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Fitness cost associated with cell phenotypic
switching drives population diversification
dynamics and controllability

Lucas Henrion 1, Juan Andres Martinez 1, Vincent Vandenbroucke 1,
Mathéo Delvenne 1, Samuel Telek1, Andrew Zicler1, Alexander Grünberger2 &
Frank Delvigne 1

Isogenic cell populations can cope with stress conditions by switching to
alternative phenotypes. Even if it can lead to increased fitness in a natural
context, this feature is typically unwanted for a range of applications (e.g.,
bioproduction, synthetic biology, and biomedicine) where it tends to make
cellular response unpredictable. However, little is known about the diversifi-
cation profiles that can be adopted by a cell population. Here, we characterize
the diversification dynamics for various systems (bacteria and yeast) and for
different phenotypes (utilization of alternative carbon sources, general stress
response and more complex development patterns). Our results suggest that
the diversification dynamics and the fitness cost associated with cell switching
are coupled. To quantify the contribution of the switching cost on population
dynamics, we design a stochastic model that let us reproduce the dynamics
observed experimentally and identify three diversification regimes, i.e., con-
strained (at low switching cost), dispersed (at medium and high switching
cost), and bursty (for very high switching cost). Furthermore, we use a cell-
machine interface called Segregostat to demonstrate that different levels of
control can be applied to these diversification regimes, enabling applications
involving more precise cellular responses.

Cell populations can respond to environmental changes, and to the
frequencyof these changes, by adjusting their phenotypes through the
activation of dedicated gene circuits1–3. This phenotypic plasticity
holds significant importance inmicrobial ecology, where the fitness of
a cell population depends on a cost–benefit ratio between the sensing
machinery needed for the activation and deactivation of a given gene
circuit4 and its activity. Therefore, controlling the phenotype of cells
has a lot of importance in various fields of research, such as biopro-
duction and synthetic biology, where coordinated gene expression is
typically desired5–10. Generating and controlling cell collective beha-
vior is considered as a hallmark of synthetic biology9,11,12, and is now

enabled by the parallel advances made at the level of cell cultivation
procedures (i.e., microfluidics13 and cell–machine interfaces14), as well
as the manipulation of synthetic gene circuits15–17. Effective control of
gene expressions and their underlying cellular functions can be
achieved in cell populations5,18,19 or individual cells within a
population20,21. Different approaches can be used to coordinate/syn-
chronize gene expression in cell populations.On the one hand, specific
gene circuits can be designed in order to generate natural
oscillations12,22. On the other hand, external forcing can be used for
coordinating cellular responses6,23,24. According to this last approach, a
given stimulus (e.g., chemical inducer20 and light18,25) is repeatedly
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applied at a given frequency and amplitude in order to entrain gene
expression within a cell population. In this case, the effective transfer
of information from the extracellular environment to the effector sites
within cellular systems is of critical importance and can be corrupted
by biological noise26–28. In silico experiments pointed out that specific
environmental fluctuation frequencies could significantly reduce sto-
chasticity in cell switching1,28. This switching behavior, which we will
now refer to as a diversification regime, significantly impacts the
population structure and lies at the core of phenotypic control.
However, the main factors affecting these diversification regimes are
not known.

In this work, we experimentally investigate this feature by looking
at the temporal diversification profile of different types of cell popula-
tions in continuous culture. For this purpose, chemostat runs are
complemented by experiments conducted in Segregostat. Segregostat
relies on a cell-machine interface to generate environmental perturba-
tions that are compatible with the diversification rate of the considered
cell population (Fig. 1)19. This rational environmental forcing allows for
the observation of several diversification cycles in one experimental run
(Fig. 1). We apply this technology to look at the dynamics of cell
populations with cellular functions leading to different fitness costs, i.e.,
utilization of alternative carbon sources (Escherichia coli), general stress

Fig. 1 | Characterizing cell population diversification dynamics based on
automated FC. a Chemostat culture is monitored based on automated FC. b The
fluorescence distribution acquired by FC is assembled into a time scatter plot. This
time scatter plot is then further reordered into 50 fluorescence bins in order to
compute the evolution of the entropyH of the population (Supplementary Note 1).
c The binned data are further processed by applying a gradient to compute the
fluxes of cells into the phenotypic space, leading to the quantification of the total

fluxes of cells per time interval F(t). Both H(t) and F(t) will be exploited for char-
acterizing the phenotypic diversification dynamics of diverse cell populations.
d Scheme of Segregostat set-up. Pulses of nutrients are added in function of the
ratio between GFP negative and GFP positive cells, as recorded by automated FC.
e Expected evolution of a Segregostat experiment where, upon controlled envir-
onmental forcing, several diversification cycles can be generated.
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response (E. coli and Saccharomyces cerevisiae), sporulation (Bacillus
subtilis) and activation of a T7-based expression system (E. coli). Based
on the fitness cost associated with the cell switching mechanism
(referred to as switching cost or fitness cost in this study), three dif-
ferent population diversification regimes, with different levels of sensi-
tivity to environmental perturbations, are observed.

Results
Characterization of population diversification dynamics based
on automated flow cytometry
In the context of this work, the temporal diversification of cell popu-
lations has been followed based on chemostat cultivation of GFP
reporter-bearing strains and automated flow cytometry (FC) (Fig. 1a).
We define the phenotype as the cellular content in GFP and the char-
acteristics associated with the activation of the observed gene circuit.
By coupling FC to GFP, we are able to visualize the diverse range of
phenotypes and study the dynamics of population diversification
based on snapshot data. To better describe these dynamics, we have
developed a methodology to compute the fluxes of cells from one
phenotype to another and the resulting degree of heterogeneity of the
population, i.e., in our case, based on themeasurement of information
entropy (Fig. 1b) and the flux of cells (Fig. 1c). Entropy is a measure-
mentderived from information theory allowing to compute thedegree
of heterogeneity of a population29. Briefly, GFP distributions obtained
from automated FC measurements are binned and the resulting
phenotype distribution is used to compute the population entropy
(Supplementary Note 1 and Supplementary Fig. 1). Based on the same
binning strategy and by evaluating the enrichment or depletion of bins
between consecutivemeasurements, we can also determine the flux of
cells. Consequently, we can assess the dynamics of population diver-
sification by monitoring the changes in population diversity (H(t)), as
well asunderstandinghow thephenotype shift evolves over time (F(t)).
In addition to quantifying cell-to-cell heterogeneity within the popu-
lation,Hwill also be used to calculate the information transmission to a
cell population when subjected to environmental forcing. The benefit
of this proxy is its independence from themean of the distribution, by
contrast with other noise proxies (e.g., Fano factor) that are known to
be overestimated when themean value increases30,31. Using entropy to
analyze chemostat experiments, however, provides limited informa-
tion about diversification dynamics. Indeed, the main diversification
process takes place during the transition between the batch and con-
tinuous phases of the culture. Therefore, we used a cell–machine
interface allowing us to produce several diversification cycles in a
single experiment. This device is called Segregostat and comprises a
continuous cultivation device connected to an in-house online FC
platform19 (Fig. 1d). This device enables the generation of several
diversification cycles per experiment, leading to a better character-
ization of the population switching dynamics (Fig. 1e). Practically, the
cells analyzed based on automated FC are clustered into a GFP nega-
tive and a GFP positive group. Depending on the gene circuits used, a
pulse of inducer is applied when the minimum ratio between the two
phenotype clusters (i.e., either 50% or 20% of the total amount of cells
in the desired state, depending on the cellular system considered) is
not reached. Based on this experimental and theoretical framework,
we characterized the population diversification profile of six different
gene circuits in three distinct cellular systems. Our approach involved
linking a GFP reporter to each gene circuit, enabling us to leverage the
analytical power of FC (20,000 cells per analysis) to study the popu-
lation diversification over time.

Coordinated gene expression in a cell population can be
obtained based on environmental fluctuations triggered by a
cell–machine interface
The methodology described in the previous section was applied to
map the diversification of cell populations in chemostat and

Segregostat cultivations. We began our analysis by considering two
gene circuits involved in simple cellular processes in E. coli, i.e., the
activation of the arabinose (Fig. 2a) and lactose (Fig. 2b) operons,
respectively. Extended analysis of these systems is provided in Sup-
plementary Fig. 2, and reproducibility of the data is displayed in Sup-
plementary Fig. 3. This type of cellular process is quite simple since it
involves two inputs, i.e., the absence of glucose or its limitation, and
the presence of either lactose or arabinose as an alternative carbon
source4. Since these cultures were conducted in continuous mode, it
was quite easy to ensure glucose limitation. Furthermore, the gene
circuitry behind the activation/deactivation of these two operons is
well documented in the literature4,32, making them ideal case studies.

The maximal growth rate of these alternative carbon sources is
close to the one of glucose. Further, despite the productionofGFP, the
induced phenotype still has a maximal growth rate above the dilution
rate imposed in continuous cultivation. Thus, a feature of these two
systems is that their activation does not result in a reduction in growth
rate in these conditions, whichwewill from now on refer to as a fitness
reduction or switching cost. An extended analysis of the switching cost
for the different systems can be found in Supplementary Note 2 and
Supplementary Figs. 4 and 5. We thus decided to investigate other
systems involved inmore complex cellular processes known to lead to
a higher switching cost. We first chose to consider the general stress
response in E. coli and selected the promoter of the bolA gene as a
representative σS-dependent system33,34 (Fig. 2c). To extend our ana-
lysis to another biological system, we also selected a gene circuit
involved in the accumulation of glycogen in yeast35, i.e., Pglc3, as a
representative reporter of bet-hedging in S. cerevisiae36,37 (Fig. 2d).
Both genes are involved in very complex regulons,making it difficult to
find an external trigger. However, these general stress response
reporter systems are known to share common features in the sense
that their expression is anticorrelated with the growth of individual
cells, making them very useful for analyzing cell collective behavior
such as bet-hedging34,38. We then decided to use the external glucose
concentration as the main actuator for these two systems. Glucose-
limited chemostats were then run as reference conditions. For Segre-
gostat experiments, glucose was pulsed instead of lactose or arabi-
nose, allowing it to generate feast-to-famine environmental
transitions.

Segregostat cultivationof all four cellular systems investigated led
to entrainment and sustained oscillation of gene expression
(Fig. 2a–d). Based on the analysis of the entropy H(t) and the flux of
cells F(t) over time, we observed that for all systems, entrainment
phaseswere accompanied by an increased flux of cells switching to the
alternative phenotype and a corresponding decreaseof entropyH(t) at
the time of pulsing (Fig. 2e where the analysis is shown for the
ParaB::GFP system, Supplementary Note 1, Supplementary Fig. 2).
However, the entropy increases during the relaxation phase (GFP
dilution upon cell division).

In addition to these four gene circuits, twomore were analyzed: a
T7-based expression system in E. coli and a circuit involved in spor-
ulation in B. subtilis. These two systems exhibit a very high switching
cost, leading to very specific population diversification profiles that
will be described in the next section.

Phenotypic switching associated with extreme fitness cost gives
rise to a bursty diversification regime
We investigated the diversification dynamics of two other systems
known for their high impact on cellular fitness; the T7-based expres-
sion system in E. coli BL21 (pET28:GFP)—a typical heterologous protein
production platform—and the sporulation regulon in B. subtilis
(PspoIIE:GFP). The T7 expression system is inducible by lactose and
PspoIIE:GFP is expressedwhen glucose is limiting, thus acting as an early
trigger for sporulation. The pET28:GFP system is a T7-based expres-
sion vector inducible with lactose. When lactose is pulsed, cells are
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turning green, and GFP is diluted by growth when lactose pulsing is
turned off (glucose is added continuously according to a classical
continuous mode of cultivation at a dilution rate D =0.5 h−1). The
PspoIIE:GFP system is induced upon glucose limitation. In our case, this
system is cultivated at a very low dilution rate (0.1 h−1) in order to
generate glucose limitation and stimulate cell switching to sporulation.
When too many cells are switching, additional glucose is pulsed in
order to keep the population under control. For both, the phenotypic
switch leads to a drastic growth reduction. Surprisingly, even in che-
mostat (with lactose present for the T7 system), FC profiles reveal
bursts of diversification (Fig. 3a, b) and a subsequent high entropy at
the population level. These bursts are the result of a subpopulation of
cells deciding to switch and being washed out from the continuous

cultivation device due to the associated fitness cost. Then, upon
environmental forcing based on Segregostat cultivation (lactose pulse,
if more than 50% of cells are not induced with the T7 system and
glucose, is pulsed if more than 20% of cells express PspoIIE:GFP), the
number of bursts is reduced, and the fluxes of cells involved in the
process are increased, leading to a substantial but temporary reduc-
tion of the entropy for the population (Fig. 3a, b). These results point
out that Segregostat transiently reduces the average entropy of gene
circuits with a high fitness cost despite very complex dynamics. It has
been suggested in the literature that the stochasticity in cell switching
is associated with its associated fitness cost and is important for the
survival of the whole population. This feature is well illustrated in this
case, where a phenotype switch induces a dramatic loss of growth rate,

Fig. 2 | Population diversification dynamics recorded based on automated FC
for four different cellular systems. Time scatter plots (in hours) binned into 50
cell clusters (fluorescencebins) for cultivationsmade in chemostat and Segregostat
for a the ParaB::GFP system in E. coli.b the PlacZ::GFP system in E. coli. c the PbolA::GFP
system in E. coli. d the Pglc3::GFP system in S. cerevisiae. Animated movies for the
time evolution of the FC raw data for each system are available. For Segregostat
experiments, environmental forcing has beenperformed based on nutrient pulsing
(the type of nutrient shown in the drawings for cell switching). e Computation of

the flux of cells and the entropy (higher values mean more heterogeneous) for the
ParaB::GFP system cultivated in Segregostat mode (Supplementary Note 1, Supple-
mentary Fig. 2). Reproducibility of the data has been assessed based on two bio-
logical replicates (n = 2) for each system. All FC measurements contain 20,000
analyzed cells (Supplementary Note 1 and Supplementary Fig. 3). The color bar
alongside the scatterplot represents the number of cells. Source data are provided
as a Source Data file.
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Fig. 3 | Population dynamics for two cellular systems exhibiting bursts in
diversification. Temporal diversification profile for the PT7::GFP system in E. coli
a and the PspoIIE::GFP system b cultivated in chemostat (from 0 to 40h for
PspoIIE::GFP) and Segregostat modes (from 40 to 100h for PspoIIE::GFP). Below Seg-
regostat cultivation modes, vertical lines indicate times of pulsing with the con-
centration (in g/L) displayed on the y-axis. Only the continuous phase of the
cultivation is shown on the graphs. Bursts of diversification are highlighted in red
on the fluorescence bins data. In both cases, the entropyH(t) and the fluxes of cells

in the phenotypic space F(t) have been computed from the binned fluorescence
data. The reproducibility of the data has been assessed based on two biological
replicates (n = 2) for each system. For each time interval, 20,000 cells have been
analyzed by FC (Supplementary Note 1 and Supplementary Fig. 3). The color bars
represent the number of cells for the fluorescence time scatter plots and the
number of cells per minute for the F(t) scatter plots. Source data are provided as a
Source Data file.
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leading to the wash-out of these cells in continuous cultivation con-
ditions. However, this stochasticity can be reduced by applying
environmental perturbations at a rate matching the phenotypic
switching rate of cells. In the context of the T7 system, this approach
led to the periodic maximization of cells in the GFP-positive state,
suggesting that it could be used for mitigating metabolic burden and
maximizing productivity in continuous bioprocesses. Indeed, the flux
of cells to the high fluorescence bins is more regular for Segregostat
conditions (Fig. 3a).

Coordinated gene expression does not necessarily lead to a
more homogeneous cell population
Based on the analysis of the population diversification profiles exhib-
ited by the six systems investigated, both similarities and differences
can be observed. All six systems exhibit coordinated gene expression
uponenvironmental forcing in the Segregostat device. This feature can
be notably quantified based on F(t). On the other hand, the same
systems display different H(t) profiles (Fig. 4). We computed the
average entropyH(t) for the six systems upon cultivation in chemostat
and observed systems exhibiting a low basal entropy of around 2.2 bits
(i.e., ParaB::GFP, PlacZ::GFP and PbolA::GFP) and systems exhibiting a
higher basal entropy of more than 3 bits (i.e., Pglc3::GFP, PT7::GFP and
PspoIIE::GFP) (Fig. 4a). For each system, the impact of Segregostat
control system on the entropy was then investigated. We use entropy
as an indicator of control because one would expect a controlled
system to exhibit a more homogeneous phenotype and, therefore, a
lower H(t). However, based on this definition, we observed that not all
systems were controllable with Segregostat, as some of them showed
no decrease in entropy despite their coordinated gene expression. In
particular, (1) the systems exhibiting a low basal entropy (ParaB::GFP,
PlacZ::GFP, and PbolA::GFP) showed no decrease in entropy. PlacZ::GFP
even showed an increased entropy instead, probably due to the lea-
kiness of the promoter during the relaxation phase of the diversifica-
tion cycles (Fig. 4b, c). 2) The systems exhibiting a high basal entropy
(Pglc3::GFP, PT7::GFP and PspoIIE::GFP) showed a homogenization of the
population. (Fig. 4b, c).

We thus propose this criterion as a classification of the cellular
systems, where trying to control a homogeneous cell population in
chemostats produces no benefits and can even lead to an increased
heterogeneity, while heterogeneous systems in chemostats can, by
contrast, be made much more homogeneous (Fig. 4c).

Based on this criterion, it can be observed that the Pglc3::GFP
system in S. cerevisiae exhibits a higher level of controllability than the
other systems. Indeed, in this case, Segregostat cultivation led to a
drastic decrease inH(t) by comparison with the reference condition in
chemostat. This effect was then verified in microfluidics. Stress
response pathways in yeast are known to be involved in bet-hedging
strategies, leading to a trade-off between growth and expression of
stress-related genes37,38. The glc3 gene belongs to this category.
Accordingly, cells activating glc3 exhibit reduced growth. This phe-
nomenon has been characterized based on microfluidics single-cell
cultivation (MSCC)39 experiments allowing to exposureof yeast cells to
tightly defined glucose concentrations (Supplementary Fig. 4). Unlike
with FC analyses where only population snapshots are captured, these
experiments let usmonitor cell traces and thus analyze the fitness cost
(growth reduction upon switching) associated to the switching. At low
glucose concentration (<0.2mM), a single cell fully activates the stress
reporter and stops growing (Supplementary Movie 1). At a higher
glucose concentration, the growth of the microcolonies is faster, but
some stochastic switching events can be clearly observed, with cells
suddenly expressing the fluorescence reporter and stopping their
growth (Supplementary Movie 2). In order to confirm the beneficial
impact of Segregostat condition on the Pglc3::GFP, we used dynamic
microfluidic single-cell cultivation (dMSCC)40 where we applied
environmental fluctuations between 0.1 and 1mM of glucose at the

frequency recorded in Segregostat conditions. These fast and sharp
transitions are an idealized scenario of Segregostat cultivation, but
similarly, we observed a very homogenous gene expression pattern
with cells turning green in perfect synchrony (Fig. 4d, Supplementary
Movie 3). The growth of all cells was comparable; the stress level was
kept at a low-level thanks to the fluctuating environmental conditions.
If we compare the experiments run in MSCC and dMSCC, it can be
observed that cultivated cells under fluctuating glucose concentration
lead to an intermediate scenario, both at the level of the mean fluor-
escence profile (Fig. 4e) and the global entropy (Fig. 4f). It seems that
when phenotypic switching is associated with a loss of fitness, there is
more stochasticity in the diversification pattern followed by the
population. However, when the nutrient level is changed at a given
frequency, switching and growth can be kept under control, leading to
a drastic reduction of the phenotypic heterogeneity of the cell popu-
lation. Another parameter that can explain the differences observed
between the Pglc3::GFP system and the PT7::GFP and PspoIIE::GFP systems
(Fig. 4b, c) is the rate of switching. It can be reasonably assumed that
gene expression and cell growth are slower in Eukaryotes than in
Procaryotes41, potentially explaining why it is easier to maintain the
H(t) profile at a very low level in Segregostat conditions for the
Pglc3::GFP system since cells are switching more slowly in this case.

The concept of controllability refers to the extent to which
environmental forcing provided based on Segregostat cultivation
reduces or not the global entropy of the population. So far, we have
used information entropy as a proxy for the quantification of the
heterogeneity of cell populations. However, information entropy can
also beused to evaluate themutual information (MI), i.e., the reduction
in entropy of the cell population when appropriate external stimula-
tions are applied (Supplementary Note 3, Supplementary Figs. 6–9).
We then computedMI for a system exhibiting low (ParaB:GFP) and high
(Pglc3::GFP) controllability (Supplementary Note 3, Supplementary
Fig. 10). Based on this analysis, we concluded that the MI is already
maximal in chemostat conditions for the ParaB::GFP system, explaining
the low controllability measured in this case.

Fitness cost drives the appearance of different dynamical
regimes with different levels of controllability
According to the datasets acquired from the different biological sys-
tems, we observed three types of diversification regimes named
respectively constrained, dispersed and bursty (Fig. 5). We proceeded
to an in-depth analysis of the potential factors influencing the three
observed modes of diversification. The key distinguishing factor
between the systems displaying low and high basal entropy and con-
trollability lies in the fitness cost linked to phenotypic switching.When
the fitness cost associatedwith the switching is lowor non-existent, we
observe a constrained diversification regime where the population
switches upon environmental change and adopts a homogeneous
distribution. In that case, the stimulation of the population with con-
trolled environmental pulsing does not homogenize it (since infor-
mation transmission is already maximal in the non-controlled
conditions). When there is a fitness cost associated with the switch,
what we call a dispersed diversification regime canbe observed. In that
case, cells react to environmental changes but then adopt a more
heterogeneous population structure. In this case, the application of
controlled environmental perturbations allowed a substantial reduc-
tion in population heterogeneity. For the bursty diversification regime
(higher fitness cost), cells switch in bursts, leading to a very hetero-
geneous population structure. The application of controlled environ-
mental perturbations reduces the number of bursts and increases the
number of cells involved in these bursts, leading to a transient
decrease in population heterogeneity.

It seems that the regime depends on the fitness cost associated
with the phenotypic switching event. In order to verify that fitness cost
is indeed the driver for the diversification pattern adopted by cell
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populations, we conducted in silico experiments. For this purpose, we
considered the kinetic parameters obtained from the inference of the
Pglc3::GFP system in yeast and conducted stochastic simulations based
on FlowStocKS (Supplementary Note 4). We conducted 32 different
chemostat simulations by varying only the value for the fitness cost
and computed the entropy H (Fig. 6a) and the fluxes of cells (F)
involved in phenotypic switching (Fig. 6b). Solely based on the fitness
cost associated with the switching, we were able to reproduce the
three types of diversification regimes experimentally observed during
the experiments (Fig. 6c). Completewash-out of the cells wasobserved

for extreme fitness cost (>99% reduction in growth rate). We then
wondered if we could observe clear transitions between the different
regimes. Such transition was observed between the bursty and the
dispersed regime based on the computation of the flux of cells F.
Indeed, while the transition between the dispersed and constrained
regime is progressive (Fig. 6d), the bursty regime is marked by the
appearance of a strong variation in flux of cell which is not observed
for the other two regimes (Fig. 6e). FlowStocKS was also able to
reproduce the behavior of the population under Segregostat cultiva-
tion, and the reduction in entropy upon environmental forcing was

Fig. 4 | Computation of controllability based on the entropies for the different
cell systems and cultivation devices used. a Basal entropy (represented as a
boxplot with whiskers where the interquartile range as extremities of the box, the
median is the horizontal line in the box, and the whiskers as data extremes)
recorded based on automated FC during chemostat experiments for the six bio-
logical systems investigated (values of entropy are computed from the population
diversification profiles over the entire cultivation). Experiments have been done in
duplicates (n biological replicate = 2) for each cellular system and cultivation con-
ditions (chemostat or Segregostat) and exhibit a high reproducibility, see Supple-
mentary Fig. 3). b Computation of the controllability (gain in entropy from
chemostat to Segregated conditions represented as a boxplot with same structure
than for plot A) for the six biological systems investigated. These average gains
have been obtained by subtracting the mean value of H(t) recorded in Segregostat
(considered as the controlled condition, i.e., cell population under environmental
forcing) from the basal entropy. c Different diversification profiles, with different
levels of controllability, can be observed based on the comparison of the H(t)
profiles between non-controlled (chemostat) and controlled (Segregostat)

conditions.d Single-cell traces of yeast Pglc3::GFP cells cultivated in a dMSCCdevice
fluctuating between 1 and 0.1mM of glucose (T1mM= 3 h; T0.1mM=0.8 h). Between
10 and 40 cells have been tracked in four different cultivation chambers over two
biological replicates (mean fluorescence is shown in bold). Pictures of a micro-
colony taken at regular time intervals are shown (Supplementary Movie 3).
e Comparison of the mean fluorescence profile obtained in dMSCC with the ones
obtained in classical MSCC at high (1mM) and low (0.1mM) glucose concentra-
tions. The shaded region around the lines represents the standard deviation
computed from the measurement (between 10 and 40 cells have been tracked in
four different cultivation chambers over 4 biological replicates (n = 4) for each
condition). fMean values of the entropy over the whole microfluidics experiments
run at different glucose concentrations and standard deviation across chambers
(nmicrofluidic chambers = 4observedoverone experiment). Eachmean value over
a cultivation run in a chamber is represented as a dot, and themean of all replicates
with the standard deviation across them as a black dot with error bars. Source data
are provided as a Source Data file.
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computed (Fig. 6f). Again, reduction in entropy depended on the
associated fitness cost and thus was observed for the dispersed and
bursty regimes, in accordance with our experimental observations.

Discussion
We used Segregostat to better characterize cell population diversifi-
cation dynamics by generating successive diversification cycles during
the same experimental run. The basic principle behind this technology
is to revert the environmental conditions when a fraction of cells (50%
or 10% of the total population, depending on the investigated system)
crosses a predefined fluorescence threshold. This approach allows to
maintain a cell population in a dynamic switching state during the
experiment. Based on the analysis of the MI, i.e., the amount of
information transferred from the extracellular conditions to the cell
systems27,29,42, we determined that for the ParaB:GFP system, the che-
mostat drives a similar amount of information to the Segregostat. On
the other hand, we observed a drastic reduction in entropy when
entraining stress-related systems, such as the Pglc3:GFP system in yeast,
in Segregostat. In this case, we determined that the high entropy
observed in the chemostat was related to a trade-off between growth
and gene expression36–38,43–45, which was further confirmed based on a
microfluidics experiment. To better relate the switching cost to the
resulting population structure, we then considered two additional
systems where phenotypic switching induced a huge fitness cost i.e.,
the sporulation system in B. subtilis and the T7-based expression sys-
tem in E. coli.

Based on all the data accumulated by automated FC for six dif-
ferent biological systems, we found that cell populations diversified
according to three distinct regimes associated with increasing fitness

costs, i.e., constrained, dispersed, and bursty. The most noticeable
difference between these regimes is the level of entropy of the cell
population, the entropy being a measure derived from information
theory giving a robust estimate of population dispersion29,46. The
lowest entropy values were associated with the constrained regime
and the highest ones were seen for dispersed and bursty regimes. The
other difference was observed in the cultivation of cell populations
under fluctuating environmental conditions. In Segregostat, a reduc-
tion of entropy compared to chemostat cultivation was associated
with the dispersed and bursty regimes but not the constrained one.
Taken altogether, the data suggested that on top of affecting the
population heterogeneity, the phenotypic switching mechanism
changes the controllability of the system. All these observations were
confirmed based on stochastic simulations (FlowStocKS), suggesting
that the proposed diversification framework could be generalized for
characterizing diversification dynamics for any kind of cellular system.

Harnessing phenotypic heterogeneity of microbial populations
has been the subject ofmuch research, leading to the design of various
technologies aiming at homogenizing gene expression in cell
populations47. We have shown that the level of diversification of
microbial populations cultivated in continuous bioreactors depends
mainly on the fitness cost. Since many applications involve gene cir-
cuits whose activation leads to a substantial burden for the cellular
system48,49, active diversification processes have to be expected in a
number of cases50. For example, bursty diversification profiles have
beenobserved for twocellular systemsexhibitinghigh switching costs.
According to this regime, marked cycles of diversification can be
observed even in chemostat cultures. These cycles are due to the rapid
switching (burst) of a fraction of the population that lower the average

Fig. 5 | Illustration of the three diversification regimes observed based on
automated FC in the function of the switching cost. The constrained diversifi-
cation regime is observed at low switching costs. According to the regime, all cells
switch from the OFF state to the ON state according to a relatively homogenous
diversification process, and the population exhibits a low H(t) (there is no increase
in entropy upon activation of cells. The dispersed and bursty regimes are observed

at high switching costs. Accordingly, cells switch from the OFF to the ON state in a
quite heterogeneous way. The resulting stochastic switching is hypothesized to
play a role in the stabilization of the cell populationunder continuous cultivation as
a way to mitigate the fitness cost associated with switching. Upon diversification,
the population exhibits a higher entropy.
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growth rate of the population and arewashed out of the system. These
cells are then replaced by the next burst of diversification, starting
from a subpopulation of non-diversified cells. This type of temporal
profile has been previously observed, but it is based on spatially
organized cells equipped with synthetic circuits7,51,52. Here, we show
that it is possible to reproduce such a complex but organized diver-
sification profile with cells in suspension in a bioreactor and that the

complex dynamics behind phenotypic heterogeneity are linked to the
fitness cost associated to the switch.

Methods
Stains and plasmids
The analyses of alternative carbon source utilization and stress
response in E. coli were done based on a E. coli W3110 backbone and
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kanamycin resistance bearing plasmids originating from the Zaslaver
collection (i.e., ParaB::GFPmut2, PlacZ::GFPmut2 and PbolA::GFPmut2)53.
For investigating the T7 induction system response, we used E. coli
BL21 (DE3) carrying pET28:GFP54. To observe the starvation response,
we used S. cerevisiae CEN.PK 113-7D background with the chromoso-
mal integration of a reporter cassette Pglc3:eGFP

35,55. The E. coli W3110
ΔaraBAD strain used for determining the conditional entropy of the
ParaB:GFP system was constructed through CRISPR–cas9 enhanced
lambda red phagemediated homologous recombination56. The primer
sequences are described in Supplementary Table 1. Finally, we mon-
itored the early stage of the sporulation process inB. subtilis 168 based
on a chromosomal integration of PspoIIE::GFPmut2 (kindly provided by
Denise Wolf and Adam Arkin)57.

Cultivation conditions and segregostat procedure
Bacteria (E. coli and B. subtilis) precultures and cultures have been
performed in a defined mineral salt medium containing (in g/L):
K2HPO4 14.6; NaH2PO4·2H2O 3.6; Na2SO4 2; (NH4)2SO4 2.47; NH4Cl 0.5;
(NH4)2-H-citrate 1; glucose 5, thiamine 0.01, antibiotic 0.1. Thiamine is
sterilized by filtration (0.2mg/L). The medium is supplemented with
3mL/L of a trace element solution, 3mL/L of a FeCl3·6H2O (16.7 g/L),
3mL/L of an EDTA (20.1 g/L) and 2mL/L of a MgSO4 solution (120 g/L).
The trace element solution contains (in g/L): CoCl2·H2O 0.74;
ZnSO4·7H2O 0.18; MnSO4·H2O 0.1; CuSO4·5H2O; CoSO4·7H2O. Filtered
sterilized kanamycin (50mg/L) was added for plasmid maintenance in
E. coli. S. cerevisiae cultures and precultures have been performed
based on a Verduyn mineral medium49. The precultures were per-
formed in 1 L baffled flask overnight either at 37 °C (bacteria) or 30 °C
(S. cerevisiae) at a shaking speed of 150 rpm and used to start the batch
phase in a lab-scale stirred bioreactor (Biostat B-Twin, Sartorius) total
volume: 2 L; working volume: 1 L at an initial OD600 of 0.5. Once the
batch phase was over (typically after 5, 8, and 15 h for E. coli, B. subtilis,
and S. cerevisiae, respectively). The operating conditions used for the
various cell systems are provided in Supplementary Table 2.

Data were collected through online FC during the experiments,
and in Segregostat experiments, the actuator was pulsed based on
both the observed distribution and a pre-defined set-point. Segrego-
stat platform has been described earlier10. Briefly, every 12min, a
sample is automatically taken from the bioreactor, diluted, and ana-
lyzed in aflowcytometer (BDAccuriC6, BDBiosciences)with anFSC-H
analysis threshold of 20,000 for bacteria and 80,000 for S. cerevisiae.
During the chemostat experiment, glucose and, if applicable, an
alternative carbon source was fed together, while in Segregostat
experiment, glucose was the sole carbon source in the feed. In Seg-
regostat, a feedback control loop, which includes a custom MATLAB
script based on FC data, activates a pump to pulse an actuator. For S.
cerevisiae, E. coli stress response, and B. subtilis sporulation, the
actuator pulses glucose, while for E. coli alternative carbon source
utilization, the actuator pulses lactose and arabinose. For all systems
except for the sporulation control, a control threshold of 50/50 was
utilized. However, for the sporulation control, the regulation was
triggered once the fluorescence threshold was exceeded bymore than
20% of the cells. This decision wasmade based on the irreversibility of
the sporulation process, which required earlier intervention.

Microfluidic cultivations and time lapse microscopy
For the experiments conducted in classical MSSC devices, settings
and conditions were the same as previously reported58. Specifically,
for the experiments conducted in MSCC device with constant
environmental conditions, cells have been cultivated in micro-
fluidic chips provided by Alexander Grünberger’s lab (chambers
size: 80 μm x 80 μm× 850 nm) in Verduyn medium with different
glucose concentrations (5 μM, 0.1 mM, 0.2 mM, 0.4mM, 0.6mM,
1 mM and 3mM, see Supplementary Fig. 2). In a second set of
experiments, S. cerevisiae cells have been cultivated in the dynamic
microfluidic single-cell cultivation (dMSCC) chips provided by
Alexander Grünberger’s lab (reference 24W, chambers size:
80 µm× 80 µm× 850 nm)40. Their design enables the simultaneous
use of two cultivation media. They are separated into three zones:
two control zones, fed by either one or the other medium, and a
switching zone, fed in alternate by the two media. Diverse combi-
nations of Verduyn medium with different glucose concentrations
have been evaluated (i.e., 0.4–0.6 mM, 0.2–0.8mM, 0.1–1 mM and
5 µM–3mM). To approach Segregostat conditions, the duration of
the switching zone feeding with the medium containing more (or
less) glucose corresponds to the mean period with (or without)
pulsing when population is controlled in Segregostat (i.e., 180min
(or 48min)). High precision pressure pumps (line-up series, Flui-
gent, Le Kremlin-Bicêtre, France) were used to precisely control
medium flow rate. The temperature was set at 30 °C. The chambers
were inoculated with one or two cells by flushing the device with a
cell suspension (OD600 between 0.4 and 0.5). At least six cultiva-
tion chambers were selected manually for each zone of the dMSCC
chips. Microscopy images were acquired during 72 h using a Nikon
Eclipse Ti2-E inverted automated epifluorescence microscope
(Nikon Eclipse Ti2-E, Nikon France, France) equipped with a DS-Qi2
camera (Nikon camera DSQi2, Nikon France, France), a 100× oil
objective (CFI P-Apo DM Lambda 100× Oil (Ph3), Nikon France,
France). The GFP-3035D cube (excitation filter: 472/30 nm, dichroic
mirror: 495 nm, emission filter: 520/35 nm, Nikon France, Nikon)
was used to measure GFP. The phase contrast images were recor-
ded with an exposure time of 300milliseconds and an illuminator’s
intensity of 30%. The GFP images were recorded with an exposure
time of 500ms and an illuminator’s intensity of 2% (SOLA SE II,
Lumencor, USA). During the first 48 h, GFP and phase contrast
images were acquired every hour. Phase contrast images were
acquired every 6minutes and GFP images every hour, for 24 h. The
optical parameters and the time-lapse were managed with the NIS-
Elements Imaging Software (Nikon NIS Elements AR software
package, Nikon France, France). Single-cell data have been com-
puted for the 24 last hours of the time lapse for at least 3 chambers
per condition (i.e., zone of the dMSCC device). The cell-
segmentation of the images and the measure of single-cell mean
GFP intensity were performed using either the Python GUI59 or the
Matlab algorithm of Wood and Doncic60. This last was also used for
cell tracking. In this case, seeds for segmentations have been cor-
rected manually and at least ten cells per microfluidic cultivation
chamber (well segmented and tracked all the time-lapse long) were
selected manually.

Fig. 6 | Main outputs of the FlowStocKS simulations. a Evolution of the mean
entropy recorded from theH(t) profile in a chemostat in function of the fitness cost
(here expression as the percentage of reduction of the initial growth rate prior
phenotypic switching). These values are equivalent to the basal entropy shown in
Fig. 4.b Evolution of themean fluxof cells recordedduring chemostat experiments
in the function of the fitness cost associated with phenotypic switching (see Fig. 1
for more details about the computation of the flux of cells). c Selected simulated
time scatter fluorescence plots illustrating the different diversification regimes
observed at different fitness costs (the whole simulation dataset can be found in
Supplementary Movie 4). d Selected simulated time scatter fluorescence plots

illustrating the progressive transition between the dispersed and constrained
diversification regimes. e Selected simulated time evolution for the fluxes of cells
recorded for different values of fitness cost. The bursty regime is characterized by
the spontaneous generation of flux of cells (bursts) in chemostat cultivations.
f Reduction of the entropy upon environmental forcing in the function of the
fitness cost associated with phenotypic switching. The entropy values have been
computed by subtracting the mean entropy value recorded for the chemostat
experiment from the corresponding ones obtained in Segregostat and are
equivalent to the controllability shown in Fig. 4.
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Determination of the impact of phenotypic switching on
growth rate
To evaluate the difference in growth rate from the un-induced phe-
notype to the induced one, we have performed triplicate batch
experiments in 1mL-scale in amicrobioreactor (BioLector 2,m2p-labs,
Baesweiler, Germany), using48-wellflowerplates (MTP-48-B, Beckman
Coulter Life Sciences, USA). The maximal growth rate was computed
for E. coli W3110 and BL21 in the above described media with 5 g/L of
glucose, E. coli W3110 ParaB::GFPmut2 in arabinose 5 g/L and E.coli
W3110 PlacZ::GFPmut2, E. coli BL21 pET28:GFP in lactose 5 g/L. The
cultivations were performed with buffered media (MOPS 10 g/L) at
37 °C and with a shaking frequency of 1000min−1. All system experi-
enced a growth reduction upon induction but only the induced phe-
notype of E. coli BL21 pET28:GFP had a growth rate below the dilution
rate utilized in the continuous cultivation.

Computation of the MI
MI is a proxy of information theory that describes the reduction in
entropy conveyed by a specific external stimulus. We have computed
MI for a system exhibiting a low switching cost i.e., the ParaB:GFP sys-
tem in E. coliW3110, and for a system exhibiting a high switching cost
i.e., the Pglc3:GFP system in S. cerevisiae. The computation of MI is
based on the analysis of entropy at different defined environmental
conditions, the response function. For the ParaB:GFP system, we have
designed E. coli W3110 ΔaraBAD ParaB::GFPmut2, which is unable to
consume arabinose, to characterize the relationship between the
inducer concentration and induction profile. For knockout experi-
ments, pTarget was modified with the Fw_sgRNA_20N_Ara primer and
the homologous product was constructed from the upstream and
downstream fragments generated with Fw_Frag1, Rv_Frag1, FW_Frag2,
Rv_Frag2 (Supplementary Table 1)56. The deletion of the araBAD genes
has been done to ensure a perfectly defined concentration of arabi-
nose i.e., no consumption during the trial. From an overnight pre-
culture, 10 flasks (100mL total volume, 10mL working volume) with
buffered (10 g/L MOPS) mineral salt media were inoculated at an
OD600 of 0.5. Once the cells were in glucose limited conditions, a
solution of arabinose was added to a final concentration ranging from
0 to 2 g/L. Eight concentrations in duplicatewere analyzed. Following a
delay of 24min, samples were analyzed by FC (Supplementary Fig. 6)
to determine the induction profile relative to the inducer concentra-
tion, the conditional entropy. Thus, the response function is the rela-
tion the links the population entropy to the stimulus concentration. As
we could not prevent yeast from consuming glucose, the response
function of the Pglc3:GFP in S. cerevisiae was determined by growing
culture at different dilution rates in chemostat (Supplementary Fig. 7).
The dilution rate of a chemostat sets the glucose uptake rate and was
progressively increased to release the stress response of the popula-
tion. This procedure is known as accelerostat (A-stat). In our case, the
pump flow rate wasmodified with a step change every 2 h, resulting in
a progressive increase of the dilution rate of 0.002 h−1. This incre-
mental range was chosen in order to ensure pseudo steady-state for
each increment. The entire process was followed by automated FC for
mapping the GFP distribution of the cell population (Supplemen-
tary Fig. 7).

From the response functions, MI was computed by subtracting
the conditional entropies to the sum of all recorded entropies (this
represents the space of all phenotypes that can be adopted by our
system). An example of such computation is provided in Supplemen-
tary Note 3 and Supplementary Figs. 8–10.

Modeling cell population dynamics based on FlowStocKS
The aim of this simulation toolbox is to be able to represent with high
fidelity the population snapshots and dynamics captured based on
automated FC. Briefly, population dynamics is modeled based on a set
of ODEs representing the time evolution of biomass and substrates

according to aMonodkinetics in a continuous cultivationdevice. From
the global population, a given number of cells (approx. 10,000, some
cells being washed-out during the simulation) are considered for
generating a stochastic process. For these cells, phenotypic switching
is modeled according to a Markov chain process driving the synthesis
and degradation of GFP. Cell growth and division are considered for
computing the GFP content. Upon switching, cells may meet a fitness
cost depending on an inhibitory kinetics. The data are then fitted to a
seven-decade fluorescence scale to fit to the automated FC data.
Detailed information, includingparameters and equations settings, are
supplied in Supplementary Note 4 and Supplementary Table 3.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data supporting the findings of thiswork are availablewithin the paper
and its Supplementary Information files. A reporting summary for this
Article is available as a Supplementary Informationfile. Source data are
provided with this paper.

Code availability
The FlowStoCKS toolbox is available at GitLab.
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