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Abstract

The comprehensive, understandable and effective formal
specification of complex systems is often difficult, espe-
cially for reactive and interactive systems like web ser-
vices or embedded system components. In this paper, we
propose contract automata, a new specification formalism
for describing the expected behaviour of stateful systems.
Contract automata combine two established concepts for
formal system specification: contract-based specification
and nondeterministic finite state automata. Contract au-
tomata restrict the effects that the operations of the speci-
fied system may have using input-output-contracts. The
automaton structure of a contract automaton describes
when contracts are applicable. Contract automata sup-
port the refinement and composition of reactive systems,
enabling modular verification of systems assembled of
multiple subsystems. In this paper, we formally define
the semantics of contract automata based on a two-party
game between the system under test and its environment.
We define the proof obligations and present techniques
to prove a refinement relationship between contract au-
tomata, the validity of system compositions, and the com-
pliance of source code against a contract automaton. We
provide a tool for the generation of the proof obligation
that can be discharged with model-checkers or static pro-
gram analyses. We exemplify the use of contract automata
by presenting the specification and verification of an emer-
gency brake assistant.

1 Introduction

Motivation. Design-By-Contract [17] is an established
software engineering paradigm in which the admissible
behaviour of software modules is described by formal con-
tracts. A contract for an operation specifies the required
properties of the environment and input values as a pre-
condition, and the guarantees on the produced output
values as a postcondition. The presence of formal contract
specifications for the operations of a system enable static
and modular formal verification. The necessity of specify-
ing contracts for all operations is the main disadvantage
of the Design-by-Contract paradigm. Specifications need
to be abstract enough to cover multiple implementations,
but strong enough to show the relevant properties of the
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Figure 1: Contract automaton describing systems counting
up and down in [-128,128]. Assumption and guarantees
are separated with “/” on the edges. old(cnt,−1) refers
to the output value cnt of the last operation.

subsystems and ultimately the complete system.
While logical formulas are mostly sufficient to state as-

sumptions and guarantees for individual operations, they
lack expressiveness when it comes to specifying reactive
systems that interact with their environment. In a reac-
tive system, assumptions and guarantees for the same
operation may vary from call to call: Reactive systems
are stateful, i.e., their output in response to an input may
depend on the internal system state and thereby on pre-
vious inputs. Hence, a specification language suitable for
reactive systems should also support stateful specifica-
tions. For example, Linear Temporal Logic allows stateful
specifications implicitly through its temporal operators.
In many cases, the succession of admissible operations
follows the defined protocol of the system. The admissi-
ble input-output behaviour – i.e., the applicable contract
– is the same for many states within the same step of the
protocol. Which assumptions and guarantees hold in a
state, hence, often depends only on a small aspect of the
state that captures the current mode of the system (within
the protocol). Tracking such protocol steps resp. modes
can be done naturally by applying a concept of automata.

Contribution. We propose contract automata – a novel
specification language for the specification of mode-based
interactive and reactive systems. Contract automata are
nondeterministic finite automata over assume-guarantee
contracts. Both formal concepts, automata and assume-
guarantee-contracts, have been widely and successfully
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used for the specification of system behaviour. Previously,
the two approaches have not yet been conceptually in-
tegrated. The automata aspect of contract automata is
used to describe the possible modes of the system and the
possible transitions between them. Assume-guarantee-
contracts are used to constrain the transitions, i.e., the
possible operations in the different modes. These modes
may reflect the internal state of the system, but they can
also reflect the state of the environment. The idea behind
contract automata is to track the current situation in the
environment and in the system through the modes. This
allows the specification of the expected inputs of the envi-
ronment and expected responses of the system in each of
these particular situations. The relationships between the
input and output are defined symbolically by formulas.

Figure 1 shows the contract automaton for a system
with the input variable enabled (Boolean) and the output
variable val (integer). The specification expresses that the
value may first only be increased until reaching the maxi-
mum value 128, and then only decreased until reaching
the minimum value −128. The contract automaton has
two modes, one for increasing (up) and one for decreasing
(down) cnt. The contracts on the edges make sure that cnt
is only changed when enabled is true. Whenever reaching
±128, the specification changes its mode and therefore the
applicable contract (i.e. the counting direction). Note that
the automaton does not specify the amount to increment
or decrement. A compliant implementation may add or
subtract 1 or any other positive number in each cycle as
long as the limits are adhered to.

The main application focus of contract automata lies on
reactive and interactive systems. These have in common
that they maintain an internal state, evolve over time, and
are meant to run for an indefinitely long period.

Advantages. Contract automata are ideal for modular
and refinement-based formal analyses of systems. In this
scenario, a system module is initially specified using a con-
tract automaton on abstract properties of the system. This
abstract contract automaton is then used together with
contract automata of other modules to modularly verify
that the interaction between the subsystems is correct on
this abstraction level (e.g., by conducting a protocol verifi-
cation using model checking). This verification abstracts
from details about the implementation, but these can be
added later using refinements. Later, when implement-
ing the system module, the contract automaton is refined
to a more specific contract automaton, a composition of
subsystem contract automata, and eventually to an imple-
mentation. As long as any refinement follows the Liskov
substitution principle [15], the implementation maintains
the safety guarantees established on the abstract contract
automaton.

Another advantage of contract automata is that they
form an ideal basis for building an Engineer-friendly,
feature-rich and expressive graphical specification lan-
guage. The reasons for this are that state-machines are
already a well-known and established graphical speci-
fication formalism and the intuitive nature of assume-
guarantee contracts. We developed this idea into Contract

Machines in another work [2].
The concept of contract automata is an adaptation of

Generalised Test Tables (GTTs) [1] for a broader applica-
tion field. GTTs are a formal specification based on test
tables, a concept widely used in industry to describe a
series of test cases. GTTs aim to be comprehensible and
usable by industry practitioners. One drawback of GTTs
is their limited specification coverage as the behaviour de-
scription is limited to a single family of similar test cases.
This paper lifts these restrictions and proposes contract au-
tomata as a foundation for stateful specification languages
that cover the complete system behaviour. It adds formal
foundations for refinement and modular reasoning.

Overview In this paper, we define the syntax and se-
mantics of contract automata (Section 3), and explain their
encoding into a transition system for static verification
with model checking and program verification tools (Sec-
tion 4).

We explain the necessary proof obligations required for
the modular verification in Sect. 5, following the principles
established by Cimatti et al. [9]. We provide support for
the verification of C programs against contract automata,
for refinement and the validity of the system composition
of contract automata. We demonstrate the usage of con-
tract automata on a component of an emergency braking
system for cars (Section 6).

2 Related Work

Automata and state machines are a common mechanism
to describe the behaviour of systems. The combination of
automatons with contracts does appear in the literature,
albeit in a different fashion than contract automata.

In [3], a different concept also named Contract Automata
is used for the behavioural specification of services. These
Contract Automata have a focus on the orchestration of
services. Therefore, the edge labels in the automata de-
fine requests, offers or idle actions of the services to be
specified, which corresponds to the invocation of meth-
ods. Compatibility is defined as the actions playing well
together and the end of behaviours being reached. This
concept is very common, for example, interface input/out-
put automata [14] also describe the emitted output and
expected inputs as events. In contrast, our notion focuses
more on the assumption and guarantees of a system and
represents them as formulas describing the expected rela-
tion between input and output values. Moreover, Chilton
et al. [8] present a framework for assume-guarantee and
refinement that is well applicable to the refinement of
contract automata given in Section 5. They focus on the
required proof obligations in terms of the encoding as a
transition system.

CoCoSpec [7] is a specification for the Lustre program-
ming language. Lustre is a programming language for
reactive systems, and its speciality is the focus on value
streams. CoCoSpec builds on an assume-guarantee mech-
anism in the form of mode-dependent and -independent
require and ensure clauses. A mode is a (special)
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Boolean variables which is specification-only and deter-
mines whether a pair of require and ensure clauses are
active. To determine the mode, you have to rely on the
input or other state variables. There are no explicit modes
or transitions between them. Contract automata enforce
a stricter computation model, and can easily be encoded
into CoCoSpec. NuSCR [18] is an extension of the SCR
development and focuses on the system specification with
automata. NuSCR automata are similar to contract au-
tomata. They have states and edges. The edges hold a
trigger condition and assignments. The trigger condition
corresponds to the assumption of contracts in contract
automata, and the assignments are a more restrictive (and
also deterministic) form of guarantees. Note that NuSCR
automata are deterministic in general. NuSCR also sup-
ports timing constraints in the automata, by specifying
an additional condition on edges with a lower and up-
per time bound. Cimatti et al. [9] provide with OCRA a
tool for the design-by-contract of reactive systems. OCRA
supports the description of system composition via the
same model as our function block diagrams and they also
define the refinement relationship between a contract and
the inner blocks of a system. OCRA itself is not able to ver-
ify program code against a assume-guarantee contract. It
focuses only on the refinement relationship. In our work,
we adapt their work on the refinement relationship for the
use with contract automata as the specification language
and additionally close the gap between the contract and
the final implementation in the C programming language.

Heizmann et al. [12] use automata in combination with
Hoare calculus for the verification of batch programs. In
Hoare calculus, the triple {pre}P1; . . . ; Pn{post} describes
the proof obligation, in which the precondition pre should
imply the postcondition post after the execution of the
program P; . . . ; Pn. For the verification, formulas σi are
required such that they capture the intermediate states
between Pi and Pi+1. The authors interpret the flow chart
of a program as an automaton A whose alphabet consists
of the statements in the program and use the structure of
the automaton to infer the required formulas σi.

3 Formal Foundations of contract au-
tomata

3.1 Syntax of Contract Automata

Contract automata are used to describe the input-output
behaviour of reactive systems. For the specification, the
two sets I and O contain the input and output variables
of the specified system. In this paper, we assume that con-
straints over the input and output values are formulas in
FmlI,O, the quantifier-free predicate logic over the theories
of integers and reals. Additionally, the term old(x,−n)
can be used to refer to the previous value that the variable
x ∈ I ∪O held n ∈N system iterations ago. In particular,
old(x, 0) refers to the current value of x and old(x,−1) to
the previous value.

The alphabet used to label transitions in contract au-
tomata are formal contracts which are pairs c = ac/gc ∈
Fml2I,O consisting of an assumption (also called precondi-

tion) ac and a guarantee (also called postcondition) gc. We
use the functions assume(c) = ac and guarantee(c) = gc
to access the assumption and guarantee components of the
contract c. Let CI,O = Fml2

I,O denote the set of contracts
over I and O. The indices are skipped when clear from
context.

With the formal concepts of contracts introduced, con-
tract automata can now be formally defined as nondeter-
ministic finite automata (NFA) over contracts:

Definition 1 (Contract Automata). A contract automaton
A = (I, O, M, M0, δ) for input variables I and output variables
O consists of a non-empty finite set M of modes, a non-empty
set of starting modes M0 ⊆ M and a transition relation δ ⊆
M× CI,O ×M.

In this paper, the states within a contract automaton
are called modes to avoid confusion with the notion of
states in the transition system and the reactive system
implementation itself. Modes are specification entities
which allow one to abstract from the full state space of
the specified systems. Note that the definition does not
comprise accepting modes since there is no need for the
distinction between accepting and non-accepting modes.
However, for the upcoming definition of the language of
a contract automaton, every mode in M can be considered
accepting. In the following, the sequence of contracts
along finite walks in the automaton is relevant:

Definition 2 (Paths of a Contract Automaton). For a con-
tract automaton A = (I, O, M, M0, δ), the set pathsC(A) ⊆
C∗ of finite paths in A is the regular language L(A) ⊆ C∗ that
A accepts when interpreted as a NFA over the alphabet C in
which every mode m ∈ M is considered an accepting state.

Hence, any path is obtained by beginning in a start
mode m ∈ M0 and then following an arbitrary number of
transitions in δ while collecting the traversed contracts in
C from the transition annotations. A path may terminate
in any mode (every mode is accepting), hence, it is obvious
that the set pathsC(A) is closed under prefix, i.e., if p ∈
pathsC(A), then every prefix of p is also in pathsC(A).

3.2 Semantics of Contract Automaton

Contract automata are used to specify reactive systems. To
define the semantics of contract automata, we first must
give a formal definition of reactive systems. A reactive
system responds to an input (assignment of variables in I)
with an output (variables in O) respecting and maintaining
its current internal state. The sets I and O contain the
syntactical variables for in- and output. Let I andO denote
the possible input and output values. For paths in contract
automata, we considered finite walks in the automaton,
but since a reactive system may run forever we therefore
must define its semantics as a set of infinite input-output
traces. The upcoming definition of reactive systems is
restricted to deterministic systems, since this aligns with
the targeted application scenario. A non-deterministic
system can still be modelled in this setup by adding extra
input variables that encode the nondeterministic choices
as external choices. Due to the universal nature of the
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notion of compliance (Theorem 5), the specification must
hold for all possible values of these extra variables and
thus for all possible nondeterministic choices.

Definition 3 (Reactive System). A response function R :
I∗ → O of a reactive system assigns to every input history the
deterministic output response. The behaviour B(R) ∈ (I ×
O)ω of R is the set of infinite input-output traces with

B(R) =
{(

(i0, o0), (i1, o1), . . .
)

| R(i0, . . . , in) = on for n ∈N
}

.

When evaluating a formula f ∈ Fml in a finite sequence
σ̄ = (σ1, . . . , σn) ∈ (I ×O)n of input/output value pairs,
the value of a (input or output) variable is taken from the
most recent tuple σn. In Sect. 3.1, the operator old(,̇)̇ was
introduced as a construct in Fml to reference values from
the observed history. In the above evaluation context, the
expression old(x,−k) is the evaluation of variable x in
the tuple σn−k. The remainder of the formula evaluation
is standard predicate logic (with fixed interpretations ac-
cording to the supported theories). We write σ̄ |= f to
denote that a formula is satisfied by the finite sequence σ̄
of input/output values.

For an infinite trace τ ∈ B(R) and a path c̄ ∈ pathsC(A)
(i.e., a finite sequence of contracts) with |c̄| = n, we
write τ |= c̄ to denote

∧n
i=1(τ1, ..., τi) |= assume(ci) ∧

guarantee(ci), i.e. that every contract in c̄ is satisfied by
the respective partial trace of τ. We write τ |= assume(c̄)
to say that all assumptions of c̄ are satisfied on the trace.

After defining the semantic notion of reactive systems,
it is now time to define when a reactive system is compliant
to a contract automaton. Intuitively, we want to capture
the fact that whenever a system is presented with a se-
quence of inputs that adhere to the assumptions of the
then applicable contracts, the system response must also
adhere to the then applicable contract guarantees. It is
the automaton structure which decides which contracts
are applicable in which historical context. This structure
makes this a non-trivial definition.

Moreover, the definition must cover a gap between the
notions defined for contract automata and for reactive
systems: For a contract automaton A, the set of contract
words pathsC(A) is a sequence of contracts – which are
purely syntactical entities. In contrast, the behaviour of a
system B(R) is a set of infinite input-output traces over
the value spaces I and O – and thus, a semantic con-
cept. To bridge this gap, we define when a single input-
output trace σ̄ is compliant to a path of contract automaton
A: Compliance means the following: If a contract word
c̄ ∈ pathsC(A) that is satisfied by the input-output trace
can be extended by a single contract c′ such that the as-
sumptions assume(c̄ · c′) are satisfied, then there must also
be a continuation of the trace c′′ (not necessarily the same
as c′) that satisfies all the assumptions and the guarantees.

Definition 4 (Trace Compliance). Let R be a reactive system
and A be a contract automaton with the same input and output
variables. An input-output trace τ ∈ B(R) is called compliant

Input: Reactive System R : I∗ → O and
contract automaton A = (I, O, M, M0, δ)

Output: Returning the winner (system or
environment)

M̂← M0; σ̄← ε; ῑ← ε; k← 0;
while true do

// Invariant: M̂ = {m | m0
c̄→ m, m0 ∈ M0, c̄ ∈

pathsC(A), |c̄| = k, σ̄ |= c̄}
Environment chooses input i ∈ I ;
ῑ← ῑ · i;
System computes response o = R(ῑ) ∈ O;
σ̄← σ̄ · (i, o);
Ê← {(m, c, m′) ∈ δ | σ̄ |= assume(c) ∧m ∈ M̂};

if Ê = ∅ then
return System wins; // Chosen input not

covered by active contracts
end
M̂← {m′ | (m, c, m′) ∈ Ê ∧ σ̄ |= guarantee(c)};
if M̂ = ∅ then

return Environment wins; // Output
violates all possible contracts

end
k← k + 1;

end

Figure 2: Game between environment and system R w.r.t.
the contract automaton A.

to A if

∀c̄ ∈ pathsC(A).

τ |= c̄ =⇒(
∃c′ ∈ C. c̄ · c′ ∈ pathsC(A) ∧ τ |= assume(c̄ · c′)

)
=⇒

(
∃c′′ ∈ C. c̄ · c′′ ∈ pathsC(A) ∧ τ |= c̄ · c′′

)
R is called compliant to A if every τ ∈ B(R) is compliant to A.

The compliance of a reactive system w.r.t. a contract au-
tomaton can equivalently be described by the two-party
game outlined in Fig. 2 as a pseudo code algorithm. The
game is played between the environment (as the challenger)
generating the input values and the system responding (by
executing the underlying program code). The possible
moves each of the two “players” can make are determined
by the contract automaton: The environment must adhere
to the assumptions and the system must be compliant to
the guarantees. The first player to not leave any possible
moves to continue the game loses the play. Therefore, the
optimal strategy for the environment is to select input
values ī ∈ I∗ which adhere to contract assumptions and
trigger the system to produce an output that violates the
guarantees. The set M̂ ⊆ M represents the current config-
uration (i.e. the modes that are reachable given the history
observed so far) of the contract automaton. Initially, M̂
contains the starting modes. In each iteration of the play,
the environment is first asked for an input value and then
the system for its response.
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The algorithm in Figure 2 chooses the input values from
the environment nondeterministically. This means that,
given infinite plays of the game, every possible choice of
values from the environment will be considered, and all
of this must be correctly handled by the system for it to be
compliant. The system wins a play when the environment
violates the assumptions. This captures the fact that such
a play is considered to be out of the scope of the specifica-
tion. Since the variable M̂ holds the set of possible modes,
we simulate the power automaton of the given contract
automaton and thereby resolve the nondeterminism in
the contract automaton. Unlike the environment, the sys-
tem does not have any degree of freedom, its responses
are determined entirely by the underlying program. In
each round (iteration of the body of the while loop), three
outcomes are possible:

1. There are no outgoing transitions from any mode in
M̂ such that the finite trace σ̄ satisfies the assump-
tion (Ê = ∅). In this case, the system wins since
the environment chose an input not covered by any
specification.

2. Amongst the outgoing transitions Ê that satisfy the
assumption, no mode also satisfies the corresponding
guarantee. In this case, the environment wins since
the system response violates the guarantees of all
remaining possible transitions.

3. After the update, M̂ is not empty, i.e., there is at least
one mode reachable (under v̄) that satisfies both the
assumption and the guarantee. In this case, the play
continues for another round with the updated history.

Definition 5 (Game compliance). A reactive system R is
called game-compliant to a contract automaton A if there is
no play of the game in Fig. 2 that ends with the result “Envi-
ronment wins”.

This definition of game compliance considers all pos-
sible choices of the environment, and therefore all possi-
ble input-output traces in B(R) are covered. The game
(Theorem 4) and the trace compliance (Theorem 5) are
equivalent.

Theorem 6. A reactive system R is game-compliant to a con-
tract automaton A if and only if R is trace-compliant to A.

The claim can be be proven by contraposition: R is not
trace-compliant to A if and only if there exists a play won
by the environment. The structure of the game in Fig. 2
operationalises the condition described by the formula in
Theorem 4. This allows us to establish a direct correspon-
dence between a witness for the quantifiers and a state of
a play of the game. To this end, first look at the loop invari-
ant of the algorithm as annotated in the pseudo-code: M̂
contains precisely those modes that are terminal modes in
the language construction of Theorem 2 for a contract path
c̄ ∈ paths(A) with σ |= c̄ of length k = |c̄|. This entails
that τ |= c̄ ensures that the play with the inputs provided
by τ spans at least k rounds. This is because the prefixes
of c̄ are all witnesses of the fact that in each round the
set M̂ was not empty and, hence, the conditional guards

E = ∅ and M = ∅ could never have been satisfied for
these inputs.

Assume that R is not trace-compliant. Then, from the
negation of the condition in the definition, there are τ, c̄, c′

with (1) τ |= c̄, (2) τ |= assume(c̄ · c′) and (3) τ ̸|= c̄ · c′′
for any continuation c̄ · c′′ of c. Thanks to (1) the play for
the inputs from τ has at least |c̄| many rounds (as elabo-
rated above). In the (k + 1)-th round the first conditional
is not triggered; E is not empty because of (2). However,
(3) makes sure that the second condition is indeed trig-
gered as there is no possible continuation of c̄ that satisfies
both assumption and guarantee. The converse argument
is quite analogous, and from a play terminating in “Envi-
ronment wins”, one can construct witnesses that violate
the condition in Theorem 4.

4 Contract Automata as Transition
Systems for Verification

To enable formal verification of contract automata, we
encode the game semantics of a contract automaton into
a symbolic transition system. When bundled with an
encoding of the system software to be verified, this al-
lows us to discharge compliance proof obligations using
model checkers and C-program verification tools. For
this, the transition system for a contract automaton mod-
els the progress of the game and decides the winner of
a play. The modes of the automaton are represented by
Boolean variables. A dedicated variable encodes that the
system loses the game. An invariant is used to specify that
this mode must not be reachable. Since the game inter-
nally stores all reachable modes (and not a single reached
mode), the transition system for a contract automaton A
essentially encodes the power automaton. The transition
system’s state contains Boolean mode variables to encode
the currently active modes of A in the game. Additional
mode variables are added to indicate the violation of as-
sumptions and guarantees. The implemented approach
can produce specifications in the SMV format, which can
be understood by many state-of-the-art model-checking
tools. We can also produce code in the C programming
language to allow verification with program verification
tools.

4.1 Encoding of the Symbolic Transition Sys-
tem

The symbolic transition system is a logical encoding of
the game in Fig. 2. A symbolic transition system TS =
(∆, Init, Trans) is a tuple, consisting of a signature ∆ (a set
of variables), a formula Init ∈ Fml∆ over the symbols in ∆
to describe the initial state, and a formula Trans ∈ Fml∆∪∆′

describing the transition relation between states. Since
the transition connects two states, the formula refers to
variables in the current state (∆) and in the next state (∆′

where all symbols are primed).
In the following, we construct

a transition system TSA = (∆A,
InitA, TransA) for a given contract automaton
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A = (I, O, M, M0, δ) to determine whether a sys-
tem is game-compliant to A. For each automaton mode
m ∈ M there is a Boolean variable sm ∈ ∆A. There
are two additional Boolean variables s⊥, s⊤ ∈ ∆A for
assumption and guarantee violation. ∆A also contains the
input and output variables I and O of the system under
specification:

∆A = I ∪O ∪ {sm | m ∈ M} ∪ {s⊥, s⊤}

The variable sm is the symbolic representation of the au-
tomaton mode m. sm is true if and only if the automaton
mode m is active in the play, i.e., if m ∈ M̂. The variables
s⊤ and s⊥ are true if and only if all possible assumptions or
a guarantee were violated in the most recent step, respec-
tively. There exists only one initial state in the transition
system in which the original starting modes M0 of the
contract automaton are active. The variables s⊤ and s⊥
are initially false.

InitA =

 ∧
m∈M0

sm

 ∧
 ∧

m/∈M0

¬sm

 ∧ ¬s⊤ ∧ ¬s⊥
TransA encodes the mode transitions of the contract au-
tomaton A and also the cases in which all applicable as-
sumptions or guarantees are violated by the environment
or system, respectively. The cases in which the assump-
tions are violated are relevant for refinement (Section 5).

TransA =
∧

(i,c,j)∈δ

(
(
si ∧ assume(c) ∧ guarantee(c)→ s′j

)
∧(

si ∧ ¬ assume(c) ∧
( ∧

o∈M
¬s′o

)
→ s′⊤

)
∧(

si ∧ assume(c) ∧ ¬ guarantee(c) ∧
( ∧

o∈M
¬s′o

)
→ s′⊥

))
∧ (s⊥ → s′⊥) ∧ (s⊤ → s′⊤)

Since failing assumptions or guarantees can be flagged
using the variables s⊥ and s⊤, the relation TransA is a total
relation in the inputs and outputs in the sense that for
every state and every input-output value pair, there is a
successor state.

The invariant Inv = ¬s⊥ states that the system has
always adhered to at least one of the available guarantees.
This situation corresponds to the winning condition of the
system (in Theorem 5).

To verify the compliance of a system R with the CA A,
we combine the transition system TSR, which represents
the behaviour of the system R faithfully, with the TSA of A
using the product system TSR ∥ TSA. The product system
is itself a symbolic transition system defined as TSA ∥
TSB = (∆A ∪∆B, InitA ∧ InitB, TransA ∧ TransB). Note that
the product system combines both transition systems into
a single transition system that simulates a synchronous
execution of both systems under the condition that the
predicates InitA and InitB do not restrict the domains of
the same variables. Formally, the formula InitA ∧ InitB

must have the same models in the signature ∆A as InitA.
The analogue holds for for Trans.

Theorem 7. A system R is game-compliant to a contract au-
tomaton A if and only if TSA ∥ TSR |= □Inv.

The transition system TSA is a model of the game, which
is evaluated on the input of the environment and outputs
of TSR. Similarly, TSR is a model of the system R. The-
orem 7 states that the parallel composition of TSA and
TSR should never violate the invariant, i.e. that s⊥ never
becomes true. The invariant Inv is violated if and only if
the system R is not game-compliant, meaning that there is
an execution which leads to a state where no automaton
modes are active due to the violation of assertions. The
transition system constructed for a contract automaton
restricts only the values of the automaton mode variables,
not on the input, output or other variables of the system
TSR. Therefore, TSA ∥ TSR remains a faithful model of the
system R

4.2 Extension for backreferences

So far, the transition system TSA does not support the
backreferences expressed by the old-operator. To sup-
port it, we enrich the transition system, especially Trans,
to maintain the history of each variable v ∈ I ∪ O. In
practice, we limit the history only to those variables and
indices that occur as arguments to the old-operator in the
specific contract automaton A. Let v be an input or output
variable of the contract automaton and k the highest back-
reference index. We then add the state variables v1, . . . , vk
to the state of the transition system, and strengthen Trans
with v′1 = v ∧ ∧k

i=2 v′i = vi−1. In the initial state, these
history variables would be under-specified. For practical
reasons, we initialize the history variables with a default
value to make the behaviour deterministic. This makes
counterexamples more understandable.

5 Refinement and System Composi-
tion

Reactive systems are typically modularly constructed as
a composition of subsystems. This compositional nature
can be exploited for formal analysis. In program anal-
ysis, the design-by-contract paradigm is the enabler for
modular verification techniques by abstracting from sub-
system behaviour through contracts, thus decomposing
a verification task into one task per subsystem. To enable
modular verification for reactive systems with contract
automata, two formal notions are important and must be
adapted to contract automata: (a) Composition: What is the
(most precise) contract automaton of a composed system if
(only) the contract automata of the subsystems are known,
and (b) Refinement: when does a (compositional) contract
automaton comply to the given contract automaton of the
analysed system? Additionally, the “base case” – verifi-
cation of a system implementation against an individual
contract – must be possible.
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For the composition of reactive systems, we employ the
definition from the OCRA tool [4] in which a module’s
interface is given by a set of input and output ports. The
input ports are controlled by the environment, and the
output ports by the module itself. The internals are given
in the form of a graph of subsystems with their intercon-
nection of the input/output ports. In our approach, we
extend the OCRA model such that one can either define
a system by using system composition or implement the
system with a program fragment written in a program-
ming language. In the example in Sect. 6, the C program-
ming language is used. Such composed system models
can be found in more complex manifestations in the real
world, e.g. composed using Function Block Diagrams in
IEC 61131-3 or the Lingua Franca [16] model of reactive
systems.

Theorem 3 gives us the semantics of a reactive system.
For the composition, we need to define reactive systems
structurally. We need to distinguish between composited
systems and “leaf systems” which are implemented in
source code. The latter one can not be structurally anal-
ysed.

Definition 8 (Reactive System Structure). The structure of
reactive system R is given by (I, O, P), where I is a set of input
and O a set of output variables (ports). For a composed system,
P = (V, E) is a direct acyclic graph, where the subsystems are
the vertices V and the edges connect the system ports. For a
leaf system, P = (∆, Init, Trans) is a transition system with
I, O ⊂ ∆.

The implementation P = (V, E) for a composed sys-
tem R forms a graph. The set V contains the subsystems
of R and the edges E describe the connections between
the input and output variables of the subsystems. For
(s, o, s′, i) ∈ E where s, s′ ∈ V with s = (Is, Os, Ps) and
s′ = (Is′ , Os′ , Ps′); o ∈ Os is an output variable of s, and
i ∈ Is an input variable of s′. This can be read as: The
output variable o of s is connected to the input variable
i of s′. The connections in E define the information flow
within the system. By that, they determine the order in
which the subsystems are evaluated. In the following, we
assume that the composition is non-circular, and hence
an order of the execution of the subsystems exists (the
topological order).

To sequentially compose two systems A = (IA, OA, PA)

and B = (IB, OB, PB), we write A ↣oi B to denote that the
output of system A is forwarded to the system B, where
oi ⊆ OA × IB defines how the output variables of A map
to the inputs variables of B (cf. [13]). Note that A ↣oi B is
itself a system:

(A ↣oi B) = (IA ∪ (IB \ rng(oi)), OA ∪OB, PB ◦ oi ◦ PA)

where rng(oi) describes those inputs of IB mapped to out-
put from OA (i.e., they are not free). A ↣oi B offers the same
inputs as A and the non-occupied inputs of B, provides
outputs OA ∪OB of both systems. Executing systems in
parallel, denoted by A ∥ B, is a special case of sequential
composition with oi = ∅. For example, consider Fig. 3
which is the graphical representation for the following

C

A

B

i2

i1

i3

o1

o2

o3

Figure 3: Example of the sequential composition.

composition:

D = (A ∥ B) ↣
{o1/a,o3/b}

C

where A = ({i1}, {o1}, PA), B =
({i3}, {o3}, PC) and C = ({a, i2, b},
{o2}, PA). The composited system D has three in-
puts {i1, i2, i3} which are not occupied internally, and all
outputs of the subsystems {o1, o2, o3}.

For the verification, we express the composition A ↣oi B
in terms of transition systems. Let TSA and TSB be
the corresponding transition systems to A and B, then
TS

A↣oi
B
= (InitA ∧ InitB, TransA ∧ (TransB)µ), where µ is

a substitution of the input variables of B with the output
variables of A according to oi. More precisely, µ : in 7→ out′

for all (in, out) ∈ oi. Note that the output variables are
primed to insert the output values out which are com-
puted using the in.

5.1 Refinement

Refinement is a relationship between two systems. We
say a system A is a refinement of system B if it is more
concrete. From another perspective, refinement is also a
process of clarification that tightens the possible behaviour.
We define refinement in our context between contract au-
tomata, in which every specified behaviour of A must ex-
ists in specified behaviour of B. The refinement between
contract automata corresponds to the Assume-Guarantee
(AG) refinement in [8], which implies implementation con-
tainment. Intuitively, the subsystem A must at least accept
the admissible input values of B, and must only produce
output values that B can also produce. We allow A to
extend the interface of B, i.e., it may use more variables.
The refinement relationship then only covers the variables
in both contract automata. New behaviour on newly in-
troduced inputs or outputs is allowed and is not covered
by the proof obligations.

Definition 9 (Contract Automata Refinement). Let A =
(IA, OA, MA, MA

0 , δA) and B = (IB, OB, MB, MB
0 , δB) be

contract automata where the signature of A extends the sig-
nature of B: IB ⊆ IA and OB ⊆ OA.

1. A contract cA for A refines a contract cB for B, written
cA ⪯ cB, if |= assume(cB)→ assume(cA) and |=
guarantee(cA)→ guarantee(cB) .

2. A path c̄A ∈ pathsC(A) refines a path c̄B ∈ pathsC(B),
written c̄A ⪯ c̄B, if |cA| = |cB| and cA

i ⪯
cB

i for all 1 ≤ i ≤ |cB| .
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3. A contract automaton A refines a contract automaton B,
written A ⪯ B, if

∀ c̄A ∈ pathsC(A). ∃ c̄B ∈ pathsC(B). c̄A ⪯ c̄B .

Note that the refinement of individual contracts The-
orem 9.1 is the Liskov substitution principle (LSP) [15],
which is lifted to traces and then automata. According to
the LSP, assumptions may be weakened and guarantees
may be strengthened. This ensures that every individual
operation which adheres to a contract in B must also ad-
here to the corresponding contract in A. For paths, the
extension means that every position must adhere to the
LSP. Hence a contract trace c̄A is a valid substitute for c̄B,
and we can formulate the lemma:

Lemma 10. Let A and B be two contract automata with A ⪯ B,
then if a reactive system R is compliant to A, then R is also
compliant to B.

We can also reuse the previous conversion of contract
automata into transition systems to verify the refinement
relationship:

Theorem 11. Given two contract automata A and B and their
corresponding transition systems TSA and TSB, then:

A ⪯ B ⇐⇒

TSA ∥ TSB |= □

((∧
x∈V

xA = xB

)
→

(¬sB
⊤ → ¬s

A
⊤) ∧ (sA

⊥ → sB
⊥)

where V = (IA ∩ IB) ∪ (OA ∩OB) are the common variables.

The theorem follows from Theorem 9 and the fact that
that TSA and TSB model the games of the contract au-
tomata. The implication arises from Point 1 in Theorem 9.
For any identical inputs and outputs to transition systems
TSA and TSB, if TSA rejects the input, then TSB also needs
to reject the input (s⊤) vice versa for the output.

5.2 Composition

With Liskov’s notion of refinement available, the veri-
fication conditions can now be formulated. There are
multiple proof obligations: For each subsystem in the
composition, we show that its assumptions are met by its
environment. The relevant part of its environment is given
by the guarantees of previously executed subsystems (de-
fined by the connection between an output variable and
the corresponding input variable), and the assumptions
of the contract for the overall composition. Moreover, we
need to show that the complete composition adheres to
the guarantees of the composition contract. Note that
these proof obligations imply a refinement relation (Theo-
rem 9) between the composition contract and the contract
composition of all subsystems.

Definition 12 (Composition Validity). Let R0 be a composed

system, which is given as a composition Sub = (R1 ↣
oi1 R2 ↣

oi2

· · · ↣
oin−1 Rn) in topological order, and let TSi be the correspond-

ing transition system of the contract automaton for each Ri.

The transition system TSSub represents the composition Sub:
TSSub = TS1 ∥ · · · ∥ (TSn)µoin−1 .

The composition is valid if and only if for each Ri (1 ≤ i ≤ n):

TS0 ∥ (TSsub)µ

|= □

¬s0
⊤ ∧

i−1∧
j=1

¬sj
⊥ ∧ ¬s

j
⊤

→ ¬si
⊥ ∧ ¬s

i
⊤


And lastly

TS0 ∥ (TSSub)µ

|= □

¬s0
⊤ ∧

n∧
j=1

¬sj
⊥ ∧ ¬s

j
⊤

→ ¬s0
⊥


to show the final adherence with the composition contract. The
variables si

⊥ and si
⊤ refer to the s⊥ and s⊤ variables of the TSi.

The application of substitution µ is required to map the inputs
of the composed system R0 to inputs of the subsystems Sub,
similar for the outputs.

Note that the connection between the subsystems
R1, . . . , Rn is handled by the given construction of TSsub.
The connectivity of the input and output variables of the
composed system to the subsystems is then handled by
the substitution µ. In general, the definition describes that
proving the composition validity is reduced to showing
that the contract automata of each subsystem behaves
correctly (¬s⊥) and that the assumptions are met (¬s⊤)
under the assumption that the contract automata of all
previously executed subsystems are adhered to. Special
is that we can assume the assumptions of the overall sys-
tem composition (¬s0

⊤), but we also need to ensure that
its guarantees (¬s0

⊥) are ensured by the guarantees of the
subsystems.

6 Case Study: Emergency Brake As-
sistant

System Assistants for emergency braking (AEB) become
mandatory in newly registered cars in 2024. The AEB
decides whether the car should be slowed down or even
stopped to prevent a collision with a vehicle (or object
in general) in front of the car. For this, the AEB com-
putes the time needed to bring the own car (called ego)
to a full stop and checks this against the time to collision
with the preceding vehicle (called mio). The computa-
tion of time-to-collision and stopping time is based on
the velocities, the distance, and system parameters. This
information is created by a fusion of radar, camera sensors
and tracking systems. Both systems are outside of the
investigated system boundaries. We concentrate on the
escalation behaviour. The AEB system holds a state to
realise a progressive escalation: When a collision becomes
possible, the system warns. If a warning does not trigger a
different driver behaviour and the collision becomes more
likely, the system starts with partial braking until it further
escalates and finally triggers full braking to reach a full
stop.
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AEB_Logic

StoppingTimeCalculation

TTCCalculation TTC

FCWtime

PB1time

PB2time

FBtime

PB1decel

PB2decel

FBdecel

stop

FCWactivate

AEBstatus

decel

3
FCWactivate

4
AEBstatus

5
decelaration

2
egoCarStop

FCWStoppingTime

PB1StoppingTime

PB2StoppingTime

FBStoppingTime

egoVelocity

PB1decel

PB2decel

fbdecel

mioDistance

mioVelocity

collision

TTC

1
mioDistance

2
mioVelocity

1
collision

3
egoVelocity

AEB.PB1_decel

AEB.PB2_decel

AEB.FB_decel

≤0.1

x

Default

FCW

PartialBraking1

PartialBraking2

FullBraking

Figure 4: The graphical system description of the assistant for emergency brake. The variable prefixes PB and FB
represent partial and full braking. This system is inspired by the Autonomous Emergency Braking example of Mathworks.

1start

0 ≤ mioDistance ≤ 1024 ∧
−1024 ≤ mioVelocity ≤ 1024

collision = ((mioDistance −
OF F SET ) < 2)

TTCCalcuation

1start

0 ≤ PB1decel ≤ PB2decel ≤
FBdecel ∧ 0 ≤ egoVelocity
τreact ≤
FCWStoppingTime ∧
0 ≤ FBStoppingTime ≤
PB1StoppingTime ≤
PB2StoppingTime

StoppingTimeCalculation

1start

T RUE

out = (a ≤ b)

≤

1start

0 ≤ mioDistance ∧
0 ≤ egoVelocity ∧ 0 ≤
mioDistance ∧mioDistance ≤
1024∧−1024 ≤ mioVelocity ∧
mioVelocity ≤ 1024

(AEBstatus > 0) ↔
(deceleration > 0)
∧ (FCWStoppingTime =
1)∨(FCWStoppingTime = 0)
∧ egoCarStop =
(egoVelocity <= 2)

AEB

STANDBY WARN BRAKEstart

¬(abs(T T C) < FCWtime ∧
TTC ≥ 0)

AEBstatus = decel =
FCWactivate = 0

abs(TTC ) < FCWtime ∧
TTC ≥ 0
AEBstatus = decel = 0 ∧
FCWactivate = 1

abs(T T C) <
PB1timeTTC ≥ 0
AEBstatus > 0 ∧ decel >
0 ∧ FCWactivate = 1

¬(abs(T T C) < PB1timeTTC ≥ 0)

AEBstatus = decel = 0 ∧
FCWactivate = 1

¬stop

AEBstatus > 0 ∧ decel >
0 ∧ FCWactivate = 1

stop

AEBstatus = decel = 0 ∧ FCWactivate = 1

abs(T T C) ≥ (2FCWtime)

AEBstatus = decel =
FCWactivate = 0

AEB Logic

Figure 5: Contract automata for the emergency braking system
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Figure 4 shows the AEB system, which consists of four
function blocks for the time-to-collision, stopping calcula-
tion, escalation logic and a comparison for recognising the
stop of the car. The AEB is based on an older version of
Mathworks’ Simulink example “Autonomous Emergency
Braking with sensor fusion”1. We re-implemented it in
our system model using C code and the data types integer
(32-bits) and Boolean.

The function block TTCCalculation receives the
distance and velocity to the mio car. Note that the
mioVelocity is relative to the egoVelocity and re-
flects the change of the distance to the mio car. Its main
output is TTC, which is the time it would take for the
ego car to hit the mio car at current speed. Independently,
the stopping time is calculated by StoppingTimeCalc-
ulation which provides the time to stop under different
deceleration strengths (forward collision warning, par-
tial braking 1 and 2, and full braking). It also considers
the latency of a human recognising the critical situation.
Then the function block AEB Logic combines all the cal-
culated values and chooses one of the escalation levels.
Escalation happens if the situation becomes worse, i.e.,
the difference between stopping time and time to collision
decreases. De-escalation either requires a full stop of the
car if the AEB decelerated the car, or if only a warning was
given a decrease of the current ego velocity.

Contracts The function blocks TTCCalculation,
StoppingTimeCalculation, and less-than “≤” are
stateless. Their behaviour can be described using a single
assume-guarantee pair. For this reason, their automata
have only a single mode in Figure 5. The contract au-
tomaton for TTCCalculation only specifies the input
ranges of mioDistance and mioVelocity and spec-
ifies the computation of the collision output vari-
able. The contract automaton for StoppingTimeCalc-
ulation is similar, it defines an order of the deceleration
constants (partial deceleration is less than full decelera-
tion), and guarantees the same order on the braking times.
τreact is the reaction time of the driver. Only AEB Logic
holds a state internally (cf. Figure 5). AEB Logic handles
the escalation of the system, the corresponding contract au-
tomaton only distinguishes between three modes (standby,
warn, and brake) whereas the implementation has multi-
ple modes for braking. The AEB contract automaton is the
top-level CA of the complete system.

Tools We implemented the prototype CAGEN2 which
generates the proof obligations required to fully prove a
system definition consisting of the contract automata, the
system and each subsystem, as well as the description of
the composition structure. CAGEN generates proof obliga-
tions in SMV and C code. Proof obligations which are only
based on contract automata, like refinement, and composi-
tion validity, are discharged by a model-checker using the
SMV format. For this, the contract automata are translated

1https://www.mathworks.com/help/driving/ug/autonomous-
emergency-braking-with-sensor-fusion.html, accessed December, 2023

2Link removed for double-blindness. Artefact is submitted to the
artefact evaluation.

NUXMV CBMC SEAHORN

≤ – 0.37 0.13
TimeToCollision – 3.76 0.14
StoppingTimeC. – 2.47 0.12
AEB Logic – 9.53 1.14
Comp. Validity 5.69 – –

Figure 6: Performance (cpu time in seconds, median of
three runs) of discharging the proof obligations for the
AEB system, and its sub-components

into a transition system and the provided invariants are
checked (Theorems 11 and 12). The proof obligations that
represent the compliance of an implementation against
a contract automaton are written in C code and can be
discharged using the C implementation of the subsystem.
For this, we translate the transition systems of the contract
automata into C code instead of SMV. This code would
also be useable for runtime verification.

We use CBMC 5.50.0 [10] with KISSAT 3.0.0 for bounded
verification (Bound k = 256), and for unbounded verifi-
cation of C programs SEAHORN 10.0.0-rc0-3bf79a59 [11]
with –crab (generation of invariants using abstract inter-
pretation). Proof obligations in SMV are discharged with
NUXMV 2.0.0 [6] and the IC3 [5] backend for invariants
and LTL formulas.

Results The results of the verification of the AEB are
reported in Figure 6. Shown is CPU time in seconds as
a median of three samples measured on an Intel Core
i7-8565U with 16 GB memory. We need to discharge
nine proof obligations: We verified each of the four im-
plementations of TTCCalculation, StoppingTime-
Calculation, ≤, AEB Logic against their contract au-
tomata (Figure 5). We also need to prove the validity of
the composition, including four checks of the adherence
to the assumptions for each subsystem and one check of
top level system against its contract. For the sake of com-
pleteness, the verification of our introductory example
(Fig. 1) takes 87 seconds with CBMC, and 2 seconds with
SEAHORN.

7 Conclusion

With contract automata, we presented a specification lan-
guage for reactive and interactive systems based on the
combination of assume-guarantee contracts and finite au-
tomata. We support modular verification and composi-
tion of systems based on the implementation refinement
relationship. This also also allows verification of open
programs — programs which can later be extended by
new system implementations. We implemented a proto-
type for the generation of proof obligations that shows the
compliance of the software (C program) against a contract
automaton, the validity of a composition of multiple sys-
tems, and the implementation refinement of a composition
against a contract automaton. We used CBMC, SEAHORN,
and NUXMV to discharge the proof obligations.
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Ongoing and Future Work. Contract automata are the
theoretical foundation on which to build a graphical state-
machine-based specification language that is comprehen-
sive and understandable for system engineers. While an
implementation of this is still underway, we have reported
conceptual results [2]. We also plan to support the speci-
fication of real-time properties, and support for run-time
verification. To make the creation of contract automata
easier, we will investigate specification mining as a combi-
nation of automata learning techniques and the inference
of symbolic relations of input and output variables. To
overcome the problem of writing the many required inter-
mediate contracts for each system, a mechanism for the
creation of abstract CA for the system interfaces would be
beneficial This could be done by combining the CA of the
subsystems or the CA of possible implementations.
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