KIT | KIT-Bibliothek | Impressum | Datenschutz

Reinforcement learning for energy-efficient control of multi-stage production lines with parallel machine workstations

Loffredo, Alberto; May, Marvin Carl ORCID iD icon 1; Matta, Andrea
1 Institut für Produktionstechnik (WBK), Karlsruher Institut für Technologie (KIT)

Abstract:

An effective approach to enhancing the sustainability of production systems is to use energy-efficient control (EEC) policies for optimal balancing of production rate and energy demand. Reinforcement learning (RL) algorithms can be employed to successfully control production systems, even when there is a lack of prior knowledge about system parameters. Furthermore, recent research demonstrated that RL can be also applied for the optimal EEC of a single manufacturing workstation with parallel machines. The purpose of this study is to apply an RL for EEC approach to more workstations belonging to the same industrial production system from the automotive sector, without relying on full knowledge of system dynamics. This work aims to show how the RL for EEC of more workstations affects the overall production system in terms of throughput and energy consumption. Numerical results demonstrate the benefits of the proposed model.


Verlagsausgabe §
DOI: 10.5445/IR/1000164446
Veröffentlicht am 21.11.2023
Originalveröffentlichung
DOI: 10.21741/9781644902714-51
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Produktionstechnik (WBK)
Publikationstyp Proceedingsbeitrag
Publikationsmonat/-jahr 10.2023
Sprache Englisch
Identifikator ISBN: 978-1-64490-271-4
ISSN: 2474-395X
KITopen-ID: 1000164446
Erschienen in Italian Manufacturing Association Conference
Veranstaltung Italian Manufacturing Association Conference (2023), Neapel, Italien, 13.09.2023 – 15.09.2023
Verlag Materials Research Forum LLC
Seiten 428 – 436
Serie Materials Research Proceedings ; 35
Vorab online veröffentlicht am 05.09.2023
Schlagwörter Artificial Intelligence, Sustainability, Manufacturing Systems
Nachgewiesen in Dimensions
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere EnergieZiel 9 – Industrie, Innovation und Infrastruktur
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page