KIT | KIT-Bibliothek | Impressum | Datenschutz

Visual Representation of Explainable Artificial Intelligence Methods: Design and Empirical Studies

Meza Martínez, Miguel Angel ORCID iD icon 1
1 Institut für Wirtschaftsinformatik und Marketing (IISM), Karlsruher Institut für Technologie (KIT)

Abstract:

Explainability is increasingly considered a critical component of artificial intelligence (AI) systems, especially in high-stake domains where AI systems’ decisions can significantly impact individuals. As a result, there has been a surge of interest in explainable artificial intelligence (XAI) to increase the transparency of AI systems by explaining their decisions to end-users. In particular, extensive research has focused on developing “local model-agnostic” explainable methods that generate explanations of individual predictions for any predictive model. While these explanations can support end-users in the use of AI systems through increased transparency, three significant challenges have hindered their design, implementation, and large-scale adoption in real applications.
First, there is a lack of understanding of how end-users evaluate explanations. There are many critiques that explanations are based on researchers’ intuition instead of end-users’ needs. Furthermore, there is insufficient evidence on whether end-users understand these explanations or trust XAI systems. Second, it is unclear which effect explanations have on trust when they disclose different biases on AI systems’ decisions. ... mehr


Volltext §
DOI: 10.5445/IR/1000164577
Veröffentlicht am 24.11.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Wirtschaftsinformatik und Marketing (IISM)
Publikationstyp Hochschulschrift
Publikationsdatum 24.11.2023
Sprache Englisch
Identifikator KITopen-ID: 1000164577
Verlag Karlsruher Institut für Technologie (KIT)
Umfang xviii, 177 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Wirtschaftswissenschaften (WIWI)
Institut Institut für Wirtschaftsinformatik und Marketing (IISM)
Prüfungsdatum 17.05.2023
Schlagwörter explainable artificial intelligence, explanations, machine learning, explainability, user-centric evaluation, eye-tracking, interactive systems, artificial intelligence, trust
Referent/Betreuer Maedche, Alexander
Sunyaev, Ali
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page