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a b s t r a c t 

Routing and path planning problems that involve spatial coverage have received increasing attention in 

recent years in different application areas. Spatial coverage refers to the possibility of considering nodes 

that are not directly served by a vehicle as visited for the purpose of the objective function or constraints. 

Despite similarities between the underlying problems, solution approaches have been developed in dif- 

ferent disciplines independently, leading to different terminologies and solution techniques. This paper 

proposes a unified view of the approaches: Based on a formal introduction of the concept of spatial cov- 

erage in vehicle routing, it presents a classification scheme for core problem features and summarizes 

problem variants and solution concepts developed in the domains of operations research and robotics. 

The connections between these related problem classes offer insights into common underlying structures 

and open possibilities for developing new applications and algorithms. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 
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. Introduction 

In recent years, in different disciplines and application areas, 

ehicle routing problems (VRP) have been extended such that the 

emand of nodes can, in some form, be fulfilled by visiting nearby 

odes: In the field of logistics, for example, models have been 

roposed in which customer demand can be fulfilled anywhere 

ithin walking distance of some target instead of requiring ser- 

ice at one specific location. These types of routing problems arise 

n emergencies such as earthquakes, floods, or in mobile health 

are scenarios ( Allahyari, Salari, & Vigo, 2015; Hachicha, Hodgson, 

aporte, & Semet, 20 0 0 ). Similar ideas have been used for decid-

ng on distribution structures for humanitarian relief and medical 

upplies ( Naji-Azimi, Renaud, Ruiz, & Salari, 2012a; Veenstra, Rood- 

ergen, Coelho, & Zhu, 2018 ). Other applications include the rout- 

ng of vehicles through transshipment facilities from which the fi- 

al customers are served ( Current & Schilling, 1989 ), the planning 

f routes for mobile meter reading services ( Gulczynski, Heath, & 

rice, 2006 ), and ATM replenishment ( Orlis, Bianchessi, Roberti, & 

ullaert, 2020 ). Problems arising in the context of planning postal 
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ervices and telecommunication networks share similar character- 

stics ( Gendreau, Laporte, & Semet, 1997; Vogt, Poojari, & Beasley, 

007; Xu, Chiu, & Glover, 1999 ). 

A different application area for these types of routing prob- 

ems originates from robotics: Unmanned aerial vehicles (UAVs) 

re deployed to detect toxic gases in the air. The goal is to build 

 gas distribution map for the affected area after chemical emer- 

encies or large fires. The gas concentration at a location is not 

ndependent of nearby locations. UAV-based routing and map- 

ing approaches take this spatial dependency into account to infer 

as concentrations at unsurveyed locations by using the informa- 

ion from nearby visited locations in probabilistic process models 

 Glock & Meyer, 2020; Singh, Krause, Guestrin, & Kaiser, 2009a ). 

ther applications in aerial vehicle routing address the problem of 

dentifying targets within a given distance of a vehicle trajectory 

 Behdani & Smith, 2014 ) or obtaining data on different tar gets from 

ithin a given maximum distance ( Mennell, 2009 ). 

These problems are closely related in the sense that they treat 

odes in close spatial proximity as related. In the following, we re- 

er to this as the concept of “spatial coverage”. However, due to the 

ifference in application areas and even disciplines, solution ap- 

roaches have been developed independently. This has led to the 

stablishment of different terminology for very similar problems, 

hich hinders the development of solution concepts that exploit 

he similarity to problem variants from other domains or disci- 

lines. 
under the CC BY-NC-ND license 
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Fig. 1. Example for a vehicle routing problem with spatial coverage. 

Table 1 

Problem characteristics relating to spatial coverage. 

Characteristic Variants 

Node types mandatory-active (ma) 

mandatory-passive (mp) 

optional-active (oa) 

optional-passive (op) 

Spatial coverage complete 

partial 

probabilistic 

Topological space model discrete 

continuous 

Planning objective min routing 

min allocation 

max profit 
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In this study, we seek to offer a unified view on variants in ve-

icle routing an path planning that consider some form of spatial 

overage. Our contributions toward this goal are: 

(1) the definition of the spatial coverage concept in routing and 

path planning and a scheme for categorizing problems in- 

volving aspects of spatial coverage, 

(2) the introduction of unified mathematical models to highlight 

similarities and show differences between models developed 

in different domains and communities, 

(3) the overview of problems, solution approaches, and bench- 

mark instances derived in different disciplines, and 

(4) the identification of connections between structurally re- 

lated problems that can build the basis of new solution ap- 

proaches. 

This paper is organized as follows. In the next section, we in- 

roduce a general description of VRP with spatial coverage, pro- 

ose a classification scheme, and derive six important classes. In 

ection 3 , we detail the six classes and their application areas, 

ormally introduce the problem variants, and discuss exact and 

euristic solution methods proposed in literature. We furthermore 

ist problem variants that are closely related but cannot be as- 

igned to one of the classes. In Section 4 , we discuss and summa-

ize insights that emerged from the overall review of models and 

dentify promising future research avenues. 

. Definition and classification of the VRP with spatial coverage 

In this section, we give a general description of the VRP with 

patial coverage (VRP-SCOV) and introduce the necessary notation 

or defining its variants. We then propose a classification scheme 

or the variants of the VRP-SCOV and derive six classes wherein 

roblems share important characteristics. 

.1. Definition of the general VRP-SCOV 

As common for VRP, the VRP-SCOV is defined on a graph G = 

V, A ) with a set of nodes V and a set of arcs A . The set V is

omposed of a set of depot nodes V d and customer nodes V c to 

e visited or covered in vehicle tours. The nodes can be visited or 

overed by one vehicle or a fleet of vehicles denoted M . The tour 

ength of each vehicle is limited by a value T . Traveling along an

rc (i, j) ∈ A is associated with a travel distance d i j and requires a

ravel time t i j . If applicable, t i j contains the service time at node i . 

The special feature of the VRP-SCOV is the spatial covering 

echanism: By visiting a node i ∈ V c , other nodes k ∈ V c within

 maximum covering distance d can be “covered”, i.e., they can be 

onsidered as visited for the purpose of the objective function or 

onstraints of the problem. We refer to the strength of the inter- 

ependency, i.e., the degree of coverage of node k if node i is vis- 

ted, as the weight w ik with w ik ∈ [0 , 1] . The nodes k that a visit at

ode i can cover belong to the covering neighborhood C i of i with 

 i = { k ∈ V c : w ik > 0 } . 
Fig. 1 gives an illustrative example for the covering mechanism. 

he image depicts a vehicle route traveling through four nodes, 

tarting and ending at a central depot (black triangle). The cover- 

ng neighborhoods are depicted as circles with radius d. All nodes 

ithin these circles are considered covered by the vehicle tour. 

hree nodes remain uncovered. 

Depending on the application, nodes i ∈ V c additionally may be 

ssociated with a profit p i ≥ 0 that is collected when a node is vis-

ted directly or which is collected partially (depending on the de- 

ree of coverage w i j ) if a nearby visit covers a node. 

Based on the introduced notation, we define the general variant 

f the VRP-SCOV as follows: For nodes within V c , assign a vehicle 

 from vehicle set M and find a tour through the assigned nodes 
2 
or each vehicle m ∈ M such that the travel time budget T is not

xceeded and an objective function is optimal. The objective func- 

ion maximizes either the profit associated with visited and cov- 

red nodes or minimizes the cost for visiting or covering all nodes. 

So far, we discussed spatial coverage for node-based vehicle 

outing problems. If we come to the class of arc routing problems, 

n which all arcs or a given set of arcs must be visited, spatial cov-

rage occurs in a very similar way: An arc provides coverage to a 

et of nodes if the distance between the arc and the nodes is below 

 certain threshold. As the majority of problems addresses node- 

ased vehicle routing problems, we mainly discuss these types of 

roblems indicating whenever the arc-based problem variant dif- 

ers. 

The particular challenges of all problem classes subsumed un- 

er VRP-SCOV arise from the spatial covering mechanism, which 

ntroduces interdependencies between nodes. For multi-vehicle 

roblems, spatial coverage additionally means that routes are 

ighly interdependent. 

.2. Classification scheme 

The different problem variants can be distinguished by means 

f four major characteristics: the different types of nodes that are 

nvolved, the type of spatial coverage, the topological space model, 

nd the planning objective. We give a summary of possible at- 

ributes in Table 1 and discuss them in more detail below. 

.2.1. Node types 

The set of nodes V c can be divided into active and passive 

odes: Active nodes can be visited directly by a vehicle and can 

rovide coverage for nodes close to them. It is important to note 

hat they can also provide coverage to each other. Passive nodes, 

n contrast, cannot be visited directly but may be covered by visit- 

ng active nodes nearby. In case of arc-based routing problems, all 
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odes are passive and are covered if nearby arcs are part of the 

olution. 

Within each group, nodes can be either mandatory or op- 

ional. Mandatory active nodes have to be included in a vehicle 

our, while mandatory passive nodes have to be covered. Optional 

odes can be covered or visited if this is beneficial with respect to 

he objective function or required by a constraint. 

.2.2. Spatial coverage 

We can further distinguish between different forms of coverage 

hat have been discussed in literature. Essentially, these forms de- 

cribe how the weights w i j that characterize the degree to which 

 node (or an arc) i can cover a node j are determined. 

Complete coverage means that the full requirements of a node 

are met or its entire profit is collected as long as it is in-

cluded in the covering neighborhood of at least one visited 

node, i.e., w i j = 1 for all i ∈ V c , j ∈ C i . 
Partial coverage indicates that any unvisited, but covered node 

only provide partial benefits compared to a solution where 

they are directly visited, i.e., w i j < 1 for i ∈ V c , j ∈ C i . 
Probabilistic coverage refers to approaches that use probabilis- 

tic models to determine the relationship between nodes. 

This means that weights w i j are not set explicitly but may 

result from some formalized model for representing spatial 

relations. A more detailed discussion follows in Section 3.6 . 

In all cases, the maximum benefit of covering a node should 

ever exceed the benefit provided if this node were visited by a 

ehicle. 

.2.3. Topological space models 

Problems involving spatial coverage can be continuous or dis- 

rete. Discrete models are typically defined over a graph through 

hich the vehicles are routed. Continuous models are defined 

ver a plane in which vehicle routes can be freely determined. 

.2.4. Planning objectives 

Generally speaking, the planning objectives relating to spatial 

overage can be differentiated into profit maximization and cost 

inimization. The cost types must be further differentiated, so that 

he following three planning objective types can be derived: 

Min routing objectives minimize the routing cost for visiting 

or covering all nodes. Routing cost depend on the distance 

or travel time of the resulting tour plan. 

Min allocation objectives minimize (in addition to the routing 

cost) the allocation cost for visiting or covering all nodes. Al- 

location costs depend on the distance between the covered 

node j and the visited node i that is providing coverage, i.e., 

the node i that j it is “allocated” to. 

Max profit objectives maximize the profits or contributions 

provided by the visited or covered nodes subject to route 

length restrictions. 

We also consider some problem variants with more than one 

bjective. In these cases, we classify the models based on the way 

ow they treat the spatial coverage aspect. 

.3. Classes of VRP-SCOV 

Based on the properties mentioned above, we derived six 

lasses of VRP that include the spatial coverage mechanism. As 

ar as possible, the proposed classification and terminology follows 

stablished understandings in literature where different problem 

lasses have emerged independently from one another. In many 

ases, the problems are inspired by real-world applications. Hence, 
3 
ome of the models cannot be clearly assigned to one class or the 

ther and the classes might not cover all possible model variants. 

owever, our claim is not the perfect assignment of all possible 

odel variations, but the elaboration of common features in ad- 

ressing the aspect of spatial coverage. In this way, we want to 

implify the search for similar problems, suitable modeling vari- 

nts, and solution methods. 

A short description of the six problem classes with respect to 

he characteristics as summarized in Table 1 follows below. The 

ormal description is given in the next section. 

Covering tour problems (CTP) ( Section 3.1 ) 

ma, oa, mp | complete | discrete | min routing 

visit or cover all mandatory passive or active nodes respec- 

tively minimizing routing cost. 

Close-enough vehicle routing problems (CEVRP) ( Section 3.2 ) 

mp | complete | continuous | min routing 

cover all mandatory passive nodes by determining vehicle 

tours in a continuous plane that pass sufficiently close min- 

imizing routing cost. 

Close-enough arc routing problems (CEARP) ( Section 3.3 ) 

mp | complete | discrete | min routing 

cover all mandatory passive nodes by visiting arcs that are 

sufficiently close minimizing routing cost. 

Vehicle routing allocation problems (VRAP) ( Section 3.4 ) 

ma, mp, oa | complete | discrete | min routing, min allocation, 

(max profit) 

visit or cover (allocate) all mandatory active and passive 

nodes minimizing routing and allocation cost. In some vari- 

ants, a penalty for not visiting or covering optional active 

nodes is incurred. This can be interpreted as a max profit 

objective. 

Orienteering problems with coverage (OPCov) ( Section 3.5 ) 

oa, op | complete or partial | discrete or continuous | max 

profit 

visit or cover optional active or passive nodes respectively 

maximizing the profit. Only one of the introduced variants 

operates on a continuous plane. 

Informative path planning (IPP) ( Section 3.6 ) 

oa | probabilistic | discrete or continuous | max profit 

visit or cover optional active nodes maximizing the profit. 

The profit corresponds to the information gain about visited 

and unvisited nodes. Both discrete and continuous variants 

are subsumed under the term IPP in literature. 

Table 2 describes all classes and notable corresponding problem 

ariants based on the classification scheme introduced in the pre- 

eding subsections. Additionally, we indicate whether the problems 

ave been studied for single vehicles or vehicle fleets. 

. Overview of classes of the VRP-SCOV 

This section provides a detailed overview of the different prob- 

em classes incorporating coverage aspects in routing and path 

lanning. The main objective is to present the different variants 

hat have been proposed in literature in a unified way and to high- 

ight the potential of solution approaches tailored to the VRP-SCOV. 

o this end, we present applications, problem variants, and rep- 

esentative problem formulations and summarize exact as well as 

euristic solution methods for each problem class. 

Note that, for some problem classes, the literature is already 

elatively “streamlined” in the sense that several authors agree on 

ommon problem features and terminologies. This is particularly 

rue for CTP and CEVRP variants. In contrast, research related to the 

RAP has led to similar problem variants published under differ- 

nt names. The same holds for the OPCov, where several problem 
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Table 2 

Classification of problem variants introduced in literature. 

Problem class Problem variant Objective : 

min routing 

Objective : 

min 

allocation 

Objective : 

max profit 

Coverage : 

complete 

Coverage : 

partial 

Coverage : 

probabilis- 

tic 

Nodes : 

mandatory 

active 

Nodes : 

optional 

active 

Nodes : 

mandatory 

passive 

Nodes : 

optional 

passive 

Model : 

discrete 

Model : 

continuous 

Vehicles 

covering tour 

problems 

covering salesman 

problem (CSP) 

√ √ √ √ 

1 

generalized covering 

salesman problem (GCSP), 

mm -CTP 

√ √ √ √ 

1, m 

covering tour problem 

(CTP), m -CTP, multi-depot 

CTP 

√ √ √ √ √ √ 

1, m 

close-enough 

vehicle routing 

problems 

traveling salesman 

problem with 

neighborhoods (TSPN) 

√ √ √ √ 

1 

close-enough traveling 

salesman problem (CETSP), 

CEVRP 

√ √ √ √ 

1, m 

close-enough arc 

routing problems 

close-enough arc routing 

problem (CEARP) 

√ √ √ √ 

1 

generalized directed rural 

postman problem (GDRP), 

DC-GDRP 

√ √ √ √ 

1, m 

vehicle routing 

allocation problem 

median cycle problem 

(MCP), ring-star problem 

(RSP) 

√ √ √ √ √ 

1 

Steiner ring-star problem 

(SRSP) 

√ √ √ √ √ √ 

1 

m -ring-star problem 

( m -RSP) 

√ √ √ √ √ √ 

m 

vehicle routing allocation 

problem (VRAP) 

√ √ √ √ √ √ √ √ 

1, m 

orienteering 

problems with 

coverage 

time constrained maximal 

covering salesman 

problem (TCMCSP) 

√ √ √ √ 

1 

set orienteering problem 

(SOP) 

√ √ √ √ 

1 

correlated team 

orienteering problem 

(CorTOP), GCorTOP 

√ √ √ √ 

m 

team orienteering problem 

with overlaps (TOPO) 

√ √ √ √ √ 

m 

close-enough orienteering 

problem (CEOP) 

√ √ √ √ 

1 

informative path 

planning problems 

informative path planning 

(IPP) 

√ √ √ √ a √ a 1, m 

a Both variants exist under the same name. 

4
 



K. Glock and A. Meyer European Journal of Operational Research 305 (2023) 1–20 

Table 3 

Overview of sets and parameters for modeling VRP-SCOV-variants. 

Sets 

V Set of nodes with V = V d ∪ V c 
V d Set of depot nodes containing the single depot D 

V c Set of nodes to be visited or covered with V c = V a ∪ V p 
V a Set of active nodes with V a = V ma ∪ V oa 

V ma Set of mandatory active nodes 

V oa Set of optional active nodes 

V p Set of passive nodes with V p = V mp ∪ V op 

V mp Set of mandatory passive nodes 

V op Set of optional passive nodes 

C i Set of nodes that can be covered by i ∈ V a 
A Set of arcs 

Parameters 

α ∈ (0 , 1) Fixed factor used for discounting profit of covered nodes 

c i j ≥ 0 Cost for covering node j from node i 

d ≥ 0 Maximum coverage radius 

d i j ≥ 0 Distance between nodes i, j

ε > 0 Minimum segment length 

f (d i j ) Auxiliary function for determining weights w i j 

λ1 , λ2 , λ3 > 0 Objective function weights 

(l on i , l at i ) ∈ R 2 Position of node i 

p i > 0 Profit associated with visiting or covering i 

T > 0 Maximum route budget 

w i j ∈ [0 , 1] Weight indicating the degree of coverage provided by i for j
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ariants with relatively minor differences and no consistent termi- 

ology have emerged. To highlight similarities and differences, we 

dapted formulations from literature such that all are presented as 

ariants of the VRP-SCOV. An overview of the harmonized nota- 

ion relevant for all models is given in Table 3 . Since the focus in

his work lies on the spatial coverage concept, we limit the prob- 

em formulations to the single-vehicle variants. This enables us to 

istinguish more clearly between the different models. For better 

eadability, we define a set of depot nodes V d containing one depot 

 with exactly one vehicle. Multi-vehicle cases will be discussed 

or those problem variants where they have been studied in litera- 

ure. 

The literature for each class is summarized in a table in Ap- 

endix B (Tables B1 to B6). The tables indicate the proposed solu- 

ion approaches and characteristics of the instances used for eval- 

ation purposes. However, it is important to note that few con- 

istent benchmark instances have emerged in literature, and even 

hese are used inconsistently. 

.1. Covering tour problem 

Coverage aspects have been considered in VRP literature in 

orm of the covering salesman problem (CSP), the covering tour 

roblem (CTP), and the multi-vehicle covering tour problem ( m - 

TP). These problems deal with the determination of cost-minimal 

outes such that every node is either visited directly or is within 

 given maximum distance to a node directly visited by a vehicle. 

he CTP can be formulated as the generalized traveling salesman 

roblem (GTSP) given some assumptions about the covering neigh- 

orhoods discussed at the end of Section 3.1.2 . 

.1.1. Problem definition and applications 

The CSP was first introduced and formulated by Current & 

chilling (1989) as a variant of the traveling salesman problem 

TSP) where all nodes have to be within a predetermined maxi- 

um distance of a node that is visited by the vehicle. Applications 

roposed by Current & Schilling (1989) include mobile health care, 

here it might be sufficient to provide service within reach of the 

opulation, and aircraft transport, where it is sufficient to deliver 

oods reasonably close to the customer, while a different mode of 
5 
ransport completes the final delivery. Furthermore, the authors in- 

roduce a bi-objective variant differentiating between the routing 

ost and the cost for opening facilities at the selected locations. 

Afterward, the problem class did not receive much attention 

ntil Gendreau et al. (1997) proposed a more general model that 

istinguishes between optional and mandatory active nodes, which 

hey refer to as the covering tour problem (CTP). Hodgson, La- 

orte, & Semet (1998) apply this problem for the provisioning of 

ealth care in Ghana. Golden, Naji-Azimi, Raghavan, Salari, & Toth 

2012) propose a problem generalization where some nodes need 

o be covered or visited multiple times in order to fulfill the en- 

ire demand. The authors refer to this problem as the generalized 

overing salesman problem (GCSP). 

The first multi-vehicle variant was discussed by Hachicha et al. 

20 0 0) as an extension of the CTP, denoted the m -CTP. Additional 

onstraints restrict the number of visits per tour as well as the tour 

ength. The authors apply their solution procedures for the same 

se case in mobile health care as Hodgson et al. (1998) . Flores- 

arza, Salazar-Aguilar, Ngueveu, & Laporte (2017) introduce an ex- 

ension of the m -CTP where the objective does not lie in the deter- 

ination of the shortest tour but in the minimization of the sum 

f arrival times at visited locations. The authors denote this prob- 

em the multi-vehicle cumulative covering tour problem ( m -CCTP). 

n extension of the GCSP with multiple vehicles, referred to as the 

ulti-vehicle multi-covering tour problem ( mm -CTP) is discussed 

y Pham, Hà, & Nguyen (2017) . 

.1.2. Problem formulation 

The CTP can be formulated as follows (adapted from Gendreau 

t al., 1997 ): The set V c is separated into three sets: the set of 

andatory active nodes V ma , the set of optional active nodes V oa , 

nd the set of mandatory passive nodes V mp . In the model formu- 

ation below, mandatory and optional active nodes are comprised 

n the set of active nodes V a . 
With respect to the VRP-SCOV, the coverage of passive nodes 

s considered as complete and, hence, can be represented by 

eight parameters w i j = 1 if d i j ≤ d and w i j = 0 otherwise for i ∈
 

mp , j ∈ V a . Based on the weight w i j we can determine the cover-

ng neighborhood C i of each active node i ∈ V ma ∪ V oa as C i = { j ∈
 

mp | w i j = 1 } . 
Binary decision variables x i j indicate whether node i is vis- 

ted immediately before node j. Decision variables y i indicate 

hether nodes are part of the tour or not. Note that, in contrast to 

endreau et al. (1997) , we do not use an undirected graph in order 

o keep this problem formulation consistent with other problems 

iscussed in this paper. 

The CTP can be stated as follows: 

CTP) min 

∑ 

i, j∈V a ∪V d | i � = j 
d i j x i j (1) 

.t. 
∑ 

j | i ∈C j 
y j ≥ 1 i ∈ V mp (2) 

∑ 

j∈V a 
x i j = 1 i ∈ V d (3) 

∑ 

j∈V a 
x ji = 1 i ∈ V d (4) 

∑ 

 ∈V a ∪V d | i � = k 
x ik + 

∑ 

j∈V a ∪V d | k � = j 
x k j = 2 y k k ∈ V a ∪ V d (5) 

∑ 

i ∈ S, j∈V a ∪V d \ S 
or j∈ S,i ∈V a ∪V d \ S 

x i j ≥ 2 y k S ⊂ V a , 2 ≤ | S| ≤ |V a ∪ V d | − 2 , 

V ma \ S � = ∅ , k ∈ S 
(6) 
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 i = 1 i ∈ V ma (7) 

 i j ∈ { 0 , 1 } i, j ∈ V a ∪ V d | i � = j (8) 

 i ∈ { 0 , 1 } i ∈ V oa ∪ V ma ∪ V d (9) 

Objective (1) minimizes the length of the vehicle tour. Con- 

traints (2) ensure that all mandatory passive nodes are covered by 

t least one visited active node. Constraints (3) and (4) ensure that 

ours start and end at the depot. Constraints (5) ensure that all vis- 

ted customer nodes are entered and left exactly once. Constraint 

et (6) eliminates subtours. These constraints work as follows: For 

ll nodes k that are included in a tour (i.e., for nodes with y k = 1 ),

he left-hand side ensures that a set S containing node k is con- 

ected by at least two arcs to the set V ma \ S, which by definition

ncludes at least one node that also has to be included in the vehi-

le tour. Constraints (7) ensure that all mandatory active nodes are 

ncluded in the vehicle route. Finally, constraints (8) and (9) define 

inary variable domains. 

As stated before, the CTP can be formulated as GTSP given 

ome assumptions. In the GTSP, the nodes are partitioned into 

lusters and a vehicle has to visit at least (or exactly) one 

ode of each cluster. It was studied, among others, by Fischetti, 

alazar González, & Toth (1997) . The GTSP is generalized to the 

eneralized vehicle routing problem (GVRP) and, due to its wide 

ange of application areas, it has attracted a lot of attention 

 Bekta ̧s , Erdo ̆gan, & Røpke, 2011 ). A node is considered as covered

f one node of the cluster is visited. Clusters can be – but do not 

eed to be – built based on spatial or geographic conditions. As 

escribed by Gendreau et al. (1997) , the CTP can be modeled as 

 GTSP by determining clusters of active nodes providing coverage 

or mandatory passive nodes depending on their distance and as- 

uming that each mandatory active node builds a separate cluster. 

his modeling variant requires that clusters can have non-empty 

ntersections. However, for example, Bekta ̧s et al. (2011) explic- 

tly assume that the clusters are non-empty and disjoint. Follow- 

ng this definition, the CTP cannot be modeled generally as GTSP. 

n the following, we do not further consider the GTSP and the 

VRP, as solution techniques that explicitly consider spatial depen- 

encies cannot be applied to this problem class. Nevertheless, we 

ould like to point out that some of the solution techniques of this 

idely studied class are applicable to problems considered in this 

aper. 

.1.3. Solution approaches 

All approaches introduced in this section are summarized in Ta- 

le B1 of the Appendix B. 

Exact solution approaches 

Gendreau et al. (1997) propose the first exact solution approach 

or the single-vehicle CTP and adopt valid inequalities that have 

een proposed for the set covering problem (SCP). This is possible 

s the SCP is strongly related to the CTP: In the SCP, each set can

e interpreted as a node together with its covering neighborhood. 

he objective is to select the minimum number of sets such that 

ll nodes are covered, i.e., included in a selected set, without con- 

idering travel times. Moreover, the authors transfer the concept of 

dominance” from the SCP, where one optional active node domi- 

ates another if it covers at least the same set of nodes. The exact 

olution procedure is based on a branch-and-cut scheme. The re- 

ults highlight that (1) the problem difficulty largely depends on 

he number of active nodes, while passive nodes have a lower im- 

act on the overall computation time, and (2) problems become 

asier when the size of the covering neighborhood increases, i.e. 

hen passive nodes can be covered by a larger number of active 

nes. 
6 
Model formulations in the form of mixed integer problems 

re used to solve smaller instances to optimality (e.g., Naji-Azimi 

t al., 2012a ), but are not refined further. Hà, Bostel, Langevin, & 

ousseau (2013) derive an exact algorithm for the m -CTP based 

n a new problem formulation and several valid inequalities for 

he linear relaxation. Jozefowiez (2014) transfer a branch-and-price 

lgorithm for the ring star problem (see Section 3.4 ) to the m -

TP. The multi-vehicle multi-covering variant mm -CTP is solved 

sing a branch-and-cut approach by Pham et al. (2017) , who 

trengthen the model using several new valid inequalities. Most re- 

ently, Glize, Roberti, Jozefowiez, & Ngueveu (2020) have proposed 

 column-generation based approach for solving the m -CTP as well 

s its bi-objective variant. 

Heuristic approaches 

Current & Schilling (1989) apply a two-stage approach: In a first 

tep, they optimally solve a SCP ignoring the distance traveled by 

he vehicle to determine the nodes that make up the tour. In a sec- 

nd step, they optimally solve a TSP for each of the (symmetric) 

andidate solutions found in the first step. However, the authors 

ote that while they expect the approach to perform well, espe- 

ially when there are costs incurred for opening facilities, it is not 

ossible to find the optimal solution to the CSP in any case where 

pening more facilities reduces routing costs. 

In a similar approach, Gendreau et al. (1997) combine methods 

or solving SCP and TSP problems. Instead of a strict two-phase 

pproach, they incrementally expand a tour using SCP heuristics, 

here new vertices are included based on the cost of including 

hem in the route and the additional coverage that they provide. 

he authors note that the resulting heuristic performs well, espe- 

ially when the set of mandatory nodes is small. 

Baldacci, Boschetti, Maniezzo, & Zamboni (2005) propose three 

catter search heuristics that operate on populations of refer- 

nce solutions that are improved using local search heuristics and 

ecombined to generate new candidate solutions. Golden et al. 

2012) propose two local search procedures based on the exchange 

f visited nodes for the GCSP. Search starts from a random ini- 

ial ordering of visited nodes, as the authors note that neither a 

SP solution on the active node set nor a selection based on the 

CP yields better results. Moreover, the search incorporates classic 

SP search moves that yield significant improvements. The results 

how that both approaches outperform the two-stage approach by 

urrent & Schilling (1989) while requiring less computation time. 

Similar to earlier approaches for the CSP and CTP, Hachicha 

t al. (20 0 0) propose several heuristics for the multi-vehicle vari- 

nt that extend known approaches for solving the SCP as well 

s popular VRP heuristics, notably a local improvement heuristic 

nd the savings and sweep heuristics. Again, the main drivers of 

roblem complexity and computation time are the number of ac- 

ive nodes and the size of the covering neighborhood, with larger 

eighborhoods leading to lower gaps and computation times as 

ell as shorter tours. 

For the m -CTP, Naji-Azimi et al. (2012a) propose a local search 

ith added diversification steps that can significantly improve so- 

ution quality and runtime. It is embedded in a multi-start pro- 

edure used to decrease the dependency on the starting solution. 

n contrast to single-vehicle variants, additional moves are used to 

xchange nodes between routes. The evolutionary local search ap- 

roach for the m -CTP by Hà et al. (2013) first determines cover- 

ng subsets. Finding tours with minimum distance through these 

ubsets can be considered as a VRP with unit demand. Solutions 

re improved by local search moves, both classical VRP moves 

nd operators that replace nodes within the tours. Kammoun, Der- 

el, Ratli, & Jarboui (2017) propose a variable neighborhood search 

VNS) algorithm that integrates a randomized construction and 

haking heuristic together with insertion and swap moves that 

utperform earlier approaches by Hà et al. (2013) . Pham et al. 
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Fig. 2. Examples of close-enough vehicle and arc routing problems, respectively. 
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(

2017) apply a genetic algorithm for the mm -CTP that is based on 

he unified hybrid genetic search (UHGS) framework proposed by 

idal, Crainic, Gendreau, & Prins (2014) for VRP variants. Flores- 

arza et al. (2017) solve the m -CCTP is via a GRASP mechanism 

hat seeks to construct routes based on widely spread initial nodes 

nd to improve them further using local search moves. 

.2. Close-enough vehicle routing problems 

The core idea of close-enough vehicle routing problems (CEVRP) 

s to build a tour of minimum length such that all nodes are cov- 

red by a vehicles’ tour, or stated differently, such that at least one 

ehicle passes through any point within the covering neighborhood 

f each node. Problems in this class are typically defined in the 

wo-dimensional plane where covering neighborhoods are most 

ommonly defined as circles with diameter d. The corresponding 

rc-routing problem (CEARP) is summarized in Section 3.3 . Both 

roblem classes are illustrated in Fig. 2 . 

.2.1. Problem definition and applications 

The first single-vehicle variant relating to the CEVRP has been 

roposed by Arkin & Hassin (1994) under the name geometric cov- 

ring salesman problem. The authors discuss it as a generalization 

f the TSP where the customer is willing to meet a salesperson 

t any point within a limited region. A similar application is dis- 

ussed by Mata & Mitchell (1995) , Gudmundsson & Levcopoulos 

1999) and Dumitrescu & Mitchell (2003) , who refer to this prob- 

em as the traveling salesman problem with neighborhoods (TSPN) 

nd generalize the possible shapes of the covering regions. The 

oal of these problem variants is to determine a tour of minimum 

ength that, at some point, passes through each region. This means 

hat, unlike the CTP, the locations at which a vehicle tour changes 

irection are part of the decision variables and can be chosen 

reely within a two-dimensional plane. Gentilini, Margot, & Shi- 

ada (2013) suggest applying this model for automated visual in- 

pection in robotics, where images may be taken anywhere within 

 limited region. Dong, Yang, & Chen (2007) and Gulczynski et al. 

2006) apply similar models for planning tours of mobile meter 

eading services, where mobile sensors can collect readings from 

earby RFID-equipped devices. The latter have introduced the term 

lose-enough traveling salesman problem (CETSP) for this prob- 

em, which has been used in most of the later literature. Mennell 

2009) has extended the problem to the multi-vehicle case, i.e., the 

EVRP. 
7 
.2.2. Problem formulation 

As shown by Behdani & Smith (2014) , any optimal solution 

o the CETSP can be represented by discrete points in the plane 

hat cover at least one passive node each and that are connected 

y straight lines to form the vehicle tour. Earlier, Dong et al. 

2007) proposed such a representation to formulate the problem as 

 mixed-integer nonlinear problem formulation (MINLP): The node 

et V is composed of only passive mandatory nodes V mp and ve- 

icle depot nodes V d with positions (l on i , l at i ) , i ∈ V . This means

hat V op = V a = ∅ . Nodes i ∈ V mp are covered if a vehicle passes

hrough any point in space within distance d to i . This means 

hat, for each node i , we can define its covering neighborhood 

s C i = { (a, b) ∈ R 

2 : ‖ (a, b) − (l on i , l at i ) ‖ ≤ d} where ‖ · ‖ indicates

he application of the Euclidean metric. 

The points on the tours from which a node is covered are mod- 

led as continuous decision variables (a i , b i ) ∈ R 

2 , which are typi-

ally referred to as representative points or turn(ing) points. Note 

hat for the depot, these variables are fixed to the known depot lo- 

ation, i.e., (a i , b i ) = (l on i , l at i ) for all i ∈ V d . The turning points are

onnected by straight line segments and thus define the tour. Fi- 

ally, we use binary decision variables x i j to indicate the sequence 

n which nodes are covered in a tour. Then, the CETSP is formu- 

ated as follows: 

CETSP) min 

∑ 

i, j∈V mp ∪V d | i � = j 
x i j 

√ 

(a i − a j ) 2 + (b i − b j ) 2 

(10) 

.t. 

a i − lon i ) 
2 + (b i − lat i ) 

2 ≤ d 2 i ∈ V mp (11) 

∑ 

j∈V mp ∪V d | i � = j 
x ji = 1 i ∈ V mp ∪ V d (12) 

∑ 

j∈V mp ∪V d | i � = j 
x i j = 1 i ∈ V mp ∪ V d (13) 

∑ 

, j∈ S 
x i j ≤ | S| − 1 S ⊆ V mp , 2 ≤ | S| ≤ |V mp | (14) 

 i j ∈ { 0 , 1 } i, j ∈ V mp ∪ V d | i � = j (15) 

a i , b i ) ∈ R 

2 i ∈ V mp ∪ V d (16) 
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The objective function (10) minimizes total distance, while con- 

traints (11) ensure that the turning point (a i , b i ) is sufficiently 

lose to the covered node i . Constraints (12) and (13) state that 

ach node is included once in the tour. Subtours are prohibited by 

onstraint set (14) . Constraints (15) and (16) define the decision 

ariables. 

As noted by Mennell (2009) , the formulation above might lead 

o numerical issues as several nodes may be covered from the ex- 

ct same position. Hence, Mennell (2009) proposes an additional 

onstraint 
 

(a i − a j ) 2 + (b i − b j ) 2 ≥ ε i, j ∈ V mp ∪ V d | i � = j (17) 

o ensure that turning points are separated from one another by a 

mall positive value ε. While this may lead to suboptimal solutions 

n some cases, the resulting formulation avoids numerical issues 

hat would otherwise arise. 

In the following section, we additionally consider approaches in 

hich the covering neighborhoods cannot be described by circles 

ut by arbitrary polygons. However, no mathematical models were 

roposed in literature for these variants. 

.2.3. Solution approaches 

The approaches introduced for the CEVRP are summarized in 

able B2 in Appendix B. 

Approximation algorithms Several approximation algorithms ex- 

st for variants of the close-enough routing problem in the plane, 

ll focusing on the single-vehicle case. The earliest publications 

n the TSPN focus on algorithms achieving provable worst-case 

ounds on the length of the obtained routes relative to the op- 

imum. Arkin & Hassin (1994) have proposed methods that first 

dentify turning points within the covering regions in a heuris- 

ic fashion. Then, a vehicle route is planned through these points. 

he algorithm chooses turning points by placing lines that inter- 

ect as many neighborhoods as possible (“covering lines”). The au- 

hors also highlight cases where simple myopic heuristics might 

ield arbitrarily bad solutions. For the more general TSPN where 

overing neighborhoods can be represented by arbitrary polygo- 

al regions, an approximate algorithm has been proposed by Mata 

 Mitchell (1995) and developed further by Gudmundsson & Lev- 

opoulos (1999) and Dumitrescu & Mitchell (2003) . The broad idea 

f these schemes is first to find a bounding square that includes or 

t least touches all neighborhoods. This square is then subdivided 

ntil all neighborhoods are intersected or touched, at which point 

 tour can be planned that passes through all neighborhoods. 

Exact solution approaches 

There are few exact solution approaches for CEVRP variants de- 

ned in the plane. While the MINLP formulation above can be 

olved optimally, several authors note that this is impractical ( Dong 

t al., 20 07; Mennell, 20 09 ). Consequently, several authors focus 

n finding bounds to the objective function that allow, e.g., to as- 

ess the quality of heuristic approaches. Mennell (2009) provide 

he first steps in this direction but note that the achieved bounds 

re weak. Behdani & Smith (2014) determine tighter lower and up- 

er bounds based on discretization schemes. These schemes yield 

artitionings of the search space, e.g., in the form of cells that in- 

ersect at least one neighborhood; solutions can then be planned 

y determining routes through these partitions. Still, the approach 

uickly becomes impractical even in cases with fewer than 20 

odes to be covered. Carrabs, Cerrone, Cerulli, & Gaudioso (2017) , 

arrabs, Cerrone, Cerulli, & D’Ambrosio (2018) extend this work 

y providing new discretization schemes. A branch-and-bound ap- 

roach for the TSPN is introduced by Gentilini et al. (2013) who 

xploit the fact that, once all binary variables are fixed, the con- 

inuous relaxation of the problem can be solved with reasonable 

fficiency. Still, the problem remains intractable for more than 

5 neighborhoods. A branch-and-bound algorithm for the CETSP 
8 
s proposed by Coutinho, Do Nascimento, Pessoa, & Subramanian 

2016) . The algorithm works on ordered lists of covered vertices 

hich are expanded as one travels further down the search tree. 

he approach performs well on larger instances, especially if more 

eighborhoods overlap. 

Heuristic approaches 

Gulczynski et al. (2006) summarize several possible methods 

or the CETSP. All of these approaches are based on the determi- 

ation of “supernode” sets, i.e., sets of candidate turning points 

n the two-dimensional plane such that all customer nodes V mp 

re within a given distance to at least one node in the supernode 

et. The authors show that two heuristics are particularly success- 

ul: One based on decomposing the area into tiles covered by one 

upernode in the center, the other based on the determination of 

reas where the covering neighborhoods overlap, so-called Steiner 

ones. Assuming that it is beneficial to have as few supernodes as 

ossible, the authors propose strategies for eliminating and replac- 

ng supernodes. Tours are then planned by solving a TSP through 

uch a set. Dong et al. (2007) follow a very similar approach. Ad- 

itionally, they introduce a method that seeks to find “compact”

upernodes sets by iteratively computing the convex hull of all re- 

aining uncovered nodes, computing its centroid, and selecting a 

ew supernode as close as possible to the centroid. Yang et al. 

2018) propose a hybrid evolutionary algorithm that combines a 

ontinuous procedure for determining turning points and a ge- 

etic algorithm for optimizing the visit sequence. Most recently, 

arrabs, Cerrone, Cerulli, & Golden (2020) combine discretization 

oncepts for computing lower and upper bounds for the CETSP 

ith a Carousel greedy heuristic for incrementally constructing so- 

utions, resulting in heuristic solutions with tight bounds in a rel- 

tively short computation time. 

Solution approaches put forward by Mennell (2009) for solv- 

ng the CEVRP are similarly based on Steiner zones. The authors 

ropose an efficient heuristic to reduce the problem to a limited 

umber of these zones. A vehicle route is then planned such that 

t connects turning points in each of the identified zones. The route 

s improved by modifying the turning points through which a ve- 

icle passes to reduce overall tour length. 

.3. Close-enough arc routing problems 

In contrast to the CEVRP, close-enough arc routing problems are 

efined on a graph, for example, a street network (see Fig. 2 ). Usu-

lly, a node is part of the covering neighborhood of a street seg- 

ent if the distance to the arc is below a certain threshold. Similar 

o the CEVRP, this means that a node is covered as long as a vehi-

le passes through its neighborhood at any point during its tour. 

.3.1. Problem definition and applications 

The arc-based problem variant has been first presented by 

huttleworth, Golden, Smith, & Wasil (2008) , again in the con- 

ext of mobile meter reading services. This problem has been re- 

erred to as the close-enough arc routing problem (CEARP) by 

à, Bostel, Langevin, & Rousseau (2014) . Drexl (2007) and Drexl 

2014) have studied the generalized directed rural postman prob- 

em (GDRP), which, given several subsets of arcs, seeks to deter- 

ine a tour of minimum length that traverses at least one arc in 

ach set. While customer nodes are not modeled explicitly, this 

orresponds to the CEARP if each of these groups is interpreted 

s the covering neighborhood of one customer node. It has been 

xtended to the multi-vehicle case by Ávila, Corberán, Plana, & 

anchis (2017) in the form of the distance-constrained general- 

zed directed rural postman problem (DC-GDRP). Renaud, Absi, & 

eillet (2017) introduce the stochastic CEARP that accounts for the 

istance-dependent probability of failure when reading meters re- 

otely. 
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.3.2. Problem formulation 

For modeling the CEARP, we follow the model proposed in Hà, 

ostel, Langevin, & Rousseau (2012) for the sake of simplicity. More 

efined models are discussed in Hà et al. (2014) . The model is de- 

ned on a directed graph G = (V inter , A ) representing, for exam- 

le, a street network. In arc routing, nodes represent intersections 

s opposed to customers commonly represented in VRP variants. 

treet segments (arcs) are defined between these intersections. In 

he formulation below, the set V inter represents nodes including 

he depot V d . The street segments connecting these nodes define 

he arc set A . Each arc (i, j) ∈ A is associated with costs d i j . The

et of nodes to be covered is defined as V mp . Binary parameters 

 ki j are equal to one if and only if node k ∈ V mp can be covered

y arc (i, j) ∈ A , i.e., if k is in the covering neighborhood of arc

i, j) . Decision variables x i j ∈ N 

0 indicate the number of times an

rc (i, j) ∈ A is traversed by the vehicle. 

CEARP) min 

∑ 

(i, j) ∈A 
d i j x i j (18) 

.t. 
∑ 

, j | i ∈V d , j ∈V inter , (i, j ) ∈A 
x i j ≥ 1 (19) 

∑ 

j | (i, j) ∈A 
x i j −

∑ 

j | ( j,i ) ∈A 
x ji = 0 i ∈ V inter (20) 

∑ 

i, j) ∈A 
x i j w ki j ≥ 1 k ∈ V mp (21) 

M 

∑ 

i, j | i ∈ S, j∈V inter \ S, (i, j) ∈A x i j −
∑ 

i, j | i ∈ S, j∈ S, (i, j) ∈A x i j ≥ 0 S ⊂ V inter \ V d , 
2 ≤ | S| ≤ |V inter | − 2

(22) 

 i j ∈ N 

0 (i, j) ∈ A (23) 

Objective (18) minimizes travel distance. Constraint (19) en- 

ures that the vehicle leaves the depot, while constraints 

20) maintain flow conservation and ensure that the vehicle re- 

urns to the depot. Constraints (21) ensure coverage of passive 

odes. Disjoint subtours, i.e., subtours that are disconnected from 

he tour containing the depot, are eliminated by constraint set 

22) . Note that an arc routing solution can generally contain sub- 

ours. Only subtours that are not connected to the depot tour need 

o be eliminated. Parameter M is a sufficiently large integer. Con- 

traints (19) define the decision variables. 

.3.3. Solution approaches 

The approaches introduced for the CEARP are summarized in 

able B3 in Appendix B. 

Exact solution approaches 

Compared to their counterparts in the CEVRP problem class, 

EARP variants can, in general, be solved more efficiently as they 

re defined on a graph and do not represent continuous problems. 

à et al. (2014) propose several exact methods. Notably, they com- 

are two existing problem formulations by Hà et al. (2012) and 

rexl (2014) with a new one, which they strengthen using sev- 

ral valid inequalities. They furthermore propose a branch-and-cut 

rocedure for these formulations. Ávila, Corberán, Plana, & San- 

his (2016) develop these approaches further by introducing new 

roblem formulations together with valid inequalities. The authors 

olve instances with several hundred nodes and arcs, stating that 

nstances with disjoint covering neighborhoods are more challeng- 

ng than those where neighborhoods overlap. The same authors 

urthermore introduce a branch-and-cut approach based on similar 
9 
oncepts for the multi-vehicle variant ( Ávila et al., 2017 ). Renaud 

t al. (2017) solve the stochastic version of the CEARP via a cutting- 

lane algorithm that is enhanced with preprocessing methods to 

ecrease the problem size and heuristics to construct feasible solu- 

ions. Finally, Corberán, Plana, Reula, & Sanchis (2020) complement 

hese approaches with a formulation and several valid inequalities. 

he resulting exact algorithm tends to be faster, especially as the 

eet size increases. 

Heuristic approaches 

Solution approaches for the CEARP follow similar concepts as 

hose for CEVRP variants. Shuttleworth et al. (2008) propose a two- 

tage approach, where the first step consists of greedily construct- 

ng subsets of arcs to be traversed in order to ensure full cover- 

ge, and the second one finds a complete cycle comprising these 

rcs. Drexl (2014) adapt a genetic algorithm for the GTSP for solv- 

ng the DC-GDRP. Corberán, Plana, Reula, & Sanchis (2019) sug- 

est a matheuristic for solving this problem. Routes are either con- 

tructed in parallel or sequentially and are improved using heuris- 

ic exchanges as well as exact procedures for the CEARP introduced 

y Ávila et al. (2016) . The heuristic scales well but remains limited 

o instances with up to 5 vehicles. For solving the stochastic CEARP, 

enaud et al. (2017) combine an approach adapted from Hà et al. 

2013) and TSP-based heuristics. 

.4. Vehicle routing allocation problems 

In this section, we apply the term “routing-allocation problem”

or problems where neighborhood size is not fixed. Instead, cover- 

ng a node incurs a cost that typically increases with the distance 

etween the covering and the covered (also called “allocated”) 

ode. The objective is to find a cost-minimal solution where all 

odes are either visited or allocated. 

.4.1. Problem definition and applications 

The first variant in this line of work has been proposed by 

kinc & Srikanth (1992) , who suggest a single-vehicle problem 

ith mandatory coverage of all active nodes for selecting oil rig 

ocations and planning maintenance and health care services. The 

ore general problem variant that includes active and passive 

odes has been proposed by Beasley & Nascimento (1996) for plan- 

ing mobile medical care or postal collection routes. The problem 

eeks to minimize a weighted cost function that accounts for the 

outing costs of the vehicle. Additionally, allocation costs are in- 

urred for covering a node i from node j Furthermore, high penalty 

osts for leaving nodes unvisited and uncovered are considered. 

his generalized problem is referred to as the vehicle routing al- 

ocation problem (VRAP), while the single-vehicle variant is ab- 

reviated SVRAP. Note that the VRAP comprises both the CTP and 

he OPCov as a special case. Allahyari et al. (2015) introduced a 

roblem referred to as the multi-depot CTP (MDCTP) for the provi- 

ioning of humanitarian aid after a disaster. The authors consider 

he cost of covering unvisited nodes, which increases with the dis- 

ance between a covered node and the node providing coverage. 

ue to the this distinction, we subsume this problem under the 

RAP class, where it represents the first multi-vehicle version. 

Labbé, Laporte, Rodríquez Martín, & Salazar Gonzáles (1999) in- 

roduced the median cycle problem (MCP). The planning objective 

s to find a cycle in a graph such that a set of mandatory active

odes is either visited or allocated to a visited node. Concerning 

he objective function, two variants of the problem were proposed. 

n the first variant, the sum of routing and allocation costs is min- 

mized. The second variant seeks to minimize routing costs sub- 

ect to a maximum value constraint for the total allocation cost. 

he first variant of the MCP has also been published under the 

ame ring-star problem (RSP) ( Labbé, Laporte, Martín, & González, 

004 ). A suggested application for this problem is the design of 
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elecommunication networks ( Xu et al., 1999 ). The Steiner ring- 

tar problem (SRSP) is a variant that distinguishes between op- 

ional active nodes which may be part of the cycle but do not need

o be covered (so-called Steiner nodes) and active nodes that can 

e either visited directly or covered. Multi-vehicle applications of 

he RSP in which each cycle is limited in the number of assigned 

ustomers have also been introduced by Baldacci, Dell’Amico, & 

onzález (2007) . 

.4.2. Problem formulation 

Below, we indicate the formulation for the single-vehicle rout- 

ng allocation problem (SVRAP) due to its versatility ( Vogt et al., 

007 ). This problem comprises the introduced node categories ex- 

ept for optional passive nodes, i.e., V c = V ma ∪ V oa ∪ V mp , and de-

ot nodes V d . Coverage is not limited in distance, and nodes may 

e covered by any active node. The cost of covering node j from 

ode i is denoted c i j ( Vogt et al. (2007) refer to this as “allocating”

ode j to node i ) and typically increases with distance between 

he two nodes. Leaving an optional active node i unvisited and un- 

overed incurs a penalty p i > 0 . 

Binary decision variables x i j indicate whether the vehicle trav- 

ls from node i to node j. Binary variables y i denote whether an 

ctive node i ∈ V a is included in a vehicle tour or not. In addition,

he SVRAP uses binary decision variables z i j to indicate whether an 

ctive node i ∈ V a covers an optional active or mandatory passive 

ode j ∈ V oa ∪ V mp . Decision variables z i indicate whether an op-

ional active or mandatory passive node i ∈ V oa ∪ V mp is covered by

ny node in the tour. Finally, λ1 , λ2 , λ3 > 0 are objective function 

eights. Based on this notation, the problem can be formulated as 

ollows: 

SVRAP) min λ1 

∑ 

i ∈V oa 

p i (1 − y i − z i ) 

+ λ2 

∑ 

i ∈V a , j∈V oa ∪V mp | i � = j 
c i j z i j + λ3 

∑ 

i, j∈V a ∪V d | i � = j 
d i j x i j (24) 

.t. 
∑ 

j∈V a 
x i j = 1 i ∈ V d (25) 

∑ 

j∈V a 
x ji = 1 i ∈ V d (26) 

∑ 

j∈V a ∪V d | i � = j 
x ji = y i i ∈ V a (27) 

∑ 

j∈V a ∪V d | i � = j 
x i j = y i i ∈ V a (28) 

 

 ∈V a 
z i j = z j j ∈ V oa ∪ V mp (29) 

 i j ≤ y i i ∈ V a , j ∈ V oa ∪ V mp (30) 

 i + z i ≤ 1 i ∈ V oa (31) 

∑ 

j∈ S,k ∈V a ∪V d | k �∈ S 
x jk ≥ y i i ∈ S ∩ V a , S ⊂ V a , S � = ∅ (32) 

 i = 1 i ∈ V mp (33) 

 i = 1 i ∈ V ma (34) 
w

10 
 i j ∈ { 0 , 1 } i, j ∈ V a ∪ V d | i � = j (35) 

 i ∈ { 0 , 1 } i ∈ V a (36) 

 i j ∈ { 0 , 1 } i ∈ V a , j ∈ V oa ∪ V mp | i � = j (37) 

 i ∈ { 0 , 1 } i ∈ V oa ∪ V mp (38) 

Objective (24) minimizes the weighted sum of three types of 

ost: The first term represents the penalty for not visiting or cover- 

ng optional active nodes. The second term sums up the distance- 

ependent cost for covering optional active or passive nodes, while 

he third term sums up the traveling cost of the tour. Constraints 

25) and (26) ensure that the tour starts and ends at the depot, 

hile sets (27) and (28) maintain flow conservation. Constraints 

29) ensure that covered vertices are assigned to exactly one cov- 

ring node. Meanwhile, constraint set (30) ensures that if an op- 

ional active node covers a node, the covering node is included in 

he tour. For all optional active nodes, constraints (31) ensure that 

hey cannot be simultaneously visited and covered. Constraints 

32) eliminate subtours. Constraints (33) ensure that all manda- 

ory passive nodes are covered while constraints (34) ensure that 

andatory active nodes are visited. Constraints (35) to (38) define 

he decision variables. 

.4.3. Solution approaches 

The approaches introduced in the following paragraphs are 

iven in Table B4 in Appendix B. 

Exact solution approaches 

Akinc & Srikanth (1992) solve the SVRAP with mandatory active 

odes using a branch-and-bound procedure but note that further 

ork is necessary to exploit problem-specific properties. Labbé

t al. (1999) propose a branch-and-cut approach for MCP vari- 

nts that is strengthened with several valid inequalities and inte- 

rates heuristic procedures for determining feasible solutions. The 

lgorithm yields promising results with instances with up to 150 

odes. The authors note that the problems tend to be challeng- 

ng when few nodes make up the optimal cycle. Exact approaches 

re discussed by the same authors in later works ( Labbé et al., 

004; Labbé, Laporte, Martın, & González, 2005 ) and are shown to 

e able to solve larger instances as well as a real-world scenario. 

imonetti, Frota, & de Souza (2011) propose an alternative formu- 

ation that is integrated in a branch-and-cut procedure. They inte- 

rate a GRASP for finding good initial solutions and thus reliable 

pper bounds. 

The first approach for a multi-vehicle problem in this line of re- 

earch has been proposed by Baldacci et al. (2007) for solving the 

 -RSP. The authors introduce two formulations together with valid 

nequalities that are integrated in a branch-and-cut procedure. Fur- 

hermore, they apply the algorithm to two large real-world in- 

tances with more than 20 0 0 nodes. The instances are simplified 

n a preprocessing step. Baldacci, Hill, Hoshino, & Lim (2017) pro- 

ose several problem relaxations that provide tighter lower bounds 

han previous approaches. 

Heuristic approach 

Xu et al. (1999) solve the SRSP using a tabu search approach. 

earch steps modify the selected active nodes while a short-term 

emory prevents the reversal of recent moves and a long-term 

emory emphasizes diversification by encouraging less frequently 

sed moves. Pérez, Moreno-Vega, & Martın (2003) propose a vari- 

ble neighborhood tabu search, which they apply to the MCP. 

oves include node insertion, exchange, and deletion together 

ith a shaking step that modifies the selected nodes as well as 
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ommon VRP search moves. In contrast to observations made by 

uthors of exact approaches, Pérez et al. (2003) note that the per- 

ormance deteriorates when cycles include a larger percentage of 

odes. Renaud, Boctor, & Laporte (2004) propose two heuristics 

or MCP variants: one combines a construction heuristic and lo- 

al search approaches, the other is based on an evolutionary algo- 

ithm that seeks to improve solutions found by the first heuristic. 

alvete, Galé, & Iranzo (2013) also propose an evolutionary algo- 

ithm for the RSP which achieves very low computation times. The 

uthors demonstrate how the relationship between routing and as- 

ignment cost impacts solution structures. 

For solving the SVRAP, Vogt et al. (2007) employ a tabu search 

ariant. The initial solution is built based on the observations that 

odes selected for visitation are rarely located at the border or 

he center of the considered area. This serves to select an ini- 

ial set of nodes to be routed. Subsequently, the search iteratively 

hanges the nodes included in the vehicle tour and optimally allo- 

ates all unvisited nodes. The solution is further strengthened by 

ath-relinking and diversification steps that modify the set of se- 

ected nodes such that new options are explored. 

Considering multi-vehicle variants, Naji-Azimi, Salari, & Toth 

2010) propose a local search based heuristic for the m -RSP. Ini- 

ial routes distributed as widely as possible across the graph are 

onstructed and then improved using swap and deletion moves 

nd strategies for improving the allocation of covered nodes. Naji- 

zimi, Salari, & Toth (2012b) propose a VNS that comprises an 

mprovement phase based on optimally solving restricted prob- 

ems seeking to reallocate nodes. Zhang, Qin, & Lim (2014) pro- 

ose a memetic algorithm for the problem class that combines a 

enetic algorithm with local search operations for modifying the 

isited nodes. For solving the multi-depot case, Allahyari et al. 

2015) combine a greedy randomized adaptive search procedure 

GRASP) and iterated local search (ILS). Initial routes are con- 

tructed by building clusters that assign nodes to depots and then 

uilding routes for each cluster. 

.5. Orienteering problems with spatial coverage 

The goal of orienteering problems (OP) is to determine a sub- 

et of nodes to visit and the corresponding visit order so that 

he total collected profit is maximized and a time limit is not ex- 

eeded ( Gunawan, Lau, & Vansteenwegen, 2016 ). For orienteering 

roblems with spatial coverage (OPCov), no general model exists. 

onetheless, there has been an influx of publications in recent 

ears that integrate aspects of spatial coverage and profit maxi- 

ization. This section summarizes these approaches and highlights 

ommon principles and ideas. To this end, we formulate all mod- 

ls such that they follow the VRP-SCOV as closely as possible. All 

pproaches are summarized in Table B5 in Appendix B. 

.5.1. Time constrained maximal covering salesman problem 

Ozbaygin, Yaman, & Karasan (2016) have proposed an extension 

o the OP with additional consideration of coverage constraints. 

hereby, nodes that are not included in a vehicle tour but are 

ithin a specified maximum distance of a visited node provide a 

ositive contribution to the objective function. This contribution is 

ess than the benefit yielded by directly including the node in a 

ehicle tour, i.e., it corresponds to a partial coverage in our ter- 

inology. This problem is denoted the time constrained maximal 

overing salesman problem (TCMCSP). 

Problem definition 

The set of nodes V contains optional active nodes V oa and a de- 

ot node in V d . Visiting i ∈ V oa directly yields a profit p i ; covering

t yields only a fraction of p i . The profit fraction is denoted α and

s the same for all nodes within a covering neighborhood. With 
11 
espect to the VRP-SCOV, this means that w i j = α for j ∈ C i with

∈ (0 , 1) . 

For modeling the problem, we use binary decision variables x i j 

o indicate the sequence of nodes and variables y i to represent 

hich nodes are visited. Moreover, we use a binary variable z i rep- 

esenting coverage of node i . Auxiliary variables u i are used for 

liminating subtours. Then, the problem can be formulated as fol- 

ows: 

TCMCSP) max 
∑ 

i ∈V oa 

(p i y i + αp i z i ) (39) 

.t. 
∑ 

j∈V oa 

x i j = 1 i ∈ V d (40) 

∑ 

j∈V oa 

x ji = 1 i ∈ V d (41) 

∑ 

j∈V oa ∪V d | i � = j 
x ji = y i i ∈ V oa (42) 

∑ 

j∈V oa ∪V d | i � = j 
x i j = y i i ∈ V oa (43) 

 i − u j + 1 ≤ (|V oa | − 1)(1 − x i j ) i, j ∈ V oa | i � = j (44) 

∑ 

, j∈V oa ∪V d | i � = j 
x i j d i j ≤ T (45) 

 i + z i ≤ 1 i ∈ V oa (46) 

 i ≤
∑ 

j | i ∈C j 
y j i ∈ V oa (47) 

 i j ∈ { 0 , 1 } i, j ∈ V oa ∪ V d | i � = j (48) 

 i ∈ { 0 , 1 } i ∈ V oa (49) 

 i ∈ { 0 , 1 } i ∈ V oa (50) 

 i ∈ { 1 , . . . , |V oa |} i ∈ V oa (51) 

Objective (39) maximizes the sum of profits of all directly vis- 

ted nodes plus the partially considered profits of those that are 

overed. Constraints (40) and (41) ensure that the vehicle leaves 

nd enters the depot exactly once, while constraints (42) and 

43) state the same for all visited nodes. Subtours are eliminated 

y constraint set (44) . Note that, in this model, we use the subtour 

limination constraint commonly used for orienteering problems, 

ee also Gunawan et al. (2016) . The total route length is limited 

y constraint (45) . Constraints (46) ensure that nodes that are vis- 

ted directly are not considered covered. Constraints (47) state that 

ll nodes are covered if they are included in the covering neighbor- 

ood of at least one visited node, while constraints (48) to (51) de- 

ne the decision variables. 

Exact approaches 

Ozbaygin et al. (2016) propose several branch-and-cut schemes 

or solving the TCMCSP formulated above and strengthened with 

dditional valid inequalities. The algorithms are tested on bench- 

ark instances with up to 200 nodes. Additionally, the authors 
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iscuss the impact of problem parameters, notably, maximum tour 

ength, the fraction α for indirect coverage, and properties of the 

nderlying graph. The results highlight that the tour length restric- 

ion determines, in general, the achievable profitability. The value 

changes the trade-off between the number of visited and unvis- 

ted nodes. The impact of increasing the maximum coverage dis- 

ance d depends on the underlying graph structure: If the graph 

s clustered, the impact on the route can be relatively small. In 

ther cases, the resulting tours are more narrow: This allows vis- 

ting more customers directly within the limited routing distance 

hile maintaining the overall level of coverage of unvisited nodes. 

.5.2. Set orienteering problem 

Another variant of the OPCov is the set orienteering problem 

SOP) introduced by Archetti, Carrabs, & Cerulli (2018) , who also 

ntroduced a set of benchmark instances. In this problem variant, 

ustomers are grouped into disjoint clusters. Visiting one customer 

ithin a cluster allows collecting the entire profit associated with 

his cluster. The SOP shares this interpretation of a neighborhood 

ith the GTSP which we introduced in Section 3.1 . In fact, the 

wo problem classes only differ in the objective function. Applica- 

ions addressed by Archetti et al. (2018) are supply chains or areas 

n which goods can be distributed further from a visited location. 

ence, clusters can represent spatial relations but do not have to. 

dditional visits within one cluster do not provide additional ben- 

fits. Clusters are disjoint, i.e., visiting a customer from within one 

luster does not provide benefits for other clusters. Note that only 

he single-vehicle case has been considered to this date. 

Problem formulation 

The set V oa is composed of g clusters { C 1 , . . . , C g } such that

 k ∩ C m 

= ∅ for all k, m ∈ { 1 , . . . , g} with k � = m . Visiting a node i or

overing it by visiting another node in the same cluster yields a 

rofit p i . With respect to our notation for VRP-SCOV, we can de- 

ne weights w i j = 1 if i, j are in the same cluster and 0 otherwise.

his means that clusters and covering neighborhoods are equiva- 

ent. As a consequence, the SOP can be formulated similarly to the 

CMCSP with α = 1 . The problem uses the same decision variables 

s the TCMCSP ( Section 3.5.1 ), with decision variables x i j , y i and z i 
ndicating the node sequence, visited nodes and covered nodes, re- 

pectively. Note that, to highlight the similarity between the mod- 

ls, the following formulation deviates from the one proposed in 

iterature: 

SOP) max 
∑ 

i ∈V oa 

z i p i (52) 

.t. 
∑ 

j∈V oa 

x i j = 1 i ∈ V d (53) 

∑ 

j∈V oa 

x ji = 1 i ∈ V d (54) 

∑ 

j∈V oa ∪V d | i � = j 
x ji = y i i ∈ V oa (55) 

∑ 

j∈V oa ∪V d | i � = j 
x i j = y i i ∈ V oa (56) 

 i − u j + 1 ≤ (|V oa | − 1)(1 − x i j ) i, j ∈ V oa | i � = j (57) 

∑ 

, j∈V oa ∪V d | i � = j 
x i j d i j ≤ T (58) 
a

12 
 i ≤
∑ 

j∈ C i 
y j i ∈ V oa (59) 

 i j ∈ { 0 , 1 } i, j ∈ V oa ∪ V d | i � = j (60) 

 i ∈ { 0 , 1 } i ∈ V oa (61) 

 i ∈ { 0 , 1 } i ∈ { 1 , . . . , g} (62) 

 i ∈ { 1 , . . . , |V oa |} i ∈ V oa (63) 

Objective (52) maximizes the sum of all covered nodes. Again, 

onstraints (53) to (56) are vehicle flow constraints, constraints 

57) eliminate subtours and constraints (58) ensure that the max- 

mum route budget is not exceeded. Constraints (59) state that a 

ode is covered if at least one other node belonging to the same 

eighborhood is included in a vehicle tour. Note that, for SOP, it 

s not necessary to distinguish between explicitly covered and vis- 

ted nodes, as the objective function does not differentiate between 

hese two groups of nodes. Finally, constraints (60) to (63) define 

he decision variables. 

Heuristic approaches 

Solution approaches for the SOP explicitly make use of the 

act that clusters do not overlap. In the paper by Archetti et al. 

2018) , the SOP is solved using a matheuristic. An initial tour is 

onstructed greedily. To reduce the initial routing cost, the search 

lternates between changing the nodes selected for visitation in 

ach cluster and improving the sequence of the selected nodes. 

he main tabu search procedure seeks to improve the selection of 

lusters. If this fails, a MILP is applied to solve a simplified model 

n which clusters are partially fixed to take larger steps in the 

earch space. P ̌eni ̌cka, Faigl, & Saska (2019) propose a VNS that 

perates on the sequence of clusters, while nodes to be visited 

n each cluster are selected using a shortest path search. Carrabs 

2020) present a biased random-key genetic algorithm that simi- 

arly searches on the visiting sequence of clusters. Unused nodes 

nd arcs are eliminated in a preprocessing step. 

.5.3. Correlated orienteering problem 

Yu, Schwager, & Rus (2014) propose the correlated team ori- 

nteering problem (CorTOP) to model the planning problem for 

rones that execute surveillance and monitoring tasks of an envi- 

onment with spatial correlations (see also informative path plan- 

ing in the next section). They model the CorTOP as a variant 

f the team orienteering problem (TOP) to integrate information 

bout spatial correlations in the model. In this model, covering a 

ode only provides a limited fraction of its reward p i . The unique 

eature of the CorTOP is that additional stops within covering dis- 

ance provide an additional benefit such that the full reward for 

n unvisited target node is achieved when all covering nodes are 

ncluded in a vehicle tour. In Glock & Meyer (2020) , the mission 

lanning problem for drones aims at providing a quick overview 

f the distribution of airborne substances after the release of haz- 

rdous substances and is modeled as a variant of the CorTOP. This 

pplication is referred to as rapid mapping. 

Problem formulation 

This problem only contains optional active nodes V oa and a de- 

ot node contained in V d . The weights w i j depend on the dis- 

ance d i j between two nodes, i.e., w i j = f weight (d i j ) for covering 

istances d i j ≤ d with f weight (d i j ) ∈ [0 , 1] for i, j ∈ V a . A possible

epresentation for f weight is an inverse distance weighting function 

ith f weight (d i j ) = 

1 
d i j 

. Additionally, we use the same decision vari- 

bles x i j , y i and u i to indicate node sequence, visited nodes and 
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ubtour elimination as in the previous orienteering variants (see 

ection 3.5.1 ). Consistent with the remainder of the formulations 

n this work, the single-vehicle variant of the CorTOP can be de- 

ned as mixed integer quadratic program (MIQP): 

CorTOP) max 
∑ 

i ∈V oa 

y i p i + 

∑ 

i ∈V oa 

∑ 

j∈C i 
y i (1 − y j ) w i j p j (64) 

.t. 
∑ 

j∈V oa 

x i j = 1 i ∈ V d (65) 

∑ 

j∈V oa 

x ji = 1 i ∈ V d (66) 

∑ 

j∈V oa ∪V d | i � = j 
x ji = y i i ∈ V oa (67) 

∑ 

j∈V oa ∪V d | i � = j 
x i j = y i i ∈ V oa (68) 

 i − u j + 1 ≤ (|V oa | − 1)(1 − x i j ) i, j ∈ V oa | i � = j (69) 

∑ 

, j∈V oa ∪V d | i � = j 
x i j d i j ≤ T (70) 

 i j ∈ { 0 , 1 } i, j ∈ V oa ∪ V d | i � = j (71) 

 i ∈ { 0 , 1 } i ∈ V oa (72) 

 i ∈ { 1 , . . . , |V oa |} i ∈ V oa (73) 

The objective function (64) maximizes the sum of the priori- 

ies of all directly visited and covered nodes. Constraints (65) to 

68) state that all visited nodes, included the depot, are entered 

nd left once. Subtours are eliminated in constraint set (69) . The 

oute budget is limited by constraint (70) . Constraints (71) to 

73) define the decision variables. 

In order to ensure that covering a visit can never be more 

eneficial than visiting it directly, Yu et al. (2014) enforce that 
 

i ∈V oa | j∈C i w i j ≤ 1 , j ∈ V oa , while Glock & Meyer (2020) introduce 

 more general nonlinear objective function 

GCorTOP) max 
∑ 

i ∈V oa 

y i p i + 

∑ 

j∈V oa 

min { ∑ 

i ∈V oa | j∈C i 
y i (1 − y j ) w i j , 1 } p j 

(74) 

e refer to the corresponding multi-vehicle problem with objec- 

ive function (74) as the generalized correlated team orienteering 

roblem (GCorTOP). 

Solution approaches Yu et al. (2014) solve small problem in- 

tances using the problem formulation above but do not seek to re- 

ne it further. Glock & Meyer (2020) propose a dynamic program- 

ing approach yielding optimal solutions for small instances of 

he GCorTOP. To solve larger instances, Glock & Meyer (2020) also 

ropose a two-stage heuristic approach for solving real-world in- 

tances of the mission planning for emergency rapid mapping. In 

he first step, knowledge about “good” properties of solutions is 

xploited to find initial solutions that traverse large parts of the 

nderlying graph. In a second step, these tours are improved fur- 

her through an adaptive large neighborhood search (ALNS) proce- 

ure. 
13 
.5.4. Team orienteering problem with overlaps 

Orlis et al. (2020) develop a variant of the OPCov in the context 

f cash logistics. The objective is to select ATMs for replenishment 

ia armored vehicles such that account holders nearby have access 

o serviced ATMs. The authors refer to this problem as the team 

rienteering problem with overlaps (TOPO). 

Problem formulation 

Locations providing service can be modeled as optional active 

odes V oa and customers as optional passive nodes V op . Each loca- 

ion i ∈ V oa can service account holders within its covering neigh- 

orhood C i . As customers can obtain service from any service point 

earby, these neighborhoods can overlap. 

In Orlis et al. (2020) , the TOPO is introduced as a multi-vehicle 

ptimization problem. To maintain consistency with the remainder 

f this paper, we focus on the corresponding formulation for the 

ingle-vehicle case. To this end, binary decision variables x i j again 

ndicate the vehicle traveling from node i to node j. Whether a 

ode is covered is indicated by variables z i , while u i are introduced 

or subtour elimination. 

TOPO) max 
∑ 

i ∈V op 

z i (75) 

.t. 
∑ 

j∈V oa 

x i j = 1 i ∈ V d (76) 

∑ 

j∈V oa 

x ji = 1 i ∈ V d (77) 

∑ 

j∈V oa ∪V d | i � = j 
x ji ≤ 1 i ∈ V oa (78) 

∑ 

j∈V oa ∪V d | i � = j 
x i j −

∑ 

j∈V oa ∪V d | i � = j 
x ji = 0 i ∈ V oa (79) 

 i + (T + d i j ) x i j ≤ u j + T i, j ∈ V oa | i � = j (80) 

 i ≤ (T − t ik ) 
∑ 

j∈V oa ∪V d | i � = j 
x i j i ∈ V oa , k ∈ V d (81) 

∑ 

, j∈V a ∪V d | i � = j,k ∈C i 
x i j ≥ z k k ∈ V op (82) 

 i j ∈ { 0 , 1 } i, j ∈ V oa ∪ V d | i � = j (83) 

 i ∈ { 0 , 1 } i ∈ V op (84) 

 i ∈ R 

+ i ∈ V oa (85) 

In the formulation above, objective (75) maximizes the num- 

er of covered passive nodes, i.e., the number of served cus- 

omers. Constraints (76) to (79) ensure that the depot is left 

nd entered once and maintain flow conservation. Constraint set 

80) eliminates subtours and sets the arrival time at each customer. 

ith line (81) , the maximum tour length is restricted. Constraints 

82) ensure that a customer can only be covered if it is within 

each of a visited location. Finally, decision variables are defined 

n constraints (83) to (85) . 

Solution approaches Orlis et al. (2020) introduce a branch-and- 

ut-and-price algorithm for which they describe several accelera- 

ion techniques and methods for tightening bounds. Moreover, they 
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ropose a large neighborhood search in which routes are partially 

estroyed and repaired by modifying the selected locations and the 

outes through these locations in two distinct steps. The improve- 

ent of the selected active nodes specifically takes into account 

hat covering neighborhoods may overlap. In this case, their com- 

ined contribution to the objective can be less than if they were 

onsidered separately (i.e., f (A ∪ B ) ≤ f (A ) + f (B ) for a given ob-

ective function f : S ⊂ V → R 

+ 
0 

and A, B ⊂ V). 

.5.5. Close-enough orienteering problem 

The only problem variant subsumed under OPCov defined on 

he plane is the close-enough orienteering problem (CEOP). Since 

his is the only variant, we have refrained from introducing a sepa- 

ate class. The CEOP combines properties of the orienteering prob- 

em with the CEVRP (also defined on the plane) in the sense that 

he profit associated with a node is collected as long as a vehicle 

ravels sufficiently close to this node at any point during its tour. 

irst referred to as the orienteering problem with neighborhoods 

 Faigl, P ̌eni ̌cka, & Best, 2016 ), the CEOP was developed for mobile

ata collection in the field of robotics. Due to its application in this 

omain, the authors extend the problem to the Dubins orienteer- 

ng problem with neighborhoods (DOPN), which adds additional 

estrictions on the maneuverability of the mobile robot ( Faigl & 

 ̌eni ̌cka, 2017 ). Similar to the CEVRP, a solution to the CEOP is typi-

ally represented by turning points within sufficient distance to the 

odes that are selected to be covered. However, no mixed-integer 

ormulation or exact solution approach has been proposed for this 

roblem. Therefore, this section summarizes the heuristic methods 

eveloped in literature. 

Heuristic approaches Faigl et al. (2016) develop a self-organizing 

ap (SOM) based procedure based on a neural network that works 

n a discretization of the plane. However, the algorithm does not 

utperform other approaches used for benchmarking on the ori- 

nteering problem without spatial coverage. The DOPN is solved 

sing VNS as well as a SOM-based approach by Faigl & P ̌eni ̌cka

2017) . Štefaníková, Váňa, & Faigl (2020) propose a GRASP for the 

EOP. In the construction phase, new turning points are iteratively 

nserted into emerging tours. If the tour budget is exceeded, the 

oute is repaired by removing segments until the constraint is sat- 

sfied. The core distinction of the novel approach is the determi- 

ation of turning points such that the detour for each insertion is 

inimal. 

.6. Informative path planning 

The literature related to the VRP-SCOV in the domain of 

obotics has its origins in sensor placement problems without con- 

ideration of routing decisions. These problems address the ques- 

ion of designing sensor networks for monitoring environmental 

henomena (e.g., Krause, Singh, & Guestrin, 2008 ). Examples in- 

lude water contamination ( Krause et al., 2008 ), temperature and 

alinity in bodies of water ( Binney, Krause, & Sukhatme, 2013; Bin- 

ey & Sukhatme, 2012 ) or wireless signal strength ( Hollinger & 

ukhatme, 2014 ). In these applications, each sample provides addi- 

ional information about the overall monitored distribution. These 

istributions are usually spatially correlated, which means that 

imilar values can be observed at locations close to one another. 

ence, each sensor also provides data about its surrounding area. 

he overall information about the surveyed phenomenon is dimin- 

shed if sensors are placed too closely together. 

The sensor placement problem has been extended to mobile 

ensor systems. The resulting planning problem is referred to as 

nformative path planning (IPP). Both discrete variants, where ve- 

icles move through predetermined candidate sampling locations, 

s well as continuous models in which samples can be taken freely 
14 
t any point in the plane have been proposed in literature. In con- 

istency to literature, we subsume both variants under the term 

PP. 

.6.1. Problem definition and applications 

The objective of the IPP is to determine vehicle trajectories that 

rovide as much information as possible about a spatially corre- 

ated phenomenon while respecting the vehicles’ maximum mis- 

ion duration. Most of the work addresses environmental monitor- 

ng applications, e.g., oceanic monitoring using autonomous under- 

ater vehicles, where large areas have to be surveyed. 

Similarly to the orienteering problem, IPP models seek to max- 

mize some measure indicating the benefit of the vehicle tours. 

s opposed to orienteering problem methods, IPP approaches do 

ot account for profits associated with specific target locations. In- 

tead, they use probabilistic models for determining the informa- 

ion gain achieved by the vehicles with respect to the observed 

henomenon, notably Gaussian process (GP) models. An overview 

f these models is provided in Appendix A. An illustrative exam- 

le for such a GP is provided in Fig. 3 : A UAV takes samples, e.g.,

f hazardous gases, across the target area, which yields the pre- 

icted distribution indicated on the left-hand side. The right-hand 

ide presents the remaining uncertainty after accounting for these 

amples: While the prediction is likely to be accurate close to the 

o the UAV’s route, the uncertainty increases with increasing dis- 

ance from the closest sampled location. 

This information about the uncertainty of predictions is ad- 

ressed in objective functions of the IPP. This means that these 

odels seek to determine sets of sensing locations such that the 

verall uncertainty about the interpolated phenomenon is minimal. 

odels furthermore ensure that additional measurements remain 

eneficial while reducing the marginal contribution of additional 

earby samples to the objective function. They share this prop- 

rty with several orienteering problems with spatial coverage, e.g., 

OPO. A main IPP challenge lies in the a priori assessment of the 

enefit of additional samples. This is because an accurate assess- 

ent requires full knowledge of the visited points of the mission. 

ariants such as CorTOP and GCorTOP have been introduced as ap- 

roximative representations of these models in the form of mixed 

nteger models in order to address this disadvantage. 

.6.2. Problem formulation 

As IPP models differ most from the other lines of research sum- 

arized in this work, we need to adjust our mathematical formu- 

ation: Most importantly, we cannot define a closed-form expres- 

ion for the total profit of a solution. Instead, the value of a solu- 

ion is usually defined using an informativeness measure I(S) , i.e., 

ome error measure based on predictive model conditioned on the 

ncluded sampling locations S ⊆ V oa . Possible candidate locations at 

hich samples may be obtained are included in the set of optional 

ctive nodes V oa . For consistency with the models provided for the 

PCov in Section 3.5 , variables x i j and y i again indicate the se- 

uence of sampling locations, while y i is used to indicate locations 

t which samples are taken during the tour. Auxiliary variables u i 
re used for subtour elimination. The discrete version of IPP dis- 

inguishes itself from orienteering models by means of a modified 

bjective function: 

IPP) max I({ i ∈ V oa | y i = 1 } ) (86) 

.t. 
∑ 

j∈V oa 

x i j = 1 i ∈ V d (87) 

∑ 

j∈V oa 

x ji = 1 i ∈ V d (88) 
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Fig. 3. Example of a surveyed phenomenon and remaining uncertainty. 
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∑ 

j∈V oa ∪V d | i � = j 
x ji = y i i ∈ V oa (89) 

∑ 

j∈V oa ∪V d | i � = j 
x i j = y i i ∈ V oa (90) 

 i − u j + 1 ≤ (|V oa | − 1)(1 − x i j ) i, j ∈ V oa | i � = j (91) 

∑ 

, j∈V oa ∪V d | i � = j 
x i j d i j ≤ T (92) 

 i j ∈ { 0 , 1 } i, j ∈ V oa ∪ V d | i � = j (93) 

 i ∈ { 0 , 1 } i ∈ V oa (94) 

 i ∈ { 1 , . . . , |V oa |} i ∈ V oa (95) 

bjective (86) maximizes the informativeness function for the set 

f selected samples. Constraints (87) to (95) follow the CorTOP for- 

ulation (see Section 3.5.3 ). 

.6.3. Solution approaches 

Table B6 in Appendix B summarizes the solution approaches for 

PP. In contrast to research in the domain of Operations Research, 

hich emphasize heuristics for solving large-scale problems, liter- 

ture on the IPP has focused on approximation algorithms with 

ounded performance. This offers certain guarantees when faced 

ith high costs for sensing and monitoring. 

Several approaches have been put forward that are based on the 

ecursive greedy heuristic proposed by Chekuri & Pal (2005) for 

olving discrete single-vehicle problems with submodular objective 

unctions. This approach operates by splitting the problem into two 

ubproblems, solving the first one recursively, and then solving the 

ther while keeping the solution obtained for the first one fixed. 

ingh, Kaiser, Batalin, Krause, & Guestrin (2007) improve the run- 

ing time of the recursive greedy approach by decomposing the 

arget area into independent cells. Furthermore, the authors ad- 

ress the multi-vehicle case by applying the recursive greedy al- 

orithm to a series of single-vehicle problems sequentially, in each 

tep taking into account the information obtained using all pre- 

iously planned vehicle routes. These concepts are also discussed 

nd evaluated in detail in a later publication ( Singh et al., 2009a ).
15 
eliou, Krause, Guestrin, & Hellerstein (2007) embed the recur- 

ive greedy approach in a framework that seeks to minimize sens- 

ng cost for a given threshold value for I . Singh, Krause, & Kaiser 

2009b) propose an alternative to the recursive greedy approach 

n which node clusters are precomputed first, and a route is then 

btained by solving an orienteering problem on the approximated 

raph obtained in this preprocessing step. A version of the recur- 

ive greedy algorithm is also used by Binney, Krause, & Sukhatme 

2010) , who solve an IPP variant with time windows that limit 

he accessibility of certain areas. The authors also demonstrate 

ow available information, for example, the information obtained 

sing previous missions, can be incorporated to improve subse- 

uent tours. Stranders, De Cote, Rogers, & Jennings (2013) propose 

 near-optimal heuristic that first decomposes the graph into dis- 

inct clusters, for which routes are planned greedily. For multiple 

ehicles, routes are planned sequentially. Binney et al. (2013) ex- 

end the recursive greedy approach to a case with time-varying 

elds. Similar to previous approaches, the algorithm does not scale 

ell for instances with more than a few dozen candidate locations. 

awaid & Smith (2015) propose approximate solution techniques 

or a generalized problem seeking to maximize arbitrary submodu- 

ar objectives. One is based on a greedy approach; the other relaxes 

he subtour elimination constraint and then repairs a solution. 

A branch-and-bound algorithm for the single-vehicle discrete 

PP is proposed by Binney & Sukhatme (2012) . Due to the high 

untime required to solve even small instances to optimality, the 

uthors limit the search space. This significantly improves runtime, 

ut problems remain computationally intractable for vehicle routes 

omprising more than 15 locations. 

The continuous IPP has received less attention in literature. 

ollinger & Sukhatme (2013, 2014) propose a rapidly-exploring in- 

ormation gathering algorithm, which iteratively assigns random 

ampling locations to vehicle routes and expands vehicle paths to- 

ards these nodes. This approach applies to both discrete and con- 

inuous planning problems. However, its performance is highly de- 

endent on the maximum route length. Note that many algorithms 

n this domain, especially those developed more recently, focus on 

ariants where routes are planned adaptively based on previous 

easurements (e.g., Bottarelli, Bicego, Blum, & Farinelli, 2019; Lim, 

su, & Lee, 2016 ) and are out of the scope of this review. 

.7. Related and combined models 

Due to the heterogeneous nature of the research up to this 

oint, a variety of models has been proposed that can be seen as 

ariants of the VRP-SCOV but do not exclusively fit into one prob- 

em category. In this section, we review selected models to illus- 
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rate this variety. Please note that we do not seek to provide a 

omplete overview but to summarize variants that offer new in- 

ights how different aspects may be combined. 

.7.1. Bi-objective models 

An early version of a bi-objective model variant is the maximal 

overing tour problem (MCTP) introduced by Current & Schilling 

1994) . The authors address application areas such as the design of 

ervice delivery systems, bi-modal transportation systems, or dis- 

ributed computer networks. In this model, only a given number p

f the optional active nodes needs to be visited directly, while the 

ther nodes are considered as covered if a visited node is closer 

han the maximal covering distance d. The two objectives are the 

inimization of the total tour length and the minimization of the 

otal demand that is not covered. In turn, that means that the to- 

al covered demand is maximized. Following our introduced logic, 

n the one hand, the problem minimizes cost for visiting p nodes 

esembling a CTP. On the other hand, the covered demand is max- 

mized as in OPCov. The authors propose a local search heuristic to 

pproximate the efficient frontier among the two objectives. 

Jozefowiez, Semet, & Talbi (2007) introduced the bi-objective 

overing tour problem (BOCTP) as a generalization of the CTP. They 

ad the same application areas as for the CTP in mind. As in the 

TP, there exist three sets of customers ( V ma , V oa , V oa ) and the first

bjective seeks to find a tour of minimum length visiting or cover- 

ng all mandatory passive and active nodes. The second objective 

trives to minimize the greatest distance between covered nodes 

nd the nearest visited nodes. The authors note that a strength of 

his approach is the fact that it avoids the need to specify a cov- 

ring distance d a-priori. As the BOCTP is a generalization of the 

TP the close relationship is obvious. However, the problem also 

esembles the VRAP, as the second objective considers the alloca- 

ion decision of the covered nodes to the visited nodes. Jozefowiez 

t al. (2007) solve the problem using a combination of an evolu- 

ionary algorithm and the exact approach for the CTP proposed by 

endreau et al. (1997) . The evolutionary algorithm focuses on the 

election of nodes to be visited, i.e., on solutions to the CSP sub- 

roblem. Its objective is to construct candidate pareto-optimal so- 

utions, which are improved by the exact approach. 

Another bi-objective variant of the CTP is the bi-objective 

tochastic covering tour problem proposed by Tricoire, Graf, & Gut- 

ahr (2012) as an extension of the bi-objective MCTP. Even if the 

uthors see other application areas, the model is introduced hav- 

ng disaster relief operations in mind delivering goods to the pop- 

lation in the affected area. In contrast to CTP variants, the authors 

ssume that the number of people – and, hence, the demand – can 

e expressed as a function of the distance between the place they 

ome from and the opened delivery center. Furthermore, they as- 

ume the demand is uncertain. They model the demand as random 

ariable in a two-stage stochastic optimization problem. All nodes 

eed to be either visited or covered. The first objective minimizes 

outing cost and cost for opening a delivery station. The second 

bjective minimizes the expected uncovered demand: it comprises 

he demand of clients, who do not go to the closest delivery cen- 

er because it is too far, the demand not satisfied as the capacity 

f the delivery center is too small, and the demand that cannot be 

atisfied as the vehicle capacity is exceeded. The actual uncovered 

emand is determined by solving the second stage of the model. 

or solving the problem the authors propose both an exact algo- 

ithm and a heuristic. This model combines aspects of the CTP and 

he OPCov. 

.7.2. Combining several aspects of spatial coverage 

The two-echelon routing problem with truck and drones (2ER- 

D) was introduced by Vu, Vu, Hà, & Nguyen (2021) . It seeks to

nd a truck route through dedicated nodes that can be interpreted 
16 
s optional active nodes. UAVs then deliver parcels to final cus- 

omers that can be modeled as mandatory passive nodes and that 

re within flying time to visited truck nodes. The truck has to wait 

or the UAVs to return, and the optimization objective is to mini- 

ize the total duration of the truck tour. The problem combines 

he CTP with aspects of VRAP models as the objective function 

ccounts for the time required for the UAV deliveries, which de- 

ends on the allocation of passive to active nodes. The number of 

assive nodes that can be covered by an active one are limited. 

he authors solve the problem using a GRASP based on dedicated 

ocal search moves and demonstrate that the coverage via drones 

an yield improvements especially in regions with lower customer 

ensity. 

The clustered coverage orienteering problem (CCOP) is a prob- 

em introduced for planning information-maximizing tours for au- 

onomous vehicles ( Zhang, Wang, Wang, & Laporte, 2020 ). In this 

roblem, an area of interest is separated into distinct regions, each 

f which comprises several candidate sampling sites that provide 

nformation within a given covering range. A minimum number of 

amples has to be taken per cluster in order to provide sufficient 

nformation. The planning objective is to maximize the total area 

overed by at least one sensor while ensuring that the required 

umber of samples is taken in all regions. This problem has char- 

cteristics of the VRP-SCOV in two aspects: First, similar to the CSP, 

t is mandatory to visit all regions. Second, the model encourages 

aking disperse samples, as overlapping coverage areas are penal- 

zed in the objective. This mirrors concepts of the CorTOP and IPP, 

ven though the proposed model differs considerably from these 

ariants. 

Oruc & Kara (2018) study a post-disaster assessment routing 

roblem in which UAVs and motorcycles are deployed to assess 

ritical infrastructure. Both the survey of roads (modeled as arcs) 

nd points of interest (modeled as optional active nodes) in a net- 

ork provide information. The planning problem maximizes the 

mportance of the nodes and arcs that are accessed. Coverage as- 

ects are introduced for drones as their larger field of view allows 

overing nearby nodes and arcs. The resulting model combines as- 

ects of the CEARP, which is extended by the coverage of arcs as 

ell as nodes, with the OPCov. Both an exact model as well as con- 

truction and improvement heuristics are proposed. 

.7.3. Specialized covering mechanisms 

Veenstra et al. (2018) present a case study in which patients 

eed to be supplied with medicine. If patients do not have ac- 

ess to a suitable pharmacy within reasonable range, they are sup- 

lied either by direct delivery or from pickup lockers close to their 

omes. The planning objective is to minimize the total routing and 

ocker installation cost. Planning this delivery network closely re- 

embles the CTP, with lockers and customers represented as op- 

ional active nodes, but only locker nodes being able to provide 

overage. 

A stochastic variant of the m -CTP is introduced by Karao ̆glan, 

rdo ̆gan, & Koç (2018) . In this model, the demand of a customer 

i.e., passive node) is covered with a given probability from a vis- 

ted optional active node, with multiple visits within covering dis- 

ance increasing the overall probability that a customer is served. 

he planning objective is to maximize expected demand served. 

dditional visits within covering distance increase the share of de- 

and that is covered. The model is similar to the CorTOP but dif- 

ers in how the coverage is modeled. The authors propose two so- 

ution approaches: a branch-and-cut algorithm and a VNS. 

Margolis, Song, & Mason (2021) propose a multi-vehicle vari- 

nt of the VRP-SCOV for surveillance where targets (mandatory 

assive nodes) have to be monitored for a given time by vehi- 

les traveling between waypoints (optional active nodes). A vehi- 

le may adjust its speed in order to increase the time it covers a 
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Fig. 4. Overview of approaches by VRP-SCOV class. 
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ode, i.e., remains within covering distance to this node. While all 

assive nodes have to be covered, the maximization objective in- 

reases with increasing coverage time for nodes that are more im- 

ortant instead of minimizing total tour length, which means that 

he problem shares aspects of the OPCov. The problem is solved 

sing a branch-and-price framework that accounts for speed ad- 

ustments and propose a heuristic construction strategy. 

. Discussion and prospective research directions 

.1. Discussion and insights 

In this section, we summarize insights that go beyond specific 

roblem instances and can be applied to a range of problems re- 

ated to the VRP-SCOV. We start with a short overview and discuss 

mportant aspects in more detail. 

Figure 4 gives a condensed view of the category of approaches 

roposed for each VRP-SCOV class. This heatmap shows that there 

re quite some publications (17) which introduced only a model 

ormulation without proposing dedicated exact solution methods 

“Model only”). As it could have been expected, most solution 

ethods are heuristic. 38 of the surveyed publications provide 

euristic approaches, while 28 introduce exact solution formula- 

ions. Earlier heuristic approaches often apply a two-stage concept, 

here nodes are selected in the first step, and a tour is planned 

n the second one. Later works are more inspired by heuristics de- 

eloped for classical VRP problems, notably local search and meta- 

euristic concepts. Furthermore, we can see that decomposition- 

ased exact approaches which are successful for solving VRP vari- 

nts are frequently applied for the problems discussed in this 

ork. Approximation algorithms have been mainly developed in- 

ependently from this body of work, originating in the domains 

f mathematics and robotics for the TSPN and IPP. It is worth 

entioning that these approaches often address continuous model 

ariants, whereas other heuristics and exact approaches heavily 

ely on the discretization of the search space. 

Below, we list insights and observations that are relevant for all 

lasses of the VRP-SCOV: 

Similarity of models The unified definition of the mathemati- 

al models in Section 3 reveals the common covering mechanisms 

onsidered in different vehicle routing and path-planning ap- 

roaches. The review shows that especially the models subsumed 

nder orienteering problems with coverage, which have been re- 
17 
ently introduced independently and under different names, are 

trongly related. 

Impact of node types In the case of discrete models, the main 

rivers of problem difficulty are the number of active nodes and 

he length of the tours. This effect holds for all surveyed prob- 

em classes. Meanwhile, mandatory active nodes provide structure, 

hich can be used, e.g., for constructing initial vehicle routes or for 

pplying dominance concepts (e.g., Gendreau et al., 1997 ) to elim- 

nate optional candidates. Passive nodes are only a minor driver of 

roblem difficulty and have a far less severe impact on solution 

imes for exact and heuristic approaches alike. Approaches put for- 

ard in recent literature solve instances with several tens of thou- 

ands of passive nodes (e.g., Orlis et al., 2020 ). 

Size of covering neighborhoods The size of the covering neigh- 

orhood has a major impact on computation times and the struc- 

ure of the obtained solutions. In general, larger covering neighbor- 

oods (relative to the distance between nodes) mean that it is eas- 

er to decrease routing costs in CTP and CEVRP problems and find 

igh objective values for IPP and OPCov variants. Increasing cover- 

ng distance has been shown to yield substantial improvements in 

ractical applications (see, e.g., Ozbaygin et al., 2016; Shuttleworth 

t al., 2008 ). 

Exploiting spatial coverage - Passive nodes and covering distance 

overage aspects can be exploited to decrease problem size. For 

xample, mandatory passive nodes might determine which active 

odes need to be visited or which are dominated by others. More- 

ver, they determine desirable solution properties: For example, 

isited nodes tend to be evenly distributed across the considered 

rea, with few visits near the border or at the center. Increasing 

he coverage distance means that visits are sparser and vehicles 

ravel farther in between them. 

Exploiting spatial coverage - Algorithm design Many approaches 

xploit spatial coverage concepts to guide the search process. Sev- 

ral early solution concepts apply a two-stage approach where the 

rst step lies in determining nodes to be visited, and the second 

tep seeks to find a good route through these nodes. This allows 

ajor speed-ups as well as the usage of existing tools such as set 

overing techniques. Despite their potential to increase search per- 

ormance, these ideas need to be considered with care: Selecting 

he smallest possible number of nodes to be visited does not nec- 

ssarily yield the shortest tours in discrete problems. In continu- 

us problems such as the CEVRP class, determining Steiner zones 

here the largest number of covering neighborhoods overlap pro- 
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ides a useful structure that can be used during the search. How- 

ver, basing the search on these zones restricts possible shapes of 

ours and may not always yield the best solutions. Furthermore, 

overage can be used to decompose a problem into distinct, non- 

verlapping areas or clusters, which, in turn, can be used during 

earch instead of the individual nodes. While this leads to sub- 

tantially less complex problems, some options to improve the fi- 

al tours become unavailable. Later approaches are typically more 

exible and combine the consideration of clusters and individual 

odes, e.g., by using local search moves that alternate between the 

election of nodes and route improvement strategies. 

.2. Prospective research directions 

Several research directions merit further consideration: 

Flexible models for spatial coverage From a modeling perspec- 

ive, it is often assumed that essential parameters are known in 

dvance. This concerns the covering distance in particular. As this 

ssumption does not always hold in practice, variants such as bi- 

bjective models that explicitly seek to minimize maximum cov- 

ring distance seem promising. Examples come from applications 

here increasing the covering distance at the expense of routing 

osts or customer satisfaction is a feasible option, e.g., when de- 

igning delivery networks or postal services. 

Furthermore, models developed in robotics and vehicle routing 

iffer considerably in the level of detail that they provide and the 

omputational effort required. Some models, such as the CorTOP, 

ridge the gap between the disciplines by modeling spatial depen- 

encies in more detail while they can still be efficiently evaluated. 

his is promising for both domains: On the one hand, these models 

ake VRP heuristics accessible for path planning problems from 

obotics. On the other hand, the more detailed coverage models 

ight be promising for service provisioning where customers ben- 

fit from having access to services at multiple locations. An exam- 

le would be a more detailed model variant of the ATM replenish- 

ent problem considered in Orlis et al. (2020) . 

Transfer of solution concepts Despite the fundamental similari- 

ies between the problems, different disciplines have focused on 

ifferent solution strategies. In general, research has emphasized 

euristic approaches over exact solution schemes. Approximation 

lgorithms have been put forward for single-vehicle variants of 

PP and the CETSP but are largely missing for the other problem 

lasses as well as for multi-vehicle applications. Thus, transferring 

pproaches developed for one problem variant to other types of 

he VRP-SCOV offers the potential to strengthen solution concepts 

urther. 

Benchmark instances and practical applications Aside from the 

odeling and solving aspects, a topic rarely addressed is the study 

f practical problem applications. Authors have proposed apply- 

ng the VRP-SCOV to a wide range of use cases in transporta- 

ion, health care, and information gathering. Despite this, only a 

ew real-world problems and datasets have been studied to this 

ate, notably in health care ( Hachicha et al., 20 0 0; Jozefowiez 

t al., 2007 ), meter reading ( Shuttleworth et al., 2008 ) and envi-

onmental mapping ( Popovi ́c, Vidal-Calleja, Chung, Nieto, & Sieg- 

art, 2019; Popovi ́c et al., 2020; Smith et al., 2011 ). Unfortunately, 

ost datasets are not publicly available, hindering the develop- 

ent of new solution approaches and making the comparability 

f approaches impossible. Hence, it can be assumed that future re- 

earch will benefit from a larger range of applications and pub- 

ished benchmark instances. 

Dynamic and stochastic variants Finally, little attention has been 

irected toward dynamic and stochastic problem variants, espe- 

ially in vehicle routing. Some authors have introduced stochastic 

r probabilistic problem variants ( Karao ̆glan et al., 2018; Renaud 

t al., 2017; Tricoire et al., 2012 ), but few models and solution con-
18 
epts exist. Adaptive mechanisms have been studied in the domain 

f environmental mapping that can adjust to dynamically evolv- 

ng environments. However, other settings where the information 

volves over time have not yet been studied but are highly rele- 

ant in practical applications. In particular, future research efforts 

hould be devoted to robust optimization methods for critical ap- 

lications, for example, in health care and emergency logistics. 

In summary, considering spatial coverage in routing and path 

lanning problems is a powerful concept for many different appli- 

ation areas. While research in this domain has been fragmented 

n the past, we believe that the different disciplines can benefit 

rom one another, thereby developing powerful methods for practi- 

al problems. This classification and overview is a first step toward 

his goal. 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.ejor.2022.02.031 . 
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tefaníková, P. , Váňa, P. , & Faigl, J. (2020). Greedy randomized adaptive search pro-

cedure for close enough orienteering problem. In Proceedings of the 35th annual 
ACM symposium on applied computing (pp. 808–814). ACM . 

tranders, R. , De Cote, E. M. , Rogers, A. , & Jennings, N. R. (2013). Near-optimal con-

http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0022
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0022
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0022
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0022
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0023
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0023
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0023
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0023
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0023
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0023
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0024
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0024
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0024
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0024
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0024
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0024
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0025
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0025
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0025
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0025
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0025
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0025
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0026
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0026
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0026
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0026
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0027
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0027
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0027
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0027
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0028
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0028
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0028
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0028
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0028
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0029
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0029
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0030
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0030
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0031
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0031
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0031
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0031
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0032
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0032
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0032
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0032
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0033
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0033
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0033
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0033
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0033
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0034
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0034
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0034
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0034
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0034
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0035
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0035
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0035
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0035
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0035
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0035
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0036
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0036
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0036
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0036
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0036
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0037
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0037
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0037
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0037
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0037
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0038
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0038
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0038
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0038
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0038
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0038
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0039
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0039
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0039
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0039
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0040
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0040
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0040
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0040
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0040
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0040
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0040
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0041
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0041
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0041
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0041
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0042
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0042
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0042
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0042
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0042
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0043
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0043
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0043
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0043
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0043
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0044
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0044
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0044
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0044
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0044
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0044
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0045
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0045
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0045
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0045
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0045
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0045
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0046
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0046
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0046
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0046
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0046
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0046
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0047
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0047
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0047
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0047
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0047
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0047
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0048
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0048
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0048
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0048
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0048
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0049
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0049
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0049
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0049
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0050
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0050
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0050
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0050
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0051
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0051
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0051
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0051
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0052
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0052
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0053
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0053
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0053
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0053
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0053
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0054
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0054
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0054
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0054
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0054
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0054
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0054
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0055
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0055
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0055
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0055
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0055
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0056
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0056
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0056
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0056
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0056
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0057
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0057
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0057
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0057
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0057
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0057
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0058
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0058
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0058
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0058
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0058
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0058
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0059
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0059
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0059
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0059
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0059
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0059
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0060
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0060
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0060
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0060
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0060
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0061
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0061
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0061
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0061
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0061
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0061
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0062
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0062
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0062
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0062
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0063
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0063
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0063
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0063
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0063
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0063
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0064
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0064
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0065
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0065
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0065
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0065
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0065
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0065
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0066
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0066
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0066
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0066
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0066
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0067
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0067
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0067
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0067
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0067
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0068
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0068
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0068
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0068
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0068
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0068
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0069
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0069
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0069
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0069
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0070
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0070
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0070
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0070
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0070
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0071
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0071
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0071
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0071
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0071
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0072
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0072
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0072
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0072
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0072
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0073
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0073
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0073
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0073
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0073
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0074
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0074
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0074
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0074
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0074
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0074
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0074
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0075
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0075
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0075
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0075
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0075
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0075
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0075
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0075
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0075
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0076
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0076
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0076
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0076
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0076
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0077
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0077
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0077
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0077
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0077
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0078
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0078
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0078
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0078
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0078
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0078
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0079
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0079
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0079
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0079
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0079
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0080
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0080
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0080
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0080
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0080
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0080
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0080
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0081
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0081
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0081
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0081
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0081
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0081
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0082
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0082
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0082
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0082
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0082
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0083
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0083
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0083
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0083
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0083
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0083
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0083
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0083
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0084
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0084
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0084
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0084
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0084
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0085
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0085
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0085
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0085
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0085
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0085


K. Glock and A. Meyer European Journal of Operational Research 305 (2023) 1–20 

T  

V  

V  

V  

V  

X  

Y  

Y  

Z  

Z  
tinuous patrolling with teams of mobile information gathering agents. Artificial 
Intelligence, 195 , 63–105 . 

ricoire, F. , Graf, A. , & Gutjahr, W. J. (2012). The bi-objective stochastic covering tour
problem. Computers & Operations Research, 39 (7), 1582–1592 . 

eenstra, M. , Roodbergen, K. J. , Coelho, L. C. , & Zhu, S. X. (2018). A simultaneous
facility location and vehicle routing problem arising in health care logistics in 

the Netherlands. European Journal of Operational Research, 268 (2), 703–715 . 
idal, T. , Crainic, T. G. , Gendreau, M. , & Prins, C. (2014). A unified solution frame-

work for multi-attribute vehicle routing problems. European Journal of Opera- 

tional Research, 234 (3), 658–673 . 
ogt, L. , Poojari, C. A. , & Beasley, J. E. (2007). A tabu search algorithm for the single

vehicle routing allocation problem. Journal of the Operational Research Society, 
58 (4), 467–480 . 

u, L. , Vu, D. M. , Hà, M. H. , & Nguyen, V.-P. (2021). The two-echelon routing prob-
lem with truck and drones. International Transactions in Operational Research , 

1–17 . Advance online publication 
20 
u, J. , Chiu, S. Y. , & Glover, F. (1999). Optimizing a ring-based private line telecom-
munication network using tabu search. Management Science, 45 (3), 330–345 . 

ang, Z. , Xiao, M.-Q. , Ge, Y.-W. , Feng, D.-L. , Zhang, L. , Song, H.-F. , & Tang, X.-L. (2018).
A double-loop hybrid algorithm for the traveling salesman problem with arbi- 

trary neighbourhoods. European Journal of Operational Research, 265 (1), 65–80 . 
u, J. , Schwager, M. , & Rus, D. (2014). Correlated orienteering problem and its ap-

plication to informative path planning for persistent monitoring tasks. In IEEE 
International Conference on Intelligent Robots and Systems (pp. 342–349). IEEE . 

hang, W. , Wang, K. , Wang, S. , & Laporte, G. (2020). Clustered coverage orienteer-

ing problem of unmanned surface vehicles for water sampling. Naval Research 
Logistics (NRL), 67 (5), 353–367 . 

hang, Z. , Qin, H. , & Lim, A. (2014). A memetic algorithm for the capacitated
m-ring-star problem. Applied intelligence, 40 (2), 305–321 . 

http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0085
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0086
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0086
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0086
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0086
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0086
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0087
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0087
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0087
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0087
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0087
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0087
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0088
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0088
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0088
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0088
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0088
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0088
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0089
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0089
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0089
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0089
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0089
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0090
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0090
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0090
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0090
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0090
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0090
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0090
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0091
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0091
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0091
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0091
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0091
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0092
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0092
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0092
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0092
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0092
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0092
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0092
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0092
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0092
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0093
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0093
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0093
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0093
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0093
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0094
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0094
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0094
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0094
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0094
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0094
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0095
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0095
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0095
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0095
http://refhub.elsevier.com/S0377-2217(22)00136-9/sbref0095

	Spatial coverage in routing and path planning problems
	1 Introduction
	2 Definition and classification of the VRP with spatial coverage
	2.1 Definition of the general VRP-SCOV
	2.2 Classification scheme
	2.2.1 Node types
	2.2.2 Spatial coverage
	2.2.3 Topological space models
	2.2.4 Planning objectives

	2.3 Classes of VRP-SCOV

	3 Overview of classes of the VRP-SCOV
	3.1 Covering tour problem
	3.1.1 Problem definition and applications
	3.1.2 Problem formulation
	3.1.3 Solution approaches

	3.2 Close-enough vehicle routing problems
	3.2.1 Problem definition and applications
	3.2.2 Problem formulation
	3.2.3 Solution approaches

	3.3 Close-enough arc routing problems
	3.3.1 Problem definition and applications
	3.3.2 Problem formulation
	3.3.3 Solution approaches

	3.4 Vehicle routing allocation problems
	3.4.1 Problem definition and applications
	3.4.2 Problem formulation
	3.4.3 Solution approaches

	3.5 Orienteering problems with spatial coverage
	3.5.1 Time constrained maximal covering salesman problem
	3.5.2 Set orienteering problem
	3.5.3 Correlated orienteering problem
	3.5.4 Team orienteering problem with overlaps
	3.5.5 Close-enough orienteering problem

	3.6 Informative path planning
	3.6.1 Problem definition and applications
	3.6.2 Problem formulation
	3.6.3 Solution approaches

	3.7 Related and combined models
	3.7.1 Bi-objective models
	3.7.2 Combining several aspects of spatial coverage
	3.7.3 Specialized covering mechanisms


	4 Discussion and prospective research directions
	4.1 Discussion and insights
	4.2 Prospective research directions

	Supplementary material
	References


