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With the progression of Internet of Things, many novel consumer prod-
ucts such as wearable devices and disposable electronics requires flexibility, 
biocompatibility and ultra low-costs. However, these features can hardly 
be matched by traditional silicon-based electronics. In this regard, printed 
electronics becomes one of the most competitive candidate by offering the 
aforementioned properties thanks to its additive manufacturing process. To 
address fundamental signal-processing tasks, printed neuromorphic circuits, 
emulating the artificial neural networks, have received increasing attention, 
as they can achieve appealing computational capabilities by assembling 
simple elemental circuit primitives. However, many target applications for 
printed electronics are based on processing temporal sensory data, which is 
beyond the reach of existing printed neuromorphic circuits, since they lack 
components with time dependencies. To this end, this paper proposes a novel 
printed temporal processing block that combines existing circuit primitives 
with a sequence of learnable low-pass filters. We model the proposed circuit 
and proposed the corresponding training objective to enable the bespoke 
design of the circuits. Simulations on 15 benchmark time-series datasets 
reveal that, in comparison to existing printed neuromorphic circuits, the 
proposed circuits can effectively process temporal information by using 1.5× 
and 1.3× of device counts and power respectively. Moreover, the achieved 
classification accuracy reaches 98% of that from classic hardware-agnostic 
Elman recurrent neural networks.

CCS Concepts: • Hardware → Flexible and printable circuits; Hardware-
software codesign; Signal processing systems; • Computing methodolo-
gies → Machine learning approaches.

Additional Key Words and Phrases: printed electronics, neuromorphic com-
puting, temporal information processing, recurrent neural network
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1 INTRODUCTION
With the growth of the Internet of Things (IoT), next-generation
smart electronics, such as smart labels [1], smart band-aids [2],
and smart packaging [3], will be enabled by lightweight, flexible,
and cost-efficient technologies. Although silicon-based electronics
based on lithography processes have been continuously improved
in terms of power consumption and integration density, matching
the demands of the aforementioned emerging technologies remains
challenging. This is mainly due to bulky substrates and requirement
of complicated manufacturing equipment. To address the demand
of these emerging electronics, progress has been made in develop-
ing innovative materials and fabrication methods. One of the most
promising approaches in this realm is printed electronics (PE) [4].
Analogous to color printing, printed electronic devices are fabri-
cated through additive printing processes, therefore, PE allows for
highly customized electronic devices. Moreover, in contrast to the
costly lithography-based manufacturing, the simple manufacturing
processes in PE not only significantly reduces manufacturing costs,
but also allows depositing functional materials with different prop-
erties, facilitating various desired properties, such as softness [5],
non-toxicity [6], and bio-degradability [7].
Despite these advantages, PE also come with their own weak-

nesses. For example, printed devices generally have larger feature
sizes, lower integration density, and lower performance compared
to silicon counterparts. To this end, printed analog neuromorphic
circuits have emerged as a promising computing paradigm in PE.
It allows computing directly in the analog domain, and does not
necessitate analog-to-digital converters (ADCs), which significantly
reduces device counts. Additionally, neuromorphic computing has
been proven to have strong computational capability, even through
only a series of simple operation primitives [8]. Specifically, the
fundamental idea of neuromorphic circuits is to execute the com-
putational operations, i.e., weighted-sums and nonlinear activa-
tion functions, in articifial neural networks (ANNs), also known as
multilayer perceptrons [9], through specific analog circuit designs,
namely resistor crossbars and nonlinear transfer circuits.
Existing research on printed neuromorphic circuits (pNCs) has

predominantly focused on bridging the gap between realistic printed
circuit design and ANN models. From a circuit design perspective,
[10] and [11] enable different activation functions. From the al-
gorithmic level, [12] incorporates the manufacturability and the
printing variation into the circuit optimization process, while [13]
extended the learnable parameters from weights to nonlinear func-
tions. Notably, the advent of novel functional materials and devices,
e.g., memristors [14], may also broaden the possibilities for pNCs.
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Fig. 1. Exemplary typical printing technologies: (a) gravure printing and
(b) ink-jet printing.

Nevertheless, the previous research is constrained to the con-
text of implementing multilayer perceptions, where the pNCs are
assumed to operate with constant DC or time-independent input
signals. This weakness considerably restricts the prospective appli-
cations of pNCs, because in many perceived application scenarios
(e.g., stress detection [15]), absolute values of temporal sensory data
matter less, while their trends and changes are more informative.
To address this limitation, we propose a learnable and tunable

printed temporal processing block (pTPB). By introducing capac-
itors, the circuits are capable to memorize (or store) information
about previous inputs. This means, the circuit outputs are no longer
solely dependent on the signal at the current time step, but rather
on the signals at all previous time steps. Consequently, by com-
bining existing pNCs with proposed pTPBs, which are referred to
as printed temporal processing neuromorphic circuits (pTPNCs),
the circuits are capable of processing time-series sensory inputs.
By modeling the pTPBs with consideration of the circuit decou-
pling, we construct a time-domain machine learning model of the
pTPBs, which further enables the training of pTPNCs for target
tasks. Subsequently, we show that the pTPNC forms an instance
of recurrent neural network (RNN) models. Finally, simulations with
15 time-series benchmark datasets validates our design.

The rest of this paper is organized as follows: Sec. 2 introduces
the concept of PE, the basis of pNCs and RNNs. Sec. 3 motivates this
research, describes the modeling of the pTPBs as well as the pTPNCs,
and propose the corresponding training objective. Subsequently,
Sec. 4 validates the proposed method and discusses the experiment
results. Finally, Sec. 5 summarizes this work.

2 PRELIMINARIES

2.1 Printed Electronics
Printed electronics (PE) is an emerging fabrication technique for
next-generation electronic devices. It involves an additive man-
ufacturing process that fabricates circuits by depositing various
functional inks onto the substrates. In contrast to conventional
lithography-based silicon electronics, PE enables to produce circuits
at considerably low costs, owing to the absence of complicated fabri-
cation equipment and steps. Moreover, various fabrication methods
can be adapted to specific production scenarios (as shown in Fig. 1),
accommodating both small-quantity prototypes during product de-
velopment phase (via ink-jet printing) and high-volume produc-
tion (through gravure printing).
Nevertheless, since additive manufacturing typically results in

large feature sizes and high variation, PE does not aim to replace
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Fig. 2. Circuit primitives of the printed neuromorphic circuit (pNC).
(a) Schematic of an inverter-based negative weight circuit. (b) Example
of a 3-input, 1-output printed resistor crossbar. (c) Schematic of an inverter-
based printed tanh-like (ptanh) circuit.

silicon-based electronics in precise or complex scenarios, but rather
to complement them in edge computing scenarios such as disposable
or wearable medical electronics. In these scenarios, the advantages
of PE can be fully leveraged, as the computational demands in tar-
get applications tends to be simple, so that small circuits are good
enough; meanwhile, these tasks are often highly specific and thus
require a highly flexible and custom manufacturing process.

Most of the advanced ink-jet printed field-effect transistors (FETs)
utilize organic materials and incorporate lithographically structured
organic semiconductors as channels between the source and drain
electrodes. Typically, organic FET (OFET) structures rely on P-type
materials, which exhibit a notably low field-effect mobility [16]
and operate within a high supply voltage range (≥ 25V). As a re-
sult, OFET technology is not attractive for the intended application
domains. In this regard, low-voltage and low-power devices are
favored, with inorganic oxide semiconductors being more feasible
candidates. Current inorganic PE research focuses on ink-jet printed
N-type Electrolyte-Gated Transistor (nEGT) channels due to the
absence of reliable P-type EGTs [16]. The band structure of metal
oxides facilitates high electron mobility, enabling nEGTs to operate
at sub-1V supply voltage.

2.2 Printed Analog Neuromorphic Circuits
To respect the large feature size of PE, processing information di-
rectly in the analog domain becomes favorable, as it eliminates the
conversion between digital and analog signals. Among computa-
tional paradigms, neuromorphic computing has attracted consider-
able attention due to its ability to implement complicated computing
functionalities [8]. Moreover, this impressive ability requires only
the combination of simple computing primitives, providing sig-
nificant advantages in terms of circuit design, optimization, and
manufacturing. These primitives are introduced in the following.

Resistor crossbar. Fig. 2(b) depicts a resistor crossbar in a pNC, em-
ulating the weighted-sum operations utilized in ANNs. This circuit
is also prevalently used in other fields such as in-memory comput-
ing [17]. The behavior of the crossbar is characterized by
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Here, the superscript (·)C indicates the variables within the crossbar.
Due to the high resistivity of the succeeding circuit, i.e., the printed
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Fig. 3. Schematic of a 3-input 4-output printed temporal processing block
(pTPB) that receives sensor signals and yields outputs to subsequent devices.

tanh-like circuit, the current �C
out can be neglected [18]. Furthermore,

by expressing the resistance � as the corresponding conductance
� = 1/� and fixing �b = 1V, the equation can be rearranged to

�C
out =

∑
�

�C
�

�
�C
� +

�C
b
�

, (1)

where� refers to the summed conductance of all the conductances
in the crossbar, i.e.,

∑
� �

C
�
+ �b + �d. It can be seen that the output

voltage of the crossbar �C
out can be interpreted as the weighted-sum

of the corresponding input voltages�C
�
, where the weights and bias

are represented by the ratios of the conductances. Consequently,
by appropriate designing and printing of the conductances, desired
weights and biases can be achieved. Notably, different from ANNs,
the embodied weights and biases in Eq. (1) are limited to less than 1.
Moreover, due to the hardware constraints, they can only be positive
values, therefore, when negative weights or biases are required,
inverter-based negative weight circuits (Fig. 2a) are prepended to
the corresponding crossbar resistors to transform the corresponding
input voltages into negative ones.

Printed tanh-like circuit. As shown in Fig. 2(c), succeeding the
resistor crossbar, an inverter-based circuit, namely printed tanh-like
(ptanh) circuit, is connected to resemble the nonlinear activation
functions in the ANNs. The transfer characteristic of this circuit is
expressed by an appropriately parameterized tanh(·) function, i.e.,

�A
out = ptanh(�A

in ) = �1 + �2 · tanh
(
(�A

in − �3) · �4
)
,

where the superscript (·)A refers to the variables in this activation
circuit. Note that, the �� modify the translation and scaling of the
original tanh(·) function and are only auxiliary parameters that are
implicitly determined by physical quantities of the components in
the circuit, namely �A = [�A

1 , �
A
2 ,�

A
1 ,�A

2 ].

There are already technologies to take the variation (e.g., print-
ing errors) sensitivity of analog computing paradigms into account
during training to improve the robustness of pNCs [12]. Moreover,
considering the target application of PE like disposable electronics
for specific use cases, these circuits do not employ costly reconfig-
urable components such as memristors, rather, they are printed as
fixed devices after their design and parameter optimization.

2.3 Recurrent Neural Networks
Recurrent neural networks (RNNs) were primarily proposed to han-
dle inputs with variable lengths, as the input dimensionality for an

MLP is pre-determined. By incorporating an internal hidden state �,
an RNN is then capable of processing variable length inputs through
repeated state updates. RNNs have demonstrated remarkable suc-
cess in areas such as handwriting recognition [19]. Notably, RNNs
are theoretically Turing-complete, meaning that they can execute
arbitrary programs to process any given input sequences [20]. A
general formulation of RNN state equations is given by

�� = �1 (�2 (��−1) + �3 (�� )),
�� = �4 (�� ),

(2)

where the subscript � ∈ {0, 1, · · · , �} refer to the iteration (time
step), �� is the internal hidden state at the �-th step, �� denotes
the input at the �-th step, and �� represents the output at the �-th
step. Moreover, the functions �1 (·), · · · , �4 (·) are classic operations
in ANNs, such as learnable affine mappings and/or activation func-
tions. The specific choices of them vary across different network
architectures, e.g., in Elman RNNs [21], �2 (·) and �3 (·) are weighted-
sum operations with biases, while �1 (·) and �4 (·) are functions of
learnable linear mappings with activation functions.

3 PRINTED TEMPORAL PROCESSING BLOCK
Given their distinct strengths and weaknesses, pNCs aim to com-
plement silicon-based electronics. Thereby, they are typically en-
visioned to serve as cheap edge computing units in IoT systems,
such as wearables devices or smart packaging. However, in some
scenarios like stress detection [15], the concrete signal values might
be less informative due to physiological variation among individu-
als. In contrast, the temporal changes in the signal often exhibits
more meaningful information. However, this kind of time-series
data processing is beyond the reach of the existing pNCs, due to
their lack of component to memorize historical signals.
To address this limitation, we propose to introduce learnable

printed capacitors into the existing pNCs, which allow the circuit to
memorize, and thus process, temporal sensory data. By combining
the capacitors with existing primitives in pNCs, we construct the
printed temporal processing blocks (pTPB). Additionally, by stacking
multiple pTPBs, more sophisticated functions can be realized.
Different application scenarios (i.e., tasks) generally necessitate

different temporal processing behaviors. Conveniently, the highly
flexible additive printing techniques of PE can enable such task-
specific fabrication. To design the bespoke signal processing behav-
iors for target tasks, we have developed the mathematical model of
the proposed pTPB and the corresponding pTPNC, along with an op-
timization objective. With this approach, the components in pTPBs
(e.g., the capacitance) can be optimized alongside the resistances in
the crossbars (representing weights and biases).

3.1 Modeling of Temporal Processing Unit
The structure of the pTPB is represented in Fig. 3. It can be seen
that the most essential part in the circuit are framed by the blue
boxes, which consist of capacitors and resistors, resembling RC
low-pass filters. Therefore, we will first model these filters while
considering their coupling with the rest of the circuit. Afterwards,
we will develop the model to cover the entire pTPB.



Modeling of single filter. Initially, we concentrate on modeling 
the filter without considering its coupling to the successive circuit. 
Taking the first unit in Fig. 3 as an example, we obtain:

𝐼F𝑅 =

(
𝑉 F

in −𝑉 𝐹out
)
/𝑅F,

𝐼F𝐶 = 𝐶Fd𝑉 F
out/d𝑡,

𝐼F𝑅 = 𝐼F𝐶 , (3)

where the superscript (·)F indicates the values in this filtering unit.
Therefore, the differential equation of the capacitor voltage 𝑉 F

out
with respect to time can be expressed by

d𝑉 F
out

d𝑡 = − 1
𝑅F𝐶F𝑉

F
out +

1
𝑅F𝐶F𝑉

F
in .

By using backward Euler integration, we obtain the update of the𝑉 F:

𝑉 F
out𝑘 =

𝑅F𝐶F

𝑅F𝐶F + Δ𝑡︸       ︷︷       ︸
=:𝛽

𝑉 F
out𝑘−1 +

Δ𝑡

𝑅F𝐶F + Δ𝑡︸       ︷︷       ︸
=:1−𝛽

𝑉 F
in𝑘

= 𝛽𝑉 F
out𝑘−1 + (1 − 𝛽)𝑉 F

in𝑘 ,

(4)

where Δ𝑡 refers to the step size of the temporal discretization, 𝑉 F
in𝑘

and 𝑉 F
out𝑘 are the input and output of the filter at time step 𝑘 . Evi-

dently, 𝛽 ∈ (0, 1) depends on 𝑅F and𝐶F, thus, by finding suitable 𝑅F

and 𝐶F, a desired filtering behavior can be achieved. In this work,
as these values will be learned jointly with the crossbar resistors to
fit the specific tasks, we refer to these units as learnable filters.

Modeling of coupled filter. To connect the learnable filters with the
resistor crossbars, it is imperative to take their coupling into account.
This coupling primarily results from the fact that the current flowing
through the resistor 𝑅F does not fully feed into the capacitor𝐶F, but
is partially shunted towards the crossbar, see red arrows in Fig. 3.
To reflect this coupling in our model, we modify Eq. (3) to

𝐼F𝑅 = 𝐼F𝐶 + 𝐼 couple =: 𝜇𝐼F𝐶 ,

with 𝐼 couple refers to the coupling current flows towards crossbar,
and 𝜇 := 1 + 𝐼 couple/𝐼F

𝐶
is a decoupling factor. Consequently, Eq. (4)

is reformulated to

𝑉 F
out𝑘 =

𝜇𝑅F𝐶F

𝜇𝑅F𝐶F + Δ𝑡︸         ︷︷         ︸
=:𝛽′

𝑉 F
out𝑘−1 +

Δ𝑡

𝜇𝑅F𝐶F + Δ𝑡︸         ︷︷         ︸
=:1−𝛽′

𝑉 F
in𝑘

= 𝛽 ′𝑉 F
out𝑘−1 + (1 − 𝛽 ′)𝑉 F

in𝑘 , (5)

It is notable that 𝜇 is contingent on the values of 𝑅F, 𝐶F and 𝑅C,
which vary continuously during the training process. Additionally,
𝜇 is also determined by the frequency of the input signal, which is
generally agnostic in the design stage. Therefore, to consider the
circuit coupling in the training process, we determine the general
range of 𝜇 through the SPICE simulation with the printed Process
Design Kit (pPDK) [22]. Specifically, by performing SPICE simu-
lations on the target datasets (see Sec. 4) with general printable
resistances and capacitances, we empirically determined 𝜇 ∈ [1, 1.3]
for the given applications. More details can be found in Sec. 3.4.

3.2 Modeling of Temporal Processing Block
Although Eq. (5) emulates Eq. (2), it possesses only one learnable
parameter, i.e., 𝛽 ′. To expand the design space, and better mimic the
expressiveness of classic RNNs, a more sophisticated combination of
the learnable filters, crossbars, and ptanh circuits should be designed.

As sketched in Fig. 3, to match analogous computational capabili-
ties of classic Elman RNNs, we first pass the input voltages through
resistor crossbars followed by ptanh activation circuits, before feed-
ing them to the filters. Here, the ptanh circuits are introduced to
decouple the learnable filters from the preceding crossbars, because
proper weighted-sum computation through the crossbar necessi-
tates a negligible output current 𝐼Cout. However, the resistivity of the
filter circuit is much lower than the crossbars. Additionally, we also
apply an identical process to output voltages from learnable filters.
In the rest of the work, we refer to this stack of primitive layers as
a pTPB, i.e., the whole circuit exemplified in Fig. 3. Consequently,
the mathematical model of a pTPB can be described as

𝑽 F
𝑘
= 𝜷 ′ ⊙ 𝑽 F

𝑘−1 + (1 − 𝜷 ′) ⊙ ptanh(𝑾1𝑽
in
𝑘
+ 𝒃1),

𝑽out
𝑘

= ptanh(𝑾2𝑽
F
𝑘
+ 𝒃2),

(6)

where 𝑽 in
𝑘

∈ R𝑁in and 𝑽out
𝑘

∈ R𝑁out vectorize the input and output
voltages of the pTPB at time point 𝑘 . 𝑽 F

𝑘
∈ R𝑁F summarizes the

output voltages of the filter layer and 𝜷 ′ ∈ R𝑁F collects the 𝛽 ′ values
of each filter. Moreover,𝑾1 ∈ R𝑁F×𝑁in , 𝒃1 ∈ R𝑁F ,𝑾2 ∈ R𝑁out×𝑁F ,
and 𝒃2 ∈ R𝑁out denotes the weighted-sum operations emulated by
the corresponding crossbars. Additionally, "⊙" indicates element-
wise multiplication.

By comparing Eq. (6) with Eq. (2), we conclude that, the designed
circuit layer represents an instance of an RNN with 𝑓1 (·) and 𝑓2 (·)
being identity functions, while 𝑓3 (·) and 𝑓4 (·) are weighted-sums
followed by activation functions.

Notably, a pTPNC may consist of multiple pTPBs connected suc-
cessively for accomplishing more intricate computational tasks. In
case of multiple pTPBs, we denote the initial input voltages (typ-
ically sensor signals) by 𝒙𝑘 , and represent the final output of the
last layer in the circuit by �̂�𝑘 (𝜷 ′,𝒈, 𝒙𝑘 , 𝒙𝑘−1, · · · , 𝒙0), which is a
function of 𝜷 ′ in the learnable filters, the crossbar conductances 𝒈,
and the input voltages at all time steps 𝒙𝑘 , · · · , 𝒙0.

3.3 Training of pTPNCs
In case of training basic pNCs (without pTPB), the cross-entropy loss
𝐿(·) can be minimized with respect to crossbar conductances 𝒈 to
decrease the mismatch between the label𝒚 and the circuit prediction
�̂�(𝒈, 𝒙) for an input 𝒙 , and thus improve, e.g., the classification
accuracy. In contrast, the pTPNCs is time-dependent and allows to
obtain predictions for each time step 𝒚𝑘 based on the current input
𝒙𝑘 and previous inputs 𝒙𝑘−1, · · · , 𝒙0. We thus consider the temporal
dynamics of the circuit output and, to encourage consistent correct
classification at every point in time, the objective function can be
modified to

minimize
𝜷 ′,𝒈

1
𝐾

𝐾∑︁
𝑘=0

𝐿
(
�̂�𝑘 (𝜷 ′,𝒈, 𝒙𝑘 , , 𝒙𝑘−1, · · · , 𝒙0),𝒚

)
︸                                                ︷︷                                                ︸

L(𝜷 ′,𝒈,𝒙𝐾 ,· · · ,𝒙0,𝒚)

. (7)



Additionally, it is necessary to consider the dependency of the de-
coupling factor 𝜇 and the initial voltages of the capacitors. The
former has been previously mentioned in Sec. 3.1, while the latter
is generally caused by the preceding input signal. To reduce the
dependencies of the circuit coupling (𝜇) and the initial voltage 𝑽 F

0 on
the results, we integrate our loss function over the value ranges for
both variables, assuming [1, 1.3] for 𝜇, and [0, 1] for 𝑽 F

0 . Through
this, we should achieve a configuration of that learnable parameters
𝒈 and 𝜷 ′ that is robust to the choice of either value, which leads to
the training objective of

minimize
𝜷 ′,𝒈

∫
L(𝜷 ′,𝒈, 𝒙𝐾 , · · · , 𝒙0,𝒚, 𝜇, 𝑽

F
0) d𝜇 d𝑽 F

0 .

Unfortunately, no analytical solution for the integral (or its gradient
with respect to the learnable parameters) exists. We thus rewrite the
minimization of the training objective using equivalent formulation
as an expected value

minimize
𝜷 ′,𝒈

E𝑝 (𝜇),𝑝 (𝑽 F
0)

{
L(𝜷 ′,𝒈, 𝒙𝐾 , · · · , 𝒙0,𝒚, 𝜇, 𝑽

F
0)
}
, (8)

which allows to obtain Monte Carlo estimates of the function value
(and its gradients) whenever needed. Consequently, based on the
ranges for 𝑽 F

0 and 𝜇, we choose 𝑝 (𝑽
F
0) = U[0, 1] and 𝑝 (𝜇) ∼ U[1, 1.3],

i.e., uniform densities over their assumed ranges.
Notably, given that the circuit operates continuously on input 

signals rather than performing a one-time computing, the circuit 
latency is implicitly incorporated in the training objective Eq. (8). 
By encouraging more correct classifications at each time step, the 
circuit should be trained to achieve correct outputs in a shorter time.

3.4 Discussion
In this section, we modeled the learnable filters with consideration 
of the circuit coupling. Subsequently, we proposed the pTPB for 
temporal data processing, and shown that the proposed pTPB forms 
an instance of RNN. Finally, we formulated the optimization objec-
tive for the pTPNCs. While this work does not currently consider 
variations in printed circuits into the training objective, similar 
variation-aware training as proposed in [12] could be introduced in 
the future work to overcome the sensitivity of analog computing 
systems to the variations.
Another challenge of this process pertains to the values of the 

decoupling factor 𝜇. To minimize the coupling effect, the resistances 
in the filters are designed with lower values (<1kΩ) than that of 
the resistors in crossbars (100kΩ-10MΩ), while the capacitances are 
designed as high as the printing technology allows (100nF-100µF). 
In this work, we determined the range of 𝜇 by analyzing of signal 
frequencies in the experimental datasets (see Sec. 4) and conducting 
SPICE simulations with pPDK [22]. Notably, this range of 𝜇 has 
taken into account the cases in which the filters might be connected 
to multiple (up to five) crossbars, which will aggravate the circuit 
coupling by elevating the coupling current 𝐼 couple.

4 EVALUATION
To evaluate the pTPNCs, we implemented the proposed approach1 with Py-
Torch [23] and conduct experiments on 15 benchmark time-series datasets.

1The code is available at https://github.com/Neuromophic/LearnableFilters.

Dataset RG pNC Elman RNN pTPNC
CBF 0.335 0.456 ± 0.038 0.683 ± 0.036 0.907 ± 0.015
DPTW 0.441 0.507 ± 0.006 0.764 ± 0.012 0.654 ± 0.007
FRT 0.520 0.597 ± 0.120 0.795 ± 0.030 0.761 ± 0.076
FST 0.492 0.509 ± 0.066 0.798 ± 0.068 0.765 ± 0.015
GPAS 0.390 0.452 ± 0.003 0.768 ± 0.023 0.682 ± 0.106
GPMVF 0.567 0.637 ± 0.054 0.829 ± 0.108 0.891 ± 0.163
GPOVY 0.557 0.540 ± 0.007 1.000 ± 0.000 1.000 ± 0.000
MPOAG 0.483 0.560 ± 0.042 0.708 ± 0.035 0.712 ± 0.006
MSRT 0.283 0.261 ± 0.008 0.625 ± 0.068 0.503 ± 0.208
PowerCons 0.445 0.651 ± 0.010 0.982 ± 0.008 0.801 ± 0.040
PPOC 0.655 0.711 ± 0.001 0.724 ± 0.006 0.743 ± 0.005
SRSCP2 0.464 0.489 ± 0.011 0.742 ± 0.010 0.782 ± 0.010
Slope 0.501 0.559 ± 0.002 0.963 ± 0.036 0.898 ± 0.159
SmoothS 0.268 0.447 ± 0.011 0.648 ± 0.010 0.694 ± 0.063
Symbols 0.152 0.141 ± 0.002 0.660 ± 0.049 0.670 ± 0.052
Average 0.437 0.501 ± 0.025 0.779 ± 0.033 0.764 ± 0.062

Table 1. Result on 15 benchmark time-series datasets: mean and standard
deviation of accuracy from random guess (RG), previous printed neuro-
morphic circuit (pNC), hardware-agnostic Elman recurrent neural network
(RNN), and printed temporal processing neuromorphic circuit (pTPNC).

As the functionality of the printed neuromorphic hardware has been experi-
mentally validated in [15, 24, 25], the experiment is conducted at simulation
level based on the pPDK [22].

4.1 Experiment Setup
4.1.1 Dataset preparation. First, we sourced all datasets from the UCR time-
series classification archive [26]. Afterwards, we filtered out datasets based
on their complexity. Only datasets with 𝑁in and 𝑁out below 10 are kept to
match the typical complexity of the target applications of PE. Subsequently,
we preprocess the datasets by resizing the series lengths uniformly to 128,
normalized the signal values to the range of [−1, 1], reshuffle and split the
datasets into training (60%), validation (20%), and test (20%) sets. Then, we
leveraged a 2-layer RNNs as a baseline to remove datasets whose difficulty
surpassed the capabilities of general RNNs. Ultimately, the top 15 datasets
with optimal RNN performance are retained for the further experiment.

4.1.2 Training Setup. For each dataset, we adopt a 2-layer pTPNC (con-
sisting of two pTPBs) with the number of learnable filters 𝑁F equaling to
𝑁out. To minimize the objective function, we use the gradient-based Adam
optimizer with default parameterization to conduct full-batch training to
update the optimization parameters. The initial learning rate is set to 0.1
and get halved after every 100-epoch patience (consecutive updates without
improvement) on the validation loss. The training process stops once the
learning rate has been reduced below 10−5. The entire training procedure is
replicated 10 times, employing different random seeds ranging from 0 to 9.
This aims to mitigate the potential impact of unfavorable initialization, and
thus to ensures a sufficiently good solution.

4.1.3 Baselines. For comparison, we consider 2-layer basic pNCs without
pTPB as a baseline. The topology mirrors that of the pTPNCs, i.e., 𝑁in-
𝑁F-𝑁out with 𝑁F = 𝑁out. This comparison intends to assess the temporal
processing ability of both pNCs and pTPNC. Since pNCs are unable to pro-
cess temporal sensory data, the classification results should form random
guesses (RG), which refers to always predicting the most probable class in
training data. Besides, we also compare the pTPNCs with the RNNs that we
strived to mimic. Specifically, we adopt the Elman RNNs provided in Py-
Torch, and analogously, we utilize 2-layer RNNs with the number of hidden
states (equivalent to the number of learnable filters 𝑁F) being equal to 𝑁out.
After hyperparameter tuning, we initiate the learning rate for RNNs to 0.01,
while all other training setups are kept identical to those of the pTPNCs.

4.1.4 Evaluation Result. After training, we select the top three models
(trained with three different random seeds) for each dataset according to the
accuracy on the validation set. Note that, in accordance with the objective



Dataset #Transistor #Resistor #Capacitor #Total Device Power (mW)
pNC pTPNC pNC pTPNC pNC pTPNC pNC pTPNC pNC pTPNC

CBF 18 24 57 84 − 6 75 114 0.471 0.653
DPTW 36 48 150 222 − 12 186 282 1.069 1.501
FRT 12 16 34 50 − 4 46 70 0.272 0.372
FST 12 16 34 50 − 4 46 70 0.276 0.342
GPAS 12 16 34 50 − 4 46 70 0.221 0.374
GPMVF 12 16 34 50 − 4 46 70 0.302 0.389
GPOVY 12 16 34 50 − 4 46 70 0.289 0.324
MPOAG 18 24 57 84 − 6 75 114 0.454 0.625
MSRT 30 40 115 170 − 10 145 220 0.862 1.188
PowerCons 12 16 34 50 − 4 46 70 0.312 0.363
PPOC 12 16 34 50 − 4 46 70 0.226 0.381
SRSCP2 12 16 44 60 − 4 56 80 0.294 0.472
Slope 12 16 34 50 − 4 46 70 0.320 0.388
SmoothS 18 24 57 84 − 6 75 114 0.436 0.610
Symbols 36 48 150 222 − 12 186 282 1.143 1.526
Average 18 23 60 88 − 6 78 118 0.463 0.634

Table 2. Hardware costs of basic printed neuromorphic circuit (pNC) and
printed temporal processing neuromorphic circuit (pTPNC).

proposed in Sec. 3.3, we have computed the classification accuracy at every
time step, and subsequently average these accuracies over time to yield the
overall classification accuracy on a dataset. These selected models are then
evaluated on the test set. Ultimately, for each dataset, we summarize its mean
accuracy with respect to random seeds and the corresponding standard
deviation. The result is presented in Tab. 1. To obtain a straightforward
insight on the effectiveness of each models in various scenarios (datasets), we
also averaged the accuracy and standard deviation with respect to datasets.
The averaged values are reported in the last row of Tab. 1.

4.1.5 Hardware Cost. To investigate the additional hardware resources
required by the new circuit design, we collect the device counts and total
power consumption of both the previous pNCs and the proposed pTPNCs in
different application scenarios (i.e., datasets). Analogously, we averaged the
hardware costs across all datasets to report a comprehensive comparison
regarding the hardware costs between the pTPNC and its pNC counterpart.
The results can be seen in Tab. 2.

4.2 Discussion
As can be seen in Tab. 1, basic pNCs without pTPB are unable to process tem-
poral information, and thereby only achieve similar classification accuracy to
that of the random guess. However, by comparison of averaged performance
between pTPNCs and basic pNCs, it reveals that pTPNCs are indeed capable
of processing time-series data. Moreover, such capability for temporal signal
processing requires only approximately 1.5× more devices and 1.3× more
power consumption. By comparing the performance of pTPNCs with RNNs,
we conclude that the pTPNCs can attain a comparable (98%) classification
accuracy to their completely hardware-agnostic Elman RNN counterparts.
Interestingly, a closer observation of Tab. 1 reveals that pTPNCs and RNNs
do not consistently yield comparable performance on every dataset. Their
accuracy differs significantly on datasets such as CBF, DPTW, PowerCons,
and SmoothS. This may be due to the physical limitations of the circuits
(and consequently their distinct computational models).

5 CONCLUSION
With the development of next-generation electronics, PE, including pNCs,
have gained substantial research attention, as they can offer unique features
such as flexibility and bio-degradability, that can not be matched by con-
ventional silicon-based electronics. However, the existing pNCs, consisting
of only printed resistors and transistors, are unable to process temporal
sensory inputs, due to the absence of components with time dependencies.
This limitation significantly hinders the utility of pNCs in domains where
temporal information needs to be processed. To address this problem, this
work proposed a printable pTPB with learnable filters. By modeling the
proposed circuit with the consideration of circuit coupling and designing
a learning objective, we enable the proposed pTPNC to handle time-series

process. Simulations performed on 15 benchmark time-series datasets re-
veal that pTPNCs rectify the inherent inability of previous pNCs to process
time-related signals, while having only 1.5× higher device counts and 1.3× in-
creased power consumption. Moreover, through the comparison with Elman
RNNs, we show that the proposed pTPNCs achieve an almost comparable
(98%) classification accuracy to hardware-agnostic RNNs.
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