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behavior of a dominant mode model. It is shown that this model undergoes an Andronov-Hopf
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Consequently, this dynamical behavior is exploited to control the amplitude of the deflection of
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based on an approximation of the oscillation using an envelope model to achieve a constant
deflection amplitude. The approach is evaluated in numerical simulations.
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1. INTRODUCTION

Technological approaches in speech processing are di-
vided into three different steps. These are detecting, pre-
processing and analyzing the measured signal. Tradition-
ally, the detection is done by a microphone with linear
transfer function in the band from 20 Hz to 20 kHz and
a noise floor of 20-30 dB (Zawawi et al., 2020). However,
the desired signal can be jammed by background noises.
Due to this, it is difficult to use speech processing in
conditions with many interfering sources. To circumvent
this crucial problem it can be helpful to to imitate a
biological approach, i.e., the active sound sensing of the
mammalian ear (Gold et al., 1948; Gold and Gray, 1948).
On the one hand the mammalian ear is capable to detect
and process the incoming sound waves so that it can
recover heavily distorted signals simultaneously. This is
called cocktail party effect. On the other hand, the ear
has a high dynamical range in detecting sounds. These
properties are assumed to be achieved by the remarkable
dynamical behavior of the hair cells in the cochlea. The
hair cell is believed to exhibit an Andronov-Hopf bifur-
cation (Camalet et al., 2000; Egúıluz et al., 2000), which
emerges from a feedback loop changing the stiffness of the
hair cell. This feedback loop is activated by the change
of the pressure opening and closing the mechanoelectrical
transduction (MET) channels (Fettiplace and Hackney,
2006).

For the transfer of these concepts to a technical device
imitating the hair cell Lenk et al. (2018, 2020) use a
micromechanical beam. In the following this system is
summarized: The beam has a characteristic frequency
between 20 Hz and 20 kHz so that the length of this
beam is in the range of 100 micrometers. Moreover, a
non-linearity is introduced by actively heating the beam
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using a voltage-controlled thermal actuator (Roeser et al.,
2016). It has been shown that the beam has three different
operation modes under velocity feedback. The system is
in the passive (first) mode, if the feedback strength is
chosen to be close to zero. After increasing the feedback
strength it enters the active mode, where the beam’s
sensitivity to sound pressure i enhanced. Having passed
another threshold, the beam enters a mode of sustained
autonomous oscillations. Based on the different operations
modes, it is assumed that the thermally actuated beam
exhibits at least one Andronov-Hopf bifurcation (Lenk
et al., 2018, 2020). This beam is subsequently referred to
as artificial hair cell.

Usually an Andronov-Hopf bifurcation is used to show,
that a limit cycle emerges in a high dimensional system
once a bifurcation parameter exceeds a certain threshold.
In contrast, if this threshold is is not exceeded by the
bifurcation parameter, the system will be asymptotically
stable (Marsden and McCracken, 1976). Thus, this sta-
ble regime is called sub-threshold regime. In this regime
the system exhibiting an Andronov-Hopf bifurcation has
two advantageous properties. At first a compressive non-
linearity can be observed so that incoming signals are
amplified depending on their amplitude, i.e., the smaller an
amplitude the stronger the amplification. In particular, the
gain at the bifurcation point is infinitely large for a signal
with amplitude close to zero. Secondly, these systems are
very frequency selective (Camalet et al., 2000; Egúıluz
et al., 2000; Duke and Jülicher, 2007).

In this paper the bifurcation analysis of the artificial hair
cell is performed eventually leading to the design of a feed-
forward controller with disturbance injection, which ex-
ploits an Andronov-Hopf bifurcation to control the beam’s
deflection amplitude. Consequently, this amplitude con-
troller uses the amplification of the beam to encode the
external input in the feedback strength. For this, the domi-
nating mode model of the hair cell is introduced in Section
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2 followed by its bifurcation analysis. In Section 3 the
amplitude controller is designed to assign a constant value
for the deflection amplitude based on the knowledge of the
external input and the properties of the Andronov-Hopf
bifurcation in the sub-threshold regime. Control design is
based on an envelope model of the artificial hair cell. The
results are evaluated numerically in Section 4. Some final
remarks conclude the paper.

2. BIFURCATION ANALYSIS

In the following, the artificial hair cell is assumed to be
represented by a dominant (single) mode approximation
of a thermally actuated flexible micromechanical beam,
see Roeser et al. (2016) for the derivation of the respective
distributed parameter model and the modal reduction 2 .
In particular, the coupled system of ordinary differential
equations (ODEs) is considered

ẋ =




x2

−ω2
0x1− ω0

Q0
x2+αx3+Fext

−βx3 +
γ
R2u

2
act


 , t > 0, x(0)=x0 (1a)

y = x1, t ≥ 0. (1b)

Herein the state vector x(t) = [x1(t), x2(t), x3(t)]
T ∈ R3 is

composed of deflection, velocity, and relative temperature,
respectively, with y(t) denoting the measured output.
Parameters are given by the characteristic frequency ω0 >
0, the Q-factor Q0 > 0, the transfer factors α, γ > 0, the
time constant β > 0, and the heater resistance R > 0.
The controllable (thermal) input is given by uact(t) ∈ R
and Fext(t) ∈ R denotes an external force. Note that the
model of the cantilever is linear, if uact = 0. To impose
an Andronov-Hopf bifurcation and hence to achieve a
behavior similar to a real hair cell, uact must be assigned
accordingly. For this and in view of a practical realization
the measured deflection y(t) is high pass filtered using
GHP(s) = kτs/(1 + τs) with the time constant τ > 0 and
the calibration factor k ∈ R. Taking into account (1) the
effect of the high pass filter can be addressed in terms of
the additional state x4(t) given

ẋ4 =− 1

τ
x4 + kx2, t > 0, x4(0) = x4,0. (2)

Substituting the proportional feedback uact = ax4 + uDC

with gain a ∈ R and DC-voltage uDC ∈ R into (1) and
amending (2) yields the extended system

ẋ =




x2

−ω2
0x1− ω0

Q0
x2+αx3+Fext

−βx3 +
γ
R2 (ax4 + uDC)

2

− 1
τ x4 + kx2




  
= f(x)

, t > 0, x(0)=x0 (3a)

y = x1, t ≥ 0. (3b)

To determine the principle bifurcation points the eigen-
values of the linearization of (3) at its equilibria are
analyzed. An equilibrium xe are thereby determined by
solving f(xe) = 0, which yields

2 The mechanical subsystem of the beam is modeled as a Euler-
Bernoulli beam with the Duhamel-Neumann law and the thermal
subsystem is modeled as a Fourier heat conduction.

xe =


αγ

βω2
0R

2
u2
DC 0

γ

βR2
u2
DC 0

T
. (4)

Obviously, changing uDC allows to adjust the equilibrium
value. Let ∆x = x − xe denote the distance to xe. Then
making use of the Taylor series expansion implies

∆ẋ = Alin∆x, t > 0, ∆xe(0) = ∆xe,0 (5a)

with the Jacobian matrix

Alin =
∂f(x)

∂x


x=xe

=




0 1 0 0
−ω2

0 − ω0

Q0
α 0

0 0 −β 2γauDC

R2

0 k 0 − 1
τ


 . (5b)

With these preparations the following result can be for-
mulated.

Theorem 1. The system (3) undergoes two Andronov-
Hopf bifurcations depending on the feedback gain a with
the bifurcation points given by (A.1a). The resonance
frequencies ωR of the Andronov-Hopf bifurcations are
given by (A.1b).

Proof. The proof is based on Hopf’s Theorem in Rn,
see, e.g., Marsden and McCracken (1976), and follows two
steps: First it is shown that Alin defined in (5) has at least
one pair of complex conjugated eigenvalues with zero real
part. With this the bifurcation point is derived. Secondly,
it is shown that the remaining spectrum remains in the
left half complex plane, while the complex conjugated
eigenvalues are crossing the imaginary axis. By showing
this, it is proven that the bifurcation at that point is indeed
an Andronov-Hopf bifurcation.

To proof the first part, consider the characteristic polyno-
mial of the system matrix Alin, which is given by

p(λ) = λ4+


1
τ + β + ω0

Q0


λ3+


β
τ + ω2

0 +
ω0

Q0τ
+ βω0

Q0


λ2

+

βω2

0 +
ω2

0

τ + βω0

Q0τ
− 2αaγkuDC

R2


λ+

βω2
0

τ . (6)

To verify that two roots are crossing the imaginary axis at
acrit consider the general form of a polynomial with two
roots having zero real part, i.e.,

pacrit
(λ) =

�
λ2 + s0λ+ s1

 �
λ2 + ω2

R



= λ4 + s0λ
3 +

�
s1 + ω2

R


λ2 + s0ω

2
Rλ+ s1ω

2
R

with s0, s1 ∈ R and resonance frequency ωR ∈ R. By
comparing the coefficients of the polynomial p(λ) and
pacrit

(λ), the bifurcation point acrit and the resonance
frequency ωR can be directly determined in the form
(A.1a) and (A.1b), respectively.

To show that only one pair of complex conjugated eigenval-
ues crosses the imaginary axis, the remaining eigenvalues
of (6) have to stay in the left half complex plane. This
can be proven by showing that the coefficients s0 and s1
are positive, since then the polynomial λ2 + s0λ + s1 is a
Hurwitz polynomial. The coefficients are given by

s0 = 1
τ + β + ω0

Q0
, s1 = β

τ + ω2
0 +

ω0

Q0τ
+ βω0

Q0
− ω2

R.

Obviously, s0 > 0 holds true, since all parameters (except
uDC) are defined to be positive. Moreover, (A.1b) satisfies

ω2
R <β

τ + ω2
0 +

ω0

Q0τ
+ βω0

Q0
,

since the inner square root can be bounded by
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2 followed by its bifurcation analysis. In Section 3 the
amplitude controller is designed to assign a constant value
for the deflection amplitude based on the knowledge of the
external input and the properties of the Andronov-Hopf
bifurcation in the sub-threshold regime. Control design is
based on an envelope model of the artificial hair cell. The
results are evaluated numerically in Section 4. Some final
remarks conclude the paper.

2. BIFURCATION ANALYSIS
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represented by a dominant (single) mode approximation
of a thermally actuated flexible micromechanical beam,
see Roeser et al. (2016) for the derivation of the respective
distributed parameter model and the modal reduction 2 .
In particular, the coupled system of ordinary differential
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


x2

−ω2
0x1− ω0

Q0
x2+αx3+Fext

−βx3 +
γ
R2u

2
act


 , t > 0, x(0)=x0 (1a)

y = x1, t ≥ 0. (1b)

Herein the state vector x(t) = [x1(t), x2(t), x3(t)]
T ∈ R3 is

composed of deflection, velocity, and relative temperature,
respectively, with y(t) denoting the measured output.
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and Fext(t) ∈ R denotes an external force. Note that the
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ẋ4 =− 1

τ
x4 + kx2, t > 0, x4(0) = x4,0. (2)

Substituting the proportional feedback uact = ax4 + uDC

with gain a ∈ R and DC-voltage uDC ∈ R into (1) and
amending (2) yields the extended system

ẋ =


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Q0
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


  
= f(x)

, t > 0, x(0)=x0 (3a)

y = x1, t ≥ 0. (3b)

To determine the principle bifurcation points the eigen-
values of the linearization of (3) at its equilibria are
analyzed. An equilibrium xe are thereby determined by
solving f(xe) = 0, which yields

2 The mechanical subsystem of the beam is modeled as a Euler-
Bernoulli beam with the Duhamel-Neumann law and the thermal
subsystem is modeled as a Fourier heat conduction.

xe =


αγ

βω2
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2
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γ

βR2
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DC 0

T
. (4)

Obviously, changing uDC allows to adjust the equilibrium
value. Let ∆x = x − xe denote the distance to xe. Then
making use of the Taylor series expansion implies

∆ẋ = Alin∆x, t > 0, ∆xe(0) = ∆xe,0 (5a)

with the Jacobian matrix

Alin =
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=
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Q0
α 0

0 0 −β 2γauDC

R2

0 k 0 − 1
τ


 . (5b)

With these preparations the following result can be for-
mulated.

Theorem 1. The system (3) undergoes two Andronov-
Hopf bifurcations depending on the feedback gain a with
the bifurcation points given by (A.1a). The resonance
frequencies ωR of the Andronov-Hopf bifurcations are
given by (A.1b).

Proof. The proof is based on Hopf’s Theorem in Rn,
see, e.g., Marsden and McCracken (1976), and follows two
steps: First it is shown that Alin defined in (5) has at least
one pair of complex conjugated eigenvalues with zero real
part. With this the bifurcation point is derived. Secondly,
it is shown that the remaining spectrum remains in the
left half complex plane, while the complex conjugated
eigenvalues are crossing the imaginary axis. By showing
this, it is proven that the bifurcation at that point is indeed
an Andronov-Hopf bifurcation.

To proof the first part, consider the characteristic polyno-
mial of the system matrix Alin, which is given by

p(λ) = λ4+

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τ + β + ω0
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
λ3+


β
τ + ω2

0 +
ω0

Q0τ
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
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+

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0 +
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0
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Q0τ
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
λ+
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0

τ . (6)

To verify that two roots are crossing the imaginary axis at
acrit consider the general form of a polynomial with two
roots having zero real part, i.e.,

pacrit
(λ) =
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λ2 + s0λ+ s1

 �
λ2 + ω2
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

= λ4 + s0λ
3 +

�
s1 + ω2

R


λ2 + s0ω
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Rλ+ s1ω
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with s0, s1 ∈ R and resonance frequency ωR ∈ R. By
comparing the coefficients of the polynomial p(λ) and
pacrit

(λ), the bifurcation point acrit and the resonance
frequency ωR can be directly determined in the form
(A.1a) and (A.1b), respectively.

To show that only one pair of complex conjugated eigenval-
ues crosses the imaginary axis, the remaining eigenvalues
of (6) have to stay in the left half complex plane. This
can be proven by showing that the coefficients s0 and s1
are positive, since then the polynomial λ2 + s0λ + s1 is a
Hurwitz polynomial. The coefficients are given by

s0 = 1
τ + β + ω0

Q0
, s1 = β

τ + ω2
0 +

ω0

Q0τ
+ βω0

Q0
− ω2

R.

Obviously, s0 > 0 holds true, since all parameters (except
uDC) are defined to be positive. Moreover, (A.1b) satisfies

ω2
R <β

τ + ω2
0 +

ω0

Q0τ
+ βω0

Q0
,

since the inner square root can be bounded by


(ω0(βτ + 1) +Q0 (β + τω2

0))
2 − 4βQ2

0τω
2
0

< ω0(βτ + 1) +Q0

�
β + τω2

0


.

Hence, it can be concluded that s1 is also positive, because
all parameters (except uDC) are positive so that the
polynomial λ2 + s0λ + s1 is a Hurwitz polynomial. This
concludes the proof. �

Remark 2. According to Hopf’s Theorem the limit cycle
is attractive, if the equilibrium is asymptotically stable
at the bifurcation points. Numerical results indicate that
(3) is not asymptotically stable at the bifurcation points
acrit. An analytical verification of this observation, which
is outside the scope of this paper, might be based on the
Center Manifold Theorem applied to the system

ż =Alinz + γa2

R2



0
0
z24
0


 .

in the state z = x − xe with xe from (4). As by
definition the eigenvalues of Alin are form by a pair of
conjugated complex eigenvalues with zero real part and
two eigenvalues with negative part it is necessary to take
into account the additive nonlinear perturbation for the
stability assessment.

3. ENVELOPE MODEL AND AMPLITUDE
CONTROL BY DISTURBANCE INJECTION

Subsequently an amplitude controller composed of a feed-
forward controller with distortion injection t → aDI(t) to
adjust the feedback gain parameter a in (3) is determined
based on an envelope model. With this the amplitude
of the output y = x1 of (3) is supposed to maintain
a constant prescribed value under external excitation.
By exploiting the dynamical range of an Andronov-Hopf
bifurcation this allows to encode the information of the
external input Fext in the temporal evolution of the feed-
back strength aDI so that the artificial hair cell adapts
its sensitivity and uses the amplification induced by the
Andronov-Hopf bifurcation effectively.

3.1 Determination of the envelope model

Envelope models in general were developed in, e.g.,
Sanders and Noworolski (1991); Sanders et al. (1991);
Caliskan et al. (1999). They are in principle based on the
derivation of ODEs describing the temporal evolution of
Fourier coefficients of the trajectory. In view of controlling
the oscillation amplitude, this approach allows to reduce
the computational burden as larger sampling times can be
used compared to those necessary to resolve rather high
frequency oscillations. Following Egretzberger and Kugi
(2010); Egretzberger et al. (2012), consider the ansatz

xi = qi,0 + qi,1 cos(ωst) + qi,2 sin(ωst) (7)

with the Fourier coefficients qi,j(t) ∈ R, j ∈ {0, 1, 2} for
the state xi(t), i ∈ {1, ..., 4} and the sampling frequency
ωs > 0. As system (3) exhibits an Andronov-Hopf bifurca-
tion, the envelope model is expected to be very sensitive
to a change of the sampling frequency ωs around the
bifurcation point(s). Therefore, it is crucial to analyze the
behavior of the envelope model in view of the choice of ωs.

The temporal evolution of the Fourier coefficients qi,j(t)
can be determined from (3) by substituting

ẋi = q̇i,0 + (q̇i,1 + ωsqi,2) cos(ωst)

+ (q̇i,2 − ωsqi,1) sin(ωst) (8)

and (7). Thereby

(x4)
2 = (q4,0 + q4,1 cos (ωst) + q4,2 sin (ωst))

2

≈ q24,0 + 2q4,0[q4,1 cos(ωst) + q4,2 sin(ωst)] (9)

is used in view of (7), which results in the envelope model

d
dt




q1,0
q1,1
q1,2

q2,0
q2,1
q2,2

q3,0
q3,1
q3,2

q4,0
q4,1
q4,2




=




q2,0
−ωsq1,2 + q2,1
ωsq1,1 + q2,2

−ω2
0q1,0 − ω0

Q0
q2,0 + αq3,0 + 1

m
fext,0

−ω2
0q1,1−

ω0
Q0

q2,1−ωsq2,2+αq3,1+
1
m
fext,1

−ω2
0q1,2−

ω0
Q0

q2,2+ωsq2,1+αq3,2+
1
m
fext,2

−βq3,0+
2duDC

a
q4,0+h(q4)+

u2
DCγ

R2

−βq3,1 − ωsq3,2 + 2duDC
a

q4,1 + 2dq4,0q4,1

−βq3,2 + ωsq3,1 + 2duDC
a

q4,2 − 2dq4,0q4,2

− 1
τ
q4,0 + kq2,0

− 1
τ
q4,1 − ωsq4,2 + kq2,1

ωsq4,1 − 1
τ
q4,2 + kq2,2




. (10)

Herein, d = a2γ/R2, h(q4) = d(q24,0+[q24,1+q
2
4,2]/2) and the

Fourier coefficients of the external input Fext are denoted
by fext,j(t) ∈ R, j ∈ {0, 1, 2}.

3.2 Feedforward control with disturbance injection

In the following, the amplitude controller for the two
Fourier coefficients q1,1 and q1,2 describing the harmonic
contributions in the output signal y = x1 is designed. For
this, it is assumed that the Fourier coefficients fext,j(t) of
the external input Fext are known and thus can be injected
by means of the amplitude controller. After that, the gain
of an artificial hair cell is derived, i.e., the change of the
amplitude of the output compared to the amplitude of
the external input. The design is structured as follows:
First, the equilibria of (10) are derived. With this, the
amplitude of both Fourier coefficients of the equilibria
q1,j,e is determined by

A =

q21,1,e + q21,2,e. (11)

This equation establishes a relationship between the am-
plitude A, the external input Fext, and the feedback
strength a. Interestingly, the system of equations to derive
the equilibria of (10) can be decoupled, because q4,0,e
vanishes, such that two linear equation system emerge.
The solution of these equations is summarized in (A.2).
To determine the amplitude A insert (A.2) into (11). After
simplification this results in

A =


f2
2 + f2

3Q0R
2

β2 + ω2

s


τ2ω2

s + 1

m

K(a)

. (12)

with K(a) given by (A.2d). Secondly, (12) has to be solved
for a = aDI to derive the feedforward controller with
disturbance injection. This yields (A.3). Last, the gain can
be derived by substituting (12) into

G =
A

f2
ext,1 + f2

ext,2

(13)
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Fig. 1. Gain response of the artificial hair in terms of the sampling frequency ωs and the feedback strength a.

and the maximum gain can be determined by setting the
square root of (A.3) to zero as

Gmax =
Q0


(β2 + ω2

s) (τ
2ω2

s + 1)

m
Q0 (ω2

0 − ω2
s) (τω

2
s − β) + (βτ + 1)ω0ω2

s

 (14)

4. NUMERICAL RESULTS

To conclude this paper, the amplitude controller aDI is
evaluated numerically. For this the parameters are chosen
according to Table 1. With these parameters the critical
feedback strengths from (A.1a) read acrit,1 = 1.2823
and acrit,2 = −0.9437. Furthermore, (A.1b) yields the
resonance frequencies ωR,1 = 2π × 13005.3 Hz and ωR,2 =
2π × 159.61 Hz.

At first, the gainG(a, ωs) and the maximum gainGmax(ωs)
from (13) and (14) are computed. The result is depicted
in Figure 1. The maximum gain Gmax in terms of the
sampling frequency ωs is shown in Figure 1a. It can be
seen that it is maximized at the resonance frequencies
ωR,1 and ωR,2. Additionally, the frequency selectivity of
the respective Andronov-Hopf bifurcations is shown, since
a small deviation from the resonance frequencies ωR,1

and ωR,2 results in a drastic decrease of the maximum
gain Gmax. The gain G(a, ωs) in terms of the feedback
parameter a is shown in Figure 1b. For this, the sampling
frequencies is chosen as ωs ∈ {ωR,1, ω0, ωR,2}. It can be
seen that as the sampling frequency ωs changes from ωR,1

to ωR,2, the bifurcation point acrit moves from acrit,1 to
acrit,2.

Secondly, (3) and (10) are solved numerically and com-
pared to each other. Especially, note that the sampling
frequency is chosen to be ωs = ω0 and that the maximum
gain with this configuration is Gmax = 732.3 s/kg. Again,
this shows the frequency selectivity of the Andronov-
Hopf bifurcation, since the difference of the frequencies
is ω∆ = 2π× 0.5. Moreover, the envelope of the deflection
is approximated using

x̃1(t) ≈q1,0(t) +


q1,1(t)2 + q1,2(t)2.

and the a time-dependent external force Fext(t) is defined
in terms of its Fourier coefficients

fext,0 = 0,

fext,1 =





f̂ext,1, if t ≤ t1,

f̂ext,1 − (f̂ext,1 − f̂ext,2)
t− t1
t2 − t1

, if t ∈ (t1, t2],

f̂ext,2, if t ∈ (t3, t4),

f̂ext,2 + (f̂ext3 − f̂ext2)
t− t2
t3 − t2

, if t ∈ [t4, t5),

[1 + 0.25 sin (2πt)] f̂ext,3, if t ≥ t5,

fext,2 = 0

with amplitudes f̂ext,1 = 18× 10−9 kgm/s, f̂ext,2 = 1.25×
10−9 kgm/s, f̂ext,3 = 8·10−9 kgm/s, and the time instances
tk = 3k s, k ∈ {1, ..., 5}. The simulation results are shown
in Figure 2. The deflection x1 is depicted in Figure 2a.
Obviously the approximation of the envelope x̃1 estimating
the temporal evolution of the envelope of deflection x1

is well in the non-grey shaded areas. This result from
the fact that the feedback strength a is small such that
the influence of the non-linearity is weak. However, if
the feedback strengths a is increased, the estimation x̃1

becomes invalid. In this case, higher modes induced by the
non-linearity x2

4 become more dominant. This is shown in
the gray-shaded area of Figure 2a. Moreover, the evolution
of the first mode of the external input fext,1 is shown in
Figure 2b and the evolution of the amplitude controller
aDI and its bounds acrit,1 and acrit,2 are depicted in Figure
2c. As expected, the feedback gain a is close to the upper
bound for t ∈ [t3, t4]. This is due to the small amplitude
of fext,1. Additionally, the evolution of the envelope A
with and without the amplitude controller is shown in
Figure 2d. Note that the amplitude of the artificial hair
cell with amplitude controller and with constant feedback
strength are denoted by ADI and Ac, respectively. The
amplitude controller with disturbance injection aDI keeps
the envelope of ADI approximately constant.

5. CONCLUSION

Given the dominant mode model in terms of a thermally
actuated micromechanical beam representing an artificial
hair cell a nonlinear feedforward control with disturbance
injection is developed for keeping the oscillation envelope
constant under external excitation. For this, the bifurca-
tions of the artificial hair cell are analyzed. In particular it
is shown that the used model exhibits two Andronov-Hopf
bifurcations. The amplitude controller is designed based
on a truncated envelope model. The truncation is valid



	 Hermann Folke Johann Rolf  et al. / IFAC PapersOnLine 56-1 (2023) 181–186	 185

100 101 102 103 104 105
10−1

100

101

Sampling frequency ωs /
1
s

M
a
x
im

u
m

g
a
in

G
m
a
x

(a) Maximum gain Gmax of the artificial hair cell in
terms of the sampling frequency ωs.

−1 0 1
10−2

101

104

Feedback strength a

G
a
in

G

G(ωR,1)

G(ω0)

G(ωR,2)

(b) Gain G of the artificial hair cell in terms of feedback parameter a
and the sampling frequency ωs.

Fig. 1. Gain response of the artificial hair in terms of the sampling frequency ωs and the feedback strength a.

and the maximum gain can be determined by setting the
square root of (A.3) to zero as

Gmax =
Q0


(β2 + ω2

s) (τ
2ω2

s + 1)

m
Q0 (ω2

0 − ω2
s) (τω

2
s − β) + (βτ + 1)ω0ω2

s

 (14)

4. NUMERICAL RESULTS

To conclude this paper, the amplitude controller aDI is
evaluated numerically. For this the parameters are chosen
according to Table 1. With these parameters the critical
feedback strengths from (A.1a) read acrit,1 = 1.2823
and acrit,2 = −0.9437. Furthermore, (A.1b) yields the
resonance frequencies ωR,1 = 2π × 13005.3 Hz and ωR,2 =
2π × 159.61 Hz.

At first, the gainG(a, ωs) and the maximum gainGmax(ωs)
from (13) and (14) are computed. The result is depicted
in Figure 1. The maximum gain Gmax in terms of the
sampling frequency ωs is shown in Figure 1a. It can be
seen that it is maximized at the resonance frequencies
ωR,1 and ωR,2. Additionally, the frequency selectivity of
the respective Andronov-Hopf bifurcations is shown, since
a small deviation from the resonance frequencies ωR,1

and ωR,2 results in a drastic decrease of the maximum
gain Gmax. The gain G(a, ωs) in terms of the feedback
parameter a is shown in Figure 1b. For this, the sampling
frequencies is chosen as ωs ∈ {ωR,1, ω0, ωR,2}. It can be
seen that as the sampling frequency ωs changes from ωR,1

to ωR,2, the bifurcation point acrit moves from acrit,1 to
acrit,2.

Secondly, (3) and (10) are solved numerically and com-
pared to each other. Especially, note that the sampling
frequency is chosen to be ωs = ω0 and that the maximum
gain with this configuration is Gmax = 732.3 s/kg. Again,
this shows the frequency selectivity of the Andronov-
Hopf bifurcation, since the difference of the frequencies
is ω∆ = 2π× 0.5. Moreover, the envelope of the deflection
is approximated using

x̃1(t) ≈q1,0(t) +

q1,1(t)2 + q1,2(t)2.

and the a time-dependent external force Fext(t) is defined
in terms of its Fourier coefficients

fext,0 = 0,

fext,1 =





f̂ext,1, if t ≤ t1,

f̂ext,1 − (f̂ext,1 − f̂ext,2)
t− t1
t2 − t1

, if t ∈ (t1, t2],

f̂ext,2, if t ∈ (t3, t4),

f̂ext,2 + (f̂ext3 − f̂ext2)
t− t2
t3 − t2

, if t ∈ [t4, t5),

[1 + 0.25 sin (2πt)] f̂ext,3, if t ≥ t5,

fext,2 = 0

with amplitudes f̂ext,1 = 18× 10−9 kgm/s, f̂ext,2 = 1.25×
10−9 kgm/s, f̂ext,3 = 8·10−9 kgm/s, and the time instances
tk = 3k s, k ∈ {1, ..., 5}. The simulation results are shown
in Figure 2. The deflection x1 is depicted in Figure 2a.
Obviously the approximation of the envelope x̃1 estimating
the temporal evolution of the envelope of deflection x1

is well in the non-grey shaded areas. This result from
the fact that the feedback strength a is small such that
the influence of the non-linearity is weak. However, if
the feedback strengths a is increased, the estimation x̃1

becomes invalid. In this case, higher modes induced by the
non-linearity x2

4 become more dominant. This is shown in
the gray-shaded area of Figure 2a. Moreover, the evolution
of the first mode of the external input fext,1 is shown in
Figure 2b and the evolution of the amplitude controller
aDI and its bounds acrit,1 and acrit,2 are depicted in Figure
2c. As expected, the feedback gain a is close to the upper
bound for t ∈ [t3, t4]. This is due to the small amplitude
of fext,1. Additionally, the evolution of the envelope A
with and without the amplitude controller is shown in
Figure 2d. Note that the amplitude of the artificial hair
cell with amplitude controller and with constant feedback
strength are denoted by ADI and Ac, respectively. The
amplitude controller with disturbance injection aDI keeps
the envelope of ADI approximately constant.

5. CONCLUSION

Given the dominant mode model in terms of a thermally
actuated micromechanical beam representing an artificial
hair cell a nonlinear feedforward control with disturbance
injection is developed for keeping the oscillation envelope
constant under external excitation. For this, the bifurca-
tions of the artificial hair cell are analyzed. In particular it
is shown that the used model exhibits two Andronov-Hopf
bifurcations. The amplitude controller is designed based
on a truncated envelope model. The truncation is valid
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input Fext.
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(c) Evolution of the aDI. The critical feedback strengths acrit,1
and acrit,2 indicate the limitations of aDI.
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(d) Evolution of the amplitude ADI with the amplitude
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Fig. 2. Numerical solution of (3) and (10) with the amplitude controller aDI from (A.3) and the constant feedback
strength aC.

Table 1. Parameters of the simulation

Parameter Value

Resonance frequency ω0 2π × 13 kHz
Sampling frequency ωs 2π × 13 kHz

Q-Factor Q0 30
Offset voltage uDC −0.2 V
Transfer factor γ 4.2588× 107

Transfer factor α 749.3702 m
Ks

Time constant β 1006.6 1
s

Time constant τ 10−3 1
s

Resistance of the heater R 30 Ω

Calibration factor k 106 V
m

Constant feedback strength ac 0.8
Mass m 2.5× 10−10 kg

Desired amplitude A∗ 0.8× 10−8 m

as an Andronov-Hopf bifurcation is frequency selective.
Additionally, an analytical expression for the gain, i.e.,
the relative change of the amplitude of the artificial hair
cell with respect to the amplitude of the excitation signal
is derived to show the remarkable dynamical range of an
Andronov-Hopf bifurcation. Simulation results illustrate
the performance of this concept.
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Appendix A. EQUATIONS

The equations for the bifurcation point, resonance fre-
quency, equilibria of the envelope model, and the feedfor-
ward controller with distortion injections are summarized
in (A.1a), (A.1b), (A.2), and (A.3), respectively.
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Bifurcation point and resonance frequency of the artificial hair cell
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Equilibria of the envelope model
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Feedforward controller with disturbance injections
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