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Long Term Objectives of Numerical Simulations =~ e
of Helium cooled First Wall Channels of DEMO

® to provide a consistent, fully validated and practically feasible (in terms
of computing cost) numerical approach to provide simulations of rib
enhanced geometries FW channels/ full-size blanket component

® predict the temperature fields inside the FW/ blanket component as
basis for thermal-mechanical requirements

® provide engineering correlations (for pressure drop, fluid outlet
temperatures etc.) i.e. as input for Balance of plant (BOP)

W for the design of thermo hydraulic experiments to validate numerical
codes (determination of suitable measuring positions for sensors,
measuring ranges, etc.)

® contribute to design, build, evaluate, operate, optimize and test
demonstrators or Mock ups
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Long Term Objectives of Numerical Simulations \\‘(IT
of Helium cooled First Wall Channels of DEMO =i

® To contribute to high-pressure helium cooling (8 MPa) technology,
which can meet current

® Heat load specifications for EU-DEMO blanket (Maviglia, F., 2020)

- Inboard blanket: the radiation heat flux on FW is typically in the range
of 0.15 — 0.27 MW/m?

- Outboard blankets: radiation heat flux on FW is typically in the range
of 0.23 — 0.31 MW/m?, with the additional power introduced locally by
charged particles on the wall being estimated at up to 0.42 MW/m? , so
that approx. 0.73 MW/m? can occur

® The definition of the peak values is ongoing and depends on the chosen
- shape of the first wall, the magnetic configuration and the
assumptions about the fraction of the radiated power and the power
decay lengths in the scrape-off layer (SOL) of the plasma, but higher
short-term transient loads are possible
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Challenge: Geometry, to capture small and “large ﬂ("‘

scale” flow features
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Channel geometry and boundary conditions ﬂ("'
present studies d5r :
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Challenge: Geometry FW Cooling Channels, long
entrance length '&J(IT

® hydraulic boundary layer and secondary flow development needs
to be captured along channel > resulting in high mesh count

contour-6
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® Entrance length FW channel [;, ~ 38 d}
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Challenge: Geometry of Complete Rib enhanced FW

Cooling Channels/ full-size Blanket/FW Components

® thermal boundary layer development needs to be captured along
channel > resulting in high mesh count
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Challenge: high heat flux > high spatial ﬂ("'
temperatures and material properties gradients
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Challenge: high heat flux > high spatial ﬂ("'
temperatures and material properties gradients

Viscosity [kg/ms] o g DENSity [kg/m?]
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M 3.21 e-05 ® 30 % increase ® 54 % decrease
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Challenge: High heat flux > high temperatures andﬂ("'

material properties gradients
Thermal conductivity [W/mK] Specific heat capacity cp [J/(kg-K)]
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® 10 % decrease ® 58 % increase
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RSM (Reynolds stress equation model) ﬂ(IT
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RSM in comparison with LES (Large Eddy ﬂ("'
Simulation) ribbed Channel sections
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® RSM redicts friction fawctor and flow features (flow
separation, reattachment, small flow details etc. )
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RSM in comparison with LES ﬂ(".

e=0.4mm e =0.6 mm e=0.9mm
-- __RSM | LES | RSM | LES
2.42 | 2.69 1.957 / 2.389 1.907/ @ 2.27
/N, 9.7% 18.09% 16 %
o 3.74/ 2.82 4.43 | 4.45 533 5.63
/£ 32.6% 0.476% 5%
Wod  1.13/ 1.34 0.827/ 1.045 1.13/ 1.34
26% 20.85% 16 %

® Underestimates heat transfer and overestimates
component temperatures
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LES for different rib heights
° XIT
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® Impact of rib height on heat transfer and pressure drop:
increasing friction factor for higher ribs, but heat
transfer for smaller ribs
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LES Results for Secondary flow . \\‘(IT
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® Impact of rib height on heat transfer and pressure drop
® Secondary flow
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® Impact of rib height on heat transfer and A\‘(“‘
pressure drop

B These finding opens up the opportunity to
decrease the rib height in case of fully
developed secondary flow and using RSM to
check for complete channel
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Possibilities RSM: Evolution impact of Rib _&‘(IT
Secondary Flow along complete channel

Ptot [MPal]
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® ~45% lower pressure gradient and pressure drop
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Possibilities RSM: Evolution impact of Rib .k\‘(".

Secondary Flow along complete channel =~ S
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B lower pressure drop and higher heat transfer
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RSM: comparative evaluation of thermal-hydraulic ﬂ(IT
performance of 2 "fabrication-friendly” 120° V-Ribs
e=0.75 ribs for for channels L=500mm, 60g/s

J.‘
tip chamfer | No
R1 ’* tip chamfer
|
‘AV2stc” S
shortened rib due e=0.75[ “« A2S”
with 90° tip

to the increase of
the channel
corner radius with
a rounded
chamfer R=1mm
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RSM: Nusselt numbers of "fabrication-friendly”

ribs along channel
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Nusselt number in the
straight channel part on
bottom plate (plasma facing
side)
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CONCLUSIONS/ OUTLOOK '\3‘('1.

21

Temperature dependence of material properties

Impact of Rib Height for thermal and hydraulic developed flow
could be shown

Simulation show opportunity for rib height reduction with
increasing heat transfer and reduction of pressure drop,
(already now up to 22 %, more seems possible)

Tip chamfer reduces heat transfer performance
Need of improvement of RANS models for heat transfer
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