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Abstract Emotion regulation (ER) is a key skill since emotions play an essential 
role in personal development and in understanding social interaction. However, ER 
is unequally developed in humans and many are searching for ways to improve it. 
Neuro-adaptive systems bear a large potential for support in this endeavour with 
adaptive ER support based on biosignal. With the widespread use of wrist-worn 
wearables, new opportunities are emerging to capture biosignals, such as heart rate 
(HR), from the wearer in everyday life. This opens up the potential to use wrist-worn 
wearables to provide adaptive ER support. In this paper, we present a systematic 
literature review to provide an overview of the state-of-the-art in research on HR-
based adaptive ER support with wrist-worn wearables. Specifically, we focus on 
the interplay between emotion recognition, wrist-worn wearables and adaptive ER 
support. Our findings show that HR-based wrist-worn wearable systems equally 
intervene via forms of feedback and external regulation by others and only four 
studies actually adapt the system. Further, many studies focus on response-based 
regulation or situation modification or selection strategies. To further research, we 
see research gaps in the ease of application of technical implementation, including 
biosignal processing and the use of ER support in systems. 
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1 Introduction 

Emotion regulation (ER) is a key skill for humans since emotions play an essen-
tial role in personal development and in understanding social interaction [1, 2]. 
For example, emotions allow humans to assess specific situations, foster or hinder 
learning processes and memorize information [3]. Consequently, ER plays a central 
role in the development of transferable skills such as empathy, leadership, or self-
empowerment [4]. ER refers to the things we do to influence [4] which emotions 
we have, when we have them, and how we experience and express them [5]. It is 
executed via the application of dedicated ER strategies [6, 7]. Consequently, the 
application of ER strategies is a key skill for developing transferable skills and for 
going through life successfully in general. However, ER is unequally developed in 
people and many are searching for ways to improve it and related skills as evidenced 
by the multitude of courses on personal development, e.g., in mindfulness, leader-
ship, or empathy. In this paper, we take a look at the perspective on how to leverage 
sensor technologies embedded in wearables that support recognizing emotions via 
biosignals for ER support in the field. A promising electrical biosignal to under-
stand emotions leverages electrocardiogram (ECG) to compute heart rate variability 
(HRV) [8]. Today, commercially available, affordable wearable devices provide the 
ability to capture cardiovascular activity. Specifically, smartwatches [9] as well as
other wrist-worn wearables are becoming widely used in the population. According 
to Parks Associates, in 2021 22% of American households own a smartwatch which 
is most commonly used for activity, health and fitness tracking [10]. As wrist-worn 
wearables are equipped with sensors that provide increasingly accurate readings, 
the popularity of emotion-recognition smartwatches has also increased for research 
[11]. Although the sensor accuracy does not match other wearables [12], like a chest 
strap, wrist-worn wearables are being used in various studies and have shown to 
provide valuable data for recognizing emotions. By being non-invasive, widespread 
and suitable for everyday use, they offer interesting possibilities for use in neuroad-
aptive systems, which is one of the research areas of the NeuroIS community and 
is expected to grow in the future [13–15]. In contrast to existing publications deliv-
ered by the NeuroIS community that focused on specific sensors and biosignals [12, 
16–19], the focus of our review is the interplay between (1) emotional states derived 
from biosignals and (2) the NeuroIS system using wrist-worn wearables. 

To obtain an overview of the possible applications of wrist-worn wearables and 
their possible integration into emotion-adaptive systems, we conducted a systematic 
literature review (SLR) to provide a consolidated view of research findings on ER 
support using emotion-aware smartwatches answering the following research ques-
tion: What is the state-of-the-art in research on emotion-adaptive regulation support 
using wrist-worn wearables with heart rate data? 

We analyzed the publications identified in our SLR through a morphological box 
based on a conceptual model of adaptive ER support systems which consists of the 
steps emotion recognition, the adaptation logic, the intervention type of the adaptive 
ER support system, and the ER strategy family in place (see Sect. 3). Our results
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show that wrist-worn wearable systems based on biosignals from the heart rate (HR) 
intervene to support ER via feedback and notification, through external regulation 
by others. Only four studies actually adapt the system. Further, many studies focus 
on response-based ER or situation modification or selection strategies. 

2 Method

In our paper, we followed the SLR search process proposed by Webster and Watson 
[20] to categorize the various data records. First, we defined the scope of the search 
in form of the search string. It consists of three concepts: wrist-worn wearables, 
the ability to recognize and regulate emotions, and the cardiac biosignals to recog-
nize emotions. The detailed search string was: (“smart device” OR “smartwatch”
OR “smart watch” OR wrist-band OR “wrist band” OR “wrist bands” OR “wrist
worn” OR “wrist-worn”) AND (“emotion regulation” OR (emotio* AND regulat*)
OR emotion-aware OR “emotional context” OR “affect regulation” OR affect-aware
OR “affective context”) AND (heart-rate OR “heart rate” OR ecg). Second, we 
selected the databases ACM digital library, IEEE Xplore, AIS eLibrary, Springer 
Link, and Web of Science Core Collection for our search. In the databases that 
allowed an abstract search, this was applied to the first and second “AND” condition 
of the search string. Third, we included only publications published later than 2014 
since corresponding wearables smartwatches are a relatively innovative technology, 
e.g., the Apple Watch was introduced in 2014 [21]. Another inclusion criterion was 
that we only looked at peer-reviewed journals and conference papers. With our search 
strategy, we obtained 564 results. Through manual reviewing them on the SLR objec-
tive, we received 23 results in total. In a forward-backwards, we found additional 9 
publications, whereby one publication targeted the same prototype, were found. In 
a final step, the 31 results were analyzed according to the studies conducted and the 
Conceptual Model explained in Sect. 3. 

3 Conceptual Model 

We conceptualize emotion recognition and adaptive ER support based on wrist-worn 
wearables with a cycle consisting of four steps (see Fig. 1).

Our conceptual model distinguishes between a human and technical system 
perspective. From a human perspective the central trigger for adaptation is the appear-
ance of emotions. Emotions in general can either be assessed manually (e.g., through 
surveys) or automatically. We follow an automated approach to discover emotions. 
In step (1) emotion recognition, sensors (in our case mostly embedded wrist-worn 
wearables) are leveraged, raw data processing is performed and classification algo-
rithms are applied. Subsequently, step (2) covers the adaptation logic. This step
builds on the detected emotion and describes the procedure how an intervention will
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Fig. 1 Conceptual model

be triggered based on the recognized human’s emotion. Finally, step (3) interven-
tion describes how the system responds to the recognized emotion and the defined 
adaptation logic in order to influence human behavior. These interventions can be, 
for example proposing exercises to be performed by the human, adjustments to an 
application or feedback. 

Finally, again from a human perspective, emotion regulation describes the 
strategy for regulating the human’s emotion during or after an intervention. Existing 
literature typically suggests grouping of strategies in 5 families: Situation Selection, 
Situation Modification, Attentional Deployment, Cognitive Change and Response 
Modulation [22], 

4 Results 

We present the results of our SLR in a morphological box (Fig. 2), the underlying 
data is captured in Table 1 in the appendix. The dimensions of the morphological box 
describe the study characteristic, the emotion, the steps from the technical system, 
and the emotion regulation.

The dimension study characteristics provides information on the type of inves-
tigation conducted in the studies, either for data collection (in the field and in the 
laboratory, 7 in total) or for the assessment of artefacts. 15 studies were conducted 
in a laboratory setup and 10 studies in a field setup. In 6 studies, no or other types of 
studies were conducted. 

With regards to the emotional model, 13 studies followed a discrete emotional 
model. Five studies followed a continuous dimensional emotion model (i.e., valence-
arousal), in nine studies an emotion-centric construct was classified, for example, in 
[23] the user’s laughter was recognized. In four studies no model was reported. 

The dimension of the discrete emotion is differentiated from the upper dimension 
in more detail. Anger and disgust were each chosen once as a discrete emotion, 
anxiety seven times, joy and surprise twice and sadness three times. Although stress 
is not an emotion, we added it to this dimension because the intervention for emotions 
is also partially applicable to stress; it was used in seven studies. Among others (5), we 
included related states to the discrete emotions, such as laughter [23] or engagement 
[24].
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Fig. 2 Morphological box for the SLR analysis

The dimension of sensors covers the various physiological sensors that have 
been used by wearables, mostly wrist-worn wearables, used for emotion recognition 
and during adaption. 23 prototypes have measured the HR. Electrodermal activity 
sensors were used in total of eight times. Six times the accelerator and two times the 
skin temperature sensor was used. In five studies, additional measuring devices were 
used, which recorded data that could not been measured with a wrist-worn wearable 
like for example, Dong et al. [25] also used a camera to capture facial expressions. 
Four times there was no emotion recognition, such as in CoolCraig [26]. This system 
focuses on behaviour and emotions in children with ADHD in a co-regulation setting. 

For the classification of the emotion using raw sensor data, machine learning 
was used in ten studies, rule-based classification in eight studies, no indication was 
given in two studies and no emotion classification took place 11 times. This included 
also prototypes using emotion-related biosignals, for example HeartChat [27], which 
developed an HR augmented chat for emotion regulation in chats. Another example 
is EmotionCheck [28], which in their laboratory study evaluated the effectiveness of 
the intervention and the anxiety was induced by the study. 

For the following analysis, we excluded all studies (6) that did not conduct the 
support of emotion regulation but rather focused only on recognition. We continue 
with those studies that represent the whole conceptual model (25). 

The adaptation logic was based on a threshold of sensor values or features in 
three studies, in four studies the logic was based on the detected discrete emotion, and 
the remaining 18 are summarised under others. These include studies that induced 
the emotion or that co-regulation took place. 

Different intervention types were leveraged: In four studies, an automatic adap-
tation of the system takes place, three the user received haptic rhythmic feedback 
on their wrist. Four times an exercise was suggested to the user by a notification. In
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Table 1 Results of the SLR 

Dimension Characteristic References # 

Study 
characteristic 

Laboratory 
study 

[23, 28–30, 32–42] 15 

Field study [24, 27, 31, 43–49] 10 

No study [25, 26, 50–53] 6 

Sensors Heart rate 
based 

[23, 25, 27–37, 43–49, 51–53] 23 

Electrodermal 
activity 

[23, 24, 29, 36, 37, 40, 42, 42] 8 

Skin 
temperature 

[37, 52] 2 

Accelerometer [23, 29, 38, 39, 45, 46] 6 

External 
device 

[25, 35, 37, 46, 47] 5 

No 
Recognition 

[26, 30, 41, 50] 4 

Classification Machine 
learning 

[23, 25, 29, 37, 38, 40, 45, 47, 48, 52] 10 

Rule-based [24, 32, 33, 35, 43, 44, 51, 53] 8 

Not specified [31, 34] 2 

No 
classification 

[26–28, 30, 36, 39, 41, 42, 46, 49, 50] 11 

Emotional 
model 

Discrete 
categories 

[28, 31–34, 38, 42–44, 48, 51–53] 13 

Dimensional 
model 

[25, 29, 35, 40, 47] 5 

Others [23, 24, 27, 36, 37, 39, 45, 46, 49] 9 

No emotion 
recognition 

[26, 30, 41, 50] 4 

Discrete 
emotions 

Anger [34] 1 

Anxiety [28, 31–34, 42, 52] 7 

Joy [38, 51] 2 

Disgust [34] 1 

Sadness [34, 38, 51] 3 

Surprise [34, 40] 2 

Stress [30–32, 43, 44, 48, 51] 7 

Others [24, 37, 44, 45] 4 

Adaptation 
logic 

Physiological 
data based 
threshold 

[32, 33, 44] 3

(continued)
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Table 1 (continued)

Dimension Characteristic References #

Emotion 
detection 
based 
threshold 

[25, 34, 41, 51] 4 

Others [24, 26–28, 30, 31, 35, 36, 39, 40, 42, 43, 46, 48–50, 52, 53] 18 

Intervention System 
adaptation 

[25, 32, 44, 51] 4 

Physiological 
feedback 

[28, 33, 42] 3 

Notification 
feedback 

[30, 31, 35, 46] 4 

External 
co-regulation 

[24, 27, 36, 39, 40, 49, 53] 7 

Others [26, 34, 41, 43, 48, 50, 52] 7 

Emotion 
regulation 

Response 
modulation 

[28, 31–33, 35, 41, 42] 7 

Situation 
selection 

[25, 43, 51] 3 

Situation 
modification 

[24, 30, 36, 39, 44] 5 

No 
identification 

[26, 27, 34, 40, 46, 48–50, 52, 53] 10

seven studies, adaptation took place through external co-regulation and seven were 
categorised under other. 

Finally, the distribution among the emotion regulation strategy families were the 
following: The response modulation family was used in seven studies, the situation 
selection in three studies and the situation change strategy family in five studies. In 
ten studies we could not make an allocation. 

5 Discussion 

In this study we conducted a SLR to provide an overview of research on HR-based 
adaptive ER support with wrist-worn wearables. Based on the results of our SLR we 
identified two main streams in previous research. 

First, the results show that 80% of the studies conduct and investigate ER support, 
while the other studies focused on emotion recognition using wrist-worn wearables. 
These studies represent the first stream. In this stream emotion recognition is mostly 
conducted in a multimodal approach with multiple sensors, post-processing, and clas-
sification with machine learning. Many of these studies applied a two-dimensional
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valence-arousal model to understand emotions. EmotionSence [29] is an example 
from this stream. In a lab study, they took data from different users in different activity 
states, such as sitting and walking, and built different models to detect emotions in 
a 2D model. 

The second stream includes all studies that supported ER and included either 
an adaptation or an intervention. Mostly the focus was on evaluating the regulation 
intervention or adaptation concept and not emotion recognition, which was partly 
induced by the study and not automatically performed. Many of the prototypes in 
these studies were based on the discrete or categorical emotion models, of these 
a lot focused on negative emotions like anxiety, anger, or stress. The adaptation 
logic in these studies was quite different. About one fifth of the studies gave general 
feedback in the form of a message to users to recommend an exercise, like FOQUS 
[30], which includes a feature that helps to be focused by applying the Pomodoro 
time management technique [31]. 

Four studies adapted the interaction with or the presentation of the system by 
adjusting the speed of interaction or adaption of the system interface. In seven studies 
a special form of intervention was chosen in which the emotional state or physiolog-
ical data was communicated to a co-regulator who then decided whether to change 
the mode of communication or recommended an exercise. In three studies, the user 
receives artificial, heartbeat-like rhythmic feedback on the wrist to subtly calm and 
regulate their HR. Finally, when looking at the ER strategies applied in the studies, 
three groups stand out. Seven studies focused on a response-based approach by elic-
itation of response modulation in the participants. For example, Di Lascio et al. [23] 
have developed a system called FishBuddy that detects stress and anxiety in learners 
during an exercise and interrupts the learning process to regulate the emotion by using 
a simulated fish whose swimming rhythm reduces the HR. Second, five studies regu-
lated emotions by modifying the situation, and three started even earlier in the ER 
model by supporting the application of situations selection strategies. Other emotion 
strategies were not applied in the sample. A reason for this might be since the ER 
strategy attention deployment and cognitive change require a deeper understanding 
of the situation and the context in order to support ER through a neuro-adaptive 
system. 

Limitations and Future Research 

Although we followed a rigorous search approach our work comes with limitations. 
We had to make decisions with regards to the databases searched, the exclusion and 
inclusion criteria, and the analysis levels. We will address these aspects in future 
cycles. Based on our results and limitations, we have discovered potential for future 
research. Despite the prevalence of wrist-worn wearables in the population, we see 
a research gap in the area of adaptive ER support systems with an integration of all 
steps of our conceptual model such as adaptation logic, intervention, and regulation. 
Second, only three of the five ER strategy families are investigated in the studies.
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To address these gaps, we see the potential for further research to bring together 
the technical implementation and processing of biosignals and ER support strategies 
and their use cases. This requires (1) methodological contributions that conceptually 
describe the interplay of emotion recognition, logic and intervention. Furthermore, 
we believe that a toolkit supporting the different steps of emotion recognition and 
adaptation through standardized software modules could be beneficial. This would 
make it possible to prototype ER support applications based on wrist-worn wearables 
for researchers from non-technical disciplines. 

Appendix 

See Table 1. 
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