KIT | KIT-Bibliothek | Impressum | Datenschutz

Optimizing Fine-Grained Fungi Classification for Diverse Application-Oriented Open-Set Metrics

Wolf, Stefan ORCID iD icon 1; Beyerer, Jürgen 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

Fine-grained fungi species classification is an important task to support distinguishing edible and poisonous fungi and thus, reducing the risk of accidental poisoning. Therefore, the FungiCLEF 2023 challenge seeks to find the best solution for this task considering multiple metrics with each having a different application in focus like e.g., a low confusion of edible and poisonous fungi. We propose a method to approach the different metrics by exploiting modern deep learning networks, strong data augmentation and class-balanced training. The challenge assumes an open-set scenario which includes unknown classes during evaluation which we identify by a confidence thresholding approach. With our method, we achieved the 2nd place in the challenge with good scores across all metrics. Code is available at: https://github.com/wolfstefan/fungi2023.


Verlagsausgabe §
DOI: 10.5445/IR/1000164441
Veröffentlicht am 21.11.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 1613-0073
KITopen-ID: 1000164441
Erschienen in Working Notes of the Conference and Labs of the Evaluation Forum (CLEF 2023)
Veranstaltung 14th Conference and Labs of the Evaluation Forum (CLEF 2023), Thessaloniki, Griechenland, 18.09.2023 – 21.09.2023
Verlag CEUR-WS
Seiten 2159 – 2167
Serie CEUR workshop proceedings ; 3497
Vorab online veröffentlicht am 04.10.2023
Externe Relationen Abstract/Volltext
Schlagwörter Fungi classification, Open-set classification, FungiCLEF, Vision transformer
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page