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1. Introduction

In factory and warehouse planning a wide range of decisions
must be made. Often the decision-making process is supported
by simulation studies. But creating simulation models is a time-
consuming and costly process, in particular if a large number of
variants can be considered. Due to budget and time restrictions,
planners may commit on chosen variants, possibly leaving out
variants which would have offered a better solution.

In the last decades, there has been an increasing amount
of published research in the field of the Automatic Simulation
Model Generation (ASMG) [1]. Although many approaches al-
low to generate simulation models successfully, it is still chal-
lenging to generate structure variants [2]. Furthermore, many of
the existing approaches are tailored to specific use cases [1, 2].

In this paper, we use the component-based software synthe-
sis framework CLS to migrate an existing simulation model into
a software product line. Each member of the software prod-
uct line is a simulation model, which varies in its structure and
parametrization. The main novel contribution is that, in contrast

∗ Corresponding author. E-mail address: fadil.kallat@tu-dortmund.de

to prior work on simulation model generation with CLS [3],
software product line members not only vary in their structure,
but also are built from components that are automatically ex-
tracted from an existing simulation model. We add these com-
ponents to a repository, which is used for component-based syn-
thesis. In our approach the human input is an important factor.
The planner marks variation points by perfoming adjustments
to the components in the repository. Then, the simulation model
variants are automatically generated with regard to the planners
variation points. Our approach enables using component-based
software synthesis for domain-experts in logistics without re-
quiring too much expertise in computer science and program-
ming. Further, the automation speeds up the migration process
from individual simulations to software product lines. Our ap-
proach supports arbitrary simulation models that are composed
from elements of the AnyLogic 8 Process Modeling and the
Material Handling Library.

We demonstrate our approach by migrating a block stacking
warehouse simulation model into a software product line. We
vary the number of in- and outbound docks (I/O-points), the
storage strategy and relocation capability. Then, the synthesized
block stacking warehouse variants are evaluated to find the most
promising configurations.
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Abstract

Simulations are a common tool in the warehouse planning and adoption process for evaluating and comparing variants of a storage system. But
simulation modeling is a complex and time-consuming task. Due to limited resources, often not all possible system variants can be modeled. A
promising solution is the migration of an existing simulation model to enable component-based software synthesis. An inhabitation algorithm
composes structural variants according to a synthesis goal given a repository of typed components. In this paper, we automatically generate a
repository and synthesize simulation model variants using a block stacking warehouse simulation model as an example.

This is a resupply of March 2023 as the template used in the publication of the original article contained errors. The content of the article has remained unaffected.



Fadil Kallat  et al. / Procedia CIRP 104 (2021) 1440–1445 1441

This paper is structured as follows: Section 2 presents re-
lated work on the component-oriented automatic generation of
simulation models and introduces the composition synthesis
framework CLS. Section 3 discusses the general process flow
and variability points in a block stacking warehouse. Automatic
component extraction and simulation model synthesis is pre-
sented in Section 4. Section 5 contains an experimental evalua-
tion. Results and future work are discussed in Section 6.

2. Related Work

2.1. Automatic Simulation Model Generation

Automatic Simulation Model Generation (ASMG) is a com-
mon tool to support decision-making in factory and warehouse
planning. A recent review of the literature on this topic has been
conducted by Reinhardt et al. in [1]. The authors focused on the
adaptivity of production systems processes. Mourtzis [4] high-
lights that manual modeling of material flow simulations is a
very time-consuming and inefficient process to the point where
realistic models are very difficult to realize with existing tech-
niques. The effort presented in this paper aims to close this gap
by automating model construction in novel ways.

Several approaches in ASMG investigate the usage of
component libraries. Lee and Zobel present a representation
methodology to store components and to generate simulation
models [5]. The authors use an object-oriented database to gen-
erate simulation models by querying the corresponding compo-
nents. They wrap the components into objects and attach addi-
tional information, thereby solving problems of model incom-
patibility, coupling different simulation techniques, and enhanc-
ing the reusability of components.

Verbraeck and Valentin [6] developed design guidelines
with regard to simulation components. The authors establish
the reusability of similiar components in different simulation
projects by having a library of components.

Röhl and Morgenstern [7] combine the Web Service De-
scription Language with XML Schema Definitions to describe
model component interfaces. Besides required input and out-
put ports of components, they also consider semantic informa-
tion. The authors emphasize that their component architecture
allows decentralized simulation model development using in-
formation about interfaces. Component interface information in
form of type specifications is also the central tool of the synthe-
sis framework component library developed here.

Neyrinck et al. [8] use a library of company-neutral and pa-
rameterizable basic components in the domain of mechatron-
ics to generate simulation model variants. Beside the compo-
nents, they introduce skills which are constraints that influence
the parameterization of the variants during the generating pro-
cess. Their approach allows users without simulation modeling
knowledge to find promising module configurations and to gen-
erate the simulation model. We also address the accessibility for
users without advanced knowledge in programming. In contrast
to existing work, we focus on structural variance which previ-
ous approaches, to our knowledge, have not considered.

2.2. Combinatory Logic Synthesizer

In our approach product line members are generated by the
Combinatory Logic Synthesizer Framework (CLS) [9]. It op-
erates with a repository of components, called combinators,
which have their inputs and outputs specified by types. Compo-
nents are combined using the simple but very expressive rules of
finite combinatory logic with intersection types [10]. The main
driver of composition is the modus ponens rule ”if M : A → B
and N : A then MN : B”, which means that any M with a type
that takes A as an input and produces B can be applied to an N
of type A to get B. The CLS Framework performs a backwards
search starting from the target type (synthesis goal) B to find
well-typed compositions of its input components. It addition-
ally employs intersection types M : A ∩ B to express that M
has two types simultaneously. This is usefull to refine specifi-
cations with semantic types as in coldStoreSim : BufferArea ∩
Refrigerated → Output ∩ RefrigeratorTruckCompatible →
Process ∩ FrozenGoodsCompatible, where the additional types
guarantee that a warehouse simulation process is built from two
components that can handle frozen goods. Compositions MN
are automatically translated to function calls M(N) which will
generate source code, e.g. for an AnyLogic 8 simulation model.
The full algorithmic and logical details as well as the ten years
of implementation history of CLS are beyond the scope of this
paper, but can be found in [11].

Existing applications of CLS include the synthesis of soft-
ware product lines [12], workflow plans [13], motion plans [14],
and BPMN 2.0 processes [9]. Recent developments have proven
CLS to be a useful tool for logistics and factory planning sce-
narios. In [13] it is used for planning factories, which is often a
logistical problem in the broader sense. Starting from the mod-
eling of clinical pathways [15], logistical problems in a more
narrow sense have become a focus of CLS applications. The
motivation for this, and especially for considering simulation
models with structural variability, is discussed in [2]. An exam-
ple application is the synthesis of simulation model variants for
a real-world sheet metal box production line [3] where com-
ponents were manually designed by a computer science expert.
Here, following ideas from [16], a further step toward practi-
cal applicability is taken, where logistics experts are enabled to
use CLS with automatically extracted component collections.
In addition, we enhanced our approach to support migrating
various simulation models into software product lines. Further,
our approach can now be used to synthesize not only process
flowcharts but also visualization and control strategies (user-
defined Java functions) of a simulation model.

3. Case Study: Block stacking warehouse

Block stacking warehouses are a very simple type of ware-
house and do not require any infrastructure. Unit-loads (e.g.
pallets) are placed on a floor and are stacked on top of each
other. Even though it seems to be a simple setup, several deci-
sion problems with a huge degree of freedom have to be consid-
ered in warehouse operations. In autonomously organized ware-
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Fig. 1: General process flow of a block stacking warehouse

house, Automated Guided vehicles (AGVs) carry out material
handling. The autonomous block stacking warehouse problem
proposed by Pfrommer and Meyer [17] gives an overview of all
relevant subproblems including the internal layout design prob-
lem, the storage location assignment problem (SLAP), the ve-
hicle dispatching problem, the unit-load selection problem and
the unit-load relocation problem. The general process flow of
the block stacking warehouse is shown in Fig. 1. Unit-loads ar-
rive at an I-point, where they wait to be picked up and be stored
in the warehouse. At the placed storage location, the unit-load
waits until a retrieval order has to be fulfilled. If there exists al-
ready a retrieval order for the Stock Keeping Unit (SKU) at the
time of arrival, the unit-load is directly retrieved and delivered
to an O-point. Relocation offers the possibility to change the
position of unit-loads in order to avoid blocking of other SKUs.

Based on this process flow, an event-discrete simulation
model has been developed in Anylogic 8. It has built-in AGV
routing which is part of the Material Handling Library. The lat-
ter, together with the Process Modeling Library, enables mod-
elling end-to-end processes of a factory or a storage system,
thereby speeding up model development. Our model allows us
to flexibly adjust and scale the layout, including several stor-
age strategies like Closest Open Location (COL), a random dis-
tribution storage strategy, or turnover-based zones to solve the
SLAP. It has the possibility to choose between unit-load selec-
tion options like Last-In First-Out (LIFO) or First-In First-Out
(FIFO) and triggers the relocation of unit-loads if necessary.

4. Synthesis of Simulation Models

In this section, we introduce our approach to automatically
extract a repository for component-based synthesis given an
AnyLogic 8 simulation model. We concentrate on process-
oriented simulation models that use object-oriented flowcharts
for specification. The flowcharts are composed from a lim-
ited number of parameterizable elements that are part of the
Process Modeling and Material Handling libraries. The ele-
ments can be enhanced by Java source code that is executed
at specific times during the simulation. As result of the object-
oriented flowcharts, the simulation models are well-suited for
component-based software synthesis. In our work, we synthe-
size structural variants of the simulation model and their corre-
sponding elements. Fig. 2 shows the workflow and the architec-
ture of our implementation. In our approach, the user uploads
the simulation project file to the backend (Step 1). After the
generation of the repository of components and the synthesis
goal, the user can modify the repository and start the synthe-
sis (Step 2). After synthesis, the user can download the simu-

Fig. 2: Workflow and architecture of the implementation. Filled blue lines indi-
cate the first upload step, dotted red lines the second model adjustment step and
dashed green lines the final download step.

Fig. 3: Data model to represent AnyLogic simulation models. All building
blocks of a simulation are classifed according to their function, which is ei-
ther abstract structuring or performing an elemental computational function.

lation model variant and copy it into a directory that contains
the project files (Step 3). The simulation model can directly be
executed in AnyLogic 8.

4.1. Creation of Variability by Adjusting the Repository

The simulation tool AnyLogic 8 stores the simulation mod-
els as Extensible Markup Language (XML) files. Their struc-
ture allows to automatically extract used elements and the con-
nections between them. Moreover, we extract the parameters
of the elements and also global variables, parameters and user-
defined Java functions. We transfer the extracted information in
a data model that is shown in Fig. 3. The developed data model
allows us to represent AnyLogic 8 simulation models.

We automatically create a number of combinators based on
the developed data model. Therefore we developed a library of
predefined combinator objects. These combinators produce ei-
ther a single element or a composition of elements. The com-
binator that produces a single element of the simulation model
does not take any arguments. The semantic type of this combi-
nator is an intersection of the capitalized element name and the
corresponding type in AnyLogic. By using the unique element
name, we achieve a conclusive identification of this combinator.
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Fig. 4: An AnyLogic process flowchart that consists of two Source blocks (in-
putA and inputB), which are connected to a Queue block (buffer1).

Further, we predefined three combinators that produce com-
positions of elements. These combinators take arguments. They
produce either a flowchart, a decision element including the
connected elements or a group of elements that is character-
ized by a common successor and/or predeccesor. The semantic
type of these combinators is a sequence of semantic types that
is seperated by→. The last intersection type in this sequence is
the type of the combinator itself. The remaining types are the
arguments of the combinator. We assume that the order of the
arguments is the same as in the simulation model. We automat-
ically select and add some of the combinators to a repository
that is initially empty. We start the synthesis with the goal to
synthesize the flowchart. If we do not change any combinators
in the repository, then the synthesis result is a simulation model
which is the same as the original one.

We enforce the synthesis of variants by adjusting the com-
binators in the repository. The user can copy or delete a com-
binator. Moreover, the user can modify the semantic type of
an existing combinator to add, replace or remove arguments of
this combinator. We implemented a web frontend which allows
to perform the adjustments in an accessible manner.

We demonstrate our approach by migrating a simple process
flowchart into a software product line. Fig. 4 shows the Any-
Logic 8 process which we map into typed combinators. First,
we create a number of combinators without arguments for each
single element i.e., inputA, inputB and buffer1. Then, we create
a group combinator since the elements inputA and inputB are
connected to the same successor. Lastly, we create a combinator
with arguments that produces the flowchart. This results in the
following combinators, which we add to an empty repository:

• inputA : InputA ∩ Source
• inputB : InputB ∩ Source
• buffer1 : Buffer1 ∩ Queue
• groupOfInputs : InputA∩ Source→ InputB∩ Source→

GroupOfInputs ∩ Group
• process : Group∩GroupOfInputs→ Buffer1∩Queue→

Process ∩ Simulation

Given the combinator and the synthesis goal Process ∩
Simulation, the inhabitation algorithm will find a single solu-
tion which is equal to the original process flowchart. In the next
step, we demonstrate adjustments regarding the components
that can be performed by a user. We copy the buffer1 combi-
nator, modify its parameters and rename it to buffer2. Then, we
adjust the semantic types of buffer1 and buffer2 to express that
they are selectable. Finally, we adjust the semantic type of the
combinator that produces the flowchart. The adjustments result
in the following combinators that replace the old ones:

Fig. 5: A simple production line with a pre and final assembly step, two assem-
bly modules, and three buffers modeled in AnyLogic.

Fig. 6: Excerpt of the grid-based block stacking warehouse scenario with three
I- and O-points for inbound (IG) and outbound goods (OG) as well as a hom-
base (HB) for AGVs.

• buffer1 : Buffer ∩ Queue
• buffer2 : Buffer ∩ Queue
• process : Group ∩ GroupOfInputs → Buffer ∩ Queue →

Process ∩ Simulation

Given the adjusted combinators and the previous synthesis goal,
the inhabitation algorithm will find two solutions.

5. Experiments

5.1. Preliminary experiments

We performed two preliminary experiments as preparation
for our real-world example. We started with a simulation model
of a simple production line which consists of a number of
queues and assembly steps. Fig. 5 shows the simulation model.
In this experiment, we vary the number of assembly modules (1
to 5) and the input blocks (1 to 3). Moreover, we make the final
assembly step optional. We used our approach to automatically
generate a repository for component-based synthesis. Then, we
marked the variation points by adjusting the repository and the
synthesis goal in the web application. After starting the synthe-
sis, 5×3×2 = 30 simulation model variants were synthesized. In
our second preliminary experiment, we increased the size and
complexity of the simulation model. We migrated a prefabri-
cated simulation model of a job shop that is publicaly available
in the AnyLogic Cloud (https://cloud.anylogic.com/).
In this case, too, our approach automatically generated a repos-
itory and we were able to synthesize simulation model variants.

5.2. Block stacking warhehouse experiment

Our main experiment is based on a real simulation model of
a block stacking warehouse. We consider useful variations such
as a variable number of I- and O-points, three different storage
strategies and the option of relocation capability. Due to limited
space, we show only exemplary evaluation results.
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(a) Original simulation model

(b) Synthesized simulation model variants (layout of flowcharts manually adjusted)

Fig. 7: Original simulation model flowchart and two synthesized variants.

No. of I-points No. of O-points Storage strategy Relocation

1, 2, 3 1, 2, 3 ABC, Random, COL y (yes), n (no)

Table 1: Variation points allowing for 52 combinations. Names are abbreviated.

The grid-based layout consists of five storage bays, which
can be accessed from six aisles connected via two cross-aisles
at the very beginning and end of the warehouse (see Fig. 6).
Each storage location of a bay is able to contain two unit-
loads stacked on top of each other and can be accessed di-
rectly. In case relocation capability is enabled, these stacked
unit-loads can be different Stock Keeping Units (SKUs). The
number of I-points varies from one to three. Each I-point links
to a separate flow of products with overall 18 different SKUs.
The first feeds in eight SKUs, the second four SKUs and the
third six SKUs. The number of O-points also varies from one
to three. Outbound orders for each O-point are generated ran-
domly. Furthermore, three different storage strategies Random,
COL and a turnover-based storage strategy (ABC zones) can
be selected. The option of relocation capability allows AGVs
to relocate a unit-load if access to a requested unit-load is
blocked. Even though the number of AGVs can be easily ad-
justed, we decided to run the experiments with a single AGV.
Multiple AGVs would cause frequent deadlocks, because the
layout has an aisle-width of one with bidirectional travel. Ta-
ble 1 gives an overview of all variations. Based on these con-
figuration possibilities, we automatically generated 52 simula-
tion models via the CLS framework. The complete process of
generating the variants is demonstrated in the following screen-
cast (https://doi.org/10.5281/zenodo.4439750). Fig. 7
shows the original simulation model and two synthesized vari-
ants of the block stacking warehouse.

Subsequently, all generated simulation models have been ex-
ecuted manually with a virtual runtime of eight hours each.
Running all simulation models, we encountered problems with
the ABC storage strategy caused by the overload of storage
zones. In our current simulation model, the storage zones are
fixed. However, a changing number of SKUs requires to adjust
these zones accordingly.

Fig. 8: Warehouse throughput for eight hours of runtime – Overall five best
variants as well as below the best three variants for two and three I-points (Ab-
breviations see Table 1).

Fig. 8 shows the warehouse throughput for eight hours run-
time of the best variants comprising stored unit-loads, retrieved
unit-loads as well as directly retrieved unit-loads. The five best
variants are with one I-point and the COL storage strategy. Due
to a small number of SKUs (eight SKUs) for the variants with
one I-point, relocation is not helpful. Also, a higher number of
O-points is not beneficial, because the requested SKUs can be
retrieved quickly. A second and third O-point leads to a longer
travel distance and higher staging time of unit-loads. Due to a
higher number of SKUs for two and three I-points, relocation
capability and a higher number of O-points are beneficial.

Generally, we would expect a higher warehouse throughput
for the variants with more I- and O-points. However, the bot-
tleneck in this scenario is the single AGV, which is already at
maximum capacity for one I- and O-point. The AGV is travel-
ling 44% of the time loaded with a unit-load as well as 44% of
the time empty to pick-up the next one. Loading and unloading
of unit-loads requires 12% of the time whereas travelling back
to the homebase and idle time account for below 0.15%. This
increases mean wait times of unit-loads at the I-points

In summary, the results of our experiment are not surpris-
ing. They show that the COL strategy performs better than a
random storage strategy. A single I- and O-point are sufficient,
since the workload of the AGV is the bottleneck. Relocation of
unit-loads becomes interesting for multiple I- and O-points with
an increasing number of SKUs. Our issue with the ABC storage
strategy shows that some variations have an impact on several
parts of the simulation models. This requires many adaptions
and is thus easier for an object-oriented structure. In some cases
the adaptions require just small changes whereas in other cases
a revision of user-defined functions is required. This leads to a
situation where planners have to decide if parts of a simulation
model should be revised or a number of variants should be omit-
ted. In our approach, we overcome a number of these required
adaptions by the use of component-based software synthesis in
an additional step for generating user-defined Java functions.

In our work, we document all variants that are not a promis-
ing solution. During later stages of the simulation study, the
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document can be used to understand decisions against some of
the rejected variants.

Besides the variations in this experiment and further stor-
age strategies, especially adjusting the number of AGVs and
the layout is interesting. Both, the internal and external layout
as well as the number of AGVs have a significant impact on the
warehouse performance and are in our experiment a limiting
factor. The aisle configuration does not allow us to use multiple
AGVs and the workload of a single AGV is at maximum capac-
ity. Further addition of battery management of AGVs, a variety
of load carriers as well as multiple types of vehicles will allow
scenarios that are even more realistic. These additions would
undoubtedly lead to more possible variants, which have to be
evaluated. Hence, besides the simulation model generation pro-
cess also the evaluation process needs to be automated.

6. Conclusion

We have developed an approach for migrating existing Any-
Logic 8 warehouse and manufacturing simulation models into
software product lines. We automated the process of extract-
ing components from a simulation model and building up a
repository for component-based synthesis based on combina-
tory logic with intersection types. Our approach is implemented
as a web application that allows to upload simulation models
and to synthesize simulation model variants without much ex-
pertise in programming and computer science. In this paper, we
demonstrated our approach by migrating three different simu-
lation models into product lines. In our main experiment, we
synthesized a number of structural variants of a block stacking
warehouse simulation model. We investigated the effects of a
different number of I- and O-points, various storage strategies
and relocation by executing and evaluating their simulations.

To further our research we plan to integrate cloud simula-
tion solutions that allow automatically executing the synthe-
sized simulation model variants. With larger numbers of gen-
erated variants, the effort of starting and evaluating the simu-
lation models grows. Further, this automation could be used to
automatically rate solutions. This could be helpful since we are
currently in the process of investigating the usage of machine
learning techniques for the synthesis process. For instance, the
choice between a number of selectable components during syn-
thesis could be affected through machine learning.

Moreover, we are planning to integrate the CLS-IDE which
allows to investigate synthesis results in our approach. In or-
der to reduce required adaptions to the simulation model, fu-
ture work could explore modelling guidelines to assure a sim-
ulation model that is suitable for component-based synthesis.
Simplifying the typing process and integrating a layout engine
for synthesized simulation models is also future work.
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