KIT | KIT-Bibliothek | Impressum | Datenschutz

Perturbation-based QE: An Explainable, Unsupervised Word-level Quality Estimation Method for Blackbox Machine Translation

Dinh, Tu Anh ORCID iD icon 1; Niehues, Jan ORCID iD icon 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

Quality Estimation (QE) is the task of predicting the quality of Machine Translation (MT) system output, without using any gold-standard translation references. State-of-the-art QE models are supervised: they require human-labeled quality of some MT system output on some datasets for training, making them domain-dependent and MT-system-dependent. There has been research on unsupervised QE, which requires glass-box access to the MT systems, or parallel MT data to generate synthetic errors for training QE models. In this paper, we present Perturbation-based QE - a word-level Quality Estimation approach that works simply by analyzing MT system output on perturbed input source sentences. Our approach is unsupervised, explainable, and can evaluate any type of blackbox MT systems, including the currently prominent large language models (LLMs) with opaque internal processes. For language directions with no labeled QE data, our approach has similar or better performance than the zero-shot supervised approach on the WMT21 shared task. Our approach is better at detecting gender bias and word-sense-disambiguation errors in translation than supervised QE, indicating its robustness to out-of-domain usage. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000164467
Veröffentlicht am 20.11.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2023
Sprache Englisch
Identifikator KITopen-ID: 1000164467
HGF-Programm 46.24.01 (POF IV, LK 01) Applied TA: Digitalizat. & Automat. Socio-Technical Change
Erschienen in Proceedings of Machine Translation Summit XIX, Vol. 1: Research Track. Ed.: M. Utiyama
Veranstaltung Machine Translation Summit (MTS 2023), Macao, Macao, 04.09.2023 – 08.09.2023
Verlag Association for Machine Translation
Seiten 59–71
Externe Relationen Abstract/Volltext
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page