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Kurzfassung

Die Fähigkeiten von automatisierten Fahrzeugen entwickeln sich zwar rasch
weiter, doch fehlt ihnen noch immer eine wesentliche Komponente, die sie von
ihren menschlichen Gegenstücken unterscheidet: die Fähigkeit zur impliziten Ko-
operation mit anderen. Die Interaktionen zwischen automatisierten Fahrzeugen
und Menschen stellen nach wie vor eine Herausforderung im Bereich des au-
tomatisierten Fahrens dar. Um diese zu überwinden, ist es erforderlich, künftige
automatisierte Fahrzeuge mit der Fähigkeit auszustatten, implizit Kooperation
einzufordern und anbieten zu können, um eine reibungslose Integration in den
heutigen heterogenen Verkehr zu ermöglichen.

Diese Form des Vorausschauens kann erreicht werden, indem alle möglichen Ak-
tionen der Verkehrsteilnehmer berücksichtigt werden. Diese Betrachtung schafft
jedoch eine Interdependenz zwischen den Aktionen der Verkehrsteilnehmer, die
eineKombination der Prädiktion und der Planung in einemMultiagenten-Markov-
Entscheidungsprozess erfordert.

In dieser Arbeit wird ein System vorgeschlagen, das Prädiktion und Planung kom-
biniert, indem das Problem als ein Multiagenten-Markov-Entscheidungsprozess
modelliert wird, der alle möglichen Aktionen der Verkehrsteilnehmer berück-
sichtigt. Monte Carlo Tree Search wird in Verbindung mit Decoupled Upper
Confidence Bound for Trees eingesetzt, um nahezu optimale Trajektorien für
alle Verkehrsteilnehmer zu identifizieren, was zu einem Trajektorienplaner führt,
welcher implizite Kooperation zwischen Verkehrsteilnehmern ermöglicht.

Verschiedene Verbesserungen des Basisalgorithmus, wie Parallelisierung und
Hyperparameter-Optimierung, wurden entwickelt, um die Leistung zu steigern
und bessere Lösungen in kürzerer Zeit zu erzeugen. Darüber hinaus wurde der
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Kurzfassung

Planer mit gelernten Belohnungsmodellen auf der Grundlage von Expertentra-
jektorien erweitert, basierend auf inversem Reinforcement Learning, die es ihm
ermöglichen, sich an den gewünschten menschlichen Fahrstil anzupassen, um
eine reibungslose Integration in menschenzentrierten Verkehr zu ermöglichen.

Die Wirksamkeit des vorgeschlagenen Ansatzes wurde in 15 anspruchsvollen
Multiagentenszenarien demonstriert, wobei sich die Erfolgsquote im Vergleich zu
einer Basislösung deutlich verbesserte.
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Abstract

While the capabilities of Automated Vehicles (AVs) are evolving rapidly, they still
lack an essential component that distinguishes them from their human counter-
parts: the ability to cooperate implicitly with others. The interactions between
AVs and humans continue to pose challenges in the field of Automated Driving
(AD). To overcome this, it is required to equip future AVs with the ability to im-
plicitly demand and provide cooperation where necessary to integrate smoothly
into today’s heterogeneous traffic.

This form of anticipation can be achieved by considering all possible actions
of traffic participants. However, this consideration creates an interdependency
between traffic participants’ actions that requires combining the prediction and
the planning into a Multi-agent Markov Decision Process (MMDP).

In this work, a system is proposed that combines prediction and planning by
modeling the problem as anMMDP, which considers all possible actions of traffic
participants. Monte Carlo Tree Search (MCTS), in conjunction with Decoupled
Upper Confidence Bound for Trees (DUCT), is employed to identify near-optimal
trajectories for all traffic participants, yielding a trajectory planner that enables
implicit cooperation among traffic participants.

Various improvements to the base algorithm, such as parallelization and hyper-
parameter optimization, were developed to enhance its performance and generate
better solutions in a shorter time. In addition, the planner was augmented with
learned reward models based on expert trajectories, using Inverse Reinforcement
Learning (IRL), enabling it to adapt to a desired human driving style for smooth
integration into human-centered traffic.
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Abstract

The effectiveness of the proposed approach was demonstrated in 15 challeng-
ing multi-agent scenarios, showing significant improvements in the success rate
compared to a baseline.
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1 Introduction and Motivation

Despite the fast-evolving capabilities of Automated Vehicles (AVs), they still
lack a critical component distinguishing them from human drivers in terms of
behavior—the ability to cooperate implicitly. Unlike today’s AVs, human drivers
incorporate other drivers’ actions and intentions into their decisions and can thus
demand or offer cooperation even without explicit communication.

Although much research addresses cooperative driving, the focus has been on
explicit cooperation, which requires explicit communication between vehicles or
between vehicles and infrastructure (Englund et al. 2016, Düring and Pascheka
2014, Frese et al. 2007).

However, in the foreseeable future, neither all vehicles will have the necessary
technical equipment to enable communication between vehicles and the infras-
tructure nor algorithms will be standardized to the extent that communicated
environmental information and behavioral decisions are uniformly taken into ac-
count. Thus, AVsmust be capable of cooperating with other vehicles even without
communication.

For this reason, methods that do not explicitly rely on communication are required
and thus applicable to a much larger number of traffic scenarios.

1.1 Research Questions

This thesis aims to provide answers to the following two questions:

1. How can cooperative driving without communication be modeled?

1



1 Introduction and Motivation

2. How can the modeled problem be solved effectively and efficiently?

Since the first question is concerned with the general approach to this problem,
the latter builds on the first. The answers given to these two research questions are
neither considered conclusive nor complete. However, they provide a solid base
for further research on cooperative multi-agent decision-making in heterogeneous
environments.

1.2 Motivation

“The FSD [Full Self Driving] improvement will come as a quantum leap, because
it’s a fundamental architectural rewrite, not an incremental tweak. I drive the
bleeding edge alpha build in my car personally. Almost at zero interventions
between home & work. Limited public release in 6 to 10 weeks." – Elon Musk,
August 2020

While the anticipations concerning the next generation of automated driving
software are high (see quote), it is unlikely that the remaining long tail of problems
will be solved in the near future. Although the more significant part of the traffic
in Germany conforms to rules (Road Traffic Regulations in Germany (StVO))
that define proper behavior on roads, occasionally, situations that require a high
degree of interaction between the traffic participants arise, not covered by these
rules. In these scenarios, traditional, noninteractive trajectory planning methods
frequently fail to find feasible trajectories due to limited longitudinal or lateral
clearance between vehicles, as they do not adequately model interactions between
the traffic participants (Trautman and Krause 2010, Kurzer et al. 2018b,a, Bae
et al. 2020, Saxena et al. 2020), cf. Fig. 1.1.

Cooperation can be an essential aspect of resolving these situations efficiently.
In an idealized scenario, vehicles would use vehicle-to-vehicle communication
to negotiate their actions (SAE J3216). However, not all traffic participants
will be equipped with the required communication systems in the near term,
communication signals might be disturbed, or the communicated negotiation

2



1.2 Motivation

(a) Noninteractive Planning (b) Interactive Planning

Figure 1.1: Noninteractive and Interactive Planning: In a, the blue agent conducts traditional non-
interactive planning, i.e., finding an optimal single-agent trajectory given the red agent’s
predicted trajectory (e.g., by assuming constant velocity), and therefore must slow down
before the obstacles (i.e., parked vehicles). In b, the blue agent conducts interactive plan-
ning, i.e., finding an optimal multi-agent trajectory given that both vehicles have sufficient
space to pass the obstacles simultaneously and therefore do not need to slow down.

even be maliciously attacked (Shladover 2021). Thus, implicit approaches (i.e.,
not relying on explicit communication) are required to ensure robust cooperative
decision-making.

1.2.1 Aim and Scope

The purpose of a vehicle is to transfer its occupants from the start position to
the desired goal position. It can be assumed that the vehicle’s occupants aspire
to reach the goal state as comfortably, quickly, and safely as possible. Given an
empty road network and a start and goal position, choosing a route that optimizes
the criteria above is straightforward. However, vehicles will likely encounter other
road users with their own goals, navigating the same network.

Depending on the situation, interactions with these participants are necessary
to avoid accidents and minimize time, discomfort, and cognitive strain while
traversing the optimal route. This principle applies to all traffic participants. If
every participant were to act solely in their interest, without considering the needs
of others (a behavior known as "defecting"), it would be improbable to achieve the
best possible outcome for everyone involved. Instead, traffic would likely cause
significant distress for human drivers.

Cooperative behavior, where individuals work together and consider the needs of
others, is the key to achieving a better outcome for all road users. Robert Axelrod’s

3



1 Introduction and Motivation

research on the evolution of cooperation supports this idea. In his work, Axelrod
demonstrated that cooperative behavior could be considered collectively stable,
meaning that no alternative strategy can outperform or replace cooperation within
a population of individuals who already act cooperatively (Axelrod and Hamilton
1981).

By fostering cooperation, traffic participants can work together to achieve a global
optimum, ensuring a smoother and safer experience for everyone on the road.

Thus, this thesis aims to plan locally optimal cooperative trajectories for multiple
non-holonomic agents in a structured environment, e.g., a multi-lane road with
oncoming traffic.

The following assumptions about the upstream and downstream tasks are made.
Firstly, the algorithm receives an exact and fully observable environment from the
upstream perception module, see Fig. 1.2, as input. Secondly, providing drivable
trajectories is sufficient for the downstream control module. While the task of
decision-making ismost commonly associatedwith planning, it is essential to note
that cooperative decision-making requires planning and prediction to be conducted
in parallel (Bahram et al. 2016b). Thus, this work is associated with both the
planning and the prediction module, although cooperative trajectory prediction is
more of a byproduct of cooperative trajectory planning.

Sensing Perception Control
Prediction

Planning

Figure 1.2:Modules of a Typical Automated Driving (AD) Framework

1.2.2 Structure

This thesis is structured into eight chapters, each addressing different aspects of
the research conducted.

4



1.2 Motivation

Chapter 1: Introduction - This chapter provides an overview of the research
problem, its significance, and the research questions addressed in the thesis.

Chapter 2: Preliminaries - The fundamental concepts and theories that this thesis
builds upon are introduced in this chapter, providing a required basic foundation
for the subsequent material.

Chapter 3: State of the Art - A review of existing work in the field of cooperative
driving is presented in this chapter, highlighting relevant literature and drawing
connections to the research questions posed in this thesis.

Chapter 4: Concept Development - The primary research question, as outlined
in Section 1.1, is addressed in this chapter. The basic concept and underlying
methodology are introduced and discussed in detail.

Chapter 5: Concept Extensions - Building on the foundation established in Chap-
ter Chapter 4, this chapter presents extensions to the initial concept, providing
answers to the secondary research question described in Section 1.1.

Chapter 6: Experiments and Evaluation - The concept and its extensions are
evaluated in various scenarios in this chapter, with results analyzed and discussed
to determine their effectiveness and potential for improvement.

Chapter 7: Summary and Outlook - The final chapter synthesizes the research
findings, discusses their implications, and provides conclusions drawn from the
study. Additionally, it highlights potential avenues for future work in the area of
cooperative driving.

Chapter A: Appendix - The appendix briefly overviews the developed concepts’
source code and implementation details, ensuring transparency and reproducibil-
ity for future research.
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2 Preliminaries

This chapter briefly introduces the required fundamentals, including the notation
used throughout this thesis. As each subject encompasses decades of research,
only topics essential to this thesis comprehension are presented. Literature refer-
ences are given for a comprehensive introduction to each mentioned topic.

2.1 Markov Decision Process

The following section is based on the de facto standard by Sutton et al. (Sutton and
Barto 2018). The Markov Decision Process (MDP) formalizes the fundamental
problem of sequential decision-making.

An MDP is defined by a tuple 〈S,A,Pass′ ,Ras〉, with:

• S being the finite state space,

• A being the finite action space,

• Pass′ = P[s′|a, s] being the model of the probability to transition to s′ when
taking action a in state s,

• Ras = E[r|a, s] being the model of the expected reward received when
taking action a in state s.

The reward is a scalar feedback signal, and the central part of each MDP, it
describes the goodness of an action in a state. Most MDPs are extended by
a discount factor γ ∈ [0, 1), which decays rewards further into the future. This

7



2 Preliminaries

action atreward rtstate st

rt+1

st+1

Agent

Environment

Figure 2.1: Visualization of the Agent Interaction in the Environment: The agent acts in the environ-
ment (MDP), transitions to a new state, and receives a reward.

circumvents infinite returns in cyclicalMDPs and implies uncertainty surrounding
the future (Silver 2015).

Figure 2.1 depicts the interaction of an agent in anMDP. The agent is the decision-
making element, that chooses an action at at each time step t based on the observed
state st. The environment transitions to a new state st+1 and emits the reward
rt+1. It is the goal to maximize the accumulated discounted return. An MDP is
considered to be solved if the optimal policy is discovered.

2.1.1 Trajectory

The trajectory is defined by a sequence of states and actions as a path through an
MDP as

τ = (s0, a0, s1, a1, . . . , sT ). (2.1)

8



2.1 Markov Decision Process

2.1.2 Return

The return G of a trajectory τ equals its accumulated discounted reward at time
step t, taking action at in state st (Sutton and Barto 2018), defined as

G(τ) =
∑

(st,at)∈τ

γtRatst . (2.2)

2.1.3 Policy

The policy π is a probability distribution over actions a ∈ A(s), defined as

π = π(a | s). (2.3)

The optimal policy π∗(a | s)1 is a policy that yields the highest state value and
state-action value of all policies.

V ∗(s) ≥ V π(s) ∀s ∈ S
Q∗(s, a) ≥ Qπ(s, a) ∀s ∈ S,∀a ∈ A(s)

(2.4)

2.1.4 State Value

The recursive form of the state value V π(s) with an arbitrary policy π, is defined
as

V π(s) =
∑
a∈A

π(a | s)

(
Ras + γ

∑
s′∈S
Pass′V π(s′)

)
. (2.5)

1 To simplify notation the optimal policy π∗(a | s) is abbreviated with ∗.
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The recursive form of the state value V ∗(s) with the optimal policy, is defined as

V ∗(s) = max
a∈A

(
Ras + γ

∑
s′∈S
Pass′V ∗(s′)

)
. (2.6)

2.1.5 State-Action Value

The recursive form of the state-action value Qπ(s, a) with an arbitrary policy π,
is defined as

Qπ(s, a) = Ras + γ
∑
s′∈S
Pass′

∑
a′∈A

π(a′ | s′)Qπ(s′, a′). (2.7)

The recursive form of the state-action value Q∗(s, a) with the optimal policy, is
defined as

Q∗(s, a) = Ras + γ
∑
s′∈S
Pass′ max

a′∈A
Q∗(s′, a′). (2.8)

2.2 Multi-agent Markov Decision Process

The extension of an MDP to a Markov Game (MG)/Multi-agent Markov Decision
Process (MMDP) is required if sequential decision-making problems with mul-
tiple interacting agents are to be modeled (Littman 1994, Boutilier 1999, Zhang
et al. 2021). With MMDPs usually referring to the fully cooperative setting
(Boutilier 1999), with identical reward models and MGs denoting competitive
and mixed settings (Zhang et al. 2021).

An MG is defined by a tuple 〈Υ,S,A,Pass′ ,Ras〉, with:

• Υ being the finite agent space of all agents, υ, indexed by i ∈ 1, 2, . . . n

• S being the finite state space observed by all agents

10



2.3 Reinforcement Learning

• A being the finite joint action space; A =
∏
υ∈ΥAυ , Aυ denoting the

action space of agent υ

• Pa
ss′ = P[s′|a, s] being the model of the probability to transition to s′ when

taking joint action a in state s

• Ra
s = E[r|a, s] being the model of the expected reward that is received

when taking joint action a in state s

In anMG each agent independently selects its action ai. The resulting joint action
a then determines the state transition and the rewards of each agent. Thus each
agent tries to maximize its return separately by searching for an optimal policy
π∗
υ that is conditioned on the policies of all other agents.

The joint policy of an MG is defined as

π(a | s) : =
∏
υ∈Υ

πυ (aυ | s) . (2.9)

The optimal joint policy π∗(a | s) is commonly one that results in a Nash
Equilibrium (NE). A NE is defined as an optimal joint policy for each agent, and
thus there is no benefit to deviate from it. That means there is no policy πυ that
would yield a higher expected return in response to the optimal policies π∗

¬υ of
all other agents (Zhang et al. 2021),

V
π∗

υ,π
∗
¬υ

υ (s) ≥ V πυ,π
∗
¬υ

υ (s) ∀π∗
υ. (2.10)

2.3 Reinforcement Learning

Reinforcement Learning (RL) is a subset of machine learning (Silver 2015). It
can be used to find optimal policies (2.4) in an MDP. The learning is explicitly
guided by the reward signal of the MDP, resulting from the interaction of the
agent with its environment, cf. Fig. 2.1.
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2 Preliminaries

2.3.1 Planning and Searching

Planning and searching are two closely related yet different paradigms (Silver
2009). Both approaches produce an optimal action given a state. However,
planning can be seen as global optimization, trying to determine an optimal
policy (2.4).

While planning usually encompasses an extended period of computation based
on a model to generate a new policy, searching can be seen as local optimization,
determining an optimal action a∗ from a specific state s. Searching merely
computes a partial policy for the current state, making finding an optimal action
significantly more efficient. In order to use searching for planning, the search
algorithm is restarted for each trajectory step.

2.3.2 Model-Based Reinforcement Learning

While the definitions for model-based reinforcement learning differ, they always
include a model, (Kaiser et al. 2020). Some see model-based RL as the process
of learning a model of the MDP (i.e., the transition model) and using this model
to derive an optimal policy. Others include cases where the model is already
given and solely used to determine the optimal policy or action. In this work,
the transition model and the reward model are known, and the goal is to find an
optimal action a∗ for any given state s of the environment.

2.3.2.1 Monte Carlo Search

Monte Carlo Search (MCS) is frequently used to generate a Monte Carlo estimate
of the state value or the state-action value in MDPs with large branching factor,
randomness or partial observability (Coulom 2007).
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2.3 Reinforcement Learning

The mean of the returns over all trajectories T sampled from policy π, starting in
state s is the Monte Carlo estimate of the state value,

V̂ π(s) =
1

|T |
∑

τ∈T ∼π(s)

G(τ), (2.11)

and when considering action a the state-action value

Q̂π(s, a) =
1

|T |
∑

τ∈T ∼π(a|s)

G(τ), (2.12)

respectively (Sutton and Barto 2018).

Once an estimate for the state-action value has been determined, the optimal
action is found by maximizing over it,

a∗ = argmax
a∈A

Q̂π(s, a). (2.13)

While MCS generates estimates, it is inefficient, as it only conducts a single
step of policy optimization (Brunskill 2019). That means previous trajectory
returns do not influence the sampling process, potentially wasting many samples
in unpromising regions of the search space.

2.3.2.2 Monte Carlo Tree Search

An exhaustive tree search can find the optimal trajectory through any MDP with
a finite set of states and actions (Browne et al. 2012). However, as the action
space grows, searching for the optimal trajectory through the entire tree quickly
becomes intractable.

Tree Search combined with Monte Carlo sampling addresses this issue by approx-
imating the optimal solution asymptotically through sampling. Monte Carlo Tree
Search (MCTS) is a computationally efficient, highly selective best-first search,
(Kocsis and Szepesvári 2006, Coulom 2007) that explores different trajectories
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through the MDP, to discover the trajectory that maximizes the return G from
the root state. In the past, MCTS has demonstrated its capabilities on highly
challenging problems such as Go (Silver et al. 2016).

Given an initial root state of the MDP, MCTS approximates the state-action value
in four sequential steps during each iteration until a terminal condition is met
(e.g., until a time budget or computational budget is exceeded). Since MCTS is
an anytime algorithm (Kocsis and Szepesvári 2006), it returns an estimate after
the first iteration.

2.3.2.2.1 Selection The most popular form of MCTS uses an Upper Confi-
dence Bound for Trees (UCT), to control the selection of successor states. The
UCT value (Kocsis and Szepesvári 2006) for all explored actions from the current
state is calculated during the selection phase, see (2.14), and the state action tuple
with the maximum UCT value is selected. This process repeats until a state is
selected that has not been fully explored (i.e., not all available actions in the state
have been expanded), see Fig. 2.2.

Using UCT, MCTS solves the exploration-exploitation dilemma (Kocsis and
Szepesvári 2006), being an upper confidence bound for the estimation of the
true state-action value. The first term in (2.14) fosters exploitation of previously
explored actions with high state-action values. The second term guarantees that
all actions for a given state are being explored at least once, with N(s) being the
visit count for state s and N(s, a) the number of times action a has been chosen
in that state. To balance the exploration-exploitation trade-off, a constant factor c
is used.

UCT(s, a) = Q̂π(s, a) + c

√
2 logN(s)

N(s, a)
(2.14)

2.3.2.2.2 Expansion Once the selection policy encounters a state with un-
tried actions left, it expands that state by randomly sampling an action from a
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Selection Expansion

Figure 2.2: Selection and Expansion in MCTS: Circles denote states and edges denote actions.

uniform distribution over the action space, see (2.15), and executing the action
reaching a successor state, see Fig. 2.2.

a ∼ U [min(A),max(A)] (2.15)

2.3.2.2.3 Simulation After the expansion of an action completes, a simula-
tion of subsequent random actions is conducted until a terminal condition is met
(i.e., the planning horizon is reached or an action is sampled, resulting in a ter-
minal state). This generates an estimate of the state-action value for the previous
expansion, see Fig. 2.3.

2.3.2.2.4 Update Lastly, the return G of the trajectory τ generated by the
iteration is backpropagated to all states along the trajectory, see Fig. 2.3, and the
state-action values and visit counts for all actions of the trajectory are updated,
see (2.16) and (2.17), respectively.

N(s, a)← N(s, a) + 1 (2.16)
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Simulation Update

Figure 2.3: Simulation and Update in MCTS: Circles denote states and edges denote actions.

Qπ(s, a)← Qπ(s, a) +
1

N(s, a)
(G(τ)−Qπ(s, a)) (2.17)

2.3.2.2.5 Final Selection Once a predefined computational budget is de-
pleted, the best-performing action from the root state is selected. Best-performing
can mean different things depending on the implementation, e.g., maximum state-
action value or maximum visit count.

2.4 Inverse Reinforcement Learning

While the task in RL is the deduction of an optimal policy from interactions of an
agent with the environment based on a reward model (Sutton and Barto 2018), see
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(5.2), the opposite is the case for Inverse Reinforcement Learning (IRL) (Arora
and Doshi 2021). Here, the task is to infer the underlying reward model that the
optimal policy aims to maximize (Ng and Russell 2000).

Since the reward model is the most succinct and transferable description of an
agent’s behavior (Abbeel and Ng 2004), a close approximation of the underlying
reward model will yield a behavior that is similar to the behavior that results from
the optimal policy, i.e., the expert behavior. A reward model generalizes better
than a policy, as it does not directly capture the agents’ behavior, but its goals
(Silver 2015).

Thus IRL is particularly effective in conducting behavior cloning or discovering
the underlying motivations of an agent (Ng and Russell 2000).

IRL learns the parameters θ of a parameterized reward model Rθ so that the
expert policy πE becomes the optimal policy given the reward model (Ng and
Russell 2000).

Instead of requiring access to the expert policy πE itself, it is sufficient to observe
trajectories TE that originate from that policy in order to learn the parameters θ
(Abbeel and Ng 2004),

τE = (s0, a0, s1, a1, . . . , sT ) at ∼ πE(at|st,θ). (2.18)

For linear reward models, the reward model Rθ can be represented as a linear
combination of the features φ(s, a) and the weights θ (Abbeel and Ng 2004),

Rθ(st, at) = θ>φ(st, at). (2.19)

The expected feature count µ is the expectation over the sum of the discounted
features of a policy π (Abbeel and Ng 2004),

µ(π) := E

[
T∑
t=0

γtφ(st, at) | π, T, d0

]
. (2.20)
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With d0 being the start state distribution, T being the length of the trajectories,
and π the policy from which the features originate.

2.4.1 Maximum Entropy Inverse Reinforcement
Learning

Similarly to the policy π as a distribution over actions (2.3), a policy ρ as a
distribution over trajectories can be defined,

ρ(τ) = ρ(s0, a0, s1, a1, . . . , sT ) =

T−1∏
t=0

π(at | st), (2.21)

(assuming a constant start state s0 and a deterministic transition model Pass′ ).

A prominent method for IRL is Maximum Entropy Inverse Reinforcement Learn-
ing (Ziebart et al. 2008), which assumes a probabilistic model for expert behavior.
Using the definition of a policy over trajectories (2.21), maximum entropy IRL
specifies the distribution over expert trajectories conditioned on the weights of
the reward model

ρE(τ) =
eGθ(τ)

Zθ
. (2.22)

This model implies that the probability of an expert trajectory increases expo-
nentially with its return. With the numerator being the exponentiated return of a
trajectory (2.2) and the denominator the partition function (2.23), the integral of
the exponentiated return of all trajectories.

Zθ =

∫
eGθ(τ) dτ (2.23)

The likelihood of the parameters θ given the expert trajectories TE is defined with

L(θ|TE) =
∏
τ∈TE

eGθ(τ)

Zθ
. (2.24)
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Applying the logarithm to (2.24), yields the Log-likelihood

l(θ|TE) =
∑
τ∈TE

(Gθ(τ)− logZθ) , (2.25)

which is proportional to

1

|TE|
∑
τ∈TE

Gθ(τ)− logZθ. (2.26)

The maximization of the Log-likelihood2 (2.26) through the parameters θ will
result in the parameters that best explain the expert trajectories,

max
θ∈Θ

1

|TE|
∑
τ∈TE

Gθ(τ)− logZθ. (2.27)

Using the gradient of the Log-likelihood in a gradient ascent step, locally optimal
parameters can be found,

θ ← θ + α∇θl(θ). (2.28)

2 in the following, the Log-likelihood refers to the proportional Log-likelihood
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Given the equalities d
dx ln f(x) =

f ′(x)
f(x)

3 and d
dxe

f(x) = f ′(x)ef 4 the gradient of
the Log-Likelihood (2.29) can be formulated as an expectation (2.30).

∇θl(θ) =
1

|TE|
∑
τ∈TE

∇θGθ(τ)−∇θ logZθ

=
1

|TE|
∑
τ∈TE

∇θGθ(τ)−
∇θZθ

Zθ

=
1

|TE|
∑
τ∈TE

∇θGθ(τ)−
∇θ

∫
eGθ(τ) dτ

Zθ

=
1

|TE|
∑
τ∈TE

∇θGθ(τ)−
∫
eGθ(τ)

Zθ
∇θGθ(τ) dτ

=
1

|TE|
∑
τ∈TE

∇θGθ(τ)−
∫
ρE(τ)∇θGθ(τ) dτ

(2.29)

∇θl(θ) =
1

|TE|
∑
τ∈TE

∇θGθ(τ)− Eτ∼ρE(τ) [∇θGθ(τ)] (2.30)

Applying importance sampling (see Section 2.4.2) the expectation in (2.30) can
be calculated using the policy ρS(τ),

Eτ∼ρE(τ) [∇θGθ(τ)] =

∫
∇θGθ(τ)ρE(τ) dτ

=

∫
∇θGθ(τ)

eGθ(τ)

Zθ
dτ

=

∫
∇θGθ(τ)

eGθ(τ)

Zθ

ρS(τ)

ρS(τ)
dτ

= Eτ∼ρS(τ)
[
eGθ(τ)

ρS(τ)Zθ
∇θGθ(τ)

]
(2.31)

3 Logarithmic derivative
4 Exponential derivative
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2.4 Inverse Reinforcement Learning

Further, the partition function can be approximated using importance sampling
as well, see (2.32) and (2.33).

Zθ =

∫
eGθ(τ) dτ

=

∫
eGθ(τ)

ρS(τ)

ρS(τ)
dτ

= Eτ∼ρS(τ)
[
eGθ(τ)

ρS(τ)

]
≈ 1

|TS|
∑
τ∈TS

eGθ(τ)

ρS(τ)

(2.32)

Ẑθ : =
1

|T |
∑
τ∈T

eGθ(τ)

ρ(τ)
(2.33)

Substituting the expectation in (2.30) with (2.31) as well as (2.23) with (2.33),
the final form of the gradient estimate can be obtained (2.35).

∇θl(θ) =
1

|TE|
∑
τ∈TE

∇θGθ(τ)− Eτ∼ρE(τ) [∇θGθ(τ)]

=
1

|TE|
∑
τ∈TE

∇θGθ(τ)− Eτ∼ρ(τ)
[

1

ρS(τ)

eGθ(τ)

Zθ
∇θGθ(τ)

]

=
1

|TE|
∑
τ∈TE

∇θGθ(τ)−
1

|TS|
∑
τ∈TS

1

ρS(τ)

eGθ(τ)

Zθ
∇θGθ(τ)

≈ 1

|TE|
∑
τ∈TE

∇θGθ(τ)−
1

|TS|
∑
τ∈TS

1

ρS(τ)

eGθ(τ)

Ẑθ

∇θGθ(τ)

(2.34)

∇̂θl(θ) =
1

|TE|
∑
τ∈TE

∇θGθ(τ)−
1

|TS|
∑
τ∈TS

1

ρS(τ)

eGθ(τ)

1
|TS|

∑
τ∈TS

eGθ(τ)

ρS(τ)

∇θGθ(τ)

(2.35)
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2.4.2 Importance Sampling

Importance sampling facilitates the estimation of a random variable x that ad-
heres to a distribution p(x) by employing an alternative, more tractable proposal
distribution q(x) for sampling purposes (Owen 2013). The proposal distribution
should encompass regions where the target distribution exhibits substantial den-
sity. This technique is particularly beneficial when obtaining direct samples from
the target distribution is challenging or entails considerable computational costs.

In this work, it is used to approximate the partition function within maximum
entropy IRL, see (2.32) and (2.33).

EX∼p(x)[X] =

∫
D
f(x)p(x)dx

=

∫
D

f(x)p(x)

q(x)
q(x) dx

= EX∼q(x)

[
X
p(x)

q(x)

] (2.36)

ÊX∼p(x)[X] =
1

|X |
∑
x∈X

x X ∼ p(x) (2.37)

ÊX∼q(x)[X] =
1

|X |
∑
x∈X

x
p(x)

q(x)
X ∼ q(x) (2.38)
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3 State of the Art in Cooperative
Trajectory Planning

This chapter provides an overview of the state-of-the-art cooperative trajectory
planning methods, focusing on different approaches for cooperative driving. Spe-
cific topics and related work relevant to each chapter’s content will be presented in
the upcoming chapters. This overview emphasizes the need for further research
to develop more comprehensive and effective solutions for interactive trajectory
planning in automated driving.

Most methods in the field model cooperative trajectory planning model the prob-
lem as an MDP or a Partially Observable Markov Decision Process (POMDP).
The reward models used in these methods may vary depending on the desired
behavior of the system. These methods aim to find an optimal trajectory or policy
by searching, planning, or learning.

Further, the following criteria have been established to compare cooperative plan-
ningmethods. These criteria can be utilized to assess themethods’ characteristics,
applicability, and performance in different traffic scenarios. Various cooperative
trajectory planning methods are summarized and compared based on these crieria
in Table 3.1.

• Application: Describing the specific scenario for which the method is
designed helps identify its suitability and potential limitations in different
contexts.

• Method: Identifying the primary technique used provides insight into its
underlying principles and theoretical foundations.
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• Implicit: Determining whether the method implicitly models interactions
helps assess its ability to capture complex interactions among traffic partic-
ipants without explicit communication.

• Parallel Prediction/Planning: Concurrent prediction and planning are re-
quired for simultaneous decision-making and anticipation of other agents’
actions.

• Explicit Interactive Planning: Explicitly modeling interactions are required
to appropriately model the interdependency of dynamic traffic situations,
allowing for safer and more cooperative behaviors.

• Partial Observability: Considering partial observability acknowledges that
not all states are fully known, ensuring that the method responds appropri-
ately even under uncertainty.

• Continuous Action Space (ego): A continuous ego vehicle action space
allows arbitrary maneuvers, making it applicable to a broader range of
scenarios.

• Continuous Action Space (other): Similar to the ego vehicle, a continuous
action space for other traffic participants indicates the method’s capacity to
model complex behaviors and interactions.

• Identical Action Spaces: Understanding if all traffic participants have iden-
tical action spaces provides insight into the method’s assumptions and
simplifications regarding different vehicle types.

• Longitudinal Actions: Considering acceleration and deceleration is essen-
tial for understanding the method’s ability to control vehicle speed and
maintain safe distances.

• Lateral Actions: Considering steering enables the method to navigate com-
plex traffic situations, enhancing its maneuvering capabilities.

• End-To-End: An end-to-end approach streamlines the overall planning
process and potentially reduces errors introduced by intermediate steps.

• Continuous Cooperation: Modeling continuous cooperation is essential for
evaluating the method’s ability to adapt to dynamic traffic situations and
collaborate with other traffic participants.

• # Steps: The number of steps in the method’s planning horizon provides
insight into its look-ahead capability and ability to plan for future events.
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• # Agents: The number of agents considered in the method indicates its scal-
ability and applicability to scenarios with varying levels of traffic density.

• Output: The method’s output, such as acceleration or steering angle, de-
termines its usability and compatibility with specific sensors or control
systems.

3.1 Planning

MCTS has been proposed as a solution for cooperative trajectory planning in
dense traffic by Isele (Isele 2019). This method models the interactions between
traffic participants on a high level based on the probability of yielding to the ego
vehicle’s intention. When no merge occurs, the simulator within MCTS uses the
IDM driver models. The model can be further parameterized by factors such
as personality, gap size, and distance during a merge. This approach reduces
complexity by breaking down the problem into smaller steps, i.e., gap selection,
prediction, and planning. Sequentially solving subproblems significantly reduces
the method’s potential as the interactions are limited.

Tian et al. propose an interactive lane change method (Tian et al. 2021) that also
utilizes MCTS. This method explicitly models the interactions between traffic
participants, considering the rationality and intelligence of the human driver as
latent state dynamics, which are modeled using mixed policies and iterative level-
k (Stahl and Wilson 1994) reasoning. This approach allows learning the latent
dynamics through observation during the planning phase, resulting in more robust
actions.

Hubmann et al. propose an interactive intersection navigation method modeled
as a POMDP (Hubmann et al. 2018a) and solved via the Adaptive Belief Tree
algorithm (Seiler et al. 2015, Klimenko et al. 2014). In addition, future trajectories
of other vehicles are partially observable and tracked using a sequential Monte
Carlo (SMC) method.
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Further, Hubmann et al. propose an interactive lane change method also modeled
as a POMDP (Hubmann et al. 2018b) and solved via the Adaptive Belief Tree
algorithm (Seiler et al. 2015, Klimenko et al. 2014). The longitudinal driving
behavior of traffic participants is governed by the IDM. It is extended to behave
either cooperatively or uncooperatively. The willingness to cooperate is estimated
through observations.

3.2 Game Theory

Schwarting et al. introduce an interactive lane-changing and intersection navi-
gation approach that leverages game theory to model interactions between traffic
participants (Schwarting et al. 2019). This method considers each traffic partici-
pant with its whole action space. The cooperative aspect is included by estimating
the agent’s social value orientation. The problem is formulated as a nonlinear
program and solved using a state-of-the-art nonlinear optimizer.

Bahram et al. also propose a game-theoretic approach for interactive lane changing
based on a complete search (Bahram et al. 2016b). They model the problem as
a sequential game to account for interactions between maneuvers performed by
traffic participants. To reduce complexity, the number of actions for each agent is
limited to 15, and the maneuver with the lowest risk is determined by calculating
collision risks for all possible options.

3.3 Learning

Saxena et al. propose an interactive lane change method in dense traffic utilizing
model-free RL (Saxena et al. 2020). In this work, the interactions between traffic
participants are not explicitly modeled. Instead, they are learned implicitly from
data during training generated in a simulator based on IDM and MOBIL driver
models, similar to the Social Generative Adversarial Network in (Bae et al. 2020).
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Bouton et al. present an intersection navigation method that can handle occlusions
using model-free RL in conjunction with a probabilistic model checker to ensure
safety (Bouton et al. 2019b). In this approach, the other two traffic participants
(i.e., a car and a pedestrian) are modeled using rule-based models, and their
interactions are learned from data during training. This method can be extended
to handle additional participants by decomposing the scene, which, however, may
lead to conservative behavior since worst-case assumptions are made.

In another study, Bouton et al. propose an interactive single-lane lane change
method in dense traffic using model-free RL (Bouton et al. 2019a). In this
work, the interactions between traffic participants are learned implicitly from data
generated in a simulator based on IDM driver models and hence do not need to
be explicitly modeled. The cooperativeness of other drivers is estimated using a
recursive Bayesian filter. The results suggest that an MCTS approach with full
observability performs the best.

3.4 Combined Learning and Planning

Bae et al. propose an interactive lane change method in dense traffic leveraging
the predictions of a Social Generative Adversarial Network (SGAN) (Gupta et al.
2018) as a basis for planning controls usingModel Predictive Control (MPC) (Bae
et al. 2020). The SGAN is trained on simulations of dense traffic utilizing the IDM
and MOBIL driver models. During the planning phase, the controller generates a
set of trajectories with Monte Carlo rollouts to be evaluated in conjunction with
the SGAN predictions. The trajectory with the lowest cumulative cost is selected,
provided it satisfies the constraints. This approach is limited to lane changes and
uses simple driver models for other traffic participants. Further, the planning
horizon of 2 s reduces the interactions with other vehicles.

Hoel et al. presented an interactive lane change method that combines MCTS and
RL (Hoel et al. 2020). The method considers other traffic participants modeled
using the IDM and the MOBIL driver models. In this approach, the driver’s
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3 State of the Art in Cooperative Trajectory Planning

state is partially observable and estimated using a particle filter. Actions yielding
collisions are excluded from the action space. In addition, the MCTS is guided by
a Neural Network (NN) that generates state value targets, enhancing the sampling
process’s efficiency and accuracy.

3.5 Summary

Although there is a significant body of research on interactive trajectory planning
for intersection and lane change scenarios, most approaches reduce the complexity
of interactive trajectory planning through assumptions that violate completeness
guarantees or limit the problem to lateral or longitudinal planning.

Only one approach (Schwarting et al. 2019) meets all of the following criteria.
Firstly, it does not rely on communication between vehicles; secondly, prediction
and planning are performed concurrently and interactively with a sufficiently
large planning horizon; and finally, all interacting agents are modeled with their
complete and continuous action spaces.

This highlights the need for further research to address existing methods’ lim-
itations and develop more comprehensive and effective solutions for interactive
trajectory planning in automated driving.
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(Bae et al. 2020) lane change MPC/SL + + - + + + - + + + - 1 ∞ ẍ, δ
(Saxena et al. 2020) lane change RL + + - - + + - + + + + 1 ∞ ...

x , δ̇
(Bouton et al. 2019b) intersection RL + + - + - - - + - + - 1 ≤ 10 ẍ

(Bouton et al. 2019a) lane change RL + + - + - - - + - + + 1 4 ẍ

(Bouton et al. 2020) lane change RL + + - - - - - + + - - 1 8 high level actions
(Isele 2019) lane change MCTS + - + + - - - + + - + 2 2 τ to intention
(Kurzer et al. 2018a) driving MCTS + + + - + + + + + + + 4 ∞ τ

(Tian et al. 2021) lane change MCTS + + + + - - + + + - - 8 2 control commands
(Hoel et al. 2020) lane change MCTS/RL + + - + - + - + + - - 20 8 high level actions
(Hubmann et al. 2018b) lane change ABT + + + + - - - + + + - 1 ∞ ẍlon, ẋlat

(Hubmann et al. 2018a) intersection ABT + + + + + + - + - + - 1 ∞ ẍ

(Schwarting et al. 2019) driving NLP + + + - + + + + + + + 20 ∞ ẍ, δ
(Bahram et al. 2016a) lane change Search + + + - - - + + + + - 1 ∞ τ

Table 3.1: Overview of Different Interactive Trajectory Planning Algorithms (State of the Art)
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4 Implicit Cooperative
Decision-Making

The following chapter describes the central contribution of this work: the multi-
agent trajectory planner. Contemporary methods often simplify interactive tra-
jectory planning by making assumptions that compromise solution completeness
or restrict the planning to the lateral or longitudinal dimension. In contrast,
the proposed cooperative multi-agent trajectory planning algorithm considers all
physically feasible actions for every traffic participant and synchronously per-
forms prediction and planning. This allows for generating cooperative trajectories
across a multi-step planning horizon, addressing many limitations of existing
approaches.

In this chapter, some of thematerial presented has been previously published in the
following papers Kurzer et al. 2018a and Kurzer et al. 2018b. Additionally, parts
of the research described in this chapter are based on the work of the following
supervised theses Engelhorn 2018 and Zhou 2018.

4.1 Problem Formulation

The problem of cooperative trajectory planning is formulated as anMG consisting
ofmultiple non-communicating agents, see Section 2.2. This formulation captures
the aspect of real-world scenarios where traffic participants (human or automated
agents) often need tomake decisions independently without direct communication
with others. Each agent independently chooses an action at each time step,
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4 Implicit Cooperative Decision-Making

unaware of the decisions made by others, which promotes decentralized decision-
making that could foster more scalable and robust solutions.

In this cooperative multi-agent system, both the state transition and the reward are
contingent on the collective actions of all agents. This interdependency prompts
agents to align their actions with the common objective, potentially generating
more efficient and safer trajectories that contribute to an overall optimized out-
come.

In the context of an MG, every agent aspires to maximize its expected cumulative
reward (2.2). Several ways to achieve this goal include learning-based methods,
such as value-based RL. Here the agent aims to approximate the state-action
value function for all states of the MDP to derive later a policy that maximizes
the state-action value in each state, yielding the optimal policy π∗(a | s) (5.2).

However, learning-based methods have their limitations. For example, a com-
prehensive global optimization that explores and evaluates all potential states in
the MDP to formulate the optimal policy is computationally intensive and, thus,
time-consuming. Furthermore, learning is highly dependent on the training data
distribution and can struggle with "out-of-distribution" scenarios, i.e., situations
not encountered or adequately represented during training. The optimal policy
derived from learning-based methods may perform poorly when confronted with
these novel situations, potentially leading to suboptimal or unsafe decisions.

On the other hand, planning-based methods, such as MCTS, are more adaptable
to such out-of-distribution scenarios. Rather than relying on a learned policy,
they compute actions for the current state of the environment, allowing for greater
flexibility when facing previously unseen situations. In addition, planning-based
methods search for the optimal action for a specific state instead of focusing on
the global optimization of the optimal policy for all possible states, reframing the
problem as local optimization. This change in perspective is especially beneficial
for automated driving, where immediate, context-specific decisions are typically
more valuable than optimizing long-term strategies.

32



4.2 Requirements and Assumptions

Therefore, the problem is formulated as the search for the optimal action given a
state in an MG. For this search, MCTS, a planning-based method that balances
exploration and exploitation through a combination of tree search and random
sampling, is employed.

4.2 Requirements and Assumptions

In developing any system, it is critical to identify the fundamental requirements
and assumptions underpinning that system’s design and operation. In the context
of themulti-agent cooperative trajectory planning problem, these requirements and
assumptions shape the formulation of the algorithm and influence its performance,
robustness, and adaptability.

The requirements are the criteria or capabilities the systemmust satisfy or possess
to address the problem effectively. In this case, they include the algorithm’s
rationality, implicit communication, intuitiveness, fastness, and scalability. These
requirements are dictated by the inherent characteristics and constraints of real-
world driving scenarios, where multiple traffic participants interact dynamically
and make independent decisions.

Conversely, the assumptions are the premises or conditions taken to be valid for
system design. They form the basis upon which the requirements are formulated
and the problem is solved. Here, the assumptions include the rational behavior of
traffic participants, the absence of explicit communication, the co-existence of au-
tomated and non-automated traffic participants, and the computational complexity
associated with the number of traffic participants.

Based on the assumptions, it is important to recall the research questions to
formulate the algorithm’s requirements.

1. How can cooperative driving without communication be modeled?

2. How can this problem be solved efficiently?
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4 Implicit Cooperative Decision-Making

4.2.1 Rational

This requirement assumes that humans and AVs will act rationally within the
driving environment. In this context, being rational means that individuals will
select actions that maximize their return and that the reward model is aligned
with traffic regulations and a safe driving style. Requiring rational behavior is
crucial for the system’s proper functioning because it allows the algorithm tomake
accurate predictions about the actions of other drivers. If other participants were
to behave irrationally, predicting their actions would become significantly more
complex, leading to possible miscalculations and unsafe driving situations.

4.2.2 Implicit

This requirement stems from the assumption that no explicit form of communi-
cation, such as vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I) com-
munication, is necessary to exchange intentions or information. This reflects
the current state of traffic systems, where most decisions are made based on ob-
served behavior rather than explicit communication. Operating without explicit
communication is vital as it allows the algorithm to apply to a broader range of
scenarios and environments. Further, reducing dependence on possibly unreliable
communication channels enhances the system’s resilience.

4.2.3 Intuitive

The requirement for intuitive behavior arises from the assumption that AVs and
human traffic participants will co-exist. Thus, the algorithm should generate
predictable and intuitive trajectories for human drivers, even if those drivers may
not fully understand the mechanics of autonomous decision-making. This is
important for overall traffic safety and efficiency since unpredictable maneuvers
by autonomous vehicles could confuse or surprise human drivers, potentially
leading to accidents or traffic disruptions.
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4.2 Requirements and Assumptions

4.2.4 Scalable and Fast

The scalable and fast requirement assumes that the number of traffic participants
can be large and variable and that the environment can change quickly. As such,
the algorithm’s computational complexitymust bemanageable even as the number
of agents increases or the state space becomes more complex. This requirement is
essential to ensure the algorithm can make timely decisions in real-world driving
scenarios since delays in decision-making can lead to inefficiencies or even safety
risks.

4.2.5 Further Research Questions

Based on the previous requirements, new research questions arise.

1. How can a continuous action space be incorporated so that trajectory plan-
ning in constricted scenarios is possible?
The rationality requirement necessitates optimal decision-making at each
step. Incorporating a continuous action space broadens the possible deci-
sions, enabling precise maneuvers crucial for maximizing rewards, espe-
cially in constricted scenarios requiring safe and efficient navigation.

2. How can a reward function be designed so that the resulting behavior
represents human driving?
This question arises from the requirement for intuitive behavior. To ensure
that AVs behave in a predictable manner for humans, the algorithm needs
to learn behaviors that closely resemble human driving. Designing an
appropriate reward function is a crucial step toward achieving this.

3. How can parallel computation be leveraged to accelerate convergence
speed?
This question concerns the requirement for fast, scalable computation. By
leveraging parallel computation, the algorithm could be sped up, enabling
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4 Implicit Cooperative Decision-Making

the algorithm to handle larger state spaces or more complex scenarios more
efficiently.

4. How can Hyperparameter Optimization (HPO) be employed to improve the
solution quality?
This question stems from the requirement for high-quality solutions. HPO
techniques can be used to automatically tune the parameters of the algo-
rithm, potentially leading to better performance and more efficient solu-
tions.

4.3 Multi-Agent Driving Simulator

RL-basedmethods require access to an environment such as a simulator or the real
world (see Fig. 2.1) to simulate an agent’s experience. However, since RL is based
on the trial-and-error principle, ensuring safety during learning in the real world
is hard. Thus, the following section describes the multi-agent driving simulator
developed for and used throughout this work that models agents’ interactions in
the MG.

4.3.1 State Space

The state of a traffic participant is defined with its

• longitudinal position xlon,
• lateral position xlat,
• longitudinal velocity ẋlon,
• lateral velocity ẋlat,
• longitudinal acceleration ẍlon,
• lateral acceleration ẍlat, and
• heading φ.

Further, each traffic participant is a vehicle denoted by its
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4.3 Multi-Agent Driving Simulator

• width w,
• length l,
• wheelbase lwb,
• maximum acceleration amax, and
• maximum steering angle δmax.

An agent υ controls a traffic participant. Generally, this could be any participant,
such as a car, truck and trailer, motorcycle, bicycle, or human. If desired, these
traffic participants can easily be integrated once an appropriate model is defined.
This thesis uses the kinematics of a single-track model (Section 4.3.4.1); thus,
only car-like vehicles are considered.

4.3.2 Action Space

The action space of an agent is two-dimensional. The two dimensions are the
longitudinal velocity change∆ẋlon and the lateral change in position∆xlat. The
tuple describes the desired state change over the action duration ∆T = t1 − t0.
Based on the current state and the chosen action, a jerk-optimal trajectory with
continuous velocity and curvature is calculated using quintic polynomials (Taka-
hashi et al. 1989). A jerk-optimal trajectory ensures the desired state change is
achieved while optimizing comfort, safety, and energy efficiency. Two trajec-
tories are calculated, one for the longitudinal and one for the lateral direction,
respectively, defined with the coefficients a as

x(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5

ẋ(t) = a1 + 2a2t+ 3a3t
2 + 4a4t

3 + 5a5t
4

ẍ(t) = 2a2 + 6a3t+ 12a4t
2 + 20a5t

3

(4.1)
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,as well as in matrix form

Ma =



1 t0 t20 t30 t40 t50

0 1 2t0 3t20 4t30 5t40

0 0 2 6t0 12t20 20t30

1 t1 t21 t31 t41 t51

0 1 2t1 3t21 4t31 5t41

0 0 2 6t1 12t21 20t31





a0

a1

a2

a3

a4

a5


. (4.2)

With each polynomial requiring six coefficients, six constraints need to be defined.
The constraints are denoted by c, defined as

c =



x(t0)

ẋ(t0)

ẍ(t0)

x(t1)

ẋ(t1)

ẍ(t1)


. (4.3)

The current state of the vehicle determines the start constraints. The end con-
straints for ẋlon and xlat are based on the selected action. The end position is given
by the mean of the start and end velocity and the action duration∆T . Further, the
acceleration in the longitudinal and lateral directions and the velocity in the lateral
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Figure 4.1: Trajectory of a Quintic Polynomial: The resulting position, velocity, ac-
celeration, and jerk profile (from left to right) for the constraints c =
[x(t0) = 0, ẋ(t0) = 10, ẍ(t0) = 0, x(t1) = 22, ẋ(t1) = 12, ẍ(t1) = 0] ,∆T = 2.

direction are set to zero, see (4.4), which significantly reduces the dimensionality
of the action space, making the search more computationally manageable.

xlon(t1) = xlon(t0) +
ẋlon(t0) + ẋlon(t1)

2
∆T

ẋlon(t1) = ẋlon(t0) + ∆ẋlon

ẍlon(t1) = 0

xlat(t1) = xlat(t1) + ∆xlat

ẋlat(t1) = 0

ẍlat(t1) = 0

(4.4)

Using the constraints, (4.1) can be solved for its coefficientsa, see (4.5) (assuming
M is invertible). An exemplary trajectory is depicted in Fig. 4.1.

Ma = c

M−1Ma = M−1c

a = M−1c

(4.5)
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Instead of conducting the planning using Cartesian coordinates, trajectories are
generated using the Frenet frame, a dynamic reference frame that aligns with
the centerline of the road (Werling et al. 2010). This transformation allows the
separation of longitudinal and lateral trajectory planning.

4.3.3 Semantic Action Classes

Sample-based planning methods, such as MCTS, often face challenges due to
large search spaces. To address this issue, strategies that reduce or structure the
search space can substantially enhance performance. In this work’s context of AD,
incorporating domain knowledge by subdividing the action space into semantic
action classes offers a promising approach (Kurzer et al. 2018a).

Semantic action classes systematically categorize actions into meaningful groups
based on their impact on the vehicle’s state. These classes are action-state-
dependent areas within the action space of an agent and are subdivided based
on the following nine semantic definitions, as illustrated in Fig. 4.2 and Fig. 4.3
(Kurzer et al. 2018a):

• Maintain (0): small effect on the longitudinal velocity as well as the lateral
position; lane does not change

• Accelerate (+): large positive effect on the longitudinal velocity and a small
effect on the lateral position; lane does not change

• Decelerate (−): large negative effect on the longitudinal velocity and a
small effect on the lateral position; lane does not change

• Accelerated Lane Change Left (L+): large positive effect on the longitudi-
nal velocity and a large positive effect on the lateral position; lane change
to the left

• Accelerated Lane Change Right (R+): large positive effect on the longitu-
dinal velocity and a large negative effect on the lateral position; lane change
to the right
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Figure 4.2: Semantic Action Classes in the Action Space: The boundaries of the action classes are
action-state-dependent. In the lateral direction, they represent the relative position of the
vehicle to its current lane; in the longitudinal direction, the acceleration of the action. The
vehicle is driving in the middle lane of a three-lane road, with a slight offset to the right;
hence the semantic action classes are not symmetrical.

• Decelerate Lane Change Left (L−): large negative effect on the longitudinal
velocity and a large positive effect on the lateral position; lane change to
the left

• Decelerate Lane Change Right (R−): large negative effect on the longitu-
dinal velocity and a large negative effect on the lateral position; lane change
to the right

• Lane Change Left (L): small effect on the longitudinal velocity and a large
positive effect on the lateral position; lane change to the left

• Lane Change Right (R): small effect on the longitudinal velocity and a
large negative effect on the lateral position; lane change to the right

This structured exploration enables a more targeted search and has the potential
to improve overall performance. Furthermore, semantic action classes condense
the search space by focusing on specific, meaningful action groups, allowing the
algorithm to allocate computational resources more efficiently.
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Figure 4.3: Relationship between Action Space and Trajectories: Nine different actions are sampled
from the action space (left), resulting in nine different trajectories (right).

Additionally, semantic action classes enhance the interpretability of the resulting
trajectories by relating selected actions to high-level maneuver classes, facili-
tating debugging, analysis, and communication with human operators. Lastly,
by first sampling from the centers of the semantic action classes, the algorithm
can prioritize meaningful actions, resulting in generally safer and more desirable
trajectories.

4.3.4 Transition Function

Since this work does not focus on trajectory planning close to physical limits (e.g.,
required by evasive maneuvers), trajectories are evaluated using a single track
model (Schramm et al. 2018) as it has been shown to perform sufficiently well for
trajectory planning tasks (Kong et al. 2015). The execution of trajectories derived
from the selected action is deterministic.
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lwb

φ

1
κ

δδ

Figure 4.4: Kinematic of a Single Track Model

4.3.4.1 Vehicle Model

A single-track model is a simplified vehicle model of a front-wheel steered vehicle
that models the respective tire pairs on the front and rear axles as a single wheel
(Schramm et al. 2018), see Fig. 4.4.

4.3.4.2 Physical Constraints

To ensure that a chosen trajectory is drivable for a single-track model, the differ-
ential and kinematic constraints, i.e., the maximal acceleration and the minimum
curve radius must be accounted for (LaValle 2006).

Based on the polynomials that describe the trajectories in longitudinal and lateral
directions, the heading

φ = arctan

(
ẋlat
ẋlon

)
, (4.6)

curvature
κ =

ẋlonẍlat − ẋlatẍlon
(ẋ2lon + ẋ2lat)

3
2

, (4.7)

steering angle
δ = arctan (lwbκ) , (4.8)
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Figure 4.5: Invalid States: Invalid successor states resulting from different actions

acceleration
ẍ =

√
ẍ2lon + ẍ2lat, (4.9)

and velocity
ẋ =

√
ẋ2lon + ẋ2lat (4.10)

are calculated.

An initially sampled action might fail to satisfy certain constraints or criteria in
sampled-based trajectory planning. During the simulation and expansion phase
of MCTS, candidate trajectories are sampled from the action space. Some of
these sampled trajectories may violate constraints, such as physical limits (e.g.,
maximum steering angle or acceleration) or safety conditions (e.g., staying on
the road and avoiding collisions with static obstacles, see Fig. 4.5), similar to
Hoel et al. 2020. In such cases, resampling aims to generate new candidate
actions that comply with these constraints. By incorporating resampling into
MCTS, the search process becomesmore effective in identifying valid and feasible
trajectories, improving the overall performance of the planning process.

The physical constraints are considered in the validation reward of the reward
function, see Section 4.3.5.3.
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4.3 Multi-Agent Driving Simulator

4.3.5 Reward Function

Themodel of the expected reward is the basis for the agent’s behavior. It considers
the state s and the action a of an agent, Ras . As the transition model in this
context is deterministic, the reward function can be simplified by eliminating the
expectation term, resulting in the following:

r = rs + ra + rvalidation. (4.11)

The importance of each of the terms mentioned below is adjusted with a corre-
sponding weight.

4.3.5.1 State Reward

The state reward rs is based on the divergence of the current and the desired state.
The desired state is defined by a longitudinal velocity vdes and a lane index ides.
A separate module is responsible for estimating these desired values for all agents.
In the context of this work, it is assumed that the desired longitudinal velocity
and lane index (i.e., the lane the agent is driving in, where the rightmost lane is
indexed as 0) are equal to their respective values before any interaction occurs in
each scenario.

Additionally, the agent is encouraged to drive close to the center of a lane by
rewarding deviations from the center less.

4.3.5.2 Action Reward

Agents select actions to reduce the deviation from the desired state. While
effectiveness in minimizing the deviation is necessary, the most effective action
might yield undesirable accelerations. Thus, efficiency (i.e., balancing action and
state rewards) is considered by penalizing all actions, and the action reward ra
is hence negative, i.e., a cost, see (4.14). Currently, ra considers longitudinal
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(4.12) and lateral acceleration (4.13) as well as lane changes, (4.14), with w being
the weights and ∆l the number of lane changes an action results in. If desired,
the state and action reward can easily be extended to capture additional safety,
efficiency, and comfort-related aspects of the generated trajectories.

Cẍ = wẍ

∫ t1

t0

(ẍ(t))2dt (4.12)

Cÿ = wÿ

∫ t1

t0

(ÿ(t))2dt (4.13)

Cl = wl∆l (4.14)

ra = Cẍ + Cÿ + Cl (4.15)

4.3.5.3 Validation Reward

The last term is the action validation reward, see (4.16). It evaluateswhether a state
and action are valid, i.e., being inside the drivable environment and adhering to
the physical constraints, and whether a state action combination is collision-free.

rvalidation = winvalid state1invalid state

+ winvalid action1invalid action

+ wcollision1collision

(4.16)

The symbol 1condition represents an indicator function, where the subscript denotes
the evaluated condition. The function takes the value of 1 when the specified con-
dition is true and 0 otherwise, serving as a concise notation to express conditional
relationships in equations.
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4.3.5.4 Cooperative Reward

To achieve cooperative behavior, a cooperative reward ricoop is defined. The
cooperative reward of an agent i is the sum of its rewards, see (4.11), as well as
the sum of all other rewards of all other agents multiplied by a cooperation factor
λi, see (4.17), ((Lenz et al. 2016, Kurzer et al. 2018a)). The cooperation factor
determines the agent’s willingness to cooperate with other agents, with λi = 0

being purely interactive and λi = 1 being fully cooperative.

ricoop = r + λi
n∑

j=0,j 6=i

rj (4.17)

The cooperation factor can be used to represent different driver types. For example,
an offensive driver weighs his own goals more than the goals of other road users.
The joint reward function (4.17) is agent-individual and does not represent a
global cost function. Therefore, the cooperative rewards of the individual agents
cannot be compared since they have different values depending on the respective
cooperation factor.

4.3.6 Collision Detection

Appropriate collision detection along the planned trajectory is a critical part of
any trajectory planner. Since collision detection is a major bottleneck of trajectory
planning methods, it must be conducted efficiently (Ziegler and Stiller 2010).

Further, in the case of a search-based approach, efficiency is critical since each
trajectory combination has to be checked for collisions. Hence, a decomposition
of rectangles into circles is employed (Ziegler and Stiller 2010). A hierarchical
rectangle decomposition is implemented to reduce the computational cost further
(Ericson 2004), see Fig. 4.6.
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Figure 4.6: Hierarchical Rectangle Decomposition: Rectangles are decomposed using a hierarchy of
circles. Initially, a single circle approximates the rectangle. In case of a collision, the
approximation of the rectangle is improved by increasing the number of circles n.

At first, a single circle approximates the rectangle. However, if the circle col-
lides with another object, the approximation is improved by increasing the num-
ber of circles to approximate the rectangle. This reduces the amount of over-
approximation while also reducing computational costs, where a coarse collision
detection suffices.

When approximating a rectangle, the goodness of the approximation varies de-
pending on the number of circles n used. While the approximation in the lateral
direction improves with an increasing number of circles, it decreases in the longi-
tudinal direction. Hence, a hierarchical rectangle decomposition achieves higher
accuracy and a computational benefit.

The radius for the decomposition of a rectangle with length l and width w using
n circles is

r =

√
l2

4n2
+
w2

4
. (4.18)

The distance between the circles is

d = 2

√
r2 − w2

4
. (4.19)
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The collision of the circles to approximate an object with is used as a proxy for
a collision. Two circles collide as soon as the distance between their centers d is
less than the sum of their radii,

1collision = d < r0 + r1. (4.20)

4.4 Decentralized Continuous MCTS

An exemplary application of MCTS to a traffic scenario requiring cooperation is
shown in Fig. 4.7. However, specific extensions to it are required to solve this and
many other cooperative trajectory planning problems with MCTS.

The original MCTS algorithm developed by (Kocsis and Szepesvári 2006) uses
UCT, designed for sequential decision-making games with a finite set of states
and actions. However, if traffic participants interact without communication, the
actions of other traffic participants are not known until they are observed. Thus the
basic MCTS used in turn-based games is not applicable and needs to be extended
to simultaneous move games. In addition, trajectory planning in a continuous
state and action space requires alterations to the standard selection procedure of
actions. This is because UCT would degenerate MCTS to MCS, as each action
in each state needs to be selected at least once, see (2.14). Lastly, the output of
MCTS is an action a given a state s. In order to plan continuous trajectories, e.g.,
for driving, it is thus required to compute actions repeatedly for successor states.

4.4.1 Decoupled UCT

To address the problem of simultaneous decision-making Decoupled Upper Con-
fidence Bound for Trees (DUCT) is employed (Tak et al. 2014). While the
decoupled version of UCT does not guarantee to converge to an optimal policy
(Schaeffer et al. 2009), it has shown to perform best when compared to other
variants (Tak et al. 2014).
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Selection Expansion

Simulation Update

Figure 4.7: Phases of MCTS for a Scenario with a Narrow Passage: The gray vehicles are parked,
and the red and the blue vehicle can pass the narrowing at the same time if the red vehicle
deviates from its optimal trajectory. During the selection, MCTS traverses the tree by
selecting auspicious future states until a state is encountered that has untried actions
left. After the expansion of the state, a simulation of subsequent actions is run until the
planning horizon is reached. Next, the result is backpropagated to all states along the
selected path. Ultimately this process converges to the optimal policy.
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a0|a0

s0

s1 s2 s3 s4 s5 s6 s7 s8 s9

a0|a1 a0|a2 a1|a0 a1|a1 a1|a2 a2|a0 a2|a1 a2|a2

Figure 4.8: Action Combinations in DUCT: The resulting successor states are based on an identical
action space [a0, a1, a2] ∈ A(s0) for two agents, with ·|· denoting the joint action a
that led to a state.

The complexity of simultaneous decision-making results from incomplete infor-
mation regarding the decision of other agents. Thus, the state-action value for an
action ai from agent i can only be approximated by averaging over all possible
actions of the other agents. Based on the description of MCTS in Section 2.3.2.2,
DUCT hence tracks the state-action value and visit count on a per agent basis,
and the dependency between different agents is not considered when calculating
the DUCT value,

DUCT(s, ai) = Q̂π(s, ai) + c

√
2 logN(s)

N(s, ai)
ai ∈ Ai. (4.21)

Each agent selects the action that maximizes its DUCT value during the selection
step. The resulting joint action a leads to the successor node if it exists or expands
a new node.

For two agents with identical action spaces of size, three Fig. 4.8 depicts all
possible successor states. Since DUCT tracks the state-action value and visit
count separately for each agent, s0 is considered fully expanded once each agent
has executed each of its available actions at least once (s2, s6, s7), rather than all
possible combinations resulting from the joint action space. Hence, an action can
only be selected again if all actions of an agent have been selected at least once.
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4 Implicit Cooperative Decision-Making

Only by randomly selecting a joint action a that has not previously been selected
the remaining combinations (s1, s3, s4, s5, s8, s9) are added to the search tree.

Similarly, the final selection is conducted independently of other agents.

4.4.2 Progressive Widening

The use of UCT, see (2.14), in MCTS requires the exploration of all possible
actions from a given state (Kocsis and Szepesvári 2006). Actions of the successor
states are only explored (Kocsis and Szepesvári 2006, Browne et al. 2012) once
all actions of the predecessor have been explored. Thus, if the action space is
continuous, the application of UCT within MCTS degenerates to MCS.

Progressive widening, sometimes also called progressive unpruning, aims to ad-
dress the issue of large action spaces (Coulom 2007, Chaslot et al. 2008a), with
additional work considering infinitely many actions within UCT (Wang et al.
2008).

Progressive widening gradually expands the existing action space of a node by
adding additional actions. The number of actions for a state follows a sublinear
function of the visit count, see (4.22), with c and α ∈ (0, 1) being determined
empirically. The expansion of the action space can be randomor follow a heuristic.

|A(s)| = bc ·N(s)αc (4.22)

The simplest way to add new actions is to select a random action from the
theoretical action space. Another option is to use a heuristic, such as blind value,
see Section 4.4.4.1.

The application of progressive widening is limited to an empirically determined
search depth within the tree since the visit count for individual actions decreases
with increasing search depth in this work. Hence the limitation ensures that the
available actions at greater depths are visited sufficiently.
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4.4 Decentralized Continuous MCTS

4.4.3 Selection Strategies

As mentioned previously, to account for the interaction and uncertainty (i.e.,
simultaneous action selection) between multiple agents DUCT is employed. In
DUCT, separate UCT values are calculated for each agent, considering their
rewards and visit counts.

4.4.4 Expansion Strategies

The expansion strategy is either randomor guided. The randomexpansion strategy
draws samples uniformly from the entire action space. In order to be able to use a
continuous action space, progressive widening is employed to decide whether the
action space is expanded. The guided expansion strategy uses a heuristic to find
a promising node for expansion. One such heuristic is blind value.

4.4.4.1 Blind Value

Whenever a node is to be expanded, MCTS needs to add an action to the action
space of the node. The standard strategy for discrete and small continuous action
spaces is to employ uniform sampling over the entire action space (Browne et al.
2012, Couëtoux et al. 2012). However, as the action space grows, the sampling
will be less likely to be in promising regions.

A heuristic that aims to guide the sampling process so that promising regions are
more likely to be sampled is called blind value (Couëtoux et al. 2012). Blind
value uses the previously explored actions of a node to guide the next expansion.
The blind value first focuses on regions away from previously explored actions
and then shifts towards regions with many high-valued actions.

The blind value for an action ai of a set of randomly sampled actions Arnd

is calculated using the set of explored actions Aexp as well as an adaptation
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Figure 4.9: Blind value of Actions in Continuous Space: Assuming that the previously explored
actions have identical UCT values, ai ∈ Arnd has the highest blind value, since its
distance to other actions is largest, cf. (4.23) and (4.24).

coefficient ρ, see (4.23) and (4.25), respectively, with σ denoting the standard
deviation.

BV(ai,Aexp, ρ) = min
aj∈Aexp

UCT(s, aj) + ρd(ai, aj) (4.23)

d(ai, aj) =

√(
a∆ẋlon
i − a∆ẋlon

j

)2
+
(
a∆xlat
i − a∆xlat

j

)2
(4.24)

ρ(Aexp,Arnd) =
σ ({UCT(s, aj) | ∀aj ∈ Aexp})
σ ({d (0, ai) | ∀ai ∈ Arnd})

(4.25)

The action with the highest blind value is finally selected, defined as

a∗ = argmax
ai∈Arnd

BV(ai,Aexp, ρ). (4.26)
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4.4.5 Simulation Strategies

There are two types of simulation strategies, random and semantic. The random
simulation strategy draws samples uniformly from the entire action space. The
semantic simulation strategy draws the first samples from the centers of the
semantic action classes, cf. Section 4.3.3, and continues to sample uniformly
within the semantic action classes. Sampling from the centers is advantageous
because the resulting lateral position will be centered on neighboring lanes if a
lane change is selected.

4.4.6 Update Strategies

The update strategy is either standard or employs a similarity update. The standard
update strategy updates only traversed nodes with the return, cf. Section 2.3.2.2.4.
The similarity update strategy aims to aggregate the knowledge of similar actions.

4.4.6.1 Similarity Update

Progressive widening is an effective strategy to address a continuous action space
during selection. However, as the action space of a node grows, it becomes less
likely that an action is selected repeatedly, which is required to accurately estimate
the state-action value. Due to the continuous nature of the action space, actions
with a high degree of similarity might be sampled, cf. Fig. 4.10. Similar actions
likely yield similar trajectories and returns; however, they are treated as unrelated
actions in MCTS.

To share information between actions, the similarity of two actions K(ai, aj) ∈
(0, 1] in the action space can be determined by a distance measure based on a
radial basis function (kernel), see (4.27). Lower values for γ ∈ R+ increase the
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Figure 4.10: Similarity update Action aj Given Action ai in Continuous Space: In order to share
information between similar actions, action aj is updated with statistics gathered from
action ai weighted by the kernel value ofK(ai, aj), (4.28).

influence of other actions, and higher values decrease it (Kurzer et al. 2018a),
with the value being determined empirically.

K(ai, aj) = exp
(
−γ ‖ai − aj‖2

)
(4.27)

During the update, the similarity update calculates the pairwise distance between
the taken action ai from a state and all other previously explored actions aj of
that state. The visit count and the return of the taken action are weighted by this
distance to update the previously explored actions,

N(s, aj)← N(s, aj) +K(ai, aj),

Q(s, aj)← Q(s, aj) +
K(ai, aj)

N(s, aj)
(G(τ)−Q(s, aj)).

(4.28)
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4.4.7 Final Selection Strategies

While UCT defines a clear selection criterion within the search tree of MCTS,
different strategies for the final selection exist. The two most common strategies
choose either the child node with the highest visit count,

MaxVisitCount(s) = argmax
a∈A(s)

, N(s, a). (4.29)

or the child node with the highest average reward (Browne et al. 2012, Chaslot
et al. 2008a),

MaxActionValue(s) = argmax
a∈A(s)

Q̂π(s, a). (4.30)

The MaxVisitCount strategy aims to choose the most promising and reliable
action, and the MaxActionValue strategy aims to choose the action with the
highest expected reward.

While it has been empirically shown that both strategies often perform similarly
(Chaslot et al. 2008a), this work’s experiments discovered thatMaxActionValue

outperformed MaxVisitCount.

4.4.8 Action Grouping

The following section introduces the concept of action grouping. It is closely
related to existing move grouping approaches (Saito et al. 2007, Childs et al.
2008, Bouzy 2006). The grouping of similar actions is intended to reduce the
computational complexity on the one hand and increase the algorithm’s robustness
on the other hand.

In the context of this work, an action group m is a subset of the action space
A, which contains actions that cause similar changes in the state of the agent.
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Formally, an action groupm is a subset of the action space, where each action in
that subset is mapped tom by the function f that maps actions to action groups:

m ⊆ A, ∀a ∈ m : f(a) = m, f(a) : A →M. (4.31)

This mapping function f partitions the action space A into distinct subsets m ∈
M, where each subsetm represents a distinct action group. Each agent groups the
actions available to it into different action-state-dependent action groups. When
a new action is sampled, it is assigned to the corresponding action group.

To give action groups a semantic meaning, the mapping function f can be influ-
enced by the features of the actions or their related states. This work uses the
definition of semantic action classes (see Section 4.3.3) for action grouping based
on domain knowledge. The result is a unique mapping from the action space to
the action group space, with no overlap between different action groups.

During the update phase, the groups’ statistics are calculated based on the statistics
of their members. In the selection phase, the group statistics are first used to select
the best action group according to DUCT before an action is determined within
the group, effectively focusing on relevant areas of the action space.

Action groups carry statistics analogous to actions. These are the total visit count
of the action group N(s,m) and the estimate of the action groups’ state-action
value Q̂(s,m).

The visit count of an action group is merely the visit count of the actions in that
group,

N(s,m) =
∑
∀a∈m

N(s, a). (4.32)

Similarily, the state-action value is the mean of the state-action values over that
group,

Q̂(s,m) =
1

|m|
∑
∀a∈m

Q(s, a). (4.33)
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The following changes occur when action grouping is applied to MCTS. During
selection, UCT is first used to determine the best action group,

UCT(s,m) = Q̂(s,m) + c

√
2 logN(s)

N(s,m)
m ∈M. (4.34)

Then the best action is selected within this group using (2.14).

Analogously the final selection first selects the best action group and later de-
termines the best action in that group, according to the specific criteria, see
Section 4.4.7.

4.5 Summary

This chapter presents a cooperative multi-agent trajectory planning algorithm that
considers all possible actions of traffic participants while prioritizing physical
feasibility. The algorithm operates within the MG framework where each agent
makes independent but simultaneous decisions. While learning-based methods
have limitations such as computational intensity and strugglewith novel scenarios,
a planning-basedmethod,MCTS, is utilized for its adaptability, local optimization
ability, and efficiency in real-time, context-specific decision-making.

The requirements and assumptions for the multi-agent cooperative trajectory plan-
ning algorithm include rationality, implicit communication, intuitiveness, and
scalability, mirroring the realities of dynamic real-world driving scenarios. As-
sumptions like rational traffic behavior, the absence of explicit communication, a
mix of automated and non-automated traffic, and computational complexity are
outlined in the chapter. Primary research questions focus on modeling coopera-
tive driving, efficient problem-solving, incorporating a continuous action space,
designing a reward function that mirrors human driving, leveraging parallel com-
putation for faster convergence, and using Hyperparameter Optimization (HPO)
for better solution quality.
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Further, a multi-agent driving simulator is developed for reinforcement learning
(RL)-based methods. The simulator uses a single-track model focusing on car-
like vehicles. It calculates jerk-optimal trajectories using quintic polynomials,
optimizing comfort, safety, and energy efficiency. Also, the simulator implements
an efficient collision detection mechanism and designs a reward model for the
agent’s behavior.

Lastly, the chapter proposes a modified MCTS version tailored to cooperative
trajectory planning, referred to as decentralized continuous MCTS. This method
addresses limitations regarding simultaneous move games and continuous action
spaces. It utilizes DUCT and progressive widening for simultaneous decision-
making and planning in continuous spaces, respectively. Lastly, various methods
are introduced, including action grouping, which combines similar actions to
reduce computational complexity and increase robustness.
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Decision-Making

While the proposed concept in Chapter 4 is generally capable of solving a diverse
set of scenarios, new questions arise: What is a suitable parameterization of the
rewardmodel? Can the planning algorithm be accelerated through parallelization?
How can the parameters for the cooperative trajectory planning algorithm be
automatically tuned?

In this chapter, some of thematerial presented has been previously published in the
following papers Kurzer et al. 2020b and Kurzer et al. 2022. Additionally, parts
of the research described in this chapter are based on the work of the following
supervised theses Hörtnagl 2020, Bitzer 2020 and Reboud 2020.

5.1 Inverse Reinforcement Learning

Predictable trajectories for AVs are crucial to avoid confusing or surprising human
drivers and prevent accidents or traffic disruptions. In line with the requirement
for intuitive behavior arising from the co-existence of AVs and human traffic
participants, this section aims to answer how a reward function can be learned
from expert demonstrations so that the behavior sampled from the optimal policy
based on this reward function resembles the expert demonstrations.
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5.1.1 Introduction

RL based approaches frequently make use of manually specified reward models
(Wolf et al. 2018, Kurzer et al. 2021). In environments where systems need to
interact with humans, their decisions must be comprehensible and predictable
(Carroll et al. 2019). As the complexity of the reward model rises, the manual
parametrization of the same to generate the desired behavior becomes quickly
infeasible.

In driving, numerous features impact the reward of any given trajectory as quan-
tifiable inputs to a reward model. A feature can represent any aspect of a vehicle’s
state or environment, such as vehicle jerk, acceleration, other vehicles or obstacles,
and adherence to traffic rules. The reward model steers the trajectory selection
process by attributing higher rewards to trajectories resulting in favorable out-
comes while imposing penalties for undesirable ones.

While tuning the weighting of features to create the desired behavior in a diverse
set of scenarios is tedious and error-prone, IRL has proven to be able to recover
the underlying reward model from recorded trajectories that demonstrate expert
behavior in areas such as robotics and automated driving (Ng and Russell 2000,
Abbeel and Ng 2004, Ziebart et al. 2008, Kuderer et al. 2015, Wulfmeier et al.
2016b).

This work builds on an existing cooperative trajectory planning algorithm (Kurzer
et al. 2018a) to generate expert trajectories. Its contribution is twofold. The
first is a system that conducts Guided Cost Learning (GCL), a sampling-based
Maximum Entropy IRL method with MCTS to efficiently solve the forward RL
problem in a cooperative multi-agent setting. The second is an evaluation that
compares a linear and nonlinear reward model to a manually designed one. It is
shown that the performance of the learned models is similar to or better than the
manually tuned baseline. An overview of the system is depicted in Fig. 5.1.
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θ
l(θ|TE)

θ ← θ + α∇θl(θ)
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π

V π
θ (s)

MCTS

Figure 5.1: Overview of the System: At first, an initial set of expert trajectories TE is generated. Then
the cooperative trajectory planning algorithm computes a set of sample trajectories TS
using the randomly initialized reward model. Next, using the TE and TS, the likelihood of
the parameters θ given the expert trajectories is increased using gradient ascent. Finally,
the process repeats with the cooperative trajectory planning algorithm, sampling new
trajectory samples until convergence.

5.1.2 Related Work

Early work in IRL performed feature matching rather than estimating the true
underlying reward function (Abbeel and Ng 2004) to learn driving styles in a dis-
crete driving simulator. More recently, driving styles are learned using continuous
trajectories and action spaces (Kuderer et al. 2015), including additional features
that impact driver preference (Naumann et al. 2020).

Wulfmeier et al. demonstrate the effectiveness of learning nonlinear reward
models building on Maximum Entropy IRL (Ziebart et al. 2008) using Deep
Neural Networks (Wulfmeier et al. 2016a), which they extended to learning cost
maps for path planning from raw sensor measurements (Wulfmeier et al. 2016b).

Further improvements in the approximation of the partition function and the
efficiency of IRL in combination with RL have been proposed by Guided Cost
Learning (Finn et al. 2016). By adapting the IRL procedure, the method yields
both a cost function and policy given expert demonstrations using sampling-based
methods. In addition, even more, efficient sampling-based methods have been
proposed (Wu et al. 2020).
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In contrast, the following work learns a linear and nonlinear reward model inte-
grated into a cooperative multi-agent trajectory planning algorithm using a con-
tinuous action and state space.

5.1.3 Problem Statement

Using the definitions of a policy (2.3) and a trajectory (2.1), a policy over trajecto-
ries can be defined assuming a deterministic start state distribution and transition
model. The return of a trajectory τ equals its accumulated discounted reward at
time step t, taking action at in state st (Sutton and Barto 2018), see (2.2). The
value function of a policy π for an MDP with a reward model parameterized by θ
is the expectation of the return of trajectories sampled from that policy,

V πθ (s) = Eτ∼ρ [Gθ(τ)] . (5.1)

While the forward RL problem is solved by finding the optimal policy

π∗(a | s) = argmax
π

V πθ (s), (5.2)

the inverse RL problem is solved by finding the parameters θ so that,

V πE

θ (s) ≥ V πθ (s) ∀π ∈ Π, (5.3)

with πE being the expert policy as part of the policy space Π.

This work aims to learn the parameters θ of a reward model for cooperative
trajectory planning so that the optimal trajectories of the planning algorithm are
similar to the demonstrated expert trajectories, i.e., that the expert policy yields
the highest state value of all policies given the parametrization of the reward
model (5.3).
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5.1.4 Approach

IRL is used to learn a reward model from expert demonstrations so that the
behavior sampled from the optimal policy based on this reward model resembles
the expert demonstrations. Concisely, this work makes use of a cooperative
trajectory planning algorithm based onMCTS (Kurzer et al. 2018a) andMaximum
Entropy IRL (Ziebart et al. 2008), yielding a system that is similar to Guided Cost
Learning (Finn et al. 2016).

The MCTS is used to solve the (forward) RL problem, i.e., finding the optimal
policy/action given a reward model and generating near-optimal trajectory sam-
ples TS for that policy. Using these trajectories in combination with the expert
trajectories TE Maximum Entropy IRL is used to conduct a gradient ascent step
increasing the likelihood of the parameters θ given the expert trajectories, (2.27),
(2.28), see Fig. 5.1.

While the trajectory planning algorithm explicitly encodes interaction between
agents, the IRL procedure treats the resulting trajectories as if they would stem
from a single agent MDP, with other agents being part of the environment. On the
one hand, this has the advantage that the resulting reward model is more robust
towards changes in the number of agents; on the other hand, it has the drawback of
a non-stationary environment, as changes in the reward model (after each gradient
ascent step of the IRL procedure) change the behavior of all agents, potentially
destabilizing the training process (Mnih et al. 2015). However, this was not found
to be the case in this work.

5.1.4.1 Solving the Forward RL Problem

Most IRL algorithms require a method that evaluates the current parameters of
the reward model within the algorithm (i.e., finding an optimal policy given the
current reward model). For complex tasks where finding a solution to the forward
RL problem is hard, IRL can quickly become impractical (Finn et al. 2016,
Wu et al. 2020). The task of finding an optimal policy for any given MDP is

65



5 Intuitive, Scalable, and Fast Decision-Making

usually much harder than finding an optimal action (or trajectory) for the same
MDP given a specific state (learning vs. planning)(Sutton and Barto 2018). The
MCTS-based cooperative trajectory planning algorithm (Kurzer et al. 2018a) is
thus instrumental in the IRL setting, as it generates near-optimal trajectories for
arbitrary reward models quickly. Thus, this work employs this algorithm to solve
the forward RL problem.

5.1.4.2 Reward Model

The reward model is a central part of an RL system, as the goal of RL is to
maximize the cumulative discounted reward by finding the optimal policy (Sutton
and Barto 2018).

Initially IRL applied solely linear reward models, that are represented as a linear
combination of features φ(s, a) and parameters θ (5.13)(Abbeel and Ng 2004).
However, especially for larger RL problems, linear reward models have been
outperformed by nonlinear reward models such as NNs (Wulfmeier et al. 2016a,
Finn et al. 2016). This work uses a linear reward model and a nonlinear reward
model in the form of a NN.

5.1.4.2.1 Features Similar to many other planning methods (Naumann et al.
2020), the cooperative trajectory planner assumes the desired lane index ides as
well as the desired velocity vdes for each agent.

The desired lane index represents the lane an agent prefers to occupy, with the
rightmost lane denoted by an index of 0. At a particular time step t, it denotes the
current lane index of the agent. Further, the variables lcenter and lwidth represent
the agent’s current lane’s lateral position and width, respectively.

State and action-dependent features φ(s, a) are scalar values that consider specific
characteristics of a state and action. Each feature is evaluated for each time step t
of the trajectory.
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φ(τ) =
1

T

T∑
(st,at)∈τ

φ(st, at). (5.4)

The parameters θ are identical for all agents; however, features are not. All
features are normalized to lie between [−1, 1] for the length T of a trajectory τ .
The feature for the desired lane is defined as

φdesLane(τ) =
1

T

T∑
(st,at)∈τ

max (1− |it − ides| ,−1) , (5.5)

encouraging the agent to drive on the desired lane. A deviation from the desired
velocity vdes larger than 10% results in a negative feature value,

φdesVelocity(τ) =
1

T

T∑
(st,at)∈τ

max

(
1− 10

∣∣∣∣ vtvdes − 1

∣∣∣∣ ,−1) . (5.6)

Similarly, deviating more than a quarter of the lane width lwidth from the lane
center lcenter yields a negative feature value,

φlaneCenter(τ) =
1

T

T∑
(st,at)∈τ

max

(
1− |lcenter − xlat|

lwidth/4
,−1

)
. (5.7)

To prevent excessive accelerations, a proxy value scaled by gravity for the accel-
eration a of an action is computed using the Root Mean Square (RMS) approach,

RMSacceleration =
1

g

√∫ t+∆T

t
a2t dt

∆T
. (5.8)

The RMS is an advantageous method of quantifying acceleration because it effec-
tively encompasses both the direction and magnitude of acceleration. In addition,
incorporating the square operation within the RMS computation means it assigns
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greater significance to large accelerations. If the computed RMS acceleration
value surpasses a quarter of the gravity g, the feature turns negative,

φacceleration(τ) =
1

T

T∑
(st,at)∈τ

max

(
1− RMSacceleration)

g/4
,−1

)
. (5.9)

In addition, the following binary features are defined for trajectories that either
result in collisions (5.10), invalid states (i.e., an agent drives off the road) (5.11)
or invalid actions (5.12) (i.e., an agent executes a physically impossible action).
Each of these binary features marks a terminal state.

φcollision(τ) = 1collision(τ) (5.10)

φinvalid state(τ) = 1invalid state(τ) (5.11)

φinvalid action(τ) = 1invalid action(τ) (5.12)

5.1.4.2.2 Linear Reward Model The linear reward model is a linear combi-
nation of the parameters θ and their respective features φ(s, a),

Rθ(st, at) = θ>φ(st, at). (5.13)

The feature count is normalized using the length of the trajectory. Since each
feature is bounded between [−1, 1] the return of a trajectory is bounded between
[−||θ||, ||θ||].

5.1.4.2.3 Nonlinear Reward Model To allow for a more complex reward
structure, a nonlinear reward model in the form of a fully connected NN is
introduced,

Rθ(st, at, st−1) =W2Γ(W1φ(st, at, st−1)). (5.14)
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It consists of two layers, with parameters W1 and W2, respectively. The first
layer is followed by a ReLU activation function Γ. The inputs to the NN are the
features for the linear model in addition to the values of φdesLane, φdesVelocity and
φlaneCenter at the previous time step.

5.1.4.3 Guided Cost Learning

GCL is an algorithm that combines sampling-based Maximum Entropy IRL (see
Section 2.4.1) with RL (Finn et al. 2016).

Since the partition function (2.23) can only be calculated for small and discrete
MDPs, it cannot be computed for the cooperative trajectory planning problem.
Instead, GCL circumvents this problem by sampling to approximate it.

It estimates the partition function (2.23) using a distribution over trajectories
generated by a sampling-based method; in this work, the MCTS-based coopera-
tive trajectory planner (Kurzer et al. 2018a) (5.17). This sampling-based method
overcomes the computational limitations of directly calculating the partition func-
tion. The ideal proposal density for importance sampling, which minimizes the
variance of the estimate (Finn et al. 2016), is given by

ρ∗S(τ) ∝ eGθ(τ). (5.15)

The key concept of GCL is the adjustment of this sampling distribution to the
distribution that follows from the current reward model (2.22). In order to achieve
this within the MCTS, this work introduces a probabilistic final selection policy
named Softmax Q-Proposal,

πMCTS(a|s0) =
ecQ

π (s0,a)∑
a∈A(s0)

ecQπ (s0,a)
. (5.16)

The numerator is the exponentiated state-action valueQπ(s0, a) (i.e., the expected
return (2.2)) of taking action a in root state s0 over the sum of the state-action
values of all explored actions A in the root state s0. The coefficient c can be
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used to scale the variance of the distribution, its value is determined empirically.
Based on (2.21), this results in the following distribution over trajectories

ρ(τ) = ρMCTS(s0, a0, s1, a1, . . . , sT ) =

T−1∏
t=0

πMCTS(at|st). (5.17)

Applying importance sampling (see Section 2.4.2) the expectation in (2.30) can
be calculated using the policy ρS(τ) (2.31),

Eτ∼ρE(τ) [∇θGθ(τ)] = Eτ∼ρS(τ)
[
eGθ(τ)

ρS(τ)Zθ
∇θGθ(τ)

]
. (5.18)

Further, the partition function (2.32) can be approximated using importance sam-
pling as well (2.33). Substituting the expectation in (2.30) with (5.18) as well as
the partition function (2.23) with (2.33), the final approximation of the gradient
can be obtained (2.34). Given this form of the gradient, the proposed Softmax
Q-IRL algorithm (Alg. 1) performs gradient ascent, converging towards the ex-
pert behavior. The necessary data sampling routine (Alg. 1 Line 5) is depicted in

Algorithm 1: Softmax Q-IRL
Input: TE
Output: θ

1 θ0 ∼ U [−1, 1];
2 for i← 0 toM do
3 TS ← ∅;
4 for j ← 0 to N do
5 TS,ΠS ← (TS,ΠS)∪ generateSamples(θ);
6 end
7 ∇̂θl(θ) =

1
|TE|

∑
τ∈TE

∇θGθ(τ)− 1
|TS|

∑
τ∈TS

eGθ(τ)

ρS(τ)Ẑθ
∇θGθ(τ);

8 θi+1 ← θi + α∇̂θl(θi);
9 end

10 return θ
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Alg. 2. It generates the sample trajectories TS as well as their policies Π. Here,
Υ denotes the number of agents in the respective scenario.

Algorithm 2: Sampling of Trajectories and Policies
1 Function generateSamples(θ)
2 T ← ∅; Π← ∅; ρ(·)← 1;

// sample from the start state distribution
3 s0 ∼ d;
4 for t← 0 to T − 1 do

// estimate for each action explored at the root
state

5 Q̂(st, a0), . . . , Q̂(st, am)← MCTSQEstimate(θ, st);
6 πMCTS(a|st)← ecQ̂(st,a)∑

a∈A(st)
ecQ̂(st,a)

;

// for each agent in the scenario
7 for i← 0 to |Υ| do
8 ai ∼ πMCTS(a|st);
9 ρ(τi)← ρ(τi)πMCTS(ai|st);

10 τi ← τi ∪ (st, ai);
11 if t = T − 1 then
12 T ← T ∪ τi;
13 Π← Π ∪ ρ(τi);
14 end
15 end
16 st ← EnvironmentStep(st, a0, . . . , am);
17 end
18 return T ,Π
19 end
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5.2 Parallelization

In autonomous driving, real-time decision-making is essential to ensure safety
and efficiency. Therefore, expediting the process of finding optimal policies
by leveraging computational resources is paramount. This section delves into
the potential of parallelizing the algorithm to accelerate policy optimization,
contributing to the overarching goal of efficient problem-solving.

5.2.1 Introduction

With an ever-increasing availability of powerful and affordable parallel-computing
infrastructure on-premise and in the cloud, parallelization is more crucial than
ever. In the past, the parallelization of algorithms, e.g., for NNs (Seiffert 2004),
increased their capabilities tremendously.

First, two parallelization strategies are applied to the cooperative trajectory plan-
ning algorithm introduced in Section 4.4. While leaf parallelization is directly
applicable to MCTS with continuous action spaces (Cazenave and Jouandeau
2007, Chaslot et al. 2008b), this is not the case for root parallelization. Hence, a
mechanism to merge unrelated search trees is devised.

5.2.2 Related Work

Similarly, prior research on the parallelization of MCTS has demonstrated that it
can benefit significantly from today’s multiprocessor architectures to speed up the
search (Cazenave and Jouandeau 2007, Chaslot et al. 2008b, Soejima et al. 2010,
Enzenberger and Müller 2010, Bourki et al. 2011, Rocki and Suda 2011).

While the previous approaches have studied the parallelization of MCTS in en-
vironments with discrete action spaces (mainly using the game of Go), this work
requires an extension to the continuous domain. It builds on research of MCTS
in continuous domains (Couëtoux et al. 2011, Rolet et al. 2009, Yee et al. 2016,
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Kurzer et al. 2018b, Moerland et al. 2018). The three predominant types of par-
allelization are leaf parallelization, root parallelization, and tree parallelization
(Browne et al. 2012, Chaslot et al. 2008b). Of these, leaf parallelization and root
parallelization have been adapted in this work to continuous action spaces (Kurzer
et al. 2020b).

5.2.3 Problem Statement

Based on well-known parallelization techniques successfully applied to MCTS
in discrete domains, the cooperative trajectory planning algorithm ought to be
parallelized. Here, aggregating information from differently explored trees is a
crucial challenge for root parallelization.

5.2.4 Approach

In the following, leaf and root parallelization techniques are applied to MCTS
with a continuous action space.

5.2.4.1 Leaf Parallelization

Leaf parallelization is the simplest form of parallelization. Here only the simula-
tion policy needs to be adapted (Kurzer et al. 2020b). Then, a separate simulation
is run for each thread starting from the previously expanded node. Finally, once
all simulations have terminated (i.e., reached a terminal state or the planning
horizon), the results of the simulations are aggregated, and the traversed branch
is updated. Due to the aggregation of results, this method requires the synchro-
nization of threads, and thus slower or longer simulations block further execution.
Leaf parallelization primarily achieves a reduction of the standard error of the
mean (SEM).
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5.2.4.1.1 Mean The simplest form of leaf parallelization uses the mean sim-
ulation return, defined as

Gsim =
1

|Ξ|
∑
ξ∈Ξ

Gsim(ξ), (5.19)

i.e., the cumulated sum of returns over all threads ξ ∈ Ξ divided by the number of
threads. An issue with using the mean is that environments that require a precise
selection of actions become harder to solve (Soemers et al. 2016). This issue
arises as a large part of simulations will lead to undesirable states; the small part
that does reach the desired state will be outweighed and thus result in an overly
pessimistic estimate for the state-action value.

5.2.4.1.2 Maximum The maximum return can be used to circumvent the
issue of taking the mean of the simulation. While this is possible in cooperative
environments, it cannot be generalized to adversarial multiplayer environments
since it might lead to traps (Soemers et al. 2016). The maximum simulation
return is the value from the thread ξ that generated the maximum cumulated sum
of rewards over all time steps t during simulation,

G∗
sim = max

ξ
Gsim(ξ). (5.20)

5.2.4.2 Root Parallelization

Root parallelization grows multiple trees from a single root instead of leaf paral-
lelization (Kurzer et al. 2020b). This parallelization technique fosters exploration.
Each thread holds a copy of the root and grows a unique tree. When the computa-
tional budget has been reached, the trees of all threads are merged. The merging
can be conducted in several different ways. One possible solution is a voting
mechanism that allows each tree to submit its best action, and the majority vote
then selects the final action (Soejima et al. 2010).
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UpdateSimulation

Figure 5.2: Leaf Parallelization of MCTS: The results of multiple simulations are aggregated and
used to update all nodes along the traversed branch of the tree.

++

Figure 5.3: Root Parallelization in MCTS: The results of multiple trees are aggregated and used to
form one final tree.

5.2.4.2.1 Similarity Merge Using the similarity update depicted in Fig. 4.10,
multiple trees can be merged into a single tree, from which a final action can be
chosen.

The process is described in Algorithm 3. First, all actions of all trees are added to
the final tree, line 4. Second, a pairwise similarity update is conducted between
all actions of the final tree and the simulated trees. For this, the similarity matrix
is determined, line 10, and the similarity state-action value is calculated based on
the weighted visit count and state-action value, line 11. Last, the action with the
maximum state-action value from the final tree is returned.

The computational complexity of this method is predominantly determined by the
formation of the similarity matrix and the calculation of the similarity state-action
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value, both of which have to be conducted pairwise for actions, yielding a time
complexity of O

(
|A|2

)
, where |A| is the cardinality of the set of actions. In the

context of parallel processing with multiple threads, if each thread corresponds to
a separate tree and can generate a distinct set of actions, the total number of actions
for the similarity calculation can grow with the number of threads. This increase
leads to an overall complexity of O

(
(|A||Ξ|)2

)
, where |A||Ξ| represents the

product of the cardinalities of the set of actions and the set of threads respectively.

Algorithm 3: Similarity Merge
1 Function similarityMerge(Ψ: Tree[])
2 Afinal ← ∅;Qsim(s0, ·)← 0;
3 for ψ ∈ Ψ do
4 Afinal ← Afinal ∪ Aψ;
5 end
6 K ← 0|Afinal|×|Afinal|;
7 for i← 0 to |Afinal| do
8 for j ← 0 to |Afinal| do
9 if i 6= j then
10 Kij ← exp

(
−γ ‖ai − aj‖2

)
;

11 Qsim(s0, ai)← N(s0,ai)Q(s0,ai)+KijN(s0,aj)Q(s0,aj)
N(s0,ai)+KijN(s0,aj)

;
12 end
13 end
14 end
15 return Qsim;
16 end

5.2.4.2.2 Similarity Vote Inspired by a voting scheme for root parallelization,
an extension for continuous domains is developed, see Algorithm 4. It does not
merely choose the action with the overall highest visit count or state-action value
but instead lets each tree vote for an action (Soejima et al. 2010). Analogous to
(Soejima et al. 2010), each tree submits its best action, line 4. Then a similarity
matrix K is calculated to store the similarity of a chosen action from one tree
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to all actions from all trees, line 9. Weighted by the state-action values of the
submitted actions, the final action is the one that maximizes the similarity vote,
line 12.

Algorithm 4: Similarity Vote
1 Function similarityVote(Ψ: Tree[])
2 Afinal ← ∅;Qsim(s0, ·)← 0;
3 for ψ ∈ Ψ do
4 Afinal ← Afinal ∪ argmax

a
Qψ(s0, a);

5 end
6 K ← 0|Afinal|×|Afinal||;
7 for i← 0 to |Afinal| do
8 for j ← 0 to |Afinal| do
9 Kij ← exp

(
−γ ‖ai − aj‖2

)
;

10 Qsim(s0, ai)← Qsim(s0, ai) +KijQ(s0, aj);
11 end
12 end
13 return argmax

a∈Afinal

Qsim(s0, a);

14 end

5.3 Hyperparameter Optimization

The performance and robustness of algorithms in autonomous driving are critically
dependent on the fine-tuning of Hyperparameters (HPs). However, selecting
optimal values for these HPs can be non-trivial and computationally expensive.
This section explores the utility of HPO in streamlining the process and enhancing
the efficiency of finding optimal policies, aligning with the imperative of solving
the problem efficiently.

77



5 Intuitive, Scalable, and Fast Decision-Making

5.3.1 Introduction

Similar to many systems, the performance of the cooperative trajectory planning
algorithm introduced in Section 4.4 is dependent on a large variety of exogenously
specified parameters (i.e., HPs). Such parameters include but are not limited to
the planning horizon, the discount factor, coefficients for progressive widening
and similarity update, as well as the choice of the respective policies.

While care has been taken in choosing the "right" HPC, the choices are frequently
convoluted and high-dimensional, with interactions that make them difficult to
reason about for humans. Thus, to improve upon the manually-tuned baseline
HPC, the following describes an approach that jointly optimizes these HPs, re-
sulting in significant improvements.

5.3.2 Preliminaries

The following introduces common algorithms used for optimizing unknown ob-
jective functions.

5.3.2.1 Model-Free Optimization

One of the simplest forms of HPO is Grid Search (GS) (Bergstra and Bengio
2012). Since its implementation is trivial and can easily be parallelized, it usually
outperforms manual tuning of HPs. GS examines the Cartesian product of finite
sets of values for eachHP, cf. Fig. 5.4a. Since the required function evaluations in-
crease exponentially with the dimensionality of the hyperparameter space, denser
evaluations of the hyperparameter space quickly become intractable (Feurer and
Hutter 2019). Thus, GS is well suited for very low dimensional hyperparame-
ter spaces (1D, 2D). Further, it is unfitting for higher-dimensional ones as large
amounts of samples explore irrelevant HPs without insufficient exploration of the
relevant ones, cf. Fig. 5.4a.
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Figure 5.4: Comparison of GS and RS: Using GS and RS for HPO of an unknown objective function
can lead to vastly different results. Since theHPs have differing importance (one important
and one unimportant), 16 samples in the case of GS effectively generate only four relevant
observations (Bergstra and Bengio 2012, Feurer and Hutter 2019).

Random Search (RS) is an alternative to GS, which outperforms GS in most cases
given the same computational budget (Bergstra and Bengio 2012). As the name
suggests, RS selects HPCs at random, see Fig. 5.4b. For a number n of function
evaluations and k HPs RS is likely to produce n distinct observations for each
dimension, where GS generates only n1/k observations (Feurer and Hutter 2019),
cf. Fig. 5.4. Another advantage of RS is that it does not make assumptions about
the underlying unknown objective function and converges towards the global
optimum.

5.3.2.2 Sequential Model-Based Optimization

Unlike model-free optimization, model-based optimization uses an intermediary
model to guide the search towards promising areas, making informed choices
essential for optimizing unknown objective functions that are expensive to evaluate
(Feurer and Hutter 2019).
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5.3.2.2.1 Bayesian Optimization A probabilistic surrogate model and an
acquisition function to choose which HPC to assess next are the two key com-
ponents of the iterative Bayesian Optimization (BO) method (Feurer and Hutter
2019). First, the surrogate model is fitted to all observations from the unknown
objective function. Second, the acquisition function decides the utility of var-
ious HPCs since it is cheap to evaluate. It decides by balancing exploration
and exploitation, using the prediction distribution of the probabilistic surrogate
model, by sampling from areas of high uncertainty (exploration) and areas that
are likely to improve over the current best observation (exploitation). The method
is illustrated in Fig. 5.5.

Its name is derived from Bayes theorem (Brochu et al. 2010),

P (f | D1:n) ∝ P (D1:n | f)P (f). (5.21)

Here f denotes the unknown objective function f(x), which is to be maximized.
While it is unknown, certain assumptions regarding its characteristics are specified
by its prior P (f). The prior is multiplied by the likelihood of the observations
D given the unknown objective function. The result is then proportional to the
posterior probability of the unknown objective function given the observations,
i.e., the updated belief about the unknown objective function.

Based on this posterior, an acquisition function determines the configuration of
HPs to sample, yielding the subsequent observation.

A typical prior for BO is the Gaussian Process (GP), which extends the Gaussian
distribution to a distribution over functions. It is specified by its mean function µ
and the covariance functionK,

f(x) ∼ GP (µ(x),K (x,x′)) . (5.22)

Instead of returning a scalar value for a given value of x, a GP returns a Gaussian
distribution with a mean and variance.
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Another possibility for a prior in BO is a Random Forest (RF); it is especially
beneficial for larger configuration spaces as well as categorical and conditional
variables (Hutter et al. 2011).

5.3.3 Problem Statement

HPO is the process of optimizing the values for parameters of an algorithm
or model that typically are set manually (i.e., using expert knowledge) in an
automated manner. Mathematically, HPO tries to maximize (or minimize) an
unknown objective function f parameterized by its parameters x ∈ X , where X
is the space of all valid parameter combinations (Shahriari et al. 2016), defined as

x∗ = argmax
x∈X

f(x). (5.23)

It is assumed that the unknown objective function f(x) can be evaluated for
any valid value of x and has no closed form. The evaluations of the unknown
objective function result in noisy observations y ∈ R, mapping the HPs into a
single-dimensional ordinal space.

5.3.4 Approach

The following nine HPs were automatically tuned in the first step with RS and BO
using the Sequential Model Algorithm Configuration (SMAC) (Lindauer et al.
2022) and the highly parallelized implementation of the cooperative trajectory
planning algorithm, see Section A.1.

• UCT-coefficient
• discount factor
• maximum search depth
• action duration
• action execution fraction
• progressive widening-coefficient
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Figure 5.5: Process of Bayesian Optimization (Brochu et al. 2010): The plots depict the process over
three steps after the first two observations have been made. The estimates of the mean
and the uncertainty of the unknown objective function are depicted by the solid black line
and the shaded blue area. For illustration purposes, the unknown objective function is
shown by the dashed black line. The solid blue line displays the acquisition function at
the bottom of the plots. It reaches its maximum in regions where the mean estimate is
high (exploitation) and the uncertainty estimate is high (exploration).
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• progressive widening-exponent
• maximum depth for progressive widening
• final selection strategy

Optimizing these parameters enables the cooperative trajectory planning algo-
rithm to achieve improved performance, facilitating more efficient identification
of optimal actions. The detailed results and analysis of the HPO are presented
Section 6.6.

5.4 Further Research

Apart from the additions presented in Chapter 5, other promising improvement
areas were explored. However, they were not integrated into the framework. The
research has been published in the following papers Kurzer et al. 2020a and
Stegmaier et al. 2022. Parts of it are based on the following supervised theses
Fechner 2020 and Stegmaier 2021.

The below is merely a brief overview of these works, and the interested reader is
encouraged to refer to the respective publication.

5.4.1 Uncertainty

One challenging aspect of cooperative trajectory planning is the uncertainty sur-
rounding the state of the environment due to limited sensor accuracy. A POMDP
can represent this uncertainty. This problem is addressed by extending the exist-
ing cooperative trajectory planning approach. It does so by explicitly modeling
uncertainties as a root belief state, from which tree start states are sampled. After
the trees have been constructedwithMCTS, their results are aggregated into return
distributions using kernel regression. Two risk metrics are applied for the final
selection: a Lower Confidence Bound and a Conditional Value at Risk. It can
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be shown that the integration of risk metrics in the final selection policy consis-
tently outperforms the baseline algorithm in uncertain environments, generating
considerably safer trajectories. (Stegmaier et al. 2022)

5.4.2 Learned Heuristics

Another challenging aspect of cooperative trajectory planning is the search space
size. With a growing number of agents and planning depth, it grows so vast
that most of the computational budget is spent exploring the search space in
unpromising regions far from the solution. Inspired by human thinking, learned
heuristics can be combined with the cooperative planning method to accelerate
planning and guide the search toward promising regions. This is achieved by
training a mixture density network over the action space of an agent and using it
to bias its action selection strategy. It can be shown that the integration of learned
heuristics outperforms the baseline algorithm and yields better solutions at lower
computational costs when the computational budget is low. (Kurzer et al. 2022)

5.5 Summary

The first section of this chapter discusses how a reward function can be learned
from expert demonstrations to produce intuitive behavior for AVs. Predictable
trajectories for AVs are essential to avoid confusion and accidents among human
drivers. The approach combines a cooperative trajectory planning algorithm
using MCTS with Maximum Entropy IRL to learn a reward model that produces
trajectories resembling expert demonstrations. This approach generates near-
optimal trajectories for arbitrary reward models and is efficient enough to be used
in an IRL setting. A linear and a nonlinear reward model (using an NN) are
developed.

The subsequent section discusses the importance of real-time decision-making
in autonomous driving and the benefits of parallelizing algorithms for policy
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optimization. Two parallelization strategies, leaf parallelization, and root paral-
lelization, are applied to the continuous action space of the cooperative trajectory
planning algorithm. Leaf parallelization involves adapting the simulation policy
and running a separate simulation for each thread. It reduces the variance, and the
max aggregation promotes optimistic state-action value estimates. On the other
hand, root parallelization involves growing multiple trees from a single root, fos-
tering exploration, but requiring special considerations when merging these trees
later when using a continuous actions pace. Two methods for merging these trees
are proposed. One conducts the merge based on the similarity of actions, while
the other uses a voting scheme inspired by earlier works for discrete domains.

The next section discusses the significance of HPO in improving the performance
and robustness of the cooperative trajectory planning algorithm. Optimal HPCs
are difficult to obtain manually. HPO techniques, such as GS, RS, and BO, can
facilitate the process of finding optimal HPCs. While GS is suitable for low-
dimensional HP spaces, it becomes intractable for higher-dimensional ones due
to the exponential increase in required function evaluations. On the other hand,
RS selects HPCs randomly and can outperform GS, given the same computational
budget. It converges towards the global optimum without making assumptions
about the underlying objective function. Model-based optimization techniques,
such as BO, use probabilistic surrogate models and acquisition functions to guide
the search toward promising areas. These methods are more sophisticated since
they conduct an informed search and hence are particularly well-suited for opti-
mizing unknown objective functions that are expensive to evaluate.

The chapter concludes with additional research on cooperative trajectory plan-
ning, focusing on two major challenges:uncertainty and informed action space
exploration. While the results are promising, the research was not integrated into
the current work.
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The experiments were designed to evaluate the proposed cooperative trajectory
planning algorithm’s performance in various traffic scenarios. All experiments
employed the previously introduced multi-agent driving simulator to simulate the
behavior of multiple vehicles interacting with each other in a traffic environment.

Statistical tests were conducted to assess the significance of the results by com-
paring the performance of the proposed algorithms to a baseline. Each unique test
setup, referred to as a configuration, encompasses a specific scenario, a defined
number of iterations, and unique values for the hyperparameters, i.e., HPC. To
ensure the generation of statistically reliable results, each configuration was as-
sessed using 250 different random seeds. The results of the experiments provide
insights into the effectiveness of the algorithm and its extensions.

The key metric used for the performance evaluation is the success rate. The
success rate denotes the fraction of evaluated runs that neither yield a collision
nor invalid actions or states. An agent’s state is invalid if it is outside the road
boundaries; similarly, an agent’s action is invalid if it is not physically drivable.
According to this measure, the cooperative trajectory planning algorithm performs
better when it has higher success rates.

Scatterplots and heat maps were used to depict the evaluation results. Scatter
plots illustrate the absolute success rate over all scenarios, comparing configura-
tions with an increasing number of iterations (abscissa), e.g., Fig. 6.3a displays
the success rate of the baseline configuration and the semantic action classes
configuration. Heatmaps visualize either the absolute success rate for a single
configuration or the absolute difference in the success rate for two configurations,
for an increasing number of iterations (abscissa) and across different scenarios
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(ordinate). In these heatmaps, the color scale ranges from white to green for
absolute success rate values and from red to blue for absolute differences, with
these color scales corresponding to a success rate range of 0 to 1. Heatmaps
that depict absolute differences are always relative to a specified baseline, e.g.,
Fig. 6.3b depicts the difference in the success rate of the baseline configuration
and the semantic action classes configuration.

This chapter encompasses several experiments that closely match experiments
from prior publications. However, despite this parallel, there may be noticeable
differences between the results reported here and those outlined in previous works.
Various factors could account for such discrepancies, including changes to the
algorithm’s internals over time, experimental setup variations, or the algorithms’
inherent randomness.

6.1 Statistical Tests

Statistical tests are essential to the evaluation process when comparing a proposed
algorithm to a baseline. They allow for a more robust and unbiased assessment
of the results since the data support the conclusions drawn.

A Z-Test for two proportions was conducted between the baseline and each con-
figuration to systematically compare the success rate. It assessed whether the
observed difference in performance between the baseline and any configuration
was statistically significant or if it could have occurred by chance. The Z-Test
tested for two-sided equality, where the null hypothesis was that the two pro-
portions were equal, and the alternative hypothesis was that they were not equal,
(Montgomery and Runger 2020). The statistical significance levelα (p-value) was
set to 5% (i.e., if the p-value of a test is less than 0.05, then it can be concluded
that the observed difference between the samples is unlikely to have occurred by
chance, and is instead a significant result). If the deviation from the baseline for
any configuration was significant, the scatter mark was annotated by an asterisk.
If a configuration was consistently unequal compared to the baseline, i.e., the
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deviation for all tested numbers of iterations was significant, an asterisk marks
that trace as a suffix in the legend.

6.2 Scenarios

Each scenario consists of three principal components: the road structure, the
obstacles present, and the agents involved.

• Road: This element outlines the specifics of the road, detailing the number
of lanes and their widths.

• Obstacles: This element comprises a list of all obstacles present in the sce-
nario. Each obstacle is represented as a rectangle with specific dimensions
(width and length) and assigned a unique id, position, and heading.

• Agents: This element comprises a list of all agents present in the scenario.

Each agent can be uniquely configured with attributes such as a cooperation factor,
cost model, action space, desire, terminal condition, and vehicle properties.

• Cost Model: This model of the costs serves as the central measure of the
state-action value based on resulting states and chosen actions.

• Action Space: This delineates the range within which an agent can sample
longitudinal velocity changes and lateral position changes.

• Desire: This aspect specifies an agent’s desired speed and lane.

• Terminal Condition: This criterion dictates longitudinal and lateral posi-
tions that, when reached by vehicles, trigger the end of the scenario, even
if the desire was not achieved.

• Vehicle: A vehicle is a type of obstacle with additional properties that
include information regarding its velocity, wheelbase, maximum steering
angle, maximum acceleration, and maximum speed.
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The difficulty level in a scenario is primarily influenced by various complexity
factors, such as the number of agents participating, the configuration of obstacles,
and the initial velocities and distances between agents. While the least challenging
scenarios involve only two agents and no obstacles, the most challenging ones can
include up to eight agents alongside numerous obstacles, demanding impeccable
coordination and precise navigation.

While a scenario had a fixed number of agents and obstacles, its start state
was sampled from a probability distribution. Explicitly, the longitudinal and
lateral positions of the agents were sampled from a normal distribution within a
predefined area (cf. transparent rectangles in Fig. 6.1). Further, different random
seeds were used to initialize the sampling-based trajectory planning algorithm,
resulting in variations of the chosen actions.
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6.2 Scenarios

(a) Scenario 01: Delaying merge due to approaching vehicle in desired lane

(b) Scenario 02: Reacting to approaching vehicle from behind

(c) Scenario 03: Merging into moving traffic

(d) Scenario 04: Merging into moving traffic with prior longitudinal adjustment

(e) Scenario 05: Changing lane as other vehicle needs to merge onto lane

(f) Scenario 06: Delaying lane change as other vehicle needs to merge first

(g) Scenario 07: Merging (1 vehicle) with 3 Vehicles

(h) Scenario 08: Merging (1 vehicle) with 5 Vehicles

(i) Scenario 09: Merging (2 vehicles) with 5 Vehicles
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(j) Scenario 10: Merging into middle lane (3 lanes)

(k) Scenario 11: Overtaking with oncoming traffic

(l) Scenario 12: Passing a narrow passage with oncoming traffic

(m) Scenario 13: Passing a narrow passage with a gap and oncoming traffic

(n) Scenario 14: Obstacle Maze with 4 vehicles (3 lanes)

(o) Scenario 15: Obstacle Maze with 8 vehicles (3 lanes)

Figure 6.1: Evaluation Scenarios: Longitudinal conflicts, merging, overtaking, and navigating through
a bottleneck or obstacle maze. In each scenario, at least two agents with conflicting goals
were simulated using the multi-agent driving simulator.

6.3 Baseline and Extensions

The performance of the baseline algorithm (the standard, unmodified version of
MCTS with DUCT, referred to as vanilla) and its extensions was evaluated for all
15 scenarios (SC01-SC15) for an increasing number of iterations.
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Figure 6.2: Absolute performance of baseline without and with resampling of invalid actions across
different iterations and scenarios

6.3.1 Baseline and Semantic Action Classes

The performance of the baseline algorithm was evaluated in a variety of scenar-
ios with different numbers of traffic participants (as shown in Fig. 6.2b). The
experiments exhibited a clear improvement in success rate as the number of iter-
ations increased, reaching 92% for 160 iterations and 97% for 1280 iterations in
scenarios SC01-SC12. Even in the more challenging scenarios SC13-SC15 (with
oncoming traffic and many interacting agents), the success rate still exhibited an
upward trend as the number of iterations increased. This demonstrates the algo-
rithm’s ability to handle complex situations since these scenarios require precise
coordination of actions due to the number of agents and obstacle configuration.
Overall, the results demonstrate the general feasibility of the approach for a wide
range of scenarios.
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The results depicted in Figure 6.3a support the hypothesis that using semantic
action classes (Section 4.3.3), as opposed to randomly selected actions, can im-
prove the performance of the baseline trajectory planning algorithm. This can
be attributed to the fact that the semantic action classes are informed by domain
knowledge and are designed to increase the frequency of valid actions. Variations
in the performance of semantic action classes for different scenarios could be
attributed to the fact that they were designed for lane-change and lane-keeping
maneuvers rather than subtle movements that some scenarios require. Scenarios
SC01-SC06 showed better performance with semantic action classes, especially
at fewer iterations. On the other hand, scenarios SC08-SC12 benefited more from
semantic action classes at a higher number of iterations. This difference may be
related to the fact that scenarios SC01-SC06 were already solved well at a high
number of iterations, leaving little room for improvement, in contrast to scenarios
SC08-SC12, Fig. 6.2a.

The use of semantic action classes improved the performance of the trajectory
planning algorithmwhen actionswere only sampled once. However, the advantage
diminished when invalid actions were resampled, as seen in Fig. 6.3c. This can
be attributed to the fact that the computation of semantic action classes generated
valid trajectories more frequently than random sampling. These results emphasize
the need to evaluate the advantages and disadvantages of using semantic action
classes in trajectory planning. While they may provide significant benefits in
certain situations, they are not generally better.

In addition, further evaluations of the blind value, similarity update, and action
grouping extensions were conducted, depicted in Fig. 6.7.

6.3.2 Blind Value

The results in Fig. 6.4a demonstrate that the blind value heuristic to inform action
selection during the expansion phase of the MCTS significantly improves the
success rate, as compared to random action selection. This can be related to the
heuristic allowing the MCTS to make educated decisions about which actions
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(without invalid actions) and semantic action classes
(without invalid actions) across scenarios

Figure 6.3: Performance comparison of baseline without and with resampling of invalid actions
and semantic action classes
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(b) Absolute difference in success rate between baseline
and blind value for 10 samples across scenarios

Figure 6.4: Performance comparison of baseline and blind value

to explore based on previously explored actions. The number of samples in the
blind value heuristic refers to the number of candidate actions that are evaluated
for selection. It was observed that further increases in samples did not result
in corresponding performance improvements, particularly for higher numbers of
iterations. This effect warrants further investigation to better understand the
underlying causes.

6.3.3 Similarity Update

The similarity update was employed to incorporate information from similar but
not identical nodes into the update phase. This was achieved byweighting the visit
count and mean state-action value of other nodes using a kernel, with the width of
the kernel controlled by the parameter γ (where larger values of γ correspond to
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and similarity update for γ = 8 across scenarios

Figure 6.5: Performance comparison of baseline and similarity update

a smaller kernel width). Despite these efforts, no significant change was observed
in the overall performance. However, it was noted that the performance did
improve significantly for the lowest number of iterations, ranging from 20 to 40,
as shown in Fig. 6.5a. A wider kernel width and an increase in the number
of iterations should incorporate more information during the similarity update,
potentially reducing the accuracy of the state-action value estimate for a particular
action. This hypothesis can explain the results, but further investigation is needed
to confirm its validity.

6.3.4 Action Grouping

The impact of action grouping is demonstrated in Fig. 6.6a, it utilized semantic
action classes. Three boolean configuration options were evaluated for action
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grouping. The first option utilized the average statistics of all actions within a
group to make the final action decision. The second option combined progressive
widening by first selecting the optimal action group and then applying progressive
widening within that group. Moreover, the third option relied on the action
group statistics instead of node statistics to check if the progressive widening
criterion was met. All possible combinations of the mentioned options for action
grouping were tested. The results of the experiments showed that different option
combinations resulted in vastly different performance outcomes.

The best performance was achieved when action grouping was used for the final
decision without biasing progressive widening (true, false, ?). However, the
performance significantly declined when option two was used to bias progressive
widening (?, true, ?). On the other hand, when only option three was considered
(false, false, ?), the performance of action grouping for the progressive widening
criterion was worse compared to any other combinations.

None of the options outperformed the baseline. Similarly to using semantic action
classes, the usage of action groups in combination with semantic action classes
only had a minor effect for an extremely low number of iterations.

6.3.5 Summary

In conclusion, the evaluation of the baseline trajectory planning algorithm and
its extensions demonstrate the approach’s feasibility and effectiveness in various
scenarios. A combination of all extensions performed similar to its sum of
improvements, Fig. 6.7a and Fig. 6.7b.

Semantic action classes improved the algorithm’s performance, but the advantage
diminished when invalid actions were resampled. The blind value heuristic sig-
nificantly improved the success rate, while the similarity update showed improve-
ments only for low numbers of iterations. The introduction of action grouping
showed no significant improvements.
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and action grouping for final decision(true), bias for
progressive widening(false), criteria for progressive
widening(true) across scenarios

Figure 6.6: Performance comparison of baseline and action grouping
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Figure 6.7: Performance comparison of baseline and and the combination of action grouping (AG),
blind value (BV) and similarity update (SU)
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6.4 Inverse Reinforcement Learning

For each of the twelve scenarios (SC01-SC12), a set TE of 50 expert trajectories for
each agent in the scenario were generated that depicted (approximately) optimal
behavior. Each trajectory had a length of approximately 27 s. This resulted in
600 multi-agent trajectories with a total duration of 4.5 h. The scenarios and the
expert trajectories for each agent are depicted in Fig. 6.10.

A linear as well as two nonlinear models were trained. The nonlinear models
differed in the number of weights in the hidden layer. The smaller one used five
weights, while the larger one used 20. The reward models were trained for 420
gradient steps with a learning rate of 0.0003.

The performance of the models throughout the training is shown in Fig. 6.8.
Fig. 6.8a and Fig. 6.8b can be used to gauge the approximation performance
with respect to the expert behavior by the learned models. Fig. 6.8a depicts
the relative return difference between the expert trajectories TE and the sample
trajectories TS given the parametrization of the reward model. The return, as
a scalar measure of the cumulative reward obtained over a particular trajectory,
indicates the expert’s underlying reward function. A smaller relative difference
between the returns of the expert and the sample trajectories from the learned
model implies a higher degree of alignment between the learned reward function
and the expert’s behavior. It can be seen that all models reduced the relative
difference in the returns throughout the training. The larger nonlinear model
reached an absolute minimum relative return difference of 0.3% after 130 steps.
The smaller nonlinear model reached 3.0% after 300 steps, and the linear model
reached 11.69% after 410 steps.

The mean Euclidean distance between the sample and the expert trajectories con-
siders the agents’ longitudinal and lateral positions over the trajectory, accounting
for the entire trajectory of the agent rather than just a single point. This can
provide a more comprehensive picture of how well the learned model mimics the
expert’s behavior. However, instead of comparing a sampled trajectory with all
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expert trajectories, comparing it with the most similar ones is more effective, ac-
counting for potential variations in expert behavior, e.g., due to multi-modalities.
Hence, only the Euclidean distance to the k-nearest neighbor expert trajectories
was calculated, providing a more nuanced evaluation. Again it is visible that all
models decreased the distance to the expert trajectories. The larger nonlinear
model reached a minimum mean Euclidean distance of 4.90m after 140 steps.
The smaller nonlinearmodel achieved 4.73m after 240 steps, and the linear model
reached 8.09m after 250 steps.

Fig. 6.8c shows that the learned models could reach the desired lane. At the
same time, Fig. 6.8d indicates that attaining the desired velocity proved more
challenging for these models. However, it is essential to note that only 61.0% of
the expert trajectories used for training the rewardmodels reached both the desired
lane and velocity, which implies that these tasks are intrinsically challenging, with
success in achieving these two goals being dependent on the recorded trajectory’s
length. Hence, it is understandable that the learned models encounter similar
difficulties in accomplishing these tasks.

Lastly, Fig. 6.8e and Fig. 6.8f depict the percentage of invalid and colliding
trajectories, respectively. Both nonlinear models outperformed the linear model
for both metrics, with the larger nonlinear model slightly outperforming the
smaller one. The larger model achieved a minimum number of invalid trajectories
of 0.91% after 220 steps versus 1.03% after 340 steps for the smaller model,
concerning the number of colliding trajectories, the trend is consistent with 0.91%
after 150 steps versus 1.26% after 190 steps for the smaller model.

6.4.1 Summary

In conclusion, the objective of converging toward the collected expert behavior
was fulfilled by all models. The results of the linear model being outperformed
by the nonlinear ones and the larger nonlinear performing better than, the smaller
ones indicated that nonlinear models with larger capacity are better suited for
the task than smaller ones. The visual resemblance of the generated samples to
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6.4 Inverse Reinforcement Learning

the expert trajectories by the larger nonlinear reward model can be assessed in
Fig. 6.10.
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Figure 6.8: Inverse Reinforcement Learning Model Comparison: Comparison of the reward models
throughout the training with respect to different metrics

An evaluation of the performance of the learnedmodels compared to the manually
tuned baseline is visualized in Fig. 6.9. Similarly to the IRL performance, the
larger nonlinear model outperformed the linear and smaller nonlinear model, cf.
Fig. 6.9a. For all but 40 iterations, the larger nonlinear model performs signifi-
cantly worse than the baseline. However, as Fig. 6.9b depicts, the performance
decrease was small and can be largely attributed to the performance decrease of
scenario 12.

The previous indicated the general feasibility of learning reward functions from
expert behavior, even for highly interactive trajectory planning tasks, making
manual specification and tuning obsolete.

105



6 Experiments

*

*

*

* *
* *

*

*

*

*
* * *

*

*

*
* * *

20 40 80 160
320
640
1280

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Baseline
linear*
nonlinear 5*
nonlinear 20

Iterations

Su
cc
es
sR

at
e

(a) Success rate comparison of baseline and learned
reward models across iterations

-0.01-0.02 0.00 0.00 0.01 0.01 -0.01

-0.04-0.06 -0.03-0.01 -0.03-0.05 -0.04

0.00 -0.01 0.00 0.00 0.00 0.00 0.01

-0.03 0.01 -0.01-0.02 0.03 -0.01 -0.01

-0.08-0.06 -0.04-0.06 -0.03-0.02 -0.03

-0.06-0.04 -0.03-0.02 0.00 -0.01 -0.02

-0.04 0.00 -0.08 0.02 0.02 0.02 0.00

0.09 0.14 0.09 0.10 0.08 0.06 0.04

-0.12-0.13 -0.11-0.08 -0.10-0.02 -0.07

-0.02-0.01 -0.02-0.02 -0.01-0.01 0.01

0.04 0.09 0.02 0.12 0.03 0.07 0.05

0.02 -0.03 -0.20-0.26 -0.26-0.32 -0.31

-0.02-0.01 -0.03-0.02 -0.02-0.02 -0.03

20 40 80 160

320

640

1280

mean

SC12

SC11

SC10

SC09

SC08

SC07

SC06

SC05

SC04

SC03

SC02

SC01

Iterations

Sc
en
ar
io

(b) Absolute difference in success rate between baseline
and nonlinear 20 across scenarios

Figure 6.9: Performance comparison of learned reward models
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(a) Scenario 01: Delaying merge due to approaching vehicle in desired lane (b) Scenario 02: Reacting to approaching vehicle

(c) Scenario 03: Merging into moving traffic (d) Scenario 04: Merging into moving traffic with prior longitudinal adjust-
ment107
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(e) Scenario 05: Changing lane as other vehicle needs to merge onto lane (f) Scenario 06: Delaying lane change as other vehicle needs to merge first

(g) Scenario 07: Merging (1 vehicle) with 3 Vehicles (h) Scenario 08: Merging (1 vehicle) with 5 Vehicles
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(i) Scenario 09: Merging (2 vehicles) with 5 Vehicles (j) Scenario 10: Merging into middle lane (3 lanes)

(k) Scenario 11: Merging into moving traffic (l) Scenario 12: Passing a narrow passage with oncoming traffic

Figure 6.10: Sample Trajectories from the Learned Reward Model: The expert trajectories (red) are used to learn the parameters of the reward
model, which generates the optimal trajectories (blue, produced by the best performing nonlinear reward model, nonlinear 20). To
enhance comprehension, the trajectories are depicted per agent for each scenario, cf. Fig. 6.1.
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6.5 Parallelization

Each parallelization technique was evaluated for different numbers of iterations
and threads. Due to the high computational complexity of the parallelized imple-
mentation, the evaluation was limited to the most challenging scenarios, SC07 -
SC15, and the lower iteration counts of 20 - 320.

Based on nine scenarios, five different numbers of iterations, and three different
numbers of threads, 33750 evaluations for each scatter plot were produced. In
addition, the influence of the HP γ used in the similarity merge and similarity
vote of the root parallelization was assessed. All parallelization strategies were
compared to the performance of the average single-threaded baseline.

6.5.1 Leaf Parallelization

The evaluation of the leaf parallelization strategies indicated a clear benefit from
parallelization. Both the mean aggregation, Fig. 6.11a, and the max aggregation,
Fig. 6.11c outperformed the baseline significantly for all numbers of threads and
iterations.

As mentioned, it is reasonable that the max aggregation strategy outperforms
the mean aggregation in cooperative scenarios since its estimate of the state-
action value is less pessimistic (Soemers et al. 2016). This was visible when
comparing the performance gains from different numbers of threads. While there
was a visible trend for the max aggregation, Fig. 6.11c, (an increasing number
of threads increases performance), the difference was less pronounced for the
mean aggregation, Fig. 6.11a. For example, in scenario 12 and scenario 13, the
navigable space is extremely limited with the additional challenge of oncoming
traffic. In these scenarios, most actions, such as a collision or driving off the road,
will lead to an undesirable state. The mean aggregation of the parallelization
had trouble identifying the limited number of desirable actions, as it averaged
the returns of all threads, Fig. 6.11b. Since the max aggregation was optimistic,
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choosing the max of the returns of all threads made it much more likely to find
one of the desirable actions, yielding a higher success rate, Fig. 6.11c.

6.5.2 Root Parallelization

The evaluation of root parallelization, similar to leaf parallelization, showed the
advantages of parallelization. However, similarity merge and similarity vote use
two distinct methods to incorporate knowledge from several search trees using
root parallelization.

The similarity merge method considers all actions from all previously simulated
trees, while the similarity vote method only considers the actions with the max-
imum state-action value of each tree. Hence, the size of the similarity matrix
and thus the number of similarity updates grows quadratically with the effective
branching factor (the number of actions explored from a given node) when the
similarity merge approach is used.

Given the computational complexity of the similaritymergemethod, O
(
(|A||Ξ|)2

)
as detailed earlier, experiments involving 64 threads proved infeasible. These sim-
ulations were prematurely terminated due to an inability to progress, likely due
to the exponential increase in computational demands. As a result, all results
presented in Fig. 6.12 are based solely on experiments utilizing 4 and 16 threads.

Figure 6.12 visualizes diminishing returns for an increase in the number of iter-
ations and threads for similarity merge, with 160 and 320 iterations performing
worse than 4 threads and the single-threaded baseline for γ = 2.5 respectively,
Fig. 6.12a. This decay in performance can likely be attributed to the combina-
tion of kernel width for the similarity update and the increase in the number of
similarity updates (as the number of iterations increases sufficiently progressive
widening starts to take place, increasing the effective branching factor). If the
kernel width is large, many dissimilar actions influence the evaluation of an action.
With progressive widening adding actions in the vicinity of others, the likelihood
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Figure 6.11: Performance comparison of aggregation strategies for leaf parallelization112
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of two dissimilar actions influencing each other thus increases with an increasing
number of iterations and threads.

A possible remedy could be a dynamic kernel width inversely proportional to the
number of iterations and threads or a higher static kernel width as the results in
Fig. 6.12c suggest. However, due to time constraints, only a few static values for
γ were evaluated.

While similarity vote also suffered from diminishing returns for an increase in the
number of iterations and threads, it performed consistently better than similarity
merge, Fig. 6.13 and it was observed to be less sensitive to kernel width. How-
ever, a counterintuitive result was observed in that the performance for 4 threads
decreased compared to the baseline for 160 and 320 iterations, while performance
significantly improved for a higher number of threads. Further investigation is
needed to clarify the underlying reasons for this behavior.

6.5.3 Summary

In conclusion, various methods to parallelize MCTS were developed and evalu-
ated. All of them show improvements compared to the single-threaded baseline.
However, the evaluation results indicated that root parallelization with similarity
vote outperformed all other methods by a significant margin.
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and similarity merge with γ = 7.5 and 16 threads
across scenarios

Figure 6.12: Performance comparison of kernel size for root parallelization using similarity merge
114



6.5 Parallelization

*

*

*

*

*

*

*

*

*

*

*

*

*

*

20 40 80 160 3200.3

0.4

0.5

0.6

0.7

0.8

0.9
Baseline
4
16*
64*

Iterations

Su
cc
es
sR

at
e

(a) Success rate comparison of baseline and similarity
vote with γ = 0.5 across iterations

0.55 0.42 0.28 0.18 0.10

0.28 0.31 0.25 0.21 0.16

0.24 0.12 0.10 0.07 0.04

0.04 0.04 0.01 0.00 0.00

0.04 -0.01 -0.17 -0.23 -0.24

0.21 0.25 0.19 0.11 -0.01

0.10 0.21 0.09 0.04 0.14

0.36 0.41 0.39 0.42 0.40

0.09 0.16 0.33 0.49 0.54

0.21 0.21 0.16 0.14 0.13

20 40 80 160 320

mean

SC15

SC14

SC13

SC12

SC11

SC10

SC09

SC08

SC07

Iterations

Sc
en
ar
io

(b) Absolute difference in success rate between baseline
and similarity vote with γ = 0.5 and 64 threads
across scenarios

*

*

*

*

*

*

*

*
*

*

*

*

*

*

20 40 80 160 3200.3

0.4

0.5

0.6

0.7

0.8

0.9
Baseline
4
16*
64*

Iterations

Su
cc
es
sR

at
e

(c) Success rate comparison of baseline and similarity
vote with γ = 1.5 across iterations

0.54 0.42 0.28 0.18 0.10

0.30 0.30 0.24 0.22 0.15

0.24 0.12 0.10 0.07 0.04

0.03 0.03 -0.01 0.00 0.00

0.01 -0.12 -0.30 -0.21 -0.26

0.39 0.45 0.29 0.15 0.05

0.20 0.23 0.12 0.15 0.18

0.35 0.36 0.41 0.38 0.37

0.07 0.15 0.34 0.42 0.61

0.24 0.22 0.16 0.15 0.14

20 40 80 160 320

mean

SC15

SC14

SC13

SC12

SC11

SC10

SC09

SC08

SC07

Iterations

Sc
en
ar
io

(d) Absolute difference in success rate between baseline
and similarity vote with γ = 1.5 and 64 threads
across scenarios

Figure 6.13: Performance comparison of kernel size for root parallelization using similarity vote
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6.6 Hyperparameter Optimization

In order to identify the most promising HPO technique, model-free RS andmodel-
based BO were contrasted based on the approach described in Section 5.3.4, to
tune nine HPs.

Scenarios where the baseline already achieved a performance close to 1 (SC01-
SC06) were excluded from the HPO, and only the subset of scenarios SC7 to
SC15 was considered. By excluding these scenarios, a more objective evaluation
of the performance of HPO technique could be provided.

In line with previous experiments, 250 random seeds were used to generate statis-
tically accurate estimates for the success rate for each evaluated HPC. However,
due to the runtime complexity of the optimization, the number of iterations within
the MCTS was limited to 20, 80, and 320. Since the optimization was formulated
as a minimization problem (1- success rate), the optimal value is 0.

The performance comparison results are presented in two figures: Fig. 6.14a
and Fig. 6.14b, with the former displaying the performance distribution of the
evaluated HPCs, while the latter depicts their performance for 100 optimization
steps. The performance distribution comparison suggests that the RS is unimodal,
comparable to a normal distribution, whereas BO exhibits two distinct modes,
implying a bi-modal distribution. This observation is sensible since RS randomly
explores the space of possible HPCs, leading to a more uniform coverage. On the
other hand, a bi-modal distribution of BOwas expected as it uses a surrogatemodel
(RF) to approximate the objective function and guide the search through expected
improvement, explicitly focusing on promising regions of the HP space. Bayesian
Optimization outperformed RS with a mean of 0.513 versus 0.645 (1- success
rate) for all evaluated HPCs, implying that it explored better performing HPC on
average. Figure 6.14b further highlights this difference, with BO significantly
outperforming RS over the course of the optimization.

Additionally, BO was executed for 1000 steps, which took approximately 188
hours. The results were compared to the manually specified baseline and are
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Parameter Value

action duration 2.2203
maximum search depth 5
discount factor 0.9896
final selection strategy MaxActionValue

action execution fraction 0.9370
progressive widening-coefficient 4.9696
progressive widening-exponent 0.8281
maximum depth for progressive widening 5
UCT-coefficient 0.3059

Table 6.1: Incumbent Parameters of the Vanilla Baseline

shown in Fig. 6.15. The plot demonstrates that the automatically tuned HPC is
significantly superior to the manually specified baseline for all evaluated numbers
of iterations. Notably, the performance gains plateau at around 640 iterations,
which may be attributed to the optimization being limited to iterations smaller
than 320.

Based on the output of the HPO, the marginal contribution of a parameter can be
estimated using functional Analysis of Variance (fANOVA), (Hutter et al. 2014).
For this, an RF was fitted to connect the objective function to the HPCs. The
influence of a parameter can be estimated by altering a HP while marginalizing
over all otherHPs for eachHP.Themarginals for the action duration andmaximum
search depth are displayed in Fig. 6.16. From the plots, one can infer that the
values of both HPs impact the algorithm’s performance, and the directionality of
the correlation can be deduced. As can be seen, the cost (1-success rate) decreases
for larger search depths and shorter action durations.

The HPC for the vanilla baseline used for most experiments, and the HPC for
action grouping were generated using BO. The resulting values can be found in
Table 6.1 and Table 6.2, respectively.
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(c) Optimization performance of BO over 1000 opti-
mization steps

Figure 6.14: Comparison of Hyperparameter Optimization: Random Search vs. Bayesian Optimiza-
tion118
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Parameter Value

UCT-coefficient within action grouping 0.4618
final selection strategy based on action grouping False
progressive widening-active within action grouping True
maximum depth for progressive widening within action grouping 5
progressive widening-coefficient within action grouping 1.2793
progressive widening-exponent within action grouping 0.6415

Table 6.2: Incumbent Parameters of Action Grouping
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Figure 6.15: Performance comparison of Hyperparameter Optimization
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(a) Marginal of maximum search depth (b)Marginal of action duration

Figure 6.16: Marginals of Two Hyperparameters

6.6.1 Summary

This section focused on identifying the best HPO technique by comparing model-
free RS and model-based BO for tuning HPs. In conclusion, BO outperformed
RS, demonstrating better exploration of high-performing hyperparameter config-
urations on average. Furthermore, when executed for 1000 steps, automatically
tuned HPCs significantly outperformed the manually specified baseline.
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The following provides a concise summary of this thesis’s central research ques-
tions and findings, outlining its contributions to the field of AD.

This work startedwith a first research question on how cooperative drivingwithout
communication could be modeled.

It proposes a method for planning cooperative trajectories in challenging interac-
tive urban scenarios and tight spaces. The framework is based on a decentralized
continuous MCTS. This approach adapts and extends the original MCTS algo-
rithm to handle simultaneous move games and continuous state and action spaces.
Key extensions in this framework include DUCT for addressing simultaneous
decision-making and progressive widening to address continuous action spaces
by gradually expanding the action space of a node. The framework also employs
heuristics such as blind value to guide the sampling process toward more promis-
ing regions of the action space. While efforts were made to reduce computational
complexity using action grouping and semantic action groups, no significant im-
provements were observed. Nevertheless, the evaluation of the core algorithm
demonstrated its feasibility across a wide range of scenarios.

The second research question aimed to effectively and efficiently address the mod-
eled problem. More specific inquiries were formulated based on the algorithm’s
requirements mentioned in Section 4.2.

First, it was investigated how a reward function can be designed so that the resulting
behavior represents human driving. A reward function can be designed to result
in human-like driving behavior through IRL. This work combines Maximum
Entropy IRL with MCTS to learn reward models for the cooperative trajectory
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planning problem. The efficacy of MCTS to generate (approximately) optimal
samples for arbitrary reward models quickly in combination with adjusting the
sampling distribution after gradient updates yield reward models that quickly con-
verge towards the experts. Evaluations showed that the performance of the learned
(linear and nonlinear) reward models was comparable to or better than the man-
ually tuned baseline model, demonstrating the effectiveness of this approach for
designing reward functions that represent human driving behavior in cooperative
environments with implicit communication.

Next, it was explored how parallel computation can be leveraged to accelerate
convergence speed. Parallel computing can be used to accelerate the convergence
speed of MCTS in continuous domains through various parallelization strategies
such as leaf and root parallelization. Standard Leaf parallelization resulted in
modest performance improvements. However, root parallelization, which involves
the exploration of multiple trees from a single root, can considerably improve
performance when combined with a novel way to merge results using a similarity
voting mechanism. Although the improvements were substantial, future research
should focus on developing more efficient parallelization techniques concerning
the scalability of the number of threads.

Last, it was studied how HPO can be employed to improve the solution quality.
Using HPOmitigates the need for manual selection and fine-tuning of HPs, which
quickly becomes convoluted in high-dimensional search spaces with complicated
interactions for humans to reason about. Model-based optimization techniques
likeBOallowed for amore targeted exploration of the solution space (as opposed to
model-free optimization), resulting in improved HPCs and tremendous increases
in the algorithm’s overall performance. Hence, incorporating HPO approaches in
the cooperative trajectory planning algorithm proved essential since it significantly
enhances the solution quality and maximizes the efficiency of action search.
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7.1 Outlook

While the current research constitutes a substantial advancement in the capacity
of AVs for implicit cooperation with other traffic participants, various research
opportunities remain unexplored to fully realize the potential of AD.

A major challenge in AD is ensuring safety, particularly in complex and dynamic
situations involvingmultiple implicitly interacting traffic participants. Addressing
this challenge necessitates additional research for safeguarding all road users.

Enhancing the accuracy and robustness of planning algorithms is equally crucial.
Therefore, prospective studies should tackle partial observability e.g. by incor-
porating approaches proposed by Stegmaier et al. (Stegmaier et al. 2022) and
expanding the investigation to cover a broader spectrum of scenarios.

Moreover, there is immense potential for accelerating the search process through
the implementation of learned heuristics, as suggested by Kurzer et al. (Kurzer
et al. 2021), and by estimating the state of other traffic participants utilizing
methodologies illustrated by Tian et al. (Tian et al. 2021) and Sunberg et al.
(Sunberg et al. 2017).

By delving into and addressing these challenges, the research community canmove
progressively towards the full realization of AVs potential, ultimately contributing
to improved transportation experiences for all.
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A Appendix

A.1 Design and Implementation of the
ProSeCo Planning Package

The ProSeCo Planning package consists of a C++ (online) as well as Python
(offline) part. The C++ part is comprised of a library as well as a ROS interface
(Quigley et al. 2009). The library includes the runtime critical components, such
as the MCTS, the extensions, and the simulator. The Python part is comprised of
four different modules, namely the Evaluator, the Dashboard, the Hyperparameter
Optimization, and the Inverse Reinforcement Learning, see Fig. A.1.

The source code of the ProSeCo Planning package is openly accessible on GitHub
(https://github.com/ProSeCo-Planning) under the BSD 3-Clause License. The
runtime environment required to execute the ProSeCo Planning package is avail-
able as a container on dockerhub (https://hub.docker.com/r/karlkurzer/proseco).

Python
Evaluator
Dashboard
Hyperparameter Optimization
Inverse Reinforcement Learning

C++
MCTS
Simulator
Extensions
ROS Interface

Communication

JSON/msgpack

Figure A.1: Overview of the ProSeCo Planning Package with Its C++ and Python Part
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A.1.1 Simulator

The simulator performs the task of multi-agent vehicle simulation. It has been
designed to simulate interactions among agents, specifically vehicles in this case.
The simulator’s architecture encompasses several core components, including
the environment model of the road, vehicles, as well as obstacles. Different
vehicle profiles can be modeled, each with characteristics such as size, wheelbase,
maximum acceleration, and maximum steering angle. Beyond environment and
vehicle representation, the simulator conducts trajectory generation and collision
checking.

Despite the complexity of these operations, the simulator is highly efficient and
capable of conducting approximately 300 000 collision checks/s. This enables
the algorithm to explore a large action space in a short amount of time, which is
important to facilitate fast and accurate decision-making in complex multi-agent
systems.

A.1.2 Evaluator

The evaluator module is a crucial component of the ProSeCo Planning package,
which facilitates the parallel and distributed evaluation of different algorithm
and scenario configurations. It operates on a Ray cluster, an open-source software
system designed explicitly for scalable distributed computing (Moritz et al. 2018).
The configurations for the evaluator module are created using JavaScript Object
Notation (JSON), offering a structured, readable format for setting up complex
evaluation tasks.

An exemplary configuration is provided in Code 1. This configuration, for in-
stance, would yield 81 different evaluations by combining various scenarios,
discount factors, iteration numbers, and random seeds.

This level of configurability allows for comprehensive testing and comparison of
different extensions over a wide range of scenarios.
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{
"name": "example_evaluation",
"options": ["example_options"],
"scenarios": ["sc01", "sc02", "sc03"],
"options_alterations": {

"compute_options": {
"discount_factor": [0.7, 0.8, 0.9],
"n_iterations": [500, 1000, 2000],
"random_seed": [331, 650, 28]

}
},
"cluster": {

"address": "192.168.1.100",
"max_workers": 100

}
}

Code 1: Evaluator Configuration: Exemplary configuration of the evaluator module that would yield
81 different evaluations (scenarios× discount factors× iteration numbers× random seeds)

Similarly, the ProSeCo Planning package allows users to configure various options
and scenarios, as seen in Code 2 and Code 3. Options refer to the settings related
to the algorithm. Scenarios, on the other hand, define the environmental setup for
simulations. This includes the number and type of vehicles, road configuration,
and obstacles in the simulation.

A.1.3 Dashboard

The dashboard module provides a visual interface for examining the evaluations
generated by the evaluator. It enables users to understand the performance of
various configurations at a glance. Through the dashboard, researchers can track
performance metrics over time, compare different configurations side by side, and
visually inspect individual runs to diagnose issues or understand unusual results.
An example of the dashboard view is provided in Fig. A.2.
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Figure A.2: A Screenshot of the ProSeCo Planning Dashboard
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"compute_options": {
"action_duration": 2.22,
"action_noise": {

"active": false,
"mean_vx": 0.0,
"mean_y": 0.0,
"sigma_vx": 0.1,
"sigma_y": 0.1

},
"collision_checker": "circleApproximation",
"delta_t": 0.1,
"discount_factor": 0.9896,
"end_condition": "scenario",
"max_invalid_action_samples": 25,
"max_scenario_duration": 0.0,
"max_scenario_steps": 40,
"max_search_depth": 5,
"max_step_duration": 0.0,
"n_iterations": 640,
"noise": {

"active": false,
"mean": 0.0,
"sigma": 0.15

},
"parallelization_options": {

"n_simulationThreads": 16,
"n_threads": 16,
"similarity_gamma": 1.5,
"similarity_voting": true,
"simulation_aggregation": "max"

},
"policy_options": {

"expansion_policy": "UCT",
"final_selection_policy": "maxActionValue",
"policy_enhancements": {

"action_execution_fraction": 0.9370,
"available_action_type": "random",
"move_grouping": {

"active": false,
"cp": 0.4618,
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"final_decision": false,
"move_grouping_bias_pw": false,
"move_grouping_criteria_pw": {

"active": false,
"coefficient_pw": 1.2793,
"exponent_pw": 0.6415

}
},
"progressive_widening": {

"coefficient": 4.9697,
"exponent": 0.8281,
"max_depth_pw": 5

},
"q_scale": 100.0,
"search_guide": {

"n_samples": 51,
"type": "blind_value"

},
"similarity_update": {

"active": false,
"gamma": 1.0

}
},
"selection_policy": "UCTProgressiveWidening",
"simulation_policy": "random",
"update_policy": "UCT"

},
"random_seed": 0,
"safety_distance": 0.0,
"trajectory_type": "jerkOptimal",
"uct_cp": 0.3059

},
"output_options": {

"export": ["result"],
"export_format": "msgpack"

}

Code 2: Exemplary Configuration of the Cooperative Trajectory Planning Algorithm
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{
"name": "SC07",
"road": {

"lane_width": 3.25,
"number_lanes": 2,
"random": false,
"sigma_lane_width": 0.25

},
"agents": [
{

"action_space": {
"delta_velocity": 1.6666666269302368,
"max_lateral_change": 5.0,
"max_velocity_change": 5.0,
"type": "rectangle"

},
"cooperation_factor": 0.5,
"cost_model": {

"cost_collision": -1000.0,
"cost_invalid_action": 0.0,
"cost_invalid_state": -1000.0,
"name": "costExponential",
"w_acceleration_x": 0.0,
"w_acceleration_y": -5.0,
"w_lane_center_deviation": 85.0,
"w_lane_change": -10.0,
"w_lane_deviation": 100.0,
"w_velocity_deviation": 500.0

},
"desire": {

"lane": 1,
"lane_center_tolerance": 1.0,
"velocity": 8.0,
"velocity_tolerance": 2.0

},
"id": 0,
"is_predefined": false,
"terminal_condition": {

"comparator_position_x": "larger",
"comparator_position_y": "none",
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"position_x": 125.0,
"position_y": 0.0

},
"vehicle": {

"heading": 0.0,
"length": 4.709000110626221,
"max_acceleration": 9.807000160217285,
"max_speed": 36.0,
"max_steering_angle": 0.2630000114440918,
"position_x": 19.844329833984375,
"position_y": 4.545746326446533,
"random": true,
"sigma_heading": 0.0,
"sigma_length": 0.0,
"sigma_position_x": 1.0,
"sigma_position_y": 0.20000000298023224,
"sigma_velocity_x": 0.0,
"sigma_velocity_y": 0.0,
"sigma_width": 0.0,
"velocity_x": 8.0,
"velocity_y": 0.0,
"wheel_base": 2.8510000705718994,
"width": 1.8270000219345093

}
},
{

"action_space": {
"delta_velocity": 1.6666666269302368,
"max_lateral_change": 5.0,
"max_velocity_change": 5.0,
"type": "rectangle"

},
"cooperation_factor": 0.5,
"cost_model": {

"cost_collision": -1000.0,
"cost_invalid_action": 0.0,
"cost_invalid_state": -1000.0,
"name": "costExponential",
"w_acceleration_x": 0.0,
"w_acceleration_y": -5.0,
"w_lane_center_deviation": 85.0,
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"w_lane_change": -10.0,
"w_lane_deviation": 100.0,
"w_velocity_deviation": 500.0

},
"desire": {

"lane": 1,
"lane_center_tolerance": 1.0,
"velocity": 8.0,
"velocity_tolerance": 2.0

},
"id": 1,
"is_predefined": false,
"terminal_condition": {

"comparator_position_x": "larger",
"comparator_position_y": "none",
"position_x": 125.0,
"position_y": 0.0

},
"vehicle": {

"heading": 0.0,
"length": 4.709000110626221,
"max_acceleration": 9.807000160217285,
"max_speed": 36.0,
"max_steering_angle": 0.2630000114440918,
"position_x": 10.891773223876953,
"position_y": 5.0637006759643555,
"random": true,
"sigma_heading": 0.0,
"sigma_length": 0.0,
"sigma_position_x": 1.0,
"sigma_position_y": 0.20000000298023224,
"sigma_velocity_x": 0.0,
"sigma_velocity_y": 0.0,
"sigma_width": 0.0,
"velocity_x": 8.0,
"velocity_y": 0.0,
"wheel_base": 2.8510000705718994,
"width": 1.8270000219345093

}
},
{
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"action_space": {
"delta_velocity": 1.6666666269302368,
"max_lateral_change": 5.0,
"max_velocity_change": 5.0,
"type": "rectangle"

},
"cooperation_factor": 0.5,
"cost_model": {

"cost_collision": -1000.0,
"cost_invalid_action": 0.0,
"cost_invalid_state": -1000.0,
"name": "costExponential",
"w_acceleration_x": 0.0,
"w_acceleration_y": -5.0,
"w_lane_center_deviation": 85.0,
"w_lane_change": -10.0,
"w_lane_deviation": 100.0,
"w_velocity_deviation": 500.0

},
"desire": {

"lane": 0,
"lane_center_tolerance": 1.0,
"velocity": 8.0,
"velocity_tolerance": 2.0

},
"id": 2,
"is_predefined": false,
"terminal_condition": {

"comparator_position_x": "larger",
"comparator_position_y": "none",
"position_x": 125.0,
"position_y": 0.0

},
"vehicle": {

"heading": 0.0,
"length": 4.709000110626221,
"max_acceleration": 9.807000160217285,
"max_speed": 36.0,
"max_steering_angle": 0.2630000114440918,
"position_x": 20.801456451416016,
"position_y": 1.466967225074768,
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"random": true,
"sigma_heading": 0.0,
"sigma_length": 0.0,
"sigma_position_x": 1.2999999523162842,
"sigma_position_y": 0.20000000298023224,
"sigma_velocity_x": 0.0,
"sigma_velocity_y": 0.0,
"sigma_width": 0.0,
"velocity_x": 8.0,
"velocity_y": 0.0,
"wheel_base": 2.8510000705718994,
"width": 1.8270000219345093

}
}
],
"obstacles": [
{

"heading": 0.0,
"id": 0,
"length": 4.0,
"position_x": 50.0,
"position_y": 1.75,
"random": false,
"sigma_heading": 0.0,
"sigma_length": 0.0,
"sigma_position_x": 0.0,
"sigma_position_y": 0.0,
"sigma_width": 0.0,
"width": 2.0

},
{

"heading": 0.0,
"id": 1,
"length": 4.0,
"position_x": 60.0,
"position_y": 1.75,
"random": false,
"sigma_heading": 0.0,
"sigma_length": 0.0,
"sigma_position_x": 0.0,
"sigma_position_y": 0.0,
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"sigma_width": 0.0,
"width": 2.0

},
{

"heading": 0.0,
"id": 2,
"length": 4.0,
"position_x": 70.0,
"position_y": 1.75,
"random": false,
"sigma_heading": 0.0,
"sigma_length": 0.0,
"sigma_position_x": 0.0,
"sigma_position_y": 0.0,
"sigma_width": 0.0,
"width": 2.0

},
{

"heading": 0.0,
"id": 3,
"length": 4.0,
"position_x": 80.0,
"position_y": 1.75,
"random": false,
"sigma_heading": 0.0,
"sigma_length": 0.0,
"sigma_position_x": 0.0,
"sigma_position_y": 0.0,
"sigma_width": 0.0,
"width": 2.0

},
{

"heading": 0.0,
"id": 4,
"length": 4.0,
"position_x": 90.0,
"position_y": 1.75,
"random": false,
"sigma_heading": 0.0,
"sigma_length": 0.0,
"sigma_position_x": 0.0,
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"sigma_position_y": 0.0,
"sigma_width": 0.0,
"width": 2.0

}
]

}

Code 3: Exemplary Configuration of a Scenario
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