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Abstract

Coordination of transmission and distribution power systems is increasingly critical in the context

of the ongoing energy transition. However, traditional centralized energy management faces challenges

related to privacy and/or sovereignty concerns, leading to growing research interests in distributed

approaches. Nevertheless, solving distributed AC optimal power flow (OPF) problems encounters diffi-

culties due to their nonlinearity and nonconvexity, making it challenging for state-of-the-art distributed

approaches. To solve this issue, the present paper focuses on investigating the distributed AC OPF prob-

lem of generic integrated transmission-distribution (ITD) systems, considering complex grid topology,

by employing a new variant of Augmented Lagrangian based Alternating Direction Inexact Newton

method (ALADIN). In contrast to the standard ALADIN, we introduce a second-order correction into

ALADIN to enhance its numerical robustness and properly convexify distribution subproblems within the

ALADIN framework for computing efficiency. Moreover, a rigorous proof shows that the locally quadratic

convergence rate can be preserved for solving the resulting distributed nonconvex problems. Extensive

numerical simulations with varying problem sizes and grid topologies demonstrate the effectiveness

of the proposed algorithm, outperforming state-of-the-art approaches in terms of numerical robustness,

convergence speed, and scalability.
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I. INTRODUCTION

The increasing integration of distributed energy resources has intensified the interaction be-

tween transmission and distribution grids, challenging the current paradigm of managing sepa-

rately the transmission and distribution networks [1]–[3]. Despite their physical connections,

the transmission and distribution systems are typically operated separately by transmission

system operators (TSOs) and distribution system operators (DSOs). Coordinating integrated

transmission-distribution (ITD) systems is becoming essential for effective power system opera-

tion. However, system operators do not prefer centralized frameworks or are even forbidden by

the respective regulation, as they require sharing detailed grid data with a centralized entity. In the

United Kingdom, such centralized operation between TSOs and DSOs becomes nearly impossible

under the deregulated electricity market environment, while in Germany, new legislation and the

ongoing rapid energy transition toward more renewable energies force the German TSO to focus

on new vertical cooperation with the numerous DSOs [4]. Hence, distributed operation frame-

works serve as an efficient alternative for the coordination of ITD systems [2], enabling TSOs and

DSOs to operate independently and collaborate effectively by sharing limited information with a

subset of other operators [1]. This kind of distributed framework can maintain data privacy and

decision-making independence, leading to significant research in distributed operation problems

for ITD systems, including distributed power flow [5], [6], distributed economic dispatch [2],

[7], distributed coordinated restoration [8], [9], distributed optimal reactive power flow [10],

distributed OPF [11]–[13], etc.

For the purpose of economic efficiency, the present paper focuses on the AC OPF problem of

generic ITD systems. However, the AC OPF problem is generally NP-Hard [14], even for radial

power grids [15]. The complexity lies in the nonconvexity of power flow equations, giving rise

to a nonconvex feasible set of AC OPF [16]. To balance accuracy and computational tractability,

convex relaxations of power flow equations are attracting considerable attention for both the

bus injection model (BIM) [17], [18] and the branch flow model (BFM) [19]–[22]. These

relaxations are exact for radial networks since there is a bijection between their feasible sets [23].

Moreover, by avoiding the subtraction of variables with similar values, the second-order cone

(SOC) relaxation in the BFM is superior to the others in the aspects of numerical reliability and

computing time [24], [25].

Previous studies on distributed AC OPF focused on the BIM for meshed power grids, utiliz-
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ing distributed approaches such as Optimality Condition Decomposition (OCD) [26], Auxiliary

Problem Principle (APP) [27], diagonal quadratic approximation (DQA) [12], and Alternating

Direction Method of Multipliers (ADMM) [28]–[31]. However, these approaches lack guaranteed

convergence in general. Exceptions include a two-level variant of ADMM [32], a l1 proximal sur-

rogate Lagrangian method [3] and a heterogeneous decomposition algorithm [11]. Nonetheless,

these are first-order algorithms and exhibit slow numerical convergence with modest accuracy.

The main challenge in distributed approaches, similar to centralized approaches, lies in the

nonconvexity due to the power flow equations. Addressing this issue, [13] proposed a new

distributed AC OPF of ITD system. The distribution subproblems are formulated as an AC OPF

in the BFM with the SOC relaxation, while only the transmission subproblem is formulated

in the BIM. Then, a two-layer Distribution-Cost-Correction (DCC) framework is proposed to

solve transmission and distribution subproblems in a sequential manner: the conic optimization

subproblems of the distribution grids are solved in the lower layer, and then the nonconvex

subproblem of the transmission grid is solved in the upper layer regarding distribution cost by

using quadratic approximations of distribution subproblems. This approach ensures convergence

but is limited to a particular network topology where multiple radial distribution grids are

connected to only one transmission grid in a star-shaped configuration. This two-layer DCC

algorithm fails to handle the more generic ITD systems with multiple transmission grids, meshed

distribution grids, or meshed topology of subsystems.

In contrast to the problem-specific DCC framework, Augmented Lagrangian based Alternating

Direction Inexact Newton method (ALADIN) is proposed for generic nonconvex distributed

problems in [33]. ALADIN can be viewed as a second-order version of ADMM and provide several

advantages over the aforementioned distributed approaches. It provides a local convergence

guarantee with a locally quadratic convergence rate for generic distributed nonconvex optimiza-

tion problems when suitable Hessian approximations are employed. Additionally, ALADIN can

achieve a global convergence by implementing the globalization strategy [33, Alg. 3]. Inspired

by Sequential Quadratic Programming (SQP), an equality-constrained quadratic program (QP)

is solved in a coupled step of ALADIN. The coupled QP is constructed based on curvature

information derived from local subproblems provided by corresponding local computing agents

in the parallelizable decoupled step. This framework eliminates the need for exchanging the

original grid data, preserving information privacy. Recently, ALADIN has been successfully

applied to solve the AC OPF of medium-scale transmission systems [34] and of AC/DC hybrid
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systems [35], [36], demonstrating the potential of ALADIN for handling distributed problems

with heterogeneous models. However, classic ALADIN for solving distributed nonconvex AC

OPF problems may face numerical issues when the problem size goes large—these studies have

been limited by problem sizes (less than 300 buses) and the number of subgrids (less than half

a dozen).

In summary, there are several challenges in effectively solving the distributed AC OPF of

generic ITD systems:

1) Most existing distributed algorithms [11], [12], [26]–[32] are first-order algorithms, lacking

convergence guarantee or exhibiting slow numerical convergence with modest accuracy for

solving the nonconvex AC OPF problem.

2) Although the recent work [13] successfully introduced SOC relaxation to distribution sub-

problems such that the proposed two-layer DCC has convergence guarantee and the compu-

tational burden of distribution subproblems is significantly reduced, this approach is strictly

limited to star-shaped ITD systems, where multiple radial distribution grids are connected

to one single transmission grid.

3) ALADIN [33], designed for generic distributed nonconvex optimization problems, has shown

potential for handling AC OPF. However, by employing the active-set method, the standard

ALADIN (ALADIN-STD) suffers from the following numerical issue when the problem size

goes large: The number of possible active sets grows exponentially with the number of

inequalities, leading to the combinatorial difficulty of active-set [37, Ch. 15.2]. This becomes

especially critical when introducing SOC relaxation, as the resulting inequalities are weakly

active, making it challenging to estimate the active sets accurately. Moreover, similar to SQP,

the linearization error resulting from linearizing the active constraints in ALADIN-STD can

lead to poor initial guesses for subsequent iterations. This issue is particularly significant

for augmented-Lagrangian-type algorithms in preliminary iterations and can potentially

undermine the numerical robustness of ALADIN.

The present paper investigates the distributed AC OPF of generic ITD systems and proposes a

new variant of ALADIN with a second-order correction method to break through these challenges,

including the convergence guarantees, the computing time, the solution accuracy and the grid

topology flexibility for distributed nonconvex AC OPF problems. The main contributions are as

follows:
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1) Building upon the work of [13], we present a modified formulation of distributed AC OPF,

tailored to handle the more generic ITD systems and employ a new variant of ALADIN

with convergence guarantee to solve it. Compared to the state-of-art two-layer DCC [13],

the proposed distributed framework can handle more generic and complex ITD systems,

including those with multiple transmission grids, meshed distribution grids, or meshed

topology of subsystems, offering greater flexibility regarding grid topology.

2) In the new variant of ALADIN for solving the AC OPF of generic ITD systems, the SOC

relaxation is only implemented in a specific step of ALADIN. The proper implementation

of the SOC relaxation reduces the computational burden while avoiding the combinatorial

difficulty of active-set [37, Ch. 15.2] arising from the additional inequalities. Furthermore,

we introduce a second-order correction method [38] [37, Ch. 18.3] to improve its numerical

robustness. The proposed new full-step ALADIN with second-order correction (ALADIN-

COR) compensates for linearization error, enabling the ALADIN-type framework to be ef-

fectively applied to real-world large-scale power systems. Then, we provide a rigorous

proof demonstrating that the local quadratic convergence rate of ALADIN-COR can still be

preserved with the additional compensation step.

3) Numerical investigations are conducted to compare the performance of the proposed AL-

ADIN-COR with the state-of-art distributed nonconvex optimization algorithms, i.e., the

two-layer DCC [13] and the ALADIN-STD [34], [35], demonstrating that the proposed

approach has high scalability potential and surpasses the others in terms of convergence

rate, computing time, and solution accuracy.

The rest of this paper is organized as follows: Section II presents the system model and prob-

lem formulation. Section III introduces the proposed distributed algorithm with implementation

details. Section IV elaborates on numerical results. Section V concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

This section presents the AC OPF of a generic ITD systems. Then, the entire problem is

reformulated as a generic distributed form with affine consensus constraint.

A. System Model of a Generic ITD System

We describe a generic ITD systems by a tuple S = (R, N , L). Thereby, R = RT

⋃RD

represents the set of all regions, RT = {T1, . . . , Tm} the set of m transmission grids and RD =
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{D1, . . . , Dn} the set of n distribution grids, N denotes the set of all buses, L the set of all

branches, Ltie ∈ L represents the set of all tie-lines between neighboring regions. Regarding

the distributed approach, instead of cutting the tie-lines [34], we follow the idea of sharing

components [39] to ensure physical consistency, i.e., share the components of transmission grid

with the neighboring distribution grids. In a specific grid ℓ ∈ R, Nℓ = N core
ℓ

⋃N copy
ℓ denotes

the set of all buses in the region ℓ, N core
ℓ the set of its own buses, and N copy

ℓ the set of buses

shared by its neighboring regions. Consequently, the shared component, i.e., the tie-line between

neighboring regions, is also included in the set of all branches in the region ℓ, i.e., Ltie
ℓ ⊆ Lℓ.

Consider a simple example of ITD system consisting of 6 buses within 2 regions, as illustrated

in Fig. 1. Regarding TSO-DSO connections, as shown in Fig. 1(b)(c), the distribution grid D1

encompasses core buses {4, 5, 6} and an additional copy bus {3} shared by the neigboring

region. On the other hand, the transmission grid T has no copy bus. The sharing components

involve active and reactive power flow from bus 3 to bus 4 along the tie-line (3, 4) and the

voltage magnitude at bus 3. Consequently, each region ℓ ∈ R can establish a self-contained AC

OPF subproblem. Note that the configuration for TSO-DSO connections can also be applied to

DSO-DSO connections.

1

2

3 4

5

6
T D1

(a) Coupled ITD system

1

2

3

(b) Transmission T1 (BIM)

3 4

5

6

(c) Distribution D1 (BFM)

Fig. 1: Decomposition by sharing components between transmission and distribution grids

1

2

3 4

(a) Transmission T1 (BIM)

3 4

5

6

(b) Transmission T2 (BIM)

Fig. 2: Decomposition by sharing components between two transmission grids
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In terms of TSO-TSO connections, as shown in Fig. 2(a)(b), the sharing components involve

voltage angle and magnitude at the buses {3, 4}. Different from Fig. 1(b)(c), both transmission

grids include an additional copy bus sharing by neighboring regions. By introducing additional

consensus constraints to ensure the physical consistency of the shared components, the AC OPF

problem of a generic ITD systems can be established in a distributed format.

B. Objective

Typically, the objective of the AC OPF for a generic ITD systems is to minimize the total

operation cost of the generating units, as follows.

minimize
pg

∑
i∈N

{
ai (p

g
i )

2 + bip
g
i + ci

}
, (1)

where ai, bi, and ci denote the cost coefficients of generator at bus i, pgi denotes the active power

injection at bus i.

C. Constraints of Transmission Grid

The transmission part of the ITD systems is formulated based on the BIM, where the complex

bus voltage Vi is represented in polar coordinates.

1) Nodal power balance: For the core bus in the transmission grid, the nodal power balance

is expressed as

pgi − pli = vi
∑
j∈NT

vj (Gij cos θij +Bij sin θij) , (2a)

qgi − qli = vi
∑
j∈NT

vj (Gij sin θij −Bij cos θij) (2b)

for all i ∈ NT . Thereby vi denotes the voltage magnitude of bus i, θij the phase angle difference

between buses i and j, qgi the reactive power of generator at bus i, pli and qli denote the active

and reactive load at the bus i, Gij and Bij are the real and reactive components of the bus

admittance matrix. If bus i is not a generator bus, then pgi = qgi = 0, same as the load bus.

If there is a tie-line (i, k) ∈ Ltie connected to the bus i, then pcore
ik and qcore

ik are added to the

right-hand side of both the equations (2a)(2b) respectively, as power injected from the bus k in

neighboring distribution grid.



8

2) Branch flow limit: Apparent power limits are added for all branches, including the tie-lines

with neighboring regions.

pij = v2i gij − vivj (gij cos θij + bij sin θij) , (3a)

qij =− v2i bij − vivj (gij sin θij − bij cos θij) , (3b)

s2ij ≥ p2ij + q2ij (3c)

for all (i, j) ∈ LT . Thereby pij and qij represent the active and reactive power flow of branch

(i, j), gij and bij denote the conductance and the susceptance of branch (i, j), sij the apparent

power limit of branch (i, j).

3) Bounds on state variables: Except for voltage phase angle, box constraints are added on

nodal voltage magnitude and active and reactive power of generators for all buses.

vi ≤ vi ≤ vi, pg
i
≤ pgi ≤ qgi , qg

i
≤ qgi ≤ qgi (4)

for all bus i ∈ NT , where vi, vi, p
g
i
, qgi , qg

i
, and qgi denote the upper and lower bounds for the

corresponding state variables.

D. Constraints of Distribution Grid

Regarding the radial distribution network in the ITD systems, the AC OPF problem of

distribution part can be formulated as a QCQP based on BFM. BFM can be viewed as an angle

relaxation of BIM and is exact for radial distribution grid [22]. We use the squares of the nodal

voltage magnitude and the branch current magnitude as state variables in a specific distribution

grid ℓ = Dm, i.e., ui = |vi|2 for all bus i ∈ NDm and lij = |Iij|2 for all branches (i, j) ∈ LDm.

1) Branch current and its limit: The branch current magnitude can be expressed as

lij =
p2ij + q2ij
ui

, (5)

and the current limit as

lij ≤ lij. (6)

where lij denotes the current upper bound of the branch (i, j).
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2) Nodal power balance: For the core bus in the distribution grid, the nodal power balance

is expressed as

pgj − plj =
∑

k∈NDm

pjk −
∑

i∈NDm

(pij − rijlij) , (7a)

qgj − qlj =
∑

k∈NDm

qjk −
∑

i∈NDm

(qij − xijlij) (7b)

for all j ∈ N core
Dm . Thereby rij and xij denote the resistance and reactance of the branch (i, j).

3) Nodal voltage equation: The relationship of the squares of nodal voltage magnitude is

expressed as

uj = ui − 2 (rijpij + xijqij) + (r2ij + x2ij)lij (8)

for all (i, j) ∈ LDm.

4) Bounds on state variables: The upper and lower bounds on state variables are similar to

(4). The difference is that the voltage bound is replaced by the box constraint on the square of

nodal voltage magnitude.

ui ≤ ui ≤ ui, pg
i
≤ pgi ≤ qgi , qg

i
≤ qgi ≤ qgi (9)

for all bus i ∈ N core
Dm , where ui and ui denote the upper and lower bounds on the square of nodal

voltage magnitude.

Note that the feasible set of the BFM for the distribution grid is still nonconvex due to the

quadratic equality constraint (5). It can be further relaxed to a conic constraint, which will be

discussed in the following section. If the distribution part of ITD systems is in a meshed form,

the BIM can be adopted similarly with the transmission grid.

E. Consensus Constraint

By introducing the concept of sharing components, additional constraints on coupling variables

are required to ensure the consistency between the core and copy bus. Considering the example

of TSO-DSO connection shown in Fig. 1, the coupling constraint between two regions can be

written as

ucopy
3 = ucore

3 , pcopy
34 = pcore

34 , q
copy
34 = qcore

34 , (10)
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while the coupling constraint for TSO-TSO connection ( Fig. 2) can be written as

vcopy
3 = vcore

3 , vcopy
4 = vcore

4 , θcopy
3 = θcore

3 , θcopy
4 = θcore

4 . (11)

Conclusively, in a specific ITD systems, the coupling constraints are linear and can be integrated

into an affinely coupled form ∑
ℓ∈R

Aℓxℓ = Ax = b (12)

with consensus matrix

A = (AT1 , · · · , ATm , AD1 , · · · , ADn)

and the state variables

x = (xT1 , · · · , xTm , xD1 , · · · , xDn).

Note that b is a zero vector in the proposed model, and A has full row rank.

F. Distributed Formulation

The AC OPF of a generic ITD systems can be formulated as an affinely coupled separable

form tailored to distributed optimization. The objective for each region ℓ ∈ R can be written as

fℓ(xℓ) =
∑

i∈N core
ℓ

{
ai (p

g
i )

2 + bip
g
i + ci

}
. (13)

Based on the discussion given above in the present section II, the AC OPF of a generic ITD

systems can be formulated in the standard affinely coupled distributed form

min
x

f(x) :=
∑
ℓ∈R

fℓ(xℓ) (14a)

s.t.
∑
ℓ∈R

Aℓxℓ = b | λ (14b)

hℓ(xℓ) ≤ 0 | κℓ, ℓ ∈ R (14c)

where (14c) summarizes all local constraints (2)—(9) for local systems, and λ, κℓ denote the

dual variables (Lagrangian multipliers) of constraints (14b) and (14c), respectively.
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III. DISTRIBUTED OPTIMIZATION FRAMEWORK

This section presents a novel variant of ALADIN for solving the distributed nonlinear and

nonconvex AC OPF problem of generic ITD systems with implementation detais.

A. ALADIN with Second-Order Correction

ALADIN originally proposed in [33] was developed for dealing with generic distributed non-

convex optimization problems. Similar to the existing state-of-art ADMM, ALADIN is also an

alternating direction-based approach. Nevertheless, the main difference between ALADIN and

ADMM lies in the coordinator. ADMM updates dual variables based on first-order information

in the coordinator. Additionally, ALADIN acquires both the first-order and the second-order

information of local nonlinear programming (NLP) and solves an approximated QP problem

to update the primal and dual together, and achieves locally quadratic convergence. However,

the local convergence of the ALADIN-STD is sensitive to the linearization of constraints if the

initial guess is not close enough to local minimizers or the problem size becomes large. In

order to mitigate this issue, we introduce the second-order correction into ALADIN framework

for compensation of the error that occurred by linearization.

Algorithm 1 outlines the ALADIN-COR for solving (14). In step 1, the original decoupled

subproblems are convexified to the decoupled NLP (16) by introducing the augmented Lagrangian

method, where ρ is the penalty parameter and Σℓ ∈ Rxℓ×xℓ is the scaling matrix for the proximal

term. A practical strategy to update ρ for distributed AC OPF can be found in [34].

In Step 2, all sensitivities information, i.e., Jacobian Jℓ of active constraints hact
ℓ , gradient of

local objective gℓ, and Hessian approximation Hℓ are computed. Thereby, the active constraint

hact
ℓ (xℓ) at the current iteration includes the inequality constraint [hℓ(xℓ)]i for all

i ∈ Sℓ = {i | [hℓ(xℓ)]i = 0}. (22)

Note that both steps can be executed in parallel.

After the parallelizable steps, the termination condition is checked by the coordinator. The

ALADIN algorithm will be terminated if the primal and the dual residuals are smaller than the

predefined tolerance ϵ

∥Ax− b∥2 ≤ ϵ and ∥Σ(x− z)∥2 ≤ ϵ, (23)
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Algorithm 1 Full-Step ALADIN-COR

Initialization: define L1 penalty function

Φ(x) =
∑
ℓ∈R

fℓ(xℓ) + ζ

∥∥∥∥∥∑
ℓ∈R

Aℓxℓ − b

∥∥∥∥∥
1

+ ξ · ψ(h(x)), (15)

with ψ(h) =
∑

i max{0, [h]i} and ζ, ξ > 0.
Input: z, λ, ρ > 0, µ > 0 and scaling symmetric matrices Σℓ ≻ 0
Repeat:

1) solve the following decoupled NLPs for all ℓ ∈ R

min
xℓ

fℓ(xℓ) + λ⊤Aℓxℓ +
ρ

2
∥xℓ − zℓ∥2Σℓ

(16a)

s.t. hℓ(xℓ) ≤ 0 | κℓ (16b)

2) compute the Jacobian matrix Jℓ of active constraints hact
ℓ at the local solution xℓ by

Jℓ = ∇hact
ℓ (xℓ), (17)

and gradient gℓ = ∇fℓ(xℓ), choose Hessian approximation

Hℓ ≈ ∇2
{
fℓ(xℓ) + κ⊤ℓ hℓ(xℓ)

}
≻ 0, (18)

3) terminate if ∥Ax− b∥2 ≤ ϵ and ∥Σ(x− z)∥2 ≤ ϵ are satisfied.
4) obtain (zQP = x+ pQP, λQP) by solving coupled QP

min
pQP,s

∑
ℓ∈R

{
1

2
(pQP

ℓ )
⊤
Hℓ p

QP
ℓ + g⊤ℓ p

QP
ℓ

}
+ λ⊤ s+

µ

2
∥s∥22 (19a)

s.t.
∑
ℓ∈R

Aℓ(xℓ + pQP
ℓ ) = b+ s | λQP (19b)

Jℓ p
QP
ℓ = 0, ℓ ∈ R (19c)

5) if the value of Φ increases due to the intolerant violation of active constraint hact at the new
iterate zQP, compute (zSOC = x+ pSOC, λSOC) by[

pSOC

λSOC

]
=

[
pQP

λQP

]
−
[
I
µA

]
·M J⊤ ·

(
J M J⊤)−1 · r (20)

with r = hact(x+ pQP) and M =
(
H + µA⊤A

)−1.
6) update the primal and the dual variables with full step

(z+, λ+) =

{
(zSOC, λSOC), step 5 executed,

(zQP, λQP), otherwise.
(21)
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where Σ is a block diagonal matrix consists of scaling matrix Σℓ for all ℓ ∈ R. It indicates that

the local solution xℓ satisfied the first-order optimality condition of the original problem (14) up

to the error of O(ϵ), i.e.,

∥∥∇{
fℓ(xℓ) + κ⊤ℓ hℓ(xℓ)

}
+ A⊤

ℓ λ
∥∥
2
= O(ϵ). (24)

Remark 1. Practically, the dual condition (23) is sufficient to ensure the small violation of the

condition (24), when the predefined tolerance ϵ is small enough [40].

In the coupled Step 4, a quadratic approximation of the original problem (14) is established

based on the sensitivities at local solution xℓ computed in Step 2. An additional slack variable s

is introduced to avoid the infeasibility of the approximated problem due to the consensus con-

straint (19b), and in order to increase numerical robustness. Like the SQP, the active constraints

are linearized and summarized in (19c).

Remark 2. No detailed grid data is required in the coupled Step 4, but the curvature information,

including gradient, Jacobian, and approximated Hessian of the local problems (16). Therefore,

data privacy wouldn’t be violated by applying the new ALADIN-COR algorithm.

The L1 penalty function Φ(x) in Step 5 is used to measure the progress in the coordinator

during the iterations. For this, we assume that the positive parameters ζ , ξ are sufficiently large

such that Φ is an exact penalty function for the problem (14).

Definition 1 [37]. A penalty function is exact if a single minimization with respect to x can

yield the exact solution of the original constrained optimization problem

Similar to the standard SQP, the indecisiveness caused by the linearized active constraints (19c)

can lead the conventional ALADIN-STD algorithm to zigzag during the preliminary iterations.

The issue becomes more critical and complicated when the problem size goes large, or if the

initial guess is not close enough to the local minimizer. In order to overcome this deficiency,

an additional second-order correction step 5 is executed if the exact penalty function (15) is

increasing accompanied by an intolerant violation of the active constraint hact.

Following [37, Ch. 18.3], the linearized active constraint (19c) is replaced by

Jℓ p
SOC
ℓ + rℓ = 0, ℓ ∈ R (25)
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with a compensation step pSOC
ℓ and a compensation vector rℓ computed by

rℓ = hact
ℓ (xℓ + pQP

ℓ )− Jℓp
QP
ℓ = hact

ℓ (xℓ + pQP
ℓ ). (26)

The term Jℓp
QP
ℓ can be neglected because a QP step pQP

ℓ satisfied (19c). The resulting second-

order correction subproblem can be written as

min
pSOC,s

∑
ℓ∈R

{
1

2
(pSOC

ℓ )
⊤
Hℓ p

SOC
ℓ + g⊤ℓ p

SOC
ℓ

}
+ λ⊤s+

µ

2
∥s∥22

s.t.
∑
ℓ∈R

Aℓ(xℓ + pSOC) = b+ s | λSOC (27a)

Jℓ p
SOC
ℓ + rℓ = 0, ℓ ∈ R. (27b)

Fortunately, the compensated step (pSOC, λSOC) can be computed analytically by (20), in which

all matrix inverses and the factorization for solving (19) can be reused. More details will be

discussed in section III-B2.

Local convergence of the proposed ALADIN-COR algorithm is guaranteed, and its analysis

will be provided in the next section, while global convergence can be achieved if the additional

globalization strategy [33, Alogrithm 3] is implemented.

Remark 3 (Globalization of Algorithm 1). To enforce the global convergence of Algorithm 1

such that it converges to a local minimizer of (14), the primal-dual iterate (z, λ) is updated by

z+ =z + α1(x− z) + α2p
QP, (28a)

λ+ =λ+ α3(λ
QP − λ), (28b)

where (pQP, λQP) should be replaced by (pSOC, λSOC) if second-order correction is executed, and

the line search scheme [33, Algorithm 3] can be used to calculate the step sizes α1, α2 and α3.

Remark 4 (Initialization of Algorithm 1). OPF problems are usually initialized with a flat start,

where all voltage angles are set to zero and all voltage magnitudes are set to 1.0 p.u. [41].

Besides, the dual variables of consensus constraints are set to zero for distributed OPF. For

this initialization strategy, it has been demonstrated numerically that it can provide a good

initial guess in practice [34], [35]. Hence, we focus on the full-step version of ALADIN, i.e.,

α1 = α2 = α3 = 1, in the present paper.
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B. Numerical Implementation

Some modifications are introduced to improve computation complexity. One is the conic

relaxation of distribution subproblems in the BFM. Another is the second-order correction to

compensate for the error in the linearization of the active constraints (19c) in the coupled QP

step 4.

1) Second-Order Conic Relaxation: The feasible set of the AC OPF problem for the distri-

bution grid defined by (5)-(9) is still nonconvex due to the quadratic equalities (5). To further

reduce the computational burden and computing time of the decoupled NLP for distribution

grids, we can reformulate the corresponding NLP as a conic optimization problem by relaxing

the constraint (5) to a second-order cone constraint

lij ≥
p2ij + q2ij
ui

, (i, j) ∈ LDm, (29)

which can be viewed as setting a lower bound on the current.

Theorem 1 [22]. The conic relaxation of the OPF problem of a radial grid in the branch flow

model is exact if the objective function is convex and strictly increasing in line loss.

The solution to the conic relaxed problem is equivalent to the original problem (14). This

indicates that the relaxed inequality constraint i is definitely on the boundary, i.e., i-th constraint

is included in the optimal active-set

i ∈ S∗ = {i | [h(x∗)]i = 0}. (30)

In this way, detecting active-set for these relaxed inequality constraints can be evaded. By

introducing augmented Lagrangian, most of the conic residuals would stay within the tolerance,

while the rests would stay at a relatively low level during the preliminary iterations, and will

converge to zero rapidly in practice.

2) Second-Order Correction Step: Based on the solution (pQP, λQP) of (19), the compensation

step (pSOC, λSOC) can be computed analytically by using standard linear algebra. By subtracting

the KKT condition of the coupled QP subproblem (19)
H A⊤ J⊤

A − I
µ

0

J 0 0




pQP

λQP − λ

κQP

 = −


A⊤λ+ g

Ax− b

0

 (31)
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with identity matrix I , and the KKT condition of the second-order correction subproblem (27)
H A⊤ J⊤

A − I
µ

0

J 0 0




pSOC

λSOC − λ

κSOC

 = −


A⊤λ+ g

Ax− b

r

 , (32)

we obtain a linear system 
H A⊤ J⊤

A − I
µ

0

J 0 0



∆p

∆λ

∆κ

 = −


0

0

r

 (33)

with difference of these two steps

(∆p,∆λ,∆κ) = (pSOC, λSOC, κSOC)− (pQP, λQP, κQP). (34)

Under a mild assumption that the KKT point is regular, we can further reduce the system

dimension by eliminating ∆κH A⊤

A − 1
µ

∆p
∆λ

 = −

J⊤ ·
(
J M J⊤)−1

0

 · r (35)

with invertible matrix M =
(
H + µA⊤A

)−1.

Definition 2. A KKT point for a standard constrained optimization problem is regular [37] if

linear independence constraint qualification (LICQ), strict complementarity condition and second

order sufficient condition are satisfied.

As a result, the solution to the second-order correction subproblem (27) can be computed bypSOC

λSOC

 =

pQP

λQP

+

∆p
∆λ


=

pQP

λQP

−

 I

µA

 ·M J⊤ ·
(
J M J⊤)−1 · r. (36)

Remark 5. Locally, if the regularity condition (Definition 2) holds, the dual Hessian JMJ⊤ is

invertible. However, in practice, the LICQ might be violated such that matrix JMJ⊤ might not

be invertible. In such case, the pseudo-inverse of JMJ⊤ has to be used.
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C. Local Convergence Analysis

Here we analyze the local convergence property of Algorithm 1, in which the initial guess of

primal-dual iterates is close enough to a local minimizer of (14).

Theorem 2. Let (z∗, λ∗, κ∗) be a regular KKT point for the problem (14), let f and h be twice

continuously differentiable, and let ρΣℓ being sufficiently large for all ℓ ∈ R so that

∀ℓ ∈ R, ∇2
{
fℓ(xℓ) + κ⊤ℓ hℓ(xℓ)

}
+ ρΣℓ ≻ 0 (37)

are satisfied. Additionally, let the Hessian approximation Hℓ be accurate enough so that

Hℓ = ∇2
{
fℓ(xℓ) + κ⊤ℓ hℓ(xℓ)

}
+O (∥xℓ − zℓ∥) (38)

holds for all ℓ ∈ R. The iterate (x, λ) given by Algorithm 1 converges locally to (z∗, λ∗) at a

quadratic rate.

The proof of Theorem 2 can be established the proof in two steps: we first analyze the

convergence rate of Algorithm 1 without the second-order correction step 6, then we prove that

the convergence rate can be preserved if the step is executed during the iterations. The detailed

proof can be found in Appendix.

Remark 6. The term O(∥xℓ − zℓ∥) in (38) is introduced to represent some regularization term

used for numerical robustness. Despite these heuristic tricks for regularization, the locally

quadratic convergences can be always observed in the sense of verifying the condition (38)

numerically.

IV. CASE STUDY

This section illustrates the performance of the proposed ALADIN-COR on the distributed AC

OPF of generic ITD systems compared with ALADIN-STD and DCC.

A. Simulation Setting

Three ITD test cases with varying problem sizes and grid topologies are generated based on

the standard IEEE test systems. In Case 1, one IEEE 39-bus transmission grid is connected by

three IEEE 15-bus radial distribution grids. Case 2 comprises one IEEE 118-bus transmission

grid and 20 IEEE 33-bus radial distribution grids. Both cases adopt a star-shaped topology,

where the transmission grid is the central hub, and the distribution grids are connected to it.
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In contrast, Case 3 explores a more complex scenario, where 4 IEEE 118-bus transmission

grids are interconnected, resulting in a meshed topology. Additionally, 5 IEEE 33-bus radial

distribution grids are connected to each transmission grid. The variation in problem size and

grid topology enables a comprehensive analysis and comparison of different approaches under

different operational conditions and system complexities.

The framework is built on Matlab-R2021a, the ITD systems are merged based on the

open-source toolbox rapidPF [4]1, and the case studies are carried out on a standard desk-

top computer with Intel® i5-6600K CPU @ 3.50GHz and 16.0 GB installed RAM. The

CasADitoolbox [42] is used in Matlab, and ipopt [43] is used as a nonlinear solver. The

centralized reference solution is obtained by solving the AC OPF problem using the default solver

in Matpower. The computational time is estimated under the assumption that all subproblems

are solved in parallel, and the time spent on exchanging sensitive information is not taken into

consideration in the present paper.

For a fair comparison, all the algorithms are initialized with a flat start. Following [34], the

quantities in the following are used to illustrate the convergence behavior

1) The deviation of optimization variables from the optimal value ∥x− x∗∥2.
2) The primal residual, i.e., the violation of consensus constraint ∥Ax∥2 =

∥∥∑
ℓ∈RAℓxℓ

∥∥
2
.

3) The dual residual, i.e. the weighted euclidean distance of the ALADIN local step, ∥Σ(x− z)∥2.
4) The solution gap calculated as f(x∗)−f(x)

f(x∗)
, where f(x∗) is provided by the centralized

approach.

When applying the DCC method from [13], the second and the third quantities are replaced by

the mismatch of coupling variables between subproblems and the difference of upper and lower

bound of the total cost for the ITD system respectively. Note that the vector b in consensus

constraint is neglected since it is a zero-vector in this specific problem, c.f. (12).

The solution accuracy and the solution gap are defined by ∥x− x∗∥2 and |f(x)−f(x∗)
f(x∗)

| respec-

tively, while the conic residual is defined by
∥∥∥p2ij+q2ij

ui
− lij

∥∥∥
2

for all branches (i, j) ∈ Lℓ∈RD
in

distribution grids, c.f. the conic constraints (29).

1The code is available on https://github.com/xinliang-dai/rapidPF
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Fig. 3: Convergence behavior of different algorithms for Case 1
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Fig. 4: Convergence behavior of different algorithms for Case 2
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Fig. 5: Convergence behavior of different algorithms for Case 3

5 10 15

10−7

10−5

10−3

10−1

101

103

1

Iteration

Φ
(z

+
)
−

Φ
(x

∗ )

aladin-cor

aladin-std

5 10 15
10−5

10−4

10−3

10−2

10−1

100

101

1

Iteration

∥z
+
−
x
∗ ∥

2

5 10 15

10−8

10−6

10−4

10−2

100

1

Iteration

∥λ
+
−
λ
∗ ∥

2

0 5 10 15

10−6

10−4

10−2

1

1

ψ
(h

a
c
t
(z

+
))

aladin-cor

aladin-std

Fig. 6: Comparison of the updated primal-dual variables (z+, λ+) for Case 2



20

B. ALADIN-STD vs. ALADIN-COR

To demonstrate the improvement of the proposed new ALADIN-COR, we compare its conver-

gence behavior with ALADIN-STD. In Cases 1 and 2, as illustrated in Fig. 3 and Fig. 4, the

second-order correction is first carried out at the 4-th iteration of ALADIN-COR. For the smaller

Case 1, the second-order correction strategy improves the convergence rate slightly. However,

for the larger Cases 2 and 3, as depicted in Fig. 4 and Fig. 5, ALADIN-COR maintains the

fast convergence rate and high solution quality, while convergence rate of standard ALADIN is

slowed down, and it becomes difficult to achieve high accuracy. This indicates the scalability and

effectiveness of the proposed ALADIN-COR for the nonconvex AC OPF of generic ITD systems

with complex topology.

TABLE I: Comparison of the 4-th iterates for Case 2

f(z)−f(x∗)
f(x∗) ∥Az∥1 ψ(hact(z))

zQP 2.9× 10−3 1.5× 10−17 0.257
zSOC −1.3× 10−5 2.0× 10−17 0.163

TABLE II: Computing time by ALADIN-COR

Case Iterations Corrected Iterations tTOTAL[s] tSOC[s]

1 11 2 0.507 4.36× 10−3

2 12 4 3.222 7.61× 10−2

3 11 4 5.044 8.98× 10−2

Fig. 6 illustrates the quality of the primal-dual iterates (z+, λ+) for ALADIN-STD and ALADIN-

COR. The comparison is presented in terms of the gap of the exact penalty function, the deviation

of the primal-dual iterates to the local optimizer respectively, and the violation of the active

constraint. Table I displays the solution gap, violations of the consensus constraint, and the active

constraint at iterates zQP and zSOC at the 4-th iteration. At the 4-th iteration, the coupled QP step zQP

leads to the increase in the merit function (15) and significant violation of the constraints (14c).

Consequently, the second-order correction implemented in ALADIN-COR is executed, and the

primal-dual iterates (z+, λ+) are updated by re-solving the equivalent linear system (20). As a

result, the objective f(z+) is improved, and the violation of the active constraints ψ(hact(z+))

is reduced, as shown in Table I. Compared with ALADIN-STD, the damping in the following
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iterations would be avoided. A more detailed comparison between ALADIN-STD and ALADIN-

COR is summarized in Table III.

The trade-off for the second-order correction strategy is the computing time of the additional

step 5. As displayed in Table II, the second-order correction is only executed in a few itera-

tions, and the corresponding computing time tSOC is negligible (around 5% compared with total

computing time) because the corrected step can be obtained by re-solving the equivalent linear

system (20).

In summary, the proposed ALADIN with second-order correction for solving the AC OPF of

ITD systems can speed up the convergence of ALADIN-STD and maintain high performance at

the cost of an insignificant increase in computing time. The effectiveness of this strategy would

increase remarkably when the problem size goes large.

TABLE III: Comparisons of different algorithms for Cases 1 and 2

Case Number of Buses Number of Regions Algorithm Iterations Time [s] ∥x− x∗∥2 Solution Gap Coic Residual

1 84 4

DCC 13 2.881 4.84× 10−3 1.02× 10−5 1.98× 10−7

ALADIN-STD 11 0.503 8.62× 10−6 4.91× 10−8 1.08× 10−5

ALADIN-COR 11 0.507 8.52× 10−6 1.91× 10−8 1.08× 10−5

2 778 21

DCC 28 22.545 5.65× 10−3 2.56× 10−5 2.68× 10−7

ALADIN-STD 55 14.909 8.95× 10−3 2.84× 10−9 4.95× 10−3

ALADIN-COR 12 3.222 8.36× 10−5 1.61× 10−8 3.02× 10−5

3 1132 24

DCC Did not converge

ALADIN-STD 100 43.569 1.73× 10−2 2.78× 10−4 1.47× 10−3

ALADIN-COR 11 5.044 4.23× 10−6 8.81× 10−9 8.32× 10−6

C. DCC vs. ALADIN-COR

The recent proposed DCC [13] follows a two-layer framework, where transmission and

distribution subproblems are solved sequentially. In the lower layer, the conic optimization

subproblems of distribution grids are solved in parallel with an additional L1 penalty on coupling

mismatch. Besides solving those subproblems, local agents also generate a lower bound of

the lower layer costs, i.e., tangent plane and quadratic approximation with respect to coupling

variables. Based on the lower layer solutions, the higher layer transmission problem is formulated

as nonconvex AC OPF with distribution costs approximated by the estimated lower bounds. Then,

the transmission provides the optimized coupling variables to local distributions. Thereby, the
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transmission acts as a centralized coordinator, and privacy can be preserved since no detailed

grid data is communicated between local agents.

Although the two-layer strategy provides a convergence guarantee for the AC OPF of star-

shaped ITD systems, some limitations need to be acknowledged. Firstly, this methodology is

limited to systems where multiple radial distributions are connected to only one transmission in

a star-shaped configuration. It fails to handle a generic ITD systems with multiple transmission

grids, meshed distribution grids, or meshed topology of subsystems. Secondly, the convergence

of DCC heavily relies on the solvability of nonconvex subproblems in the upper layer. Thirdly,

numerical issues may arise during the iterative process. With respect to small variations of the

coupling variables, the quadratic approximation function is generated with the assistance of

an equivalent linear coefficient matrix while neglecting second-order terms of the variation.

Regarding the weakly active conic constraints (29), both the variation and the Lagrangian

multipliers are small near the optimizer. By multiplication of variables with small values, the

quadratic model loses numerical stability or even faces degeneracy issues in such cases. As

a result, DCC would zigzag in coupling variables as it approaches high accuracy, as observed

in Fig. 7 and Fig. 8.

In contrast, the proposed new ALADIN-COR is specially designed for generic distributed

optimization and treats all subproblems equally. It provides convergence guarantees for AC

OPF of generic ITD systems, considering more complex grid topologies. Moreover, several

techniques are implemented in ALADIN-COR to ensure numerical robustness. In the decoupled

step (16), the local objective is regularized by a proximal term, ensuring a descent direction,

while additional slack variable s is introduced in the coupled step (19b) to prevent infeasibility

caused by linearization of constraints. Furthermore, the second-order correction utilizing linear

algebra for compensation improves numerical stability and maintains the quadratic convergence

rate.

For a fair comparison with the original DCC [13], we provide the Root-Mean-Square Error

(RMSE) of coupling variables in Fig. 7 and Fig. 8 for Cases 1 and 2 respectively, and show that

DCC in the present paper reaches the same accuracy as the DCC of the original paper [13].

Compared with ALADIN-COR, DCC performs poorly in terms of the deviation of variables

∥x− x∗∥2, especially in the preliminary iterations for both Cases, shown in Fig. 3, Fig. 4.

Besides, DCC starts zigzagging in terms of coupling variables near the local minimizer, resulting

in a slower convergence rate when approaching higher accuracy, illustrated in Fig. 7 and Fig. 8.
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Furthermore, DCC fails to handle the meshed connected multiple transmission grids in Case 3

within the data-preserving two-layer framework. In contrast, our ALADIN-COR converges within

a dozen iterations in 5 seconds, as shown in Fig. 5. These observations highlight the superiority

and scalability of the proposed ALADIN-COR for solving the AC OPF problem of generic ITD

systems.

5 10 15

10−7

10−5

10−3

10−1

101

1

Iteration

Voltage Magnitude

aladin-cor
dcc

5 10 15

10−7

10−5

10−3

10−1

101

1

Iteration

Active Power

5 10 15

10−7

10−5

10−3

10−1

101

1

Iteration

Reactive Power

Fig. 7: RMSE of coupling variables for Case 1
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V. CONCLUSIONS & OUTLOOK

The present paper proposes a novel ALADIN-COR algorithm for efficiently solving the dis-

tributed AC OPF problem of generic ITD systems regarding complex topology. The rigorous

proof shows that the proposed ALADIN-COR with additional compensation step can maintain a

locally quadratic convergence rate, ensuring its efficiency and numerical robustness. Numerical

experiments conducted on three ITD benchmark cases, considering varying problem sizes and
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grid topologies, demonstrate that the proposed distributed algorithm offers a more stable, efficient,

and scalable solution compared with the state-of-art DCC and ALADIN-STD.

The proposed methodology opens several problems and extensions for future research. One

direction is to investigate the impact of communication delay, packet loss, and asynchronous

updates on the algorithm’s performance. This investigation involves conducting experiments

within a distributed computing software architecture to enhance the algorithm’s robustness in

real-world power systems where communication constraints are present. Additionally, further

efforts can be devoted to scaling up the algorithm for large-scale power systems, introducing a

distributionally robust framework to deal with renewable energy uncertainty, and solving online

multi-period AC OPF with the receding horizon approach for dynamic power system operation.

APPENDIX

According to the assumptions of regularity and ρ, the local minimizer of subproblems (16),

xℓ is parametric with (z, λ) and the solution maps are Lipschitz continuous, i.e., there exists

constants χ1, χ2 > 0 such that

∥x− z∗∥ ≤ χ1 ∥z − z∗∥+ χ2 ∥λ− λ∗∥ . (39)

From the local convergence analysis of Newton methods [37, Ch. 3.3], we have∥∥∥∥∥∥
zQP − z∗

λQP − λ∗

∥∥∥∥∥∥ ≤
∥∥H −∇2

{
f(x) + κ⊤h(x)

}∥∥ · O (∥x− z∗∥) +O(∥x− z∗∥2).

By considering the accuracy of the Hessian approximation (38), the quadratic contractions

∥zQP − z∗∥ ≤ O(∥x− z∗∥2), (40a)

∥λQP − λ∗∥ ≤ O(∥x− z∗∥2), (40b)

can be established. By combining (39) and (40), locally quadratic convergence of Algorithm 1

can be guaranteed if the second-order correction step 5 is never executed, i.e., (zQP, λQP) is always

accepted.

Then, we take the second-order correction step into consideration. Following [38], utilizing

the relations zQP − x = pQP yields an upper bound of the step pQP

∥pQP∥ = ∥zQP − x∥
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≤ ∥zQP − z∗∥+ ∥x− z∗∥

≤ O(∥x− z∗∥2) +O(∥x− z∗∥). (41)

By Taylor series, we have

rℓ = hact
ℓ (xℓ + pQP

ℓ ) = hact
ℓ (xℓ) + Jℓp

QP
ℓ +O(∥pQP

ℓ ∥2)

= O(∥pQP
ℓ ∥2), ∀ℓ ∈ R, (42)

where iterates xℓ satisfies hact
ℓ (xℓ) = 0 and the step pQP

ℓ satisfies the linearized equality con-

straint (19c). Under the regularity condition (Definition 2), the KKT matrix in the right-hand

side of (33) is invertible, and the corresponding inverse matrix is bounded. Consequently, by

combining (33), (41), (42), we have a quadratic contraction of primal and dual variables∥∥∥∥∥∥
pSOC − pQP

λSOC − λQP

∥∥∥∥∥∥ ≤ O(∥r∥) ≤ O(∥x− z∗∥2). (43)

From (39), (40) and (43), it is sufficient to prove that the locally quadratic convergence can

be achieved no matter whether the second-order correction step (step 5) is executed during the

iterations.
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