑n
i=1 V

′(ξ + zi(t))

n

〉
= F0 sin(Ω0t+ β0), (79)
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with

F0 : =

√(∑n
i=1 Fi,0 cosβi,0

)2
+
(∑n

i=1 Fi,0 sinβi,0

)2
nm

, (80)

β0 : = atan2

(
n∑

i=1

Fi,0 sinβi,0,

n∑
i=1

Fi,0 cosβi,0

)
, (81)

The averaging of the left-hand side of Eq. (78) takes more effort. [27] showed
that the time average of the function f(x + g(t)), where g(t) represents the
”fast” variable, can be obtained not only by a time integral but also by a cross-
correlation integral of f(x) and the classical probability density (CPD) ρ(x)
of g(t), that is,

⟨f(x+ g(t))⟩ = 1

T

∫ T

0

f(x+ g(t))dt =

∫ ∞

−∞
f(y)ρ(y − x)dy. (82)

Additionally, [27] demonstrated that the averaged function can be expressed
using the moments of the classical probability density ρ(x) for analytic
functions. The expression is given by:

⟨f(x+ g(t))⟩ =
∫ ∞

−∞
f(y)ρ(y − x)dy =

∞∑
k=0

mk
f (k)(x)

k!
. (83)

Here, mk represents the kth moment of ρ(x). The result is valid if the support
of ρ(x) lies within the convergence domain of the Taylor series expansion of
f(x).

Hence, once the moments of the ”fast” variables zi(t) are known, the aver-
aging of Eq. (79) is straightforward, which is especially true if f(x) is some
polynomial of order p, in which case only the first p moments must be
calculated.

3.1 Derivation of the CPD and moments of the fast
motion

The CPDs of various functions have been derived in the literature [27, 31].

The 0th moment for any CPD is invariably 1. In our specific case, zi(t)
approximates a polyharmonic function, which is the superposition of multiple
harmonic components. Given certain conditions, moments of this polyhar-
monic sum can also be ascertained. It is well-established that the probability
density function (PDF) for a sum of independent variables can be derived
through the convolution of their individual PDFs [32]. CPDs exhibit identical
mathematical characteristics to PDFs; they are nonnegative and integrate to
1. However, the variables they represent differ fundamentally. Unlike random
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variables, which their PDFs fully characterize, CPDs are formed by disregard-
ing the precise timing of particle positions. They retain information on spatial
distribution by accounting solely for the duration for which a particle resides
at a specific location. Theorem 1 offers an analytical method for determining
the CPD of polyharmonic functions.

Definition 1 (Classical probability density) The classical probability density of a
particle ρ(x) describes the probability with which a particle in a given observation
interval starting at t0 and ending at t1 spends an infinitesimal amount of time dt in
the dx vicinity of a given value x, that is,

ρ(x)dx ∝ dt. (84)

Note that since ρ(x) is a probability density function, it must be nonnegative
and have a total area of 1. Therefore, the proportionality factor is the inverse
of the time interval length T = t1 − t0, resulting in

ρ(x)dx =
1

T
dt. (85)

Now, we multiply both sides of Eq. (85) by 1 = dx/dx, we find

ρ(x)dx =
1

T

dx

dx/dt
=

1

T

dx

v(x)
, (86)

where v(x) is the velocity of the particle, resulting in

ρ(x) =
1

T

1

v(x)
. (87)

In addition, note that the CPD of a particle following the path x = g(t),
with a strictly monotonically increasing, continuously differentiable g(t), can
be written as

ρ(x) =
1

T

1

g′(g−1(x))
. (88)

For further explanation, see [27].

Definition 2 (Linear independence over Q) The numbers ω1, . . . , ωP ∈ R are said
to be linearly independent over Q if

P∑
i=1

riωi ̸= 0, (89)

for any ri ∈ Q, except r1 = ... = rP = 0.
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Weyl showed that the P -dimensional flow on a torus TP = RP /ZP is equidis-
tributed [33], i.e., a particle starting at x0 = [x0,1, . . . , x0,P ]

⊤ ∈ TP and moving
with uniform velocity in the direction ω = [ω1, . . . , ωP ]

⊤ ∈ RP on TP , i.e.,

x(t) = (x0 + ωt) mod 1 =


{x0,1 + ω1t}
{x0,2 + ω2t}

...
{x0,P + ωP t}

 , (90)

has a relative dwell time in any volume element V as indicated by the hyper-
volume of the volume element |V |, if and only if the numbers ω1, . . . , ωP are
linearly independent over Q.

Here, {·} signifies the fractional part function. By relative dwell time, we refer
to the limit limt→∞

tV
t , where tV represents the time spent within the volume

element V over the entire observation period t. This concept is congruent with
the idea that flow on a P -dimensional torus is ergodic with respect to the Haar
measure on TP [34].

Consequently, if we sample particle positions in uniformly distributed random
time instances within the interval [0, T ], as T → ∞, the positions sampled dur-
ing these instances will adhere to a uniform multivariate distribution in TP .
We can interpret these positions as the realizations of a P -dimensional ran-
dom variable X = [X1, . . . , XP ]

⊤, where the scalar components are uniformly
distributed in [0, 1] and are mutually independent. This understanding enables
us to compute the CPD for a polyharmonic excitation as described.

Theorem 1 Assume that the frequencies ω1, . . . , ωP are linearly independent over
Q. Then, the CPD of

z(t) =
P∑
i=1

Ai sin(ωit+ βi) (91)

can be obtained by

ρ(x) = (ρ1 ∗ ρ2 ∗ ... ∗ ρP )(x), (92)

where ρ1 ∗ ρ2 ∗ ... ∗ ρP denotes the convolution of the functions ρ1, ρ2, . . . , ρP , which
are given by the arcsine distribution

ρi(x) =
1

π
√

A2
i − x2

. (93)

Proof As previously demonstrated, the line on TP parameterized by the arguments
of the sines is ergodic, which is synonymous with the flow of these arguments on
TP being uniform. In other words, sampling coordinates of this flow at uniformly
randomly selected times produces statistics equivalent to those of a P -dimensional
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uniform distribution on the torus, which suggests that the sum in Eq. (91) yields
the same probability distribution as the sum of P uniformly distributed, random
variables on [0, 2π], after applying the transformation Ai sin(ΩiXi+βi), respectively.

Using Eq. (88), the CPD of a simple harmonic term Ai sin(Ωit+ βi) is readily given
by Eq. (93). CPDs and PDFs share the same statistical properties.

Furthermore, it is well known [35] that the PDF of the sum of independent random
variables is given by the convolution of the individual PDFs (cf. Eq. (92)), which
finishes the proof of the theorem. □

Remark 1 Since the convolution is commutative, it does not matter in which order
the operations are performed.

Remark 2 The moments of the centered arcsine distribution with half-width A are
given by [27]

mk =

{
Ak 1

2k

( k
k/2

)
for k even,

0 for k odd,
for k ≥ 0. (94)

Theorem 2 Let mj,ji be the jthi moment of the jth term’s CPD in Eq. (91) with

ji ∈ N+ for all j = {1, . . . , P}. The kth moment of ρ(x) in Eq. (92) is given by

mk =

 ∑
(
∑P

j=1 ji)=k

P∏
j=1

mj,ji

ji!

 k! (95)

Proof The moment-generating function of a random variable X has the form

MX(t) =
∞∑
k=0

mk

k!
tk. (96)

It is well-known that the product of the moment-generating functions of indepen-
dent random variables X1, X2, . . . , XP yields the moment-generating function of the
random variable that is obtained by the sum of X1, X2, . . . , XP [36]. In other words,

the moment-generating function of X =
∑P

i=1 Xi is given by

MX(t) = MX1
(t)MX2

(t)...MXP
(t). (97)

Since the moment-generating functions are power series, the Cauchy product rule
can be applied, resulting in Eq. (95). □

By combining Eq. (83) with Theorem 2, the effective restoring force in Eq.
(79) can be obtained. Still, in general, solving Eq. (83) may still be difficult
or only numerically possible. However, if V (x) is a polynomial potential, the
results are straightforward and can be obtained analytically.
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(a) Periodic, bi-harmonic motion given by g(t) = − cos(t) − cos(1.4t − 0.1) and its numerically
obtained CPD

(b) Aperiodic, bi-harmonic motion given by g(t) = − cos(t)− cos(
√
2t− 0.1) and its analytically

obtained CPD (see Eq. (127))

Fig. 4: Comparison of commensurability effects on the CPD of motion. Figures re-
used from [27]

Thus, the reduction of the originally n degree-of-freedom system to a 1 DoF
system is complete, given that the distinct ”fast” excitation frequencies Ωi,p

are linearly independent over Q. A graphical example showing the differences
in the CPDs for commensurable and incommensurable ω1 and ω2 is shown in
Fig. 4.

In what follows, we present examples illustrating the utility of the analytic
results discussed earlier. After reducing the system to 1 DoF, there are numer-
ous methods documented in the existing literature for further analyzing the
escape behavior of the system [20, 26, 37–39]. Thus, the focus will be primar-
ily on the reduction process rather than on subsequent analytic approaches
specific to 1 DoF escape issues.

4 Example

In the following, we consider an example with n = 3 and

V (x) =
x2

2
− x4

4
. (98)
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Without loss of generality, we consider m = 1. The equations of motion are
given byẍ1ẍ2
ẍ3

+

 k −k 0
−k 2k −k
0 −k k

ẋ1ẋ2
ẋ3

+

 c −c 0
−c 2c −c
0 −c c

x1x2
x3

+

V ′(x1)
V ′(x2)
V ′(x3)

 =

F1,0 sin (Ω0t+ β0)
F2,1 sin (Ω2t+ β2)
F3,1 sin (Ω3t+ β3)


︸ ︷︷ ︸

=:


F1(t)
F2(t)
F3(t)



.

(99)

Where Ω0 ≈ 1 is a low frequency and Ω2 and Ω3 are high frequencies, exciting
the inner vibrations modes of the chain. The new coordinates, i.e., the center
of mass and relative displacements, are defined as follows η

y2
y3

 =

 1
3

1
3

1
3

−1 1 0
0 −1 1

x1

x2

x3

 . (100)

Thus, the differential equations in the new coordinates become

η̈ +
V ′(η − 2

3y2 − 1
3y3) + V ′(η + 1

3y2 − 1
3y3) + V ′(η + 1

3y2 + 2
3y3)

3
=

∑3
i=1 Fi(t)

3
,

(101)

or compacter

η̈ +

∑3
i=1 V

′(η + zi(t))

3
=

∑3
i=1 Fi(t)

3
, (102)

with zi := xi − η. The equations describing the relative motions are given by

[
ÿ2
ÿ3

]
+

[
2k −k
−k 2k

] [
ẏ2
ẏ3

]
+

[
2c −c
−c 2c

] [
y2
y3

]
+

[
V ′(x2)− V ′(x1)
V ′(x3)− V ′(x2)

]
︸ ︷︷ ︸

negligible

=

F2(t) −F1(t)︸ ︷︷ ︸
negligible

F3(t)− F2(t)

 ,

(103)

where in Eq. (103), the force of the potential and the low-frequency excita-
tion can be neglected, being much smaller than the force of the springs. The
remaining equation system is linear, and its Laplace transform is given by[

s2 + 2ks+ 2c −ks− c
−ks− c s2 + 2ks+ 2c

]
︸ ︷︷ ︸

=:A(s)

[
Y2(s)
Y3(s)

]
= F(s), (104)
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where F(s) is the Fourier transform of the excitation. The inverse of the system
matrix A(s) is given by

A−1(s) =
1

(s2 + ks+ c) (s2 + 3ks+ 3c)

[
s2 + 2ks+ 2c ks+ c

ks+ c s2 + 2ks+ 2c

]
.

(105)

To facilitate the calculations, let us define the functions

Gl(s) := s2 + lks+ lc for l ∈ {1, 2, 3}, (106)

G0(s) := ks+ c. (107)

The transfer function is obtained by inserting s = jω. Then, we can rewrite
Eqs. (106-107) which we can also write as

Gl(jω) = lc− ω2 + jωlk =
√

(lc− ω2)2 + l2k2ω2 exp

(
j arctan

lkω

lc− ω2

)
,

(108)

G0(jω) = c− jωk =
√

c2 + k2ω2 exp

(
j arctan

kω

c

)
, (109)

thus, we can write

G(jω) =
1

G1(jω)G3(jω)

[
G2(jω) G0(jω)
G0(jω) G2(jω)

]
. (110)

Based on Eq. (60), resonant frequencies are to be found around the values

ω1,peak =

√
c− k2

2
, (111)

ω2,peak =

√
3

(
c− 3k2

2

)
. (112)

We now define the values of the high-frequency excitations as follows.

Ω2 = ω2,Peak, (113)

Ω3 = ω1,Peak. (114)

We can obtain the amplitude and phase of the stationary solutions correspond-
ing to F2(t) by[

Y2,2

Y3,2

]
=

1

G1(jΩ2)G3(jΩ2)

[
G2(jΩ2) G0(jΩ2)
G0(jΩ2) G2(jΩ2)

] [
F2e

jβ2

−F2e
jβ2

]
. (115)
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Using the identity G2(jω) − G0(jω) = G1(jω) we can simplify Eq. (115) as
follows. [

Y2,2

Y3,2

]
=

1

G3(jΩ2)

[
1
−1

]
F2e

jβ2 , (116)[
Y2,2

Y3,2

]
=

2
√
3F2

9k
√
4c− 3k2

e
j

(
β2−arctan

(√
12c−18k2

3k

)) [
1
−1

]
, (117)

where Eq. (117) is obtained by inserting Eq. (113) in Eq. (117).

Similarly, we can derive the stationary solution corresponding to F3(t). The
results are as follows.[

Y2,3

Y3,3

]
=

1

G1(jΩ3)G3(jΩ3)

[
G0(jΩ3)
G2(jΩ3)

]
F3e

jβ3 . (118)

Inserting Eq. (114) in Eq. (118) yields[
Y2,3

Y3,3

]
=

2F2e
j(β3−γ1−γ3)

k
√
4c− k2

√
16c2 + 44ck2 − 17k4

[√
4c2 + 4ck2 − 2k4ejγ0

√
4c2 + 20ck2 − 7k4ejγ2

]
, (119)

with

γ0 := arctan∠G0(jω1,Peak) = arctan

(
k
√
4c− 2k2

2c

)
, (120)

γl := arctan∠Gl(jω1,Peak) = arctan

(
lk
√
4c− 2k2

(2l − 2) c+ k2

)
for l ∈ {1, 2, 3}.

(121)

With the complex amplitudes Y2,2 . . . Y3,3 we can write the steady state
solutions as

y2(t) = |Y2,2| sin (ω2,Peakt+ ∠Y2,2) + |Y2,3| sin (ω1,Peakt+ ∠Y2,3) , (122)

y3(t) = |Y3,2| sin (ω2,Peakt+ ∠Y3,2) + |Y3,3| sin (ω1,Peakt+ ∠Y3,3) . (123)

The particles’ oscillations around their center of mass are given by

z1(t) = −2

3
y2(t)−

1

3
y3(t) = Z1,1 sin(ω1,Peakt+ ζ1,1) + Z1,2 sin(ω2,Peakt+ ζ1,2),

(124)

z2(t) =
1

3
y2(t)−

1

3
y3(t) = Z2,1 sin(ω1,Peakt+ ζ2,1) + Z2,2 sin(ω2,Peakt+ ζ2,2),

(125)
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Fig. 5: Comparison of the numerical solution of z1(t) with the analytic one for n = 3,

m = 1, k = 3, c = 10000, F0 = 0.33, F2 = 200, F3 = 100, Ω0=1,Ω2 =
√

3(c− 3k2

2 ),

Ω3 =
√

c− k2

2 , β0 = β2 = β3 = π
2

z3(t) =
1

3
y2(t) +

2

3
y3(t) = Z3,1 sin(ω1,Peakt+ ζ3,1) + Z3,2 sin(ω2,Peakt+ ζ3,2),

(126)

where Z1,1 . . . Z3,2 and ζ1,1 . . . ζ3,2 are determined with the help of Eq. (70-
72). Thus, the particle’s vibrations around their center of mass are given by
biharmonic functions, respectively. Since ω1,Peak and ω2,Peak are incommensu-
rable, i.e., linearly independent over Q, Theorem 1 can be applied to obtain
the moments of the fast variable’s CPD.

zl with l ∈ {1, 2, 3} is a biharmonic motion. In [27], the CPD of such functions
was derived. For a function of the form f(t) = A1 sin(ω1t+β1)+A2 sin(ω2t+β2)
with ω1 and ω2 incommensurable and A1 ≥ A2 (w.l.o.g.), the CPD is given by

ρBH(x) =



0 for x < −A1 −A2,
1

π2
√
A1A2

K
(

(A1+A2)
2−x2

4A1A2

)
for −A1 −A2 < x < −A1 +A2,

2

π2
√

(A1+A2)2−x2
K
(

4A1A2

(A1+A2)2−x2

)
for −A1 +A2 < x < A1 −A2,

1
π2

√
A1A2

K
(

(A1+A2)
2−x2

4A1A2

)
for A1 −A2 < x < A1 +A2,

0 for A1 +A2 < x,

(127)

whereK(·) is the complete elliptic integral of the first kind. Eq. (127) is already
too complicated for further calculations, but the first few moments of ρBH are
easily calculated using Theorem 2 with P = 2, i.e.,

mk =

 ∑
(
∑2

j=1 ji)=k

2∏
j=1

mj,ji

ji!

 k!, (128)
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where mj,1 and mj,2 are given by Eq. (94), respectively. The first few moments
are

m0 = 1, (129)

m1 = m3 = m5 = 0, (130)

m2 =
A2

1 +A2
2

2
, (131)

m4 =
3

8
A4

1 +
3

2
A2

1A
2
2 +

3

8
A4

2. (132)

Therefore, the corresponding moments of zl are obtained by substituting A1

and A2 with Zl,1 and Zl,2, respectively.

Let us denote the averaged center of mass by ξ = ⟨η⟩ . In Eq. (102) the only
terms that are challenging to average are V ′(η + zl(t)) for l ∈ {1, 2, 3}. As
shown by Eq. (83), for analytic functions f(x), such as Eq. (98), averaging can
be performed based on a series expansion. Using Eq. (83), the averages are
calculated by

⟨V ′(η + zl(t)⟩ =m0V
′(η) + m1︸︷︷︸

=0

V ′′(η) +
m2V

′′′(η)

2
+ . . .︸︷︷︸

=0

(133)

= (1− 3m2)η − η3 (134)

=

(
1− 3

Z2
1,l + Z2

2,l

2

)
η − η3, (135)

where all the terms above m4 disappear due to V (k)(x) = 0 for k ≥ 4. Inserting
this result into Eq. (102) we find

ξ̈ +

1−
∑3

l=1 Z
2
1,l + Z2

2,l

2︸ ︷︷ ︸
=:d

 ξ − ξ3 =
F1,0 sin (Ω0t+ β0)

3
, (136)

ξ̈ + ω2
dξ − ξ3 =

F1,0 sin (Ω0t+ β0)

3
. (137)

Here, d represents a detuning parameter influenced by all the underlying fac-
tors that contribute to the steady-state vibrations around the center of mass,
denoted as z1(t), z2(t), and z3(t). This equation mirrors a single particle’s
motion under harmonic excitation. However, the linear eigenfrequency of the
system is detuned to ωd =

√
1− d. Introducing appropriate dimensionless time

and space coordinates

τ := ωdt, χ :=
ξ

ωd
, (138)
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we obtain

χ′′ + χ− χ3 = F sin(Ωτ + β0), (139)

with

F :=
F1,0

3ω3
d

, Ω :=
Ω0

ωd
, (140)

where □′ denotes differentiation with respect to τ .

Eq. (146) has been widely investigated in the literature [37, 40–43] and, there-
fore, will not be further discussed in this article. However, in the next section,
numerical simulations will be performed to compare the slow dynamics of the
direct solution of Eq. (99) to the reduced system dynamics given by Eq. (146).

4.1 Numerical validation

In the following sections, we perform a comparative numerical simulation
between the original 3 DoF model and the reduced 1 DoF model. The analy-
sis calculates the escape time on a parameter region specified for Ω0 and F1,0.
The parameter values used for the simulations are as follows: n = 3, m = 1,

k = 3, c = 10000, F2 = 200, F3 = 100, Ω2 =
√

3(c− 3k2

2 ), Ω3 =
√

c− k2

2 ,

β0 = β2 = β3 = π
2 .

The model reduction yields the following results. The frequencies exciting the
internal resonances are

Ω2 = 173.0881, Ω3 = 99.9775, (141)

yielding to the complex amplitudes of the relative steady-state vibrations

Y2 =

[
0.1283 + 0.0033j
−0.1283− 0.0033j

]
, Y3 =

[
0.1663− 0.01j
0.1668 + 0.005j

]
. (142)

The vibrations around the center of mass are given by the complex amplitudes
(including phase information) for Ω2 and Ω3 by

Z1 =

−0.0428− 0.0011j
0.0855 + 0.0022j
−0.0428− 0.0011j

 , Z2 =

−0.1664 + 0.005j
−0.0002− 0.005i

0.1666 + 0i

 , (143)

respectively. With these, we have

d =

∑3
l=1|Z1,l|2 + |Z2,l|2

2
= 0.0332, (144)

ωd =
√
1− d = 0.9832. (145)
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Fig. 6: Time evolution comparison between the original 3 DoF (cf. Eq. (99)) and
the naive 1 DoF model without detuning parameter d for F0 = 0.33 and Ω0 = 1
with homogeneous initial conditions. The remaining parameters are set as indicated
in the main text. The discrepancies between the two models are salient

Thus, the reduced model becomes

ξ̈1 + (1− d) ξ − ξ3 =
F0

3
, (146)

ξ̈1 + 0.9668 ξ − ξ3 =
F0

3
. (147)

Eq. (146) followed after a lengthy calculation to take into account the impact
of the internal vibrations of the chain on the center of mass of the chain. One
might approach the problem naively simply by neglecting the effect of internal
vibrations. However, this primitive approach leads to incorrect results, which
shall be demonstrated in Fig. 6 showing the time evolutions of the original 3
DoF (cf. Eq. (99)) and naively reduced system (cf. Eq. (146)) for F0 = 0.33,
Ω0 = 1 and homogeneous initial conditions. Indeed, Fig. 7 depicting the time
evolutions of the original model and the averaging-based reduction shows a
much better correspondence.

Using Melnikov analysis, it has been shown that escape from a quadratic-cubic
potential may be preceded by chaotic motion [2, 5]. There is no compelling
reason to believe that this would also not hold for a quadratic-quartic poten-
tial. Such a scenario, however, suggests the existence of a fractal boundary
separating the escaping and non-escaping regimes. In this chaotic context, the
system is susceptible to minor alterations in initial conditions or model errors.
Consequently, the precise prediction of the escape time using a reduced model
becomes infeasible within the chaotic region. However, the reduced model may
yield accurate results in areas adjacent to this chaotic region. To test this
hypothesis, we conducted a parameter study. The range for Ω0 is set between
0.6 and 1.2, and for F0, it is set between 0 and 1. Parallel to that, we also show
how the averaging-based method performs compared to the naive method that
neglects the internal vibrations of the chain. In Fig. 8, the escape times of the
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Fig. 7: Model validation: the original 3 DoF model (cf. Eq. (99)) and the reduced
model with detuning parameter d = 0.0332 (cf. Eq. (146)) are compared. F0 = 0.33,
Ω0 = 1, and homogeneous initial conditions are chosen. The remaining parameters
are specified in the main text. A good correspondence is observed between the two
models; however, due to chaotic dynamics, they diverge over time. The reduced model
accurately predicts the chain’s escape, although not the exact escape time

(a) Original model (b) |tEsc,Orig − tEsc,Red| (c) |tEsc,Orig − tEsc,Naive|

Fig. 8: Model validation: panel (a) represents the escape times of the original system,
varying the parameters F0 and Ω0 with homogeneous initial conditions applied. Panel
(b) shows the absolute error in escape times of the reduced system relative to the
original, using a detuning parameter of d = 0.0332. In contrast, panel (c) shows
the naive model reduction approach that neglects the impact of internal vibrations
corresponding to d = 0. The naive approach shows a notable shift in the frequency
and force amplitude of the V-shaped escape boundary (cf. Eq. (140)), while the
reduced model based on averaging agrees well with the original. Parameters not
specified here adhere to those delineated in the main text

original model (cf. Fig. 8a), together with the absolute errors of the averaging-
based reduction method (cf. Fig. 8b) and the naive reduction method (8c) are
presented, respectively. Naive reduction results in a noticeable shift in the V-
shaped escape boundary, indicating that neglecting internal vibrations leads to
an inaccurate reduced model. The V-boundary shift occurs along the frequency
and force axes, as predicted by Eq. (140).
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The reduced model we derived is no longer stiff, which markedly improved
computational efficiency and significantly decreased simulation time in our
executed example. Specifically, the computational cost was reduced by 99.75%,
which corroborates the effectiveness of the model reduction technique.

5 Discussion

This paper presented a model reduction approach for an externally excited,
strongly coupled n-particle chain in a potential well. The reduction method
leverages the different frequency scales between the chain’s quick internal
vibrations and the slow movements of its center of mass within the potential
well. The choice of excitation is notably flexible; a polyharmonic excitation
affecting all particles is acceptable as long as it includes only one low fre-
quency. This feature ensures that the remaining frequencies primarily trigger
high-frequency internal vibrations of the chain.

In addition to the strong coupling between the particles, it is also assumed that
non-small damping forces exist among them. This results in the rapid decay
of high-frequency transient motions. Such a setting permits a straightforward
analytical calculation of steady-state fast vibrations, assuming that the forces
from the potential are negligible compared to the linear spring forces. Con-
sequently, the fast relative motions become known time-dependent functions
in the nonlinear differential equation governing the motion of the chain’s cen-
ter of mass. The net effect of these fast oscillations on the CoM’s differential
equation can be accurately approximated by averaging.

A theorem is introduced that extends the cross-correlation-based averaging
technique [27] to scenarios where polyharmonic fast motions are present, pro-
vided the frequencies are linearly independent over Q. A second theorem
outlines how to calculate the moments of the CPD for such composite motions,
which is especially useful for averaging a polynomial function. Building on
these findings, we derive the effective potential, resulting in a reduced system
with one degree of freedom.

As an illustrative example, a chain of three particles in a quadratic-quartic
potential well, excited by a triharmonic force, is presented. The model reduc-
tion is carried out analytically, and numerical validation is performed by
computing the escape time for both models across various excitation force
and frequency values. In the case of the chosen quadratic-quartic potential,
the impact of high-frequency excitation manifests solely as a detuning of the
potential’s linearized natural frequency, which allows for the use of several
analytical methods already available in the literature.

6 Conclusions and scope for future research

The model reduction offers two main advantages. First, it enables us to grasp
the fundamental slow dynamics of the system and identify the underlying slow
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force field. Second, the computational cost is significantly reduced. The sim-
ple example involving three particles achieved a simulation time reduction of
99.75%. Importantly, as the number of particles increases and their interactions
become stronger, making the differential equation system stiffer, the benefits
of model reduction become increasingly pronounced.

Future research could extend in several directions. First, the model reduction
techniques could be applied to more complex potential wells beyond polyno-
mial forms to test the range of applicability of the current methods. Second,
other types of excitation, such as stochastic or time-dependent forces, could
be incorporated to see how they affect both slow dynamics and computational
efficiency.

Also worth exploring is how the model scales with more particles and complex
interaction mechanisms. In particular, quantifying the computational advan-
tages would be informative in stiff systems. In line with the observed 99.75%
time reduction in the three-particle example, a scaling law could be developed
for computational time savings in larger systems.

Extending the model reduction to 2- and 3-dimensional potentials could also
be a valuable line of inquiry, providing insights into more physically realistic
systems.

A separate area of focus could be investigating cases where there is no damping
between the particles. This aspect is fascinating because it would influence
the model’s effectiveness and accuracy, given that no advantage can be gained
from the decay of fast transients.

A further extension could involve examining particle chains with nonlinear cou-
plings, a plausible generalization, to ascertain how such complexities influence
the system’s slow and fast dynamics.
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