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1. Introduction

The recent development towards smaller lot sizes presents 
new challenges for job shops, as they are confronted with a
more diversified range of orders [1,2]. To stay competitive, it is 
necessary to adapt production systems more and more 
frequently to the dynamic and complex environment [3]. Due 
to complex interdependencies, the impact of adaptation 
measures in manufacturing systems is difficult to predict by 
humans [4] and real-time discrete event simulation is becoming 
increasingly important as a decision-support tool [5,6]. The
success of discrete event simulation applications relies on high-
quality production data [7]. With the rise of cyber-physical 
systems (CPS), there will be a better vertical connectivity from 
sensors on the shop floor to data storage, processing and 
analytics in the cloud. The real-time availability of production 
data enables various data-based services [8,9] and provides 
great potential for production optimization [10,11].

Sequential procedures for creating discrete-event simulation 
are part of different established standards [12]. An essential step
in these procedures is data collection, which to this day includes 
time-consuming interviews or workshops with production 
employees and experts [13]. However, this best practice has the 
disadvantage that the collection of quantitative values such as 
process times or machine availability by interviewing people is 
subject to their individual perception [14]. Because of their 
experience, they can estimate an average but neither the 
distribution nor the function that represents the actual 
underlying context. Such inaccuracies in the creation and 
parameterization of simulation models should be avoided, to be 
able to make more reliable statements with the simulation. 
Therefore, this paper examines the potential of data from real-
time indoor localization systems (RTILS) to improve data 
quality in manufacturing simulation by deriving simulation 
inputs from data rather than questioning people about them.
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Discrete event simulation is becoming increasingly important in the planning and operation of complex manufacturing systems. A major problem 
with today's approach to manufacturing simulation studies is the collection and processing of data from heterogeneous sources, because the data 
is often of poor quality and does not contain all the necessary information for a simulation. This work introduces a framework that uses a real-
time indoor localization systems (RTILS) as a central main data harmonizer, that is designed to feed production data into a manufacturing 
simulation from a single source of truth. It is shown, based on different data quality dimensions, how this contributes to a better overall data 
quality in manufacturing simulation. Furthermore, a detailed overview on which simulation inputs can be derived from the RTILS data is given. 
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1.1. Data quality issues in job shops regarding manufacturing 
simulation

Nowadays, a large amount of data is already available in 
real-time, but the key question is whether it is also the "right" 
data for the simulation use case. Fact is, that the systems that 
collect the data have not been designed for the requirements of 
a simulation [7,15]. A lot of data is gathered by machine data 
acquisition (MDA) and production data acquisition (PDA) 
systems and is stored in heterogenous systems such as the 
manufacturing execution system (MES) or enterprise resource 
planning (ERP). Usually, inconsistencies occur, and it cannot 
be easily decided which source of data should be trusted [11].

Besides, completeness of data is another issue, as there is 
still a lack of high-quality data that is necessary for the 
implementation and parameterization of manufacturing 
simulation models. For example, actual process times are 
usually not known in job shops, if no feedback data from the 
shop floor is available and thus, the target times are used 
instead. Whereby, it is generally known that the deviation 
between actual and target times in production can be 
significantly different. Accurate simulation results can only be 
achieved with accurate data input, known as ‘garbage in, 
garbage out’ theory [13].

The availability of data for the modelling of manual 
processes is another challenge in job shops. Automated 
processes on machines are already well monitored, whereas the 
indirect manual processes are not good mappable due to their 
stochastic behavior [1]. In addition, the times for manual 
processes usually must be reported by the employees. The 
quality of the data therefore depends largely on their work ethic 
and is inherently prone to errors. Since manual activities in job 
shop production are indispensable, there are approaches to 
better understand such activities through the analysis of data 
from wearable accelerometer and gyroscope sensors with deep 
neuronal networks [16] and input data modeling [14].

1.2. Hypothesis and methodology

Due to the data quality issues in job shops mentioned above, 
the hypothesis of this work is that it is beneficial to derive 
inputs for manufacturing simulation by using data from RTILS
to contribute to a significantly higher overall data quality in 
manufacturing simulation. Furthermore, if the time-consuming 
phase of data collection and processing is shortened, more 
scalable solutions can be developed for manufacturing 
companies. Here, the focus is on the sheet metal industry, but 
the results are easily transferable to any job shop production in 
other industries.

The structure of the paper is as follows: In Section 2, the 
indoor localization system under consideration is introduced
and a differentiation from previous work is given. In 
Section 3, the important information models for manufacturing 
simulation are presented. In Section 4, the idea to use RTILS
as main data source for manufacturing simulation, will be 
introduced within the framework of a cyber-physical 
production system. Besides, the required inputs for the 
manufacturing simulation for sheet metal industry are collected 
and the usage of RTILS to derive them is discussed.

2. Potentials of real-time indoor localization systems

A recent survey on the potentials of indoor-localization in 
production revealed that many data-based services would profit 
from a manufacturing simulation [17]. However, data from 
RTILS are not yet considered as main input for manufacturing 
simulation. In the following, a production order consists of a 
number of equal parts which corresponds to the lot size.

2.1. Indoor localization system for sheet metal production

In today's sheet metal production, there are long search 
times, as the positions of production orders are not known. 
Each production order can only be identified by its 
accompanying document, which contains the necessary work 
steps. With decreasing lot sizes, the number of these documents 
increases in relation to the actual number of parts. As a result, 
a single document is difficult to find among many. In addition, 
they are often misplaced and, after printing, flexible adaptation 
to changing production conditions is associated with 
disproportionately high expenditure. To enable paperless 
production, an indoor localization system was developed that 
replaces the accompanying documents with so-called markers. 
Markers are mobile devices that can be tracked within a 
reference system that is made up by a sensor network of 
stationary satellites. In sheet metal production, special 
conditions prevail for RTILS due to reflections from shiny 
metal surfaces. Ultra-wideband technology (UWB) using 
triangulation has proven to be a suitable technology for precise 
localization under such conditions and is therefore the 
technology of the considered RTILS. Well-structured 
overviews can be found in the literature, if there is interest in 
localization technologies [8,18].

Before the markers are released into the manufacturing 
system, they need to be initialized by assigning a unique 
object ID (IDobject) to the unique marker ID (IDmarker). Each
event sample from the RTILS data is a state vector that is 
structured as follows:

𝑠𝑠RTILS(𝑡𝑡) = (𝑥𝑥, 𝑦𝑦, 𝑧𝑧, IDmarker, IDobject, C),

where 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧 are the cartesian coordinates in the reference 
system of the satellites. This state vector can be enriched with 
any context information 𝐂𝐂 e.g. the process plan, production 
layouts or the geometry of the orders’ parts. Stringing together 
the positions from the RTILS over time, trajectories of the 
material flow are known.

2.2. Differentiation from previous work on the use of indoor 
localization data as input for manufacturing simulation

So far, RTILS had no central role in input modelling for 
manufacturing simulation, especially not in the sheet metal 
industry. In the last years, RTILS were still under development 
and have been used only on a test basis in realistic operation, 
since the industrial requirements like immunity to interference 
of radio signals, security and a high degree of availability are 
demanding [19]. Hence, realistic data sets for assessing how 
simulation inputs can be derived, are lacking.  
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There are few approaches in literature, where some of the
inputs for a discrete event simulation of a manufacturing 
system are derived from position data. Frazzon et al. [20] 
introduced a data exchange framework based on common IT 
structures for a data-driven adaptive simulation-based
optimization to determine feasible production schedules. The 
real-time data is gathered with gates that automatically book 
job arrival and processing times. This data is then forwarded to 
the MES via a MDA and a PDA system. Altaf et 
al. [21] used radio-frequency identification (RFID) to collect 
production data for simulation input modelling. With the 
historic data, they were able to fit distributions for process 
times in a production line for prefabricated walls.

Tao et al. [9] propose to track positions of products with 
RFID for a future case of shaft manufacturing. Intelligent 
material tracking is according to them a key technology for 
digital twin-driven product manufacturing. They also mention 
simulation as part of their digital twin concept, but do not give 
any indication of what type of input data is used to simulate the 
product/machine/manufacturing system respectively and how 
they want to merge data from heterogeneous sources.

This work distinguishes itself from the previously presented 
approaches, as the RTILS is regarded as the central main source 
of data for simulation input modeling. This is technically 
feasible, because the RTILS under consideration has 
technological advantages over the RFID-based systems that 
were under consideration by other authors so far, because:
• a technology with broader communication range is used for 

locating, namely UWB, that can track the complete 
trajectories of objects over short and long distances

• the markers are active sensor systems which can control the 
material flow decentralized through a human-machine 
interface in form of an e-ink display and color LEDs

• the markers are equipped with additional sensors such as an 
inertial measurement unit (IMU) and RFID transponder
with near-field communication (NFC).

3. Information models for manufacturing simulation

In a manufacturing simulation, pieces of information are
required both for the model creation and parameterization. In 
the following, two established standards are presented, that 
contain information models for manufacturing simulation.

In 2010, the Simulation Interoperability Standards 
Organization (SISO) presented the Standard for Core 
Manufacturing Simulation Data (CMSD) – UML Model [22].
Two years later, an additional XML representation was 
published [23]. Both were developed as part of efforts to 
improve interoperability between different simulation tools. 
The focus of the CMSD standard is therefore on the 
specification of neutral structures suitable for an efficient 
exchange of data between different simulation environments.

The association of German engineers (Verein Deutscher 
Ingenieure - VDI) published the VDI 3633 standard [12] that
contains an illustration of simulation data categorized in system 
load data, organizational data and technical data, but is missing 
further details about the simulation inputs in the text.

There is no common standard that can be used for any 
manufacturing simulation, especially none that suits different 

domains [5]. Thus, in simulation studies, information model 
standards are often extended with user-defined properties [24]. 
In this work, the existing standards [12,22,23] are extended 
with the help of expert knowledge to a domain-specific data 
model for manufacturing simulation in the sheet metal industry.

4. RTILS framework for manufacturing simulation

The basic idea of this work is to no longer regard RTILS as 
one of many heterogeneous data sources in production, but to 
give it a central role as a data harmonizer. The data 
harmonization is achieved by storing the required data for 
manufacturing simulation in a single data system based on a 
domain-specific information model from which the real-time 
manufacturing simulation can be performed (single source of 
truth). A sensor fusion in the RTILS is applied for simulation 
input modeling to derive as many required inputs as possible 
from the historical data. There are interfaces to transfer 
additional information into the RTILS data model, if inputs for 
the production simulation cannot be derived, e.g. the list of 
released orders that are required for a forecast of the future 
workload. The sensor signals can further be used for real-time 
parameterization of the simulation model.

The combination of a manufacturing system and its 
simulation model via real-time data parameterization and 
control of the real system through adaptations, as depicted in
the green box in Fig. 1, is referred to in the literature as digital 
twin [25]. With the help of the digital twin, it will be possible 
to simulate and forecast production plans and processes [9]. 
Thus, the digital twin will serve as an assistance system, where
adaptation measures can be played through and decision-
makers can get quick support.

An advantage of this approach is its suitability for a typically 
heterogeneous machine park, since the RTILS framework does 
not rely on machine interfaces. For example, process times can 
be derived from RTILS data, which enables benchmarking 
among machine manufacturers and the calculation of standard 
values for the initialization of models.

Fig. 1. RTILS framework for a cyber-physical production system with a 
manufacturing simulation based on a real-time indoor localization system as 
main data harmonizer. The required pieces of context information are (a) the 
geometry of parts; (b) the manufacturing layout; (c) the process plans.

ERP MES MDA PDA

CPS: real-time indoor localization system

UWB RFID IMU

(b)(a) (c)

input
modelling

manufacturing
simulation

historical data

cyber-physical production system

adaptation
digital twin manufacturing

system

real-time 
parameterization

This is a resupply of March 2023 as the template used in the publication of the original article contained errors. The content of the article has remained unaffected.



Carina Mieth  et al. / Procedia CIRP 81 (2019) 868–873 871

There are eleven common dimensions of data quality 
problems in discrete event simulation [7,15,26], which are 
accuracy, reputation, accessibility, currency, completeness, 
precision, relevance, resolution, traceability, clarity and 
consistency. Table 1 shows for each dimension, how the RTILS 
framework contributes to an improved data quality in 
manufacturing simulation.

Table 1. Data quality dimensions [7], their definitions [26] and how the
RTILS framework will improve data quality in manufacturing simulation.

Data quality dimension and 
definition acc. to [26]

Contribution of the RTILS framework to 
improve data quality

Accuracy

Degree to which data possess 
sufficient transformational 
and representational 
correctness

The localization accuracy depends on the 
technology and the positioning 
algorithms, here it is in the centimeter 
range. The accuracy of the derived input 
variables for the simulation depends on 
the selected analysis method.

Reputation

Degree to which data are 
trusted or highly regarded in 
terms of their source or origin

In contrast to manual feedback from the 
worker about e.g. process times, the data 
is automatically recorded and analyzed, 
which makes the data more trustworthy.

Accessibility

Degree to which data are 
available or easily and 
quickly retrievable

The RTILS data is easily and quickly 
retrievable from a server on premise or 
from a cloud provider.

Currency

Degree to which the age of the 
data is appropriate for the use 
of the data

Real-time data is always up to date and 
when historical RTILS data is used for 
analysis purposes, attention is paid to 
structural changes in the system.

Completeness

Degree to which all parts of 
the data are specified with no 
missing information

The RTILS complements the previously 
used, mostly static data with dynamic 
movement data. Thus, fewer interviews 
are required to obtain simulation inputs.

Precision

Degree to which data possess 
sufficient number of 
significant digits in their 
numerical values

The RTILS provides enough significant 
digits, since the positions are accurate to 
the centimeter, which is sufficient for the 
localization of objects with a size ranging 
from several centimeters to meters.

Relevance

Degree to which data are 
applicable for use

The position data reflects the dynamic 
behavior of the production system and is 
thus highly relevant for simulation.

Resolution

Degree to which data possess 
sufficient level of detail

The data is gathered with approx. 1Hz, 
whereas the average duration of processes 
is usually in the range of minutes.

Traceability

Degree to which data are 
easily attributed to a source

The RTILS as data harmonizer knows the 
sources from which the data is obtained, 
as there are clearly defined interfaces.

Clarity

Degree to which data are 
unambiguous and 
understandable

The raw data from the RTILS requires 
procedures for data analysis and suitable 
visualization techniques to be 
understandable.

Consistency

Degree to which (a) data are 
specified […], and (b) any 
one data value does not 
conflict with any other

The RTILS acts as data harmonizer and 
provides one single source of truth. The 
specification of the common data model, 
defining the terminology, is a central 
element of the RTILS.

4.1. Required simulation inputs for manufacturing simulations
in the sheet metal industry

The evaluation of how data from RTILS can be used for 
deriving inputs for a manufacturing simulation can be found in 
the tabular overview in Fig. 2. The rows 1–45 list the required 
simulation inputs for a manufacturing simulation in the sheet 
metal industry, that were identified from the literature extended 
by domain-specific expert knowledge (see entries in italic 
letters). The categorization into system load data, 
organizational data and technical data is adapted from [12].

The origin of each simulation input is indicated with a cross 
in the columns under (a). The next two columns under (b) show 
whether an input is more likely needed for the creation of the 
simulation model or for its parameterization. It becomes 
obvious that the system load data is only used for latter. The
columns under (c) suggest, where the derivation with the help 
of the RTILS data should be investigated. Here, a distinction is 
made between an analysis in real-time (RT) or based on 
historical data (H). Column (d) shows additional context 
information that is needed for the derivation of the simulation 
inputs. Interfaces or new sensors are necessary for inputs, if the 
respective input cannot be determined solely from the RTILS
data, see column other. The last column (e) shows that not all 
necessary pieces of information for the simulation are available 
in MES or ERP systems. This motivates again the use of RTILS 
data to complete the missing inputs and thus to improve data 
quality in manufacturing simulation.

4.2. Discussion of the usefulness of data from RTILS for the 
derivation of simulation inputs for manufacturing simulation

There are many simulation inputs for which the 
consideration of RTILS data shows great potential, especially 
when no information is available up to now. In general, the
inputs can be derived more easily, if the variable being 
searched for is location-related, e.g. the start and destination of 
transport orders (rows 6 & 7). If there is no location reference, 
this does not imply that the inputs cannot be derived. For 
example, the quantities (row 5) can be determined by counting 
trajectories with the same order IDs. The inputs that have been 
classified as not derivable from the RTILS must be queried via 
interfaces or via the consideration of information from 
additional sensors. For example, the unique order ID cannot be 
derived and must therefore be assigned to the respective marker 
ID via an interface at the beginning of production.

During the preparation of the table, recursions were noticed
e.g. in the determination of process plans and geofences. The
process plan can be derived from historical trajectories of the 
UWB data using geofences, whereas the geofences can be 
approximated, if the process plan is known. To resolve this 
recursion, geofences should be defined in a way that an 
unambiguous allocation of processes to locations is made 
possible. This will be especially important to identify strategies 
and dispatching rules (rows 25–28). Today, the definition of 
geofences is done manually by experts drawing in the layout 
plan of the manufacturing system, but in the future, geofences 
could be a result of advanced analyses of the RTILS data.
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Fig. 2. Required simulation inputs for manufacturing simulation in the sheet metal industry; (a) origin of the inputs; (b) use of inputs; (c) inputs that can be derived 
from the real-time indoor localization system (RTILS); (d) necessary context information to derive inputs; (e) availability of inputs in existing systems. (X) = 
targets defined; RT = determinable in real-time; H = derivable with historic data; O = optional.
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5. Conclusion

The quality of the results of a manufacturing simulation 
strongly depends on the quality of the input data. It was shown, 
that RTILS have great potential to improve data quality in 
manufacturing simulation, especially for determining 
organizational and technical inputs. A RTILS framework was
proposed, in which a RTILS is used as the central instance of a 
cyber-physical production system. The provision of real-time 
feedback data from the physical system into the simulation
model and the adaptation of the physical system with the 
knowledge discovered in the simulation, was introduced as the
digital twin of a sheet metal factory.

A limit of this work was the focus on the sheet metal 
industry. For the transfer to other industries, the respective 
experts must check and adapt the list with inputs. Also, the 
determination of the presented inputs will rely on standardized 
processes. The proof, that these are derivable, is ongoing 
research, but in a first use case, e.g. break times and shift plans 
(rows 15 & 17) were derived accurately for every working area 

of the shop floor by analyzing the marker activities in each 
geofences over time.

In future work, the acquisition of features of the part 
geometry is very interesting in connection with the process 
times from RTILS. This can be used to learn predictive models 
that could replace process time distributions. Of further interest 
will be the handling of outliers and rare events, the derivation 
of rules and strategies and the development of suitable methods 
for data analysis.
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