
Construction of Decision Diagrams for Product
Configuration
Maxim Popov1,2, Tomáš Balyo1, Markus Iser2,3 and Tobias Ostertag1,∗

1CAS Software AG, CAS-Weg 1 - 5, 76131 Karlsruhe, Germany
2Karlsruhe Institute of Technology (KIT), KIT-Department of Informatics, Karlsruhe, Germany
3University of Helsinki, Department of Computer Science / HIIT, Helsinki, Finland

Abstract
Knowledge compilation is a well-researched field focused on translating propositional logic formulas into efficient data
structures that allow polynomial-time online queries related to the SAT problem. Knowledge compilation techniques can be
used to partition product configuration tasks into two distinct phases: fast online processing and slow offline preprocessing.
Binary Decision Diagrams (BDDs) are widely studied in this area and provide a graph representation of Boolean formulas.
However, BDD construction can be time-consuming, particularly for large instances, as their size grows exponentially with
the number of variables. This paper explores methods to improve BDD construction time, including optimizing variable
ordering. The evaluation involves applying these techniques to formulas in Rich Conjunctive Normal Form, comparing the
results with Sentential Decision Diagrams. The experiments use CAS Software AG benchmarks.

Keywords
Configuration, Knowledge Compilation, Decision Diagrams

1. Introduction
Propositional logic is a common form of representing real-
life logical relations and rules in a way that can easily be
used in computer. The following example demonstrates
how Boolean formulas are used in the area of product
configuration:

Example 1.1. Suppose a company selling bikes offers
various configurations, where selecting one component
(i.e., bike frame) can limit choices for other components
(i.e., wheels) due to compatibility constraints. These con-
straints can be represented as Boolean formulas.

𝑅1 = ¬F1 ∨ ((W ∨ B) ∧ ¬BL ∧ ¬G) (1)

Each variable in Equation 1 is assigned a value of true
if the option is chosen. F1 is the variable representing
the frame option, andW, B, G, BL are the variables rep-
resenting the frame colors white, blue, green, and black
respectively. The formula represents the rule that if a
frame 1 is chosen, only the colors white and blue can be
selected.

Configuration of complex products with many options
may be a computationally hard problem that also can be

ConfWS’23: 25th International Workshop on Configuration, Sep 6–7,
2023, Málaga, Spain
∗Corresponding author.
Envelope-Open maxim.popov@campus.tu-berlin.de (M. Popov);
markus.iser@kit.edu (M. Iser); tobias.ostertag@cas.de (T. Ostertag)
Orcid 0000-0003-2904-232X (M. Iser); 0000-0003-3294-3807
(T. Ostertag)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

formulated as a Boolean Satisfiability Problem (SAT). SAT
involves determining if a Boolean formula has satisfying
assignments. While the problem is NP-complete, it can
often be solved online using SAT solvers. Another way
is to use knowledge compilation methods, whereby the
solutions first get prepared and stored in a data struc-
ture offline and then can efficiently be retrieved online.
Binary Decision Diagrams (BDDs) and Ordered Binary
Decision Diagrams (OBDDs) are well-known knowledge
compilation methods that represent Boolean formulas
as binary trees. They were used in formal verification
and were proved to be efficient in analysing systems with
large amount of states [1].

Given the OBDD representation of a Boolean formula,
satisfiability can be checked in constant time, solutions
can be found in linear time, and models can be counted
in polynomial time [2]. However, the size of the BDD as
well as its construction time can be exponential in the
number of variables.
For the product configuration, it means that config-

uration rules can be efficiently verified in the runtime,
but we have to consider potentially long preprocessing
time. Therefore, the reduction of BDD is essential for im-
proving performance and can be achieved by optimizing
variable ordering.

In this paper, we overview existing approaches for
minimizing BDD size, apply them to RCNF formulas and
introduce modifications of existing approaches: variable
frequency and M-FORCE constraint ordering heuristics
and construction strategies. We evaluate existing as well
as our heuristics using real-world configurations and
compare them to existing approaches. Lastly, we briefly
present our modification of ordering heuristics for Sen-

mailto:maxim.popov@campus.tu-berlin.de
mailto:markus.iser@kit.edu
mailto:tobias.ostertag@cas.de
https://orcid.org/0000-0003-2904-232X
https://orcid.org/0000-0003-3294-3807
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

tential Decision Diagrams (SDDs) construction, which is
a recently developed type of decision diagram that is a
superset of OBDDs.
Chapter 2 presents some basic definitions that will

be used throughout the work. Chapter 3 provides some
insights into related works. Chapter 4 presents our or-
dering heuristics. Chapter 5 presents the libraries used
to implement our approach and which also serve to mea-
sure baseline performance. Finally, Chapter 6 provides
evaluation results for the described methods.

2. Preliminaries
This chapter contains definitions and examples of main
concepts used in this work.

2.1. Boolean Formulas
This section contains definitions and notions including
canonical normal forms of Boolean formulas.

Definition 2.1. Conjunctive Normal Form (CNF) is a
conjunction of clauses ⋀𝑖 𝑐𝑖, where each clause 𝑐𝑖 is a
disjunction of literals ⋁𝑗 𝑙𝑗. A CNF clause is satisfied if
at least one of its literals is satisfied. A CNF formula is
satisfied if all of its clauses are satisfied.

Definition 2.2. Disjunctive Normal Form (DNF) is a
disjunction of terms ⋀𝑖 𝑐𝑖, where each term 𝑐𝑖 is a con-
junction of literals ⋁𝑗 𝑙𝑗. A DNF term is satisfied if all of
its literals are satisfied. A DNF formula is satisfied if at
least one of its terms is satisfied.

Definition 2.3. An At-Most-One (AMO) constraint is a
Boolean formula that takes a set of literals as an input and
outputs true (is satisfied) if and only if maximal one of
the input literals is satisfied. For a set of literals {𝑙1, ..., 𝑙𝑛},
we use the following notation for the AMO constraint:
𝐴𝑀𝑂(𝑙1, ..., 𝑙𝑛)

Definition 2.4. A Rich Conjunctive Normal Form
(RCNF) formula is a conjunction of constraints, where
a constraint can be a DNF formula, a disjunction of lit-
erals (equal to the CNF clause) or an AMO constraint.
A RCNF formula is satisfied if all of its constraints are
satisfied. Basically, RCNF is an extension of a CNF that
allows more types of constraints, and thus allows smaller
representation of a complex configuration rules .

2.2. The Boolean Satisfiability Problem
Let {𝑥1, ..., 𝑥𝑘} be a set of Boolean variables and 𝑞 be a
propositional logic formula in CNF that contains only
literals of {𝑥1, ..., 𝑥𝑘}. Formula 𝑞 is satisfiable if and only
if there exists a set of variable assignments, so that 𝑞 is
true. The Boolean Satisfiability Problem (SAT) is solved

if either the satisfying assignment of the formula is found
or it is determined that the formula is not satisfiable.

2.3. Binary Decision Diagram
This section is based on the Handbook of Model Check-
ing [3].

Definition 2.5. A Binary Decision Diagram (BDD) rep-
resents a Boolean function as an acyclic directed graph,
with the nonterminal vertices labeled by Boolean vari-
ables and the leaf vertices labeled with the values 1 and 0.
Each nonterminal vertex 𝑣 has two outgoing edges: ℎ𝑖(𝑣),
corresponding to the case where its variable has value 1,
and 𝑙𝑜(𝑣), corresponding to the case where its variable
has value 0.

Definition 2.6. An Ordered Binary Decision Diagram
(OBDD) is a BDD for which an additional ordering rule
applies: for each nonterminal vertex 𝑣 associated with
variable 𝑥𝑖 and a vertex 𝑢 ∈ {𝑙𝑜(𝑣), ℎ𝑖(𝑣)} associated with
variable 𝑥𝑗, we must have 𝑖 < 𝑗

An OBDD can be reduced by eliminating redundant
nodes and merging terminal and duplicate nodes. The
result of such reduction is the Reduced Ordered BDD
(ROBDD) [3]. This reduction can be performed in the
time linear in the size of the original graph [4].
ROBDDs serve as a canonical form for Boolean func-

tions, meaning that, for a given variable ordering, ev-
ery Boolean function has a unique representation as a
ROBDD. The construction of a ROBDD is essential to
keep the BDD as small as possible, as the complexity of
most algorithms that utilize BDD is dependent on the
number of nodes/length of paths in the tree. In this paper,
every mention of BDD refers to ROBDD.
Given a BDD of a function, we can answer these and

other questions related to a SAT problem for a given
instance. The function is satisfiable, if it does have a
terminal node labeled with value 1. We can find a ran-
dom solution for the formula by traversing the diagram
from root toward the ”1” leaf. The complexity of such
algorithm is 𝑂(ℎ), where h is the height of the BDD. We
can count the number of solutions by traversing the BDD
and counting the paths. The complexity is 𝑂(𝑛), where 𝑛
is the number of nodes. [2, 3]

The common strategy for BDD frameworks is to divide
an overall function into smaller functions and creating
BDDs bottom-up. We start by creating BDDs for single
literals, and then subsequently use the BDDs from previ-
ous steps to create new ones by applying operations like
AND, OR, XOR. The generalization of these operations
is called Apply algorithm. The algorithm creates a BDD
that represents the given result of applying the operation
between the formulas of input BDDs. The overall time
complexity of an Apply operation is 𝑂(𝑁𝑢 × 𝑁𝑣), where

𝑁𝑢 and 𝑁𝑣 are the number of vertices in BDDs where
vertices 𝑢 and 𝑣 respectively are the root nodes of input
trees.

A BDD requires a defined variable ordering that will be
followed along all paths of a diagram. The size of a BDD
depends heavily on the ordering of input variables. Some
functions can rise in size from linear to exponential in the
number of variables due to a bad ordering. However, the
problem of finding an optimal variable ordering to con-
struct a minimum-size BDD is proven to be NP-complete
and some functions don’t have an optimal ordering [5].
Thus, instead of computing an optimal variable ordering,
is a common approach to use heuristics to generate a
good ordering and use it during BDD construction.

2.4. Sentential Decision Diagram
This section is based on the work of Darwiche (2011) [6].

Sentential Decision Diagram (SDD) is a more recent
technique of representing of propositional knowledge
bases. SDDs are a strict superset of OBDDs and are in-
spired by two discoveries: structured decomposability
and strongly deterministic decompositions.
To explain SDDs, we first define the decomposition

that is used to construct this type of decision diagram
and the we define the important notion of vtrees.

Definition 2.7. Consider a Boolean function 𝑓 (𝑋 , 𝑌)
with non-overlapping variables 𝑋 and 𝑌. If 𝑓 = (𝑝1(𝑋) ∧
𝑠1(𝑌)) ∨ ... ∨ (𝑝𝑛(𝑋) ∧ 𝑠𝑛(𝑌)) then {(𝑝1, 𝑠1), ..., (𝑝𝑛, 𝑠𝑛)} is
called a (𝑋 , 𝑌)-decomposition of function 𝑓. We call each
pair (𝑝𝑖, 𝑠𝑖) an element of the decomposition, 𝑝𝑖 a prime
and a 𝑠𝑖 sub. If 𝑝𝑖 ∧ 𝑝𝑗 = false for 𝑖 ≠ 𝑗 the decomposition
is called strongly deterministic on 𝑋.

Definition 2.8. A vtree for variables 𝑋 is a full binary
tree whose leaves are in one-to-one correspondence with
the variables in 𝑋.

The vtree is used to recursively decompose a given
Boolean function starting at the root of the tree. The
left subtree of each node corresponds to the X vari-
ables, and the right subtree to Y variables of the (𝑋 , 𝑌)-
decomposition. The SDD representation is then based on
a recursive application of the presented decomposition
technique. The formal definition of this operation is as
follows:

Definition 2.9. Notation: ⟨.⟩ denotes a mapping from
SDDs into Boolean functions. 𝛼 is an SDD that respects
vtree 𝑣 if:

• 𝛼 = ⊥ or 𝛼 = ⊤
• 𝛼 = 𝑋 or 𝛼 = ¬𝑋 and 𝑣 is a leaf with variable 𝑋
• 𝛼 = {(𝑝1, 𝑠1), ..., (𝑝𝑛, 𝑠𝑛)}, 𝑣 is an internal node,
𝑝1, ..., 𝑝𝑛 are SDDs that respect the left subtrees of
𝑣, 𝑠1, ..., 𝑠𝑛 are SDDs that respect the right subtrees
of 𝑣, and ⟨𝑝1⟩, ..., ⟨𝑝𝑛⟩ is a partition.

An SDD that consists of a constant or a literal is called
terminal. Otherwise, it is called decomposition. SDDs
are canonical, which means that for a given vtree, every
Boolean function has a unique representation of an SDD
[6]. SDDs are a strict superset over BDDs. The variable
ordering of a BDD will then correspond to the total order
of the vtree, which is defined as a sequence of variables
obtained from the left-right traversal of the vtree [6].
BDD-trees are twofold exponential in treewidth,

whereas SDDs are just exponential. The SDDs are also as
tractable as BDDs, but are more succinct both in theory
and in practice [7]. There exist some Boolean functions
that can be represented with at least exponential BDD
size and only polynomial SDD size [7].

3. Related Work
This section provides some insights into existing re-
searches of BDDs and SDDs.

3.1. Product Configuration Using BDDs
The work of Hadzic et al. [8] presents BDDs as an effi-
cient solution to the configuration problem. The authors
also describe how they applied this method practically
in the commercial software product Configit. They high-
light that BDDs can be efficiently applied in industry
use cases, since they have several advantages over com-
monly used search-based configurators, including faster
response times, better scalability, and improved rule qual-
ity [8]. However, the research just mentions variable or-
dering methods to optimize BDDs, but does not provide
any examples of efficient heuristics.

3.2. Static Variable Ordering
Static variable ordering techniques attempt to determine
a near-optimal variable ordering before constructing the
BDD based on prior analysis of the input function [9].
Many algorithms that were proven to be efficient are

described in the work of Rice and Kulhari (2022) [9]. It in-
cludes straightforward approaches like Dependent Count,
Variable Appending, Sub-Graph Complexity etc., as well
as different metric optimization heuristic techniques.

One example of static variable ordering techniques is
the MINCE (Min Cut Etc.) heuristic proposed by Aloul et
al. (2004) [10]. Its main idea is to partition the variables
into groups with minimal functional correlation between
variables in separate groups by translating it into bal-
anced min-cut hypergraph partitioning problem.[9].
The authors of the MINCE heuristic conjecture that

their heuristic captures structural properties of Boolean
functions arising from real-world applications [10].

3.3. Dynamic Variable Ordering
In contrast to static variable ordering techniques, the dy-
namic ordering techniques attempt to adjust the ordering
online during the construction of the decision diagram
[9]. The idea was presented by Rudell (1993) [11] based
on the observation that swapping two adjacent variables
of a BDD can be implemented without major changes to
the Boolean function library API [3]. One of such tech-
niques is sifting. Variables are moved up and down in the
ordering, until the algorithm finds a location that leads to
an acceptable number of total vertices. Evaluation results
show that sifting improves the memory performance, but
it is also a time-consuming process [3].

3.4. Top-Down SDD Compiler
Most SDD constructing algorithms work analog to the
BDD construction that we presented earlier in this chap-
ter: create a decision diagram from smaller decision dia-
grams. This process is usually referred to as bottom-up
compilation.

The work of Oztok and Darwiche (2015) [12] describes
a top-down compiler constructing SDDs from CNF formu-
las. The top-down compiler produces a subset of SDDs
called Decision-SDDs. The compiler utilizes techniques
from SAT solvers and model counting algorithms to de-
compose a formula. Results presented in [12] show that
the top-down compiler is consistently more performant
than the bottom-up compiler.
The miniC2D software package created by the Uni-

versity of California includes code for SDD compilation
based on the idea of a top-down compiler from [12]. The
program doesn’t produce the SDDs itself, but its output
can be transformed to the SDD in linear time.

3.5. Multivalued Decision Diagram
Multivalued Decision Diagram (MDD) is another struc-
ture that is also proved to be efficient in product config-
uration area. MDDs can be seen as a generalization of
BDDs, where a function can work with more than binary
(true/false) values. Research by Andersen et al. [13] pro-
vides an analysis of MDD usage in an interactive cost
calculation task. The research also highlights the impor-
tance of variable ordering for both MDDs and BDDs. The
evaluations even show that MDDs can perform better
than BDDs for presented tasks. Nevertheless, most vari-
able ordering heuristics are generally considered to be
appliable to both BDDs and MDDs [9], so we could also
apply the heuristics that we overview in our research to
MDDs.

4. Analysis and Approach
This chapter describes different methods of ruleset pre-
processing, variable ordering and BDD construction
strategies. We will discuss the usage of existing state-of-
the-art methods like FORCE as well as suggest some new
algorithms.

4.1. Variable Reordering
This section explores various variable reordering heuris-
tics and their algorithms aimed at improving BDD con-
struction speed. The algorithms prioritize low ordering
time, manageable implementation complexity, and effec-
tive variable ordering specifically for RCNF formulas.
We implemented and experimented with the follow-

ing two different variable ordering heuristics: Variable
Frequency (VF) and FORCE (F).

4.1.1. Variable Frequency

We propose the variable frequency (VF) as an easy to
implement and efficient heuristic that produces reason-
able orderings. The VF heuristic evaluates the variable’s
influence on the function output using the frequency
metric. This metric counts either overall appearances of
each variable or the number of constraints containing
this variable. Subsequently, the algorithm sorts the list
of variables using these values in descending order. The
heuristic can be seen as a modification of the Depen-
dent Count heuristic described in [9], but used mainly
for a more general type of decision diagram called Multi-
Valued Decision Diagrams (MDDs).

The intuition behind this heuristic is that more con-
strained variables are placed on a level closer to the root
of the tree, which allows them to shorten the paths to
the terminal nodes. However, the frequency metric does
not consider the semantics of the formula and can lead
to a false conclusion about variable influence.

The frequency counting takes linear time in the num-
ber of constraints in a formula Θ(|𝐶|), considering that
we have information about each constraint’s contained
variables. Sorting takes Θ(|𝑉 |𝑙𝑜𝑔|𝑉 |). Overall, the algo-
rithm takes loglinear time in the number of variables
Θ(|𝑉 |𝑙𝑜𝑔|𝑉 |)

4.1.2. FORCE Heuristic

The FORCE heuristic which is described in the paper by
Aloul et al. (2003) [14]. FORCE is introduced as an alter-
native to MINCE, as described in Section 3.2, and comes
with a simpler implementation and orders-of-magnitude
increased speed, while providing competitive results with
MINCE.
The algorithm is based on the same observation as

the MINCE heuristic: Related variables in satisfiability

typically participate in the same CNF clauses [14], so the
heuristic reorders Boolean variables to place ”connected”
variables close to each other. FORCE transforms the vari-
able ordering problem into the linear placement problem.
The vertices of a hypergraph correspond to variables and
edges correspond to clauses. Since in our case, the RCNF
is used, the clauses are replaced with constraints for all
the definitions.
The FORCE algorithm uses the force-directed place-

ment instead of a min-cut placement. The idea behind it
is that interconnected objects (vertices of a hypergraph or
variables in our case) experience forces analog to springs
according to the Hooke’s law. The algorithm computes
these forces and displaces the vertices in the direction of
the forces iteratively.

After an initial ordering is given, the center of gravity
of each hyperedge 𝑒 is defined the following way:

𝐶𝑂𝐺(𝑒) = (∑
𝑣∈𝑒

𝑙𝑣) /|𝑒| (2)

with 𝑙𝑣 denoting the index of a vertex 𝑣 in a current
placement.

The new position 𝑙′𝑣 is calculated with the following for-
mula in which 𝐸𝑣 is the set of all hyper-edges connected
to the vertex 𝑣.

𝑙𝑣 = (∑
𝑒∈𝐸𝑣

𝐶𝑂𝐺(𝑒)) /|𝐸𝑣| (3)

Thereafter, the vertices are sorted according to the
newly calculated positions. These iterations continue
until a given metric of ordering stops improving. As
proposed in the paper, the total variable span metric
is used and the iterations stop after the metric doesn’t
decrease after given number 𝑛 of iterations. Additionally,
the iterations number is bounded by 𝑐 ⋅ 𝑙𝑜𝑔|𝑉 |, where 𝑐 is
a constant.
The worst-case time of the algorithm is 𝑂((|𝐶| +

|𝑉 |𝑙𝑜𝑔|𝑉 |) ⋅ 𝑙𝑜𝑔|𝑉 |) [14], where C is the set of constraints,
andwe assume that the average degree of hyperedges and
the average degree of vertices are limited by a constant.

4.2. Constraint Reordering
Another approach to reduce BDD construction time is
by manipulating the ordering of constraints in an RCNF
formula. By strategically grouping certain constraints
together, the time required for combining smaller BDDs
during construction can be decreased. This not only
results in a smaller BDD but also reduces the time for
subsequent operations. Constraint reordering, particu-
larly when combined with dynamic reordering, can be
highly efficient as it minimizes the number of nodes in
intermediate results, thereby accelerating the sifting op-
eration.

We implemented the following two different constraint
ordering heuristics: Variable Frequency (VF-C) and Mod-
ified FORCE (M-FORCE).

4.2.1. Variable Frequency

We propose a concept of variable frequency ordering for
constraints. The idea is to sort constraints according to
the variables that they contain (similar to the VF ordering
for variables). Specifically, it evaluates which variables
are most influential in the ruleset and places the con-
straints that contain such variables at the beginning of a
ruleset. Analog to the variable ordering with the same
name, it evaluates the influence of the variables using
frequency metric.

The proposed algorithm works the following way: we
use the results of variable frequency ordering (Section
4.1.1). Then we analyze which variable in each constraint
is the most frequent in the whole formula. If there are sev-
eral variables with the same frequency, the one with the
lowest index is taken. The constraint is then associated
with this variable, and we sort the constraints according
to the frequency of their associated variables.
It should be noted that the method induces a parti-

tion over the set of constraints based on the associated
variables. The partition is specified in Equation 4. Let 𝐶
be the set of all constraints, and 𝑀𝐹𝑉 (𝑐) the associated
variable of constraint 𝑐, i.e., the most frequent one.

𝑃 = { [𝑐] ⊆ 𝐶 | 𝑐′ ∈ [𝑐] ⟺ 𝑀𝐹𝑉 (𝑐) = 𝑀𝐹𝑉 (𝑐′) } (4)

So, in addition to the most frequent variables being
added to the overall BDD in the first iterations, this ap-
proach also groups the constraints with the same vari-
ables.

4.2.2. Modified FORCE

We present the heuristic that utilizes the idea of the
FORCE variable ordering heuristic by applying it to the
constraint ordering. It uses the concept of interconnected
objects and placement by measuring their forces, but uses
constraints as objects and redefines the interconnected
objects as constraints having the same variables.

Basically, the algorithm is a modification of the FORCE
variable ordering, the difference is in the types of objects
that it takes as input. We build the hypergraph by using
constraints as nodes and edges as sets of constraints that
obtain the same variable. For a set of variables |𝑉 |, a set
of constraints 𝐶 and hypergraph edges 𝐸 definition looks
like this:

𝐸 = { 𝑒𝑣 ⊆ 𝐶 | 𝑣 ∈ 𝑉 , ∀𝑐 ∈ 𝑒𝑣 ∶ 𝑣 ∈ 𝑐} (5)

We then use Formulas 2 and 3 and run the same al-
gorithm to find a constraint placement that minimizes

the total span of the hypergraph (𝐶, 𝐸). The number of
iterations is bounded by 𝑐 ⋅ log |𝐶|
As we can assume that every variable is used at least

once, it applies |𝐸| = |𝑉 |. So, the worst-case time of
each iteration is |𝑉 | + |𝐶| (analog to FORCE, we assume
that average degrees of vertices and hyperedges are
bound by a constant). The sorting takes Θ(|𝐶|𝑙𝑜𝑔|𝐶|), so
the worst-case performance of the algorithm is 𝑂((|𝑉 | +
|𝐶|𝑙𝑜𝑔|𝐶|)𝑙𝑜𝑔|𝐶|).

The hypergraph construction is not as trivial as in the
case of the origial FORCE heuristic. With the usage of
mapping from variables to their parent constraints and a
mapping of constraints to the edges attached to them, the
overall time complexity of the hypergraph construction
is 𝑂(|𝐶| + |𝑉 |), assuming that the number of variables in
a constraint and the number of constraints containing a
certain variable are bound by a constant.
The algorithm can be modified by assigning different

weights to each constraint based on their influence on the
output. These weights can be used in equations, such as
the center of gravity and position formulas, to prioritize
the faster movement of more influential constraints.

4.3. Diagram Construction
Given a constraint ordering, there can be several con-
struction strategies on how to use that ordering to con-
struct a BDD. The Apply algorithm is used to recursively
create BDD from smaller BDDs starting with just vari-
ables. The order in which the algorithm is applied affects
the construction time of a BDD and can be changed ei-
ther by constraint reordering, which we discussed in the
previous section, or by construction strategies.

In this section, we will present two construction strate-
gies for RCNF formulas. We mention the commonly used
Depth-First strategy and present the Merge Strategy.

4.3.1. Depth-First Strategy

A common straightforward approach: we append a
smaller BDD to the overall diagram as soon as it gets
constructed. For a RCNF formula, the strategy creates a
constraint, appends it to the overall BDD tree and moves
on with construction of the next constraint.
Constraint construction time stays bound by con-

straint size, whereby the overall tree increases its size
with each iteration, which slows down the appending of
the next BDDs.

4.3.2. Merge Strategy

We present the Merge Strategy as an alternative to the
Depth-First. This strategy tries to solve the problem by
dividing this problem into smaller ones.
First, we merge the first two constraints of them to-

gether, then we merge the resulting BDD with another

BDD of two constraints. We subsequently continue merg-
ing the BDDs containing the same amounts of constraints,
until the overall BDD is built. The construction order
can be represented as a binary tree (Figure 1).

Figure 1: Merge construction tree

Example 4.1. Construction tree for a formula (𝑥1 ∨
𝑥2)(𝑥3 ∨ 𝑥4)(𝑥5 ∨ 𝑥6)(𝑥7 ∨ 𝑥8).

This way, constraint BDDs do not get appended in the
exact order provided by this ordering, but global ordering
is not influenced toomuch. For example, if we swap every
two constraints (for instance, swap A and B, C and D in
the example 4.1) the construction of their resulting tree
will stay the same.

4.4. AMO Constraint Construction
An AMO constraint is not a binary operation, and its
construction is not directly possible using frameworks
like CUDD or libsdd that we will discuss later. Therefore,
we have evaluated two ways on how to transform it into
a form that uses Boolean operators.
The first way is to create a DNF representation of

the AMO constraint, which is shown by Equation 6 and
Equation 7 shows the whole formula 𝑓.

𝑐𝑖 = (
𝑖−1
⋀
𝑗=1

¬𝑙𝑗) ∧ 𝑙𝑖 ∧ (
𝑛
⋀
𝑗=𝑖+1

¬𝑙𝑗), 𝑖 ∈ {1, ..., 𝑛} (6)

𝑓 = (
𝑛
⋁
𝑖=1

𝑐𝑖) ∨ (
𝑛
⋀
𝑗=1

¬𝑙𝑖) (7)

In this case, the number of operations needed to build
a BDD grows quadratically in the number of literals in
the AMO formula.

Another way of presenting the AMO constraints is to
use the XOR operation, which is also supported by the
Apply algorithm. The formula constructed with XOR is
shown by Equation 8:

𝑓 = (𝑙1 ⊕ 𝑙2 ⊕ ... ⊕ 𝑙𝑛 ∧ 𝑐𝑜𝑛𝑒) ∨ 𝑐𝑧𝑒𝑟𝑜

𝑐𝑜𝑛𝑒 =
𝑛
⋁
𝑖=0

¬𝑙𝑖, 𝑐𝑧𝑒𝑟𝑜 =
𝑛
⋀
𝑖=0

¬𝑙𝑖
(8)

The number of operations grows linear in the number
of literals, which is makes it a more efficient method of
building decision diagrams for AMO constraints.

4.4.1. SDD Vtrees and Variable Orders

As we discussed earlier, the SDDs variable ordering is
more complex and is defined by vtrees instead of total
variable ordering that is used in OBDDs.

Darwiche and Choi presented the following definition
in [15]:

Definition 4.1. A vtree dissects a total variable order 𝜋
if a left-right traversal of the vtree visits leaves (variables)
in the same order as 𝜋.

In order to evaluate performance of the previously
described BDD heuristics in the context of SDDs, we
propose generating a total variable ordering, and then
creating a vtree that dissects that ordering.
For one total variable ordering, there are many trees

that can dissect it. Right-linear trees were discussed
preciously in section 2. SDDs that respect right-linear
vtrees correspond precisely to the OBDDs, and therefore
they cannot lead to any enhanced performance. Another
choice are left-linear trees and balanced trees. The bal-
anced trees were used for evaluation in [15] and are also
supported by the framework presented in this paper.

5. Implementation
In this chapter, we describe the frameworks that allow
constructing BDDs and SDDs using methods described
in Chapters 2 and 4.

5.1. CUDD
CUDD1 (Colorado University Decision Diagram) is an
open-source state-of-the-art package for BDD manipu-
lation written in C [16]. Practically, the package allows
presents an implementation of the Apply algorithm and
all needed data structures like unique table and cache.
The package also contains implementations of dy-

namic ordering algorithms. Available algorithms include
sifting, window permutations, group sifting and others.
The chosen algorithmwill be used every time the number
of nodes has increased up to a given threshold, which is
set automatically after each reordering.

5.2. libsdd
libsdd is an open-source library for SDD construction and
performing queries on them [17]. The interface and func-
tionality of this package are very similar to the CUDD,
but with respect to the SDD specifics.
1https://davidkebo.com/cudd

We can create a vtree with a given total order and pass
a parameter that specifies the type of the tree (right-linear,
left-linear, balanced, vertical or random) that dissects a
given total variable ordering. The library also allows
automatic SDD minimization, which is similar to BDD
dynamic ordering.

6. Evaluation
This chapter focuses on the evaluation of the algorithms
described in the previous sections. We will take a look
at the evaluated benchmarks and compare the results of
different program configurations on these benchmarks.
For the evaluation, we use a GPU computer with

64GB RAM, Intel Core i9-9900K 3.60Ghz CPU and Nvidia
GeForce RTX 2080 Ti GPU.

We used CUDD framework to implement the BDD con-
struction and ordering and libsdd for SDD construction
and ordering.

6.1. Benchmarks
One of the CAS Software applications is the Merlin CPQ
configuration tool. It allows creating configuration rules
using different complex relations between products and
product parts. Fundamentally, the program has to solve
the SAT problem for product configurations.

The evaluated benchmarks consist of real product con-
figuration rules of different companies that use Merlin
CPQ. Each benchmark corresponds to a company and
contains rulesets that describe company products. Their
rules were converted from the Merlin CPQ format into
boolean formulas. Each ruleset is an independent RCNF
formula saved as a DIMACS file. Table 1 shows the bench-
marks and the number of variables and constraints in
each of them.

6.2. Evaluation Goals
We evaluate the construction times as well as diagram
sizes for the baseline approaches and different configura-
tions of our approach. This includes several combinations
of variants of variable ordering, constraint ordering, con-
struction strategies, and an optional prior conversion of
RCNF to CNF. We compare these configurations to the
total construction time of SDDs using vtrees generated
by the miniC2D top-down SDD compiler.

Configurations in the experiments are named using ab-
breviations. The construction strategy is specified only if
it differs from the default depth-first strategy. All config-
urations utilize sifting dynamic ordering and XOR opera-
tions for AMO constraints, as shown in the Section 4.4.

https://davidkebo.com/cudd

Benchmark # Sum #vars Median #vars Sum #constraints Median #constraints
vms 31 35258 (37985) 977 (1019) 15301 (27692) 295 (489)
campers 4 9713 (14543) 2430 (3546) 25592 (44386) 4754 (9121)
heating 9 24331 (42320) 2730 (4637) 73564 (237325) 7488 (26245)
forklifts 36 483226 (682785) 13637 (19166) 735319 (1972435) 19315 (53567)
printers 263 346017 (414854) 1309 (1459) 640915 (1488435) 1473 (2364)
boards 41 25600 (35857) 471 (630) 26596 (69165) 520 (1071)
trucks 50 1378761 (2466468) 27601 (46294) 6026775 (39474710) 118075 (736760)
plants 10 30638 (36922) 3589 (4398) 31119 (57871) 2592 (5266)
circuits 8 4486 (5194) 614 (694) 6349 (9869) 688 (1193)
Total 452 2338030 (3736928) - 7581530 (43381888) -

Table 1
Benchmark sizes. Numbers in brackets refer to the values of benchmarks converted to CNF

Abbreviations Description
VF Variable Frequency (variable ordering)
VF-C Variable Frequency (constraint ordering)
FORCE (F) FORCE (variable ordering)
M-FORCE (MF) Modified-FORCE (constr. ordering)
MERGE (M) ”Merge” Construction Strategy
mC2D miniC2D vtree Ordering
cnf Input rulesets converted to CNF

Table 2
Abbreviations used for heuristics

6.3. Evaluation Methods
When constructing a decision diagram, choosing a subop-
timal ordering and dealing with numerous constraints in
a ruleset can result in construction times lasting several
days. To manage this, we impose a time limit during
the construction process and evaluate the algorithm’s
coverage. If the total construction time exceeds the limit,
the process is stopped, and the ruleset is considered un-
constructed. We assess the algorithms by comparing the
number of constructed rulesets and analyzing various
statistics for each algorithm. For example, we compare
the ordering time for cases where ordering was com-
pleted within the time limit.
First, we evaluate different configurations with a 5-

minute limit and then use the most performant ones for
construction with a 1-hour limit.

6.4. Ordering Time
Figure 2 shows how many instances of the whole set of
ruleset can be ordered in a time given by the y-axis. Here,
we evaluate only individual heuristics (with an excep-
tion to M-FORCE/FORCE/MERGE/cnf), since the present
variable and constraint ordering heuristics are indepen-
dent, and configurations with both methods being used
will just have an ordering time that equals the sum of
variable and constraint orderings. In contrast, the CNF
benchmark changes the ordering time, since the number
of variables and clauses is higher (as can be seen from
Table 1).

Figure 2: Time needed to find ordering using different con-
figurations in 5 min limit

We can observe that the only configurations managing
to order all instances under the limit are either VF or VF-
C heuristics. The FORCE variable heuristic comes close
to ordering all instances. M-FORCE constraint heuristic
is even less performant, which can be explained with
the fact that the number of constraints has more influ-
ence here and this number is bigger than the number of
variables in the given benchmarks. The combination of
M-FORCE and FORCE heuristics applied to the rulesets
converted to CNF is the least performant of all, since
the number of clauses in CNF rulesets is normally bigger
than the number of constraints in original RCNF rulesets.

6.5. Coverage Statistics
In this section, we will evaluate the decision diagram
construction with a time limit.

6.5.1. 5-Minute Limit

In Table 3 we can see the results for BDD construc-
tion with variable ordering, constraint ordering, and
different construction strategies. trucks , heating and
forklifts benchmarks did not result in successfully con-
structed rulesets and are therefore not present. Merge

Bench

R ∅ VF-C MF VF-C MF MF
R ∅ VF F VF F F

M M M
cnf

vms 22 24 24 26 24 24 27
campers 2 2 2 2 2 2 2
printers 82 85 99 119 125 144 162
boards 15 34 25 32 34 33 36
plants 0 0 1 1 3 0 3
circuits 4 7 7 8 7 8 8
Total 125 152 158 188 195 211 238

Table 3
5-minute coverage results with different constraint orderings
(R, ∅, VF-C, and MF), variable orderings (R, ∅, VF, and F),
construction strategies (M), and optional conversion to cnf

strategy consistently outperforms depth-first in every
configuration. The best performance was achieved by
the M-FORCE/FORCE/MERGE configuration, which also
showed better results when the formula was given in
RCNF rather than CNF.

Bench

∅ MF MF ∅ mC2D
∅ F F ∅ cnf
cnf M

vms 11 23 22 22 27
campers 2 2 2 2 2
printers 72 72 96 113 168
boards 17 21 25 27 33
plants 0 1 3 0 7
circuits 3 7 8 6 7
Total 105 126 156 170 244

Table 4
5-minute coverage results for SDDs with different constraint
orderings (∅, and MF), variable orderings (∅, and F), construc-
tion strategies (M), and optional conversion to cnf, including
the baseline mC2D

In Table 4 we can see that the heuristics do not work
as well for SDDs as for BDDs. Configurations using vari-
able and constraint heuristics do not improve coverage,
suggesting unsuitability for constructing efficient vtrees
for SDDs. The best result is shown by the construction
using vtrees created by miniC2D tool. We can see that
M-FORCE/FORCE/MERGE BDD construction (Table 3)
almost reaches the performance of best SDD configura-
tion. trucks , heating and forklifts benchmarks again
did not yield constructed rulesets.

6.5.2. 1-Hour Limit

In Table 5 we can see coverage results for the 1-hour limit.
The table contains both results for SDDs and BDDs

The M-FORCE/FORCE/MERGE configuration man-
ages to outperform SDDs constructed with vtrees from
miniC2d. M-FORCE/FORCE also shows comparable re-
sults.

Bench

SDD BDD SDD BDD BDD SDD BDD
MF VF-C MF VF-C MF mC2D MF
F VF F VF F cnf F
M M M

plants 2 2 0 3 2 8 3
heating 0 0 3 0 0 0 0
circuits 7 7 0 8 8 7 8
trucks 0 0 8 0 0 0 0
vms 24 24 24 25 29 27 29
boards 26 31 29 35 36 33 36
printers 83 122 139 145 168 170 176
campers 2 2 2 2 2 2 2
Total 144 188 205 218 245 247 254

Table 5
Decision diagrams constructed in 1-hour limit

We can see that even the best configuration shows
only 56,1% done rulesets. Forklifts did not yield any
constructed rulesets and is not present in the table and
heating and trucks yielded just a few. From Table 1 we
can see that these benchmarks are the biggest in terms of
both variable number and constraint number, which leads
to long ordering time. Still, big rulesets from heating and
trucks are only constructed by MF/F, which manages to
create the most optimal ordering.
We also evaluated the numbers of nodes for the dia-

grams constructed with the 1-hour limit. Here, we take
only the subset of rulesets that are covered by each eval-
uated configuration.

Bench

SDD BDD SDD BDD BDD SDD BDD
MF VF-C MF VF-C MF mC2D MF
F VF F VF F cnf F
M M M

plants 63464 570814 5559 78494 1112080 4745 390098
printers 2155 7573 1908 6935 4668 3238 4559
vms 3937 4759 2091 5302 3280 3050 6170
circuits 3050 8141 3130 9946 12993 4975 29231
boards 5552 11306 2879 12200 6024 4611 6599
campers 3202 15079 1899 16447 2177 2015 7472

Table 6
Median values of node counts for each configuration

In Table 6 we can see that SDD M-FORCE/FORCE
configuration has the lowest median node count on 4
benchmarks out of 6. SDD configurations generally have
better scores than BDD. The best performance BDD con-
figuration is M-FORCE/FORCE.

6.6. Evaluation Summary
M-FORCE/FORCE/MERGE configuration delivers the
best results for overall BDD construction time and outper-
forms all SDD configurations in 1-hour limit. However, it
provides results that have one of the highest nodes counts.
The presented configurations also improve construction
time for SDDs in 1 hour limit, but still are inferior to

some BDD configurations. In opposition to BDD, M-
FORCE/FORCE results in the smallest number of nodes
for SDD.
Some benchmarks (trucks , heating , forklifts) could

not be constructed within the limit due to complexity that
can be observed fromnumber of variables and constraints.
Such big instances needmore time to be compiled ormore
complex ordering heuristics to be applied.

Overall, with presented ordering heuristics, BDDs are
much more efficient in modelling the rulesets and show
promising results for use cases of knowledge compila-
tion.

7. Conclusion
In this paper, we examined methods to enhance the
construction time and size of BDDs for RCNF formulas.
We presented variable ordering and constraint ordering
methods that utilize the ideas of commonly used variable
ordering methods. Furthermore, we considered different
tree construction strategies. Additionally, we discussed
the application of all described methods for SDD con-
struction using vtrees.

We evaluated heuristics on RCNF benchmarks, assess-
ing coverage in different time limits and determining
the best results for each configuration, and found that
Modified-FORCE and FORCE can greatly improve the
BDD construction time. Furthermore, we applied the
variable ordering heuristics to construct balanced vtrees
for SDD construction, and results showed that FORCE
and Modified-FORCE result in the best decision diagram
size among all configurations.

References
[1] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill,

L.-J. Hwang, Symbolic model checking: 1020 states
and beyond, Information and computation 98 (1992)
142–170.

[2] D. E. Knuth, The Art of Computer Programming,
Volume 4, Fascicle 1B: Binary Decision Diagrams,
Addison-Wesley Professional, 2009.

[3] R. E. Bryant, Binary Decision Diagrams, Springer
International Publishing, Cham, 2018, pp. 191–217.
URL: https://doi.org/10.1007/978-3-319-10575-8_7.
doi:10.1007/978- 3- 319- 10575- 8_7 .

[4] D. Sieling, I. Wegener, Reduction of obdds in linear
time, Inf. Process. Lett. 48 (1993) 139–144.

[5] Bryant, Graph-based algorithms for boolean func-
tion manipulation, IEEE Transactions on Com-
puters C-35 (1986) 677–691. doi:10.1109/TC.1986.
1676819 .

[6] A. Darwiche, Sdd: A new canonical representation
of propositional knowledge bases, in: IJCAI, 2011.

[7] S. Bova, Sdds are exponentially more succinct than
obdds, CoRR abs/1601.00501 (2016). URL: http://
arxiv.org/abs/1601.00501. arXiv:1601.00501 .

[8] T. Hadzic, S. Subbarayan, R. M. Jensen, H. R. An-
dersen, J. Møller, H. Hulgaard, Fast backtrack-free
product configuration using a precompiled solution
space representation, in: Proceedings from the In-
ternational Conference on Economic, Technical and
Organisational aspects of Product Configuration
Systems, Technical University of Denmark (DTU),
2004, pp. 133–140.

[9] M. Rice, S. Kulhari, A survey of static variable or-
dering heuristics for efficient bdd/mdd construction
(2008) 13.

[10] F. Aloul, I. Markov, K. Sakallah, Mince: A static
global variable-ordering heuristic for sat search
and bdd manipulation, JOURNAL OF UNIVERSAL
COMPUTER SCIENCE 10 (2004) 1562–1596.

[11] R. L. Rudell, Dynamic variable ordering for ordered
binary decision diagrams, Proceedings of 1993 In-
ternational Conference on Computer Aided Design
(ICCAD) (1993) 42–47.

[12] U. Oztok, A. Darwiche, A top-down compiler for
sentential decision diagrams, in: Proceedings of the
24th International Conference on Artificial Intelli-
gence, IJCAI’15, AAAI Press, 2015, p. 3141–3148.

[13] H. R. Andersen, T. Hadzic, D. Pisinger, Interactive
cost configuration over decision diagrams, Journal
of Artificial Intelligence Research 37 (2010) 99–139.

[14] F. A. Aloul, I. L. Markov, K. A. Sakallah, Force:
A fast and easy-to-implement variable-ordering
heuristic, in: Proceedings of the 13th ACM Great
Lakes Symposium on VLSI, GLSVLSI ’03, Associ-
ation for Computing Machinery, New York, NY,
USA, 2003, p. 116–119. URL: https://doi.org/10.1145/
764808.764839. doi:10.1145/764808.764839 .

[15] A. Choi, A. Darwiche, Dynamic minimization of
sentential decision diagrams, Proceedings of the
AAAI Conference onArtificial Intelligence 27 (2013)
187–194. URL: https://ojs.aaai.org/index.php/AAAI/
article/view/8690. doi:10.1609/aaai.v27i1.8690 .

[16] F. Somenzi, CUDD User’s Manual, 2005. URL:
http://web.mit.edu/sage/export/tmp/y/usr/share/
doc/polybori/cudd/node3.html.

[17] A. Choi, A. Darwiche, SDD Advanced-User Man-
ual Version 2.0, Automated Reasoning Group Com-
puter Science Department University of Califor-
nia, 2018. URL: http://reasoning.cs.ucla.edu/sdd/
doc/sdd-advanced-manual.pdf.

https://doi.org/10.1007/978-3-319-10575-8_7
http://dx.doi.org/10.1007/978-3-319-10575-8_7
http://dx.doi.org/10.1109/TC.1986.1676819
http://dx.doi.org/10.1109/TC.1986.1676819
http://arxiv.org/abs/1601.00501
http://arxiv.org/abs/1601.00501
http://arxiv.org/abs/1601.00501
https://doi.org/10.1145/764808.764839
https://doi.org/10.1145/764808.764839
http://dx.doi.org/10.1145/764808.764839
https://ojs.aaai.org/index.php/AAAI/article/view/8690
https://ojs.aaai.org/index.php/AAAI/article/view/8690
http://dx.doi.org/10.1609/aaai.v27i1.8690
http://web.mit.edu/sage/export/tmp/y/usr/share/doc/polybori/cudd/node3.html
http://web.mit.edu/sage/export/tmp/y/usr/share/doc/polybori/cudd/node3.html
http://reasoning.cs.ucla.edu/sdd/doc/sdd-advanced-manual.pdf
http://reasoning.cs.ucla.edu/sdd/doc/sdd-advanced-manual.pdf

	1 Introduction
	2 Preliminaries
	2.1 Boolean Formulas
	2.2 The Boolean Satisfiability Problem
	2.3 Binary Decision Diagram
	2.4 Sentential Decision Diagram

	3 Related Work
	3.1 Product Configuration Using BDDs
	3.2 Static Variable Ordering
	3.3 Dynamic Variable Ordering
	3.4 Top-Down SDD Compiler
	3.5 Multivalued Decision Diagram

	4 Analysis and Approach
	4.1 Variable Reordering
	4.1.1 Variable Frequency
	4.1.2 FORCE Heuristic

	4.2 Constraint Reordering
	4.2.1 Variable Frequency
	4.2.2 Modified FORCE

	4.3 Diagram Construction
	4.3.1 Depth-First Strategy
	4.3.2 Merge Strategy

	4.4 AMO Constraint Construction
	4.4.1 SDD Vtrees and Variable Orders

	5 Implementation
	5.1 CUDD
	5.2 libsdd

	6 Evaluation
	6.1 Benchmarks
	6.2 Evaluation Goals
	6.3 Evaluation Methods
	6.4 Ordering Time
	6.5 Coverage Statistics
	6.5.1 5-Minute Limit
	6.5.2 1-Hour Limit

	6.6 Evaluation Summary

	7 Conclusion

