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Abstract

Through deep learning, semantic segmentation systems have been utilized to yield

impressive results, yet this was achieved on the basis of supervised learning which is

limited by the availability of costly, pixel-wise annotated images. When investigat-

ing the performance of these segmentation systems in contexts where annotations

are scarce they fall short of the high expectations induced by their performance in

annotation rich scenarios. This predicament weights especially heavy, when the an-

notations have to be provided by heavily trained personnel, e.g. medical doctors,

process experts or scientists. To bring well-performing segmentation models into

these annotation deprived expert-driven domains, new solutions are needed.

To this intent, we first investigate how badly current segmentation models really cope

with extreme annotation scarce settings in expert-driven imagery domains. This

is directly linked to the question whether costly pixel-wise annotations that high

performing segmentation models are trained with can be circumvented, or if they

are, conversely, a cost-effective kick-start to bring the segmentation off the ground

when used sparingly. We further briefly dive into the question whether different

kinds of annotations, weak- and full pixel-wise annotations with varying costs, can

be used jointly in training segmentation systems in order to make the annotation

process more flexible.

Expert-driven domains do not only come with annotation scarcity but with entirely

different imaging properties, including a volumetric shape. Moving from 2D- to

3D semantic segmentation and training models in a supervised fashion entails voxel-

wise annotation processes, which multiplies the time-expenditure for annotation with
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the added dimension. To circumvent this costly process and end up at manageable

ways of annotation, we investigate segmentation model training strategies which only

require either more economical sparse annotations or unlabeled volumes. This shift

in supervision type can bring annotation costs down for volumetric segmentation

tasks and enable applications to be built in expert-driven domains. As side-effect

annotators are freed from the laborious task of densely annotating entire volumes

which reduces redundant work to be done due to visually redundant regions as present

in volume data.

Finally, we ask the question, whether it is possible to free up expert annotators from

the strict requirement of having to supply a single, specific annotation type and

design a training strategy which can work with a broad diversity of semantic cues.

We design a training strategy for this scenario and, in our extensive experimental

evaluation, bring to light interesting properties of different annotation type mixes in

relation to their resulting segmentation performance.

Our investigations led to new research directions in semi-weakly supervised segmen-

tation, novel, annotation-efficient methods and training strategies as well as exper-

imental insights which are valuable for practitioners and can improve annotation

processes by making them annotation-efficient, expert-centric and flexible.
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Zusammenfassung

Unter Zuhilfenahme von Deep Learning haben semantische Segmentierungssysteme

beeindruckende Ergebnisse erzielt, allerdings auf der Grundlage von überwachtem

Lernen, das durch die Verfügbarkeit kostspieliger, pixelweise annotierter Bilder lim-

itiert ist. Bei der Untersuchung der Performance dieser Segmentierungssysteme in

Kontexten, in denen kaum Annotationen vorhanden sind, bleiben sie hinter den

hohen Erwartungen, die durch die Performance in annotationsreichen Szenarien

geschürt werden, zurück. Dieses Dilemma wiegt besonders schwer, wenn die Anno-

tationen von lange geschultem Personal, z.B. Medizinern, Prozessexperten oder Wis-

senschaftlern, erstellt werden müssen. Um gut funktionierende Segmentierungsmod-

elle in diese annotationsarmen, Experten-angetriebenen Domänen zu bringen, sind

neue Lösungen nötig.

Zu diesem Zweck untersuchen wir zunächst, wie schlecht aktuelle Segmentierungsmod-

elle mit extrem annotationsarmen Szenarien in Experten-angetriebenen Bildgebungs-

domänen zurechtkommen. Daran schließt sich direkt die Frage an, ob die kostspielige

pixelweise Annotation, mit der Segmentierungsmodelle in der Regel trainiert werden,

gänzlich umgangen werden kann, oder ob sie umgekehrt ein Kosten-effektiver Anstoß

sein kann, um die Segmentierung in Gang zu bringen, wenn sie sparsam eingestetzt

wird. Danach gehen wir auf die Frage ein, ob verschiedene Arten von Annotationen,

schwache- und pixelweise Annotationen mit unterschiedlich hohen Kosten, gemein-

sam genutzt werden können, um den Annotationsprozess flexibler zu gestalten.

Experten-angetriebene Domänen haben oft nicht nur einen Annotationsmangel, son-

dern auch völlig andere Bildeigenschaften, beispielsweise volumetrische Bild-Daten.
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Der Übergang von der 2D- zur 3D-semantischen Segmentierung führt zu voxel-

weisen Annotationsprozessen, was den nötigen Zeitaufwand für die Annotierung

mit der zusätzlichen Dimension multipliziert. Um zu einer handlicheren Annota-

tion zu gelangen, untersuchen wir Trainingsstrategien für Segmentierungsmodelle,

die nur preiswertere, partielle Annotationen oder rohe, nicht annotierte Volumina

benötigen. Dieser Wechsel in der Art der Überwachung im Training macht die An-

wendung der Volumensegmentierung in Experten-angetriebenen Domänen realistis-

cher, da die Annotationskosten drastisch gesenkt werden und die Annotatoren von

Volumina-Annotationen befreit werden, welche naturgemäß auch eine Menge visuell

redundanter Regionen enthalten würden.

Schließlich stellen wir die Frage, ob es möglich ist, die Annotations-Experten von

der strikten Anforderung zu befreien, einen einzigen, spezifischen Annotationstyp

liefern zu müssen, und eine Trainingsstrategie zu entwickeln, die mit einer breiten

Vielfalt semantischer Information funktioniert. Eine solche Methode wurde hierzu

entwickelt und in unserer umfangreichen experimentellen Evaluierung kommen in-

teressante Eigenschaften verschiedener Annotationstypen-Mixe in Bezug auf deren

Segmentierungsperformance ans Licht.

Unsere Untersuchungen führten zu neuen Forschungsrichtungen in der semi-weakly

überwachten Segmentierung, zu neuartigen, annotationseffizienteren Methoden und

Trainingsstrategien sowie zu experimentellen Erkenntnissen, zur Verbesserung von

Annotationsprozessen, indem diese annotationseffizient, expertenzentriert und flexi-

bel gestaltet werden.
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1 Introduction and motivation

This thesis is centered around the necessity of best performing semantic segmenta-

tion algorithms requiring a lot of costly pixel-wise annotations which are hard to

acquire, specifically in domains where highly skilled experts annotate. By design

prior annotation-cost efficient learning paradigms restrict the expert annotators to

specific annotation types, be it few pixel-wise annotations combined with unlabeled

data or fast to generate weak annotations, either way forcing them into an inflexi-

ble process. In order to enable semantic segmentation technology to be deployed in

expert-driven domains, this thesis, presents algorithms that put annotators into the

center by dropping the restriction of a single specific annotation type. By accepting

broad combinations of imaging data with strong-, weak- and no semantic annota-

tions, our semi-weakly supervised algorithms increase the flexibility of experts in the

annotation phase to better fit their needs and the domain at hand. Our developed

algorithms offer key solutions for adapting the success formula of semantic segmen-

tation to the small-dataset, expert-driven long tail of computer vision applications.

The economic impact unlocked by artificial intelligence (AI) is estimated between

$3.5 trillion and $5.8 trillion in value annually across nine business functions in 19

industries [1] while science news postulates AI is changing how we do science as it

might spot new particles, see galaxies, sense the public mood from social media [2].

Arguably one of the biggest disconnects between this euphoric view of AI as sup-

ported by recent breakthroughs in AI research [3, 4, 5] can be summarized by a small

insight from AI expert Andrew Ng:

I once built a face recognition system using about 350 million images. But when I

asked people in the manufacturing industry how many images they had of each defect

they wanted to recognize, 50 or fewer was the most common answer. [6]



4 PART I. BACKGROUND

To put it simply: the long tail of applications for AI in industrial-, scientific- and also

medical contexts do not have the data richness that enabled prior breakthroughs, yet

they bare immense value to be salvaged which is needed to live up to the euphoric

vision of AI.

In this thesis, we consider a portion of this long tail, specifically we consider applica-

tions that are enabled by precisely delineating semantic structures in images. The AI

or, to get more scientific, the machine learning techniques that are able to fulfill this

task are called semantic segmentation algorithms. By solving the task of semantic

segmentation it becomes possible to automatically measure shapes, sizes, bound-

aries and occurrences of all entities within an image as well as to quantify distances

between-, contact points among- or overlap of semantically different entities. As

might be evident by this variety of possibilities, automatic semantic segmentation is

useful for applications from health care, e.g. quantifying the progression of a tumor in

magnetic resonance imaging [7] or measuring the accumulation of fluid in the retinal

layers via optical coherence tomography [8] over industrial- to scientific applications,

e.g. counting the contact points different cell organelles have to each other in electron

microscopy images to gather novel scientific insights [9]. When shifting the focus from

applications in the natural image domain of objects, street-scenes or persons where

the most notable computer vision advancements are made [5, 10, 11, 12, 13], towards

the long tail of applications, the diversity of imaging modalities increases towards

other sensors and thereby other imaging properties. With a larger and larger visual

difference to common natural imagery, which we all encounter on a day-to-day basis,

the imaging modalities on the long tail are not as easy to interpret anymore. Here,

highly skilled experts in the respective fields are needed to provide semantic anno-

tations [32] as it is necessary to be familiar with very nuanced structures and work

with volumetric-, hyper-spectral- or noisy imaging modalities which often requires a

lot of experience or extensive scientific training.

As the pool of possible annotators shrinks to a set of busy experts which have only

limited time to apply their expertise to annotate images, naturally, datasets on this
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Figure 1: Number of available annotated samples in medical datasets is much smaller
due to data properties (e.g. volumetric) and due to the necessity for experts needed in
annotation. Well-known natural image segmentation datasets (cyan) and most recent
medical datasets (magenta) registered as MICCAI 2023 segmentation challenges [31].

long tail are comprised of far fewer annotations as compared to the natural image

domain, where scaling annotation through crowd sourcing the annotation process is

possible [14]. In Figure 1, we display the number of samples in well-known segmen-

tation datasets from the natural image domain and the most recent segmentation

datasets from medical challenges on a log scale. It is evident, that a lot of potential

applications in this domain where doctors need to be involved in the annotation

process or, the data includes volume data, are heavily annotation constrained.

Domains where process experts, skilled workers or trained scientists are critical in

the annotation process will subsequently be referred to as expert-driven domains. In
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the following chapters, it will be explored how the intricacies of expert-driven do-

mains can be accommodated better in training semantic segmentation algorithms,

namely, how we can work with scarce annotation resources more efficiently and how

the expert’s time should be spent to get further with less of their time. Our goal is

to offer an alternative pathway to train segmentation algorithms for use-cases where

thousands of costly, pixel-wise annotated images are simply out of reach. Therefore,

we want to pivot from the restrictive, time-consuming and annotation-centric super-

vised semantic segmentation paradigm towards, what we will show to be annotation-

efficient and expert-centric, semi-weakly supervised semantic segmentation.

✓✓
✓✓
✓✓✓
✓✓✓
✓

✓
✓✓
✓✓✓
✓

Data AnnotationData Acquisition Model Training

1

2

3

Learning with weak or strong annotations
What is the status quo in small data segmentation, can we circumvent pixel-wise
annotations completely, can a model be trained with annotation type combinations?

Learning with partial annotations
Do we need full, dense annotations for expert-driven volume segmentation, how can 3D 
segmentation models be trained with partial annotations?

Unified learning with diverse annotation types
How can segmentation models be trained with diverse annotation types, how can we
evaluate annotation-efficiency, how well do different annotation type mixes perform?

Learning with weak or strong annotations1

Learning with partial annotations2

Unified learning with diverse

annotation types
3

Figure 2: Overview of an expert-centric semantic segmentation pipeline where ex-
perts are not restricted to a single annotation type. We display the annotation-
efficient and expert-centric segmentation contributions in this thesis on the right.
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2 Contributions in this thesis

As described, the standard procedures for training semantic segmentation models

were set up mainly with the natural imaging domain in mind, where they have been

wildly successful. In this thesis, we explore, how to alter the training procedure

of segmentation models for expert-driven domains in order to better respect their

critical resource which is the expert’s availability to annotate. The contributions

are structured into three parts, where segmentation models are trained with 1

pairs of weak and strong annotations, 2 partial annotations and finally with 3

diverse strong-, weak- and partial annotations simultaneously, in order to free the

experts from having to provide only a fixed annotation type towards enabling them to

provide whatever they have the time for. All these investigations consider scenarios

where extremely few, i.e. often just a handful of images are associated with pixel-

wise annotations, and the size of the datasets fall far behind those in the natural

imaging domain. A general overview of the contributions in this thesis is displayed

in Figure 2. Implementation of all subsequent contributions was done by Simon Reiß.

2.1 Learning with weak or strong annotations

A first step towards better segmentation in expert-driven domains is presented in

chapter 4, which is based on a CVPR 2021 publication [33]. There, we explore the

following research questions:

How far can current segmentation models go with very few pixel-wise annotations

in expert-driven domains?

In order to gather insight into segmentation model training in expert-driven do-

mains and to get an idea of the model’s behaviour under excessively small amounts

of pixel-wise annotations, we first assess how current segmentation algorithms per-

form in these conditions. We carry this investigation out on the medical imaging

domain of optical coherence tomography where ophthalmologists are the experts
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needed for annotating different types of retinal fluids within a patient’s retina. By

rigorously carrying out model training on multiple cross-validation splits for more

stable results, and exploring scenarios with varying amounts of annotations from

merely one to eight pixel-wise annotations per retinal fluid class, we uncover how the

performance of segmentation algorithms progresses with the addition of more and

more annotations in generally annotation scarce scenarios. With this insight, we ask:

Are weak annotations sufficient, or are pixel-wise annotations a vital kick-start for

training segmentation models in expert-driven domains?

This next question revolves around the prospect to circumvent the high costs of pixel-

wise annotations completely by instead working exclusively with more cost efficient

weak annotations, such as bounding boxes in expert-driven semantic segmentation.

Here, we’ll discuss and gather insight into properties of completely weakly super-

vised approaches in expert-driven domains and see how a naive weakly supervised

approach compares to models that have access to very few costly pixel-wise annota-

tions. Naturally, a new question poses itself: Can we get the best of both worlds?

How can we leverage pairs of different annotation types in training a segmentation

model and does it help?

Weak labels such as image-level descriptions are fast to generate, costly pixel-wise

annotations on the other hand give meaningful cues regarding the delineation of

semantic regions. In a first attempt, we look into the prospect of integrating pairs

of annotation types to boost the segmentation performance while not having to rely

only on costly annotations. This exploration is the starting point towards a more

expert-centric training design, adding the possibility for domain experts to annotate

on different granularity levels, respecting the expert’s time constraints.
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2.2 Learning with partial annotations

Expert-driven domains often encompass very different imaging modalities, as com-

pared to the natural image domain and these modalities come with specific proper-

ties. It is quite common to be faced with imaging data, that is captured not only in a

two- but in a three dimensional manner [7, 8, 19]. Evidently, for each imaged sample

the pixel-wise annotation cost scales with the extra dimension which of course adds

to the predicament of expert-driven domains. In chapter 5, which is based on an

ECCV 2022 publication [34], we explore how to address this issue:

For expert-driven volume segmentation, do we need full densely annotated volumes

to train segmentation models?

Depending on the expert-driven domain that is analyzed, it might only be possible

to fully annotate merely a handful of volumes pixel-wise, or due to the excessive size

of each volume it might not be feasible to annotate a whole volume at all. Therefore,

we try to give insight into the question, whether to train 3D segmentation models,

we actually need densely annotated volumes. To investigate this, we analyze how

well current models are suited to work with partial annotations where only small

regions of the whole volume are annotated. We do this for the medical expert-driven

domains of retinal fluid segmentation in optical coherence images and brain tumor

segmentation in magnetic resonance imaging. Here, we shed light on extremely scarce

annotation scenarios with fewer than ten partial, pixel-wise annotations per class.

How can volumetric segmentation models be trained more effectively using only

partially annotated volumes?

With the insight from the prior research question we identify the need for improving

segmentation results in such volumetric segmentation scenarios and to make cost-

efficient partial annotations a good fit for their training. Therefore, we explore ways

to better utilize them while also leveraging the remaining unlabeled regions in each

volume for training. By enabling training with cheaper partial annotations, we end
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up with a cost-effective 3D segmentation solution, that supplies further flexibility

to expert annotators as they can more flexibly use their time on annotating diverse

regions, covering more volumes instead of being restricted to annotating a small

subset of volumes fully, which often includes annotating redundant adjacent regions.

2.3 Unified learning with diverse annotation types

In chapter 6, which is based on a CVPR 2023 publication [35], we consolidate the

insights into learning with different annotation types that we gatherered in the prior

chapters. Here, we put forward a solution to combine a wider variety of annota-

tion types into a single training strategy yielding an annotation-efficient and expert-

centric solution for training segmentation models in expert-driven domains:

How can segmentation models be trained with diverse annotation types?

We naively explored the combination of pairs of annotation types in chapter 4. For

a truly expert-centric training setup, we would like to be even more flexible and

leave the choice of annotation type, be it partial, location-cue free or dense, to the

experts and the time they have to annotate. To achieve this, we put forward a

strategy to train segmentation models with four diverse annotation types as well as

unlabeled images – unifying learning from semantic signals, thereby making possible

an expert-centric segmentation pipeline. We evaluate this paradigm in the expert-

driven domain of cell organelle segmentation in focused ion beam imaging.

How can semi-weakly supervised semantic segmentation algorithms be analyzed

more systematically regarding their annotation-efficiency?

With the higher diversity in annotation types that the models are trained with, the

need for a more systematic evaluation procedure of semi-weakly supervised segmen-

tation algorithms arises. To achieve this, we propose a combination of rigorous cross-

validation paired with an exponential reduction in expensive pixel-wise annotations.
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With this setup, it is easier to gather insight into the vital point at which adding

more pixel-wise annotations comes only with diminishing returns in performance.

By successively substituting pixel-wise annotations with cheaper annotations, we

can measure how different annotation types influence the segmentation performance.

How well do different annotation type mixes perform?

With a semantic segmentation algorithm that is designed to work with arbitrary

mixes of annotation types in training and with the tools to better measure annotation-

efficiency, we are able to explore the effects of using different annotation type mixes

with respect towards the performance. With this we make the first steps towards

showing what annotation type mixes give an advantageous cost-performance trade-

off which before this work was not possible due to a lack of such a segmentation

training strategy. With our novel insights we impact the way that segmentation

datasets can be setup and the way segmentation models can be trained enabling

practitioners to rethink their procedures from an expert-centric perspective.

3 Related work

When trying to solve the task of semantic segmentation with few pixel-wise anno-

tations, a lot of literature comes prior to and inspired this work. Here, we outline

the prevalent paradigms in the research field and how they relate to contributions

in this thesis. Specifically, we show what has been done in semi-supervised- and

weakly supervised learning which are the most prominent paradigms for considering

how to reduce the labour in the annotation process. We also summarize the bound-

aries to other research directions which are related to ours, but can be seen either as

orthogonal or put emphasis on other aspects in their motivation and goal.

In the standard setting, semantic segmentation is approached from a fully supervised
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perspective, where it is assumed that for each image in a training set, its dense,

pixel-wise annotation is given [36, 37]. In order to more effectively train neural

network-based models in this setting, there have been increasingly large efforts to

annotate bigger and bigger datasets with dense annotations [18, 14, 16, 38], which

has fostered progress in finding new, better segmentation network architectures [39,

40, 41, 42, 43, 44, 45]. While early architectures such as the fully-convolutional

network [43] closely followed its classification convolutional neural network (CNN)

counterparts [11, 46, 47], subsequent architectures also ensured to be compatible to

prominent classification architectures [48, 49] but considered the task of segmentation

from an architecture design standpoint more closely. One idea employed by the

successful DeepLab [40, 41] architecture was to alter the convolution operation in

order for it to cover larger receptive fields via dilated convolutions [50]. Enabling the

networks to capture long ranging contexts in images, attention mechanisms [51, 52]

were frequently introduced into segmentation architectures [53, 54, 55, 56], leading

up to self-attention [57] based segmentation networks [58] which often build upon

visual transformers [49] or swin transformers [59] as backbone. This progress in

architecture development boils down to several factors, one of which is the availability

of a large number of pixel-wise annotated samples [18, 16, 38] as well as strong natural

imagery pre-trained architectures [49, 48, 59] and pre-training strategies [60, 61, 62,

63] obtained from training on large datasets [64] which help in common street-scene-

or everyday scene-centered segmentation benchmarks. Moving towards expert-driven

domains, where experts have to annotate due to the difficulty of interpreting the non-

standard imaging data, strategies such as crowd sourcing [14, 64] the annotation

process or crawling online sources [65] to scale can not be copied.

As such, in expert-driven domains such as bio-medical imaging, where segmentation

datasets are magnitudes smaller [8, 9], the Unet architecture [44] and its variants [66,

67, 68, 69, 70, 71, 72] is still prevalent [73, 74, 75, 76, 71, 77, 9, 78], due to its

robust performance with simple training configurations concerning learning rate,

scheduling and other hyper-parameters as well as when few annotated images are
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available. Although strides towards self-attention-based architectures are also being

made in the medical domain recently [79, 80, 81]. Due to its general robustness we

often chose the Unet architecture in our experiments, where we need a fast trainable

and stable architecture which can handle scenarios where it is only supplied with

a handful of pixel-wise annotations and yields strong results when serving as base

segmentation network for a wide variety of baseline training strategies. Apart from

different visual properties, in expert-driven domains, the imaging data might come

in a different shape, such as with more channels or a volumetric shape [82, 83,

8, 9]. To semantically segment volumetric data, methods with 3D convolutional

operations where proposed [84, 85] which led up to the adaptation of Unet to 3D

Unet [66] which is still among best performing methods in medical challenges [78, 86]

and which is also chosen as base architecture for volumetric segmentation tasks in

this work. Yet, for volume segmentation, a lot of focus has been to adapt the 3D

Unet architecture to different datasets and segmentation tasks by adding multiple

pathways [69], self-supervised training regimes [71] or considering boundary regions

specifically [72, 69, 70]. The paradigm of training models by utilizing deep supervision

has been considered in both standard 2D [87, 88, 89, 90, 91] and in volumetric

segmentation [70, 92]. The positive properties in low-data scenarios [70] and on

convergence in training as well as generalization and vanishing gradients [93] have

led to a lot of methods utilizing deep supervision to inject semantic information

into earlier layers of the network [94, 95, 96]. While the idea of deep supervision was

introduced for classification [97, 93, 46], especially the expert-driven medical imaging

community, plagued by small datasets, took hold of the idea and frequently added

it into training schemes [87, 92, 88, 89, 90, 70, 91, 98, 68]. In this thesis, the deep

supervision paradigm is made use of within a new semi-supervised method, which

we benchmark against some of the semi-supervised algorithms described next.
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3.1 Semi-supervised segmentation

Semi-supervised learning, where the training set for machine learning algorithms is

made up of a small labeled portion and a, generally much larger, unlabeled portion,

is a prominent choice in segmentation scenarios, as small amounts of pixel-wise anno-

tations is commonly what is possible to get hold of. One pathway to integrate both

annotated images and unlabeled images into training is by training a network on the

labeled portion and inferring so called pseudo-labels for the unlabeled images and

continue training with those as well [99, 62, 100, 101]. An approach which bridges

the gap between pseudo-label methods and so called consistency regularization ap-

proaches is FixMatch [102]. It works with two differently strong augmentations on

an image where the weakly augmented image is used to infer the pseudo-label and

the strongly augmented image is used as input to train the network with back-

propagation and the pseudo-label as ground truth. Originally, this approach was

designed for semi-supervised classification but has shown strong performance in seg-

mentation as well [103]. Enforcing similar predictions from an image which was aug-

mented in two different ways is one way of consistency regularization, while others

include perturbing the forward pass of a network in different ways, e.g. by applying

dropout [104], using different network architectures [105] or multiple networks such

as a student and teacher [104, 106, 107] or by manipulating the input to the net-

works [108, 109] using methods like CutMix [110]. In designing our own methods, we

take inspiration from student-teacher [104] or siamese setups [111, 112] and add dif-

ferent augmentations in order to force the model to learn augmentation invariance for

semantic segmentation, which help us in addressing the problem of data scarcity. Dif-

ferently augmenting a single image is also used in the realm of contrastive pre-training

of classification- [113, 114] but also segmentation methods [115, 116, 117, 118, 119].

The paradigm of contrastive learning is an intriguing one, which we will make use

of by disentangling class associations among images with differently granular anno-

tations. Further, we utilize the contrastive paradigm in volume segmentation, to

enforce different properties on individual embeddings of input voxels. This, we do in
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a setting where we train with partially labeled volumes [120, 66] and unlabeled vol-

umes which is an adaptation of semi-supervised volume segmentation from literature,

where it is generally assumed that the labeled portion of volumes consists of densely,

voxel-wise annotated volumes [121, 122, 123, 124, 125, 126]. These semi-supervised

volume segmentation solutions consider the problem though a variety of lenses, in-

cluding through adversarial learning [121], through processing multiple views on the

3D data [122], through student-teacher setups combined with uncertainty model-

ing [123, 124, 125], or via contrastive objectives [127, 128, 129]. Some variants of

semi-supervised learning considers graphs [130, 131] in their design, for example to

relate different labeled and unlabeled images [132, 133]. In our methodological des-

gin, at times, we also make use of the view through graphs, yet, we do this in terms of

viewing the input volume as a graph, i.e. each representation of a voxel as a node in it.

This view on the input data as a graph is common in computer vision, e.g. in context

of post-processing methods such as Conditional Random Fields [134, 135, 136, 137].

While the semi-supervised learning paradigm is a good choice for scenarios where

the annotation budget only allows for a small set of annotated samples, it lacks

flexibility, as it still restricts the annotators, or in expert-driven domains the busy

experts, to sit down and strictly only provide pixel-wise annotations while at some

point providing faster, coarse annotations might be already sufficient and might help

in covering a higher diversity of samples with semantic annotations.

3.2 Weakly supervised segmentation

Research in making use of coarse annotations to train semantic segmentation models

has seen a lot of interest in the natural image domain, there these coarse and fast to

obtain annotations include image-level labels [138, 139, 140, 141, 142, 143, 144, 145],

scribbles or points [146, 147, 148, 149, 150, 151, 152, 153] and bounding boxes [154,

155, 156, 157, 158]. In early work on training segmentation models from image-level

labels [138] the paradigm of multiple instance learning [159] has been made use of,

while most of successive work utilized feature attribution methods [160, 161, 162].
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For feature attribution methods, a classifier is trained on the image-level labels in a

way such that coarse location cues can be extracted for the training images, which

then are refined by weakly supervised methods using specifically designed prior as-

sumptions [139, 141, 142, 143, 145]. A few approaches also investigate this paradigm

in the expert-driven medical domains, e.g. optical coherence tomography [163, 164],

yet for the most part the assumptions that lead to good results in the natural imag-

ing domain are not naively transferable to the wildly different data in medicine. In

our experiments we investigate the implications of additional image-level labels on a

semi-supervised segmentation network.

Bounding boxes which are drawn around the entities to segment can also offer a

quick, yet coarse location cue which has been used to train semantic segmentation

models with in the natural image domain [158, 157, 165, 155]. Many of these meth-

ods address the ill posed problem of weakly supervised segmentation with boxes

by integrating algorithms such as GrabCut [166], Multiscale Combinatorial Group-

ing [167], or Selective Search [168] which can derive a strong initial segmentation

from the boxes which can be used for segmentation model training. For image do-

mains where these algorithms lead to good initial segments, these weakly supervised

solutions are applicable, yet for expert-driven domains, this might not always be the

case due to the different data distribution. Expert-driven medical domains such as

positron emission tomography [169] and magnetic resonance imaging [170, 171] have

also seen the application of box-based weakly supervised segmentation. Whether

bounding boxes can be a substitute for dense pixel-wise annotations in expert-driven

domains, or whether a few pixel-wise annotations are disproportionately effective is

one question investigated in our experimentation.

The last frequently explored weak annotation types that we discuss here, are partial,

incomplete scribble or point annotations [150, 146]. Due to the ease of acquisition,

they are a common choice also in the medical field [172, 173, 174, 175, 176]. Angles

from which these works approach learning segmentation from scribbles include ad-

versarial objectives using additional unpaired pixel-wise masks [174], bootstrapping
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pseudo-labels for histopathology images [175] or working with extreme point clicks

for a volumetric segmentation task [176]. Related, to this form of supervision, in

our experiments, we train volumetric segmentation models with sparsely annotated

volumes and design a method which can better cope with them.

Weakly supervised segmentation has shown strong performance in the natural image

domain, what makes it difficult for expert-driven domains where the images have

very different properties from natural images is that the designed constraints might

not be transferable between these domains. Therefore, specific constraints have to

be found again and again for each domain, hindering easy deployment.

3.3 Semi-weakly supervised segmentation

Both semi- as well as weakly supervised segmentation offer valid pathways towards

reducing the required amount of densely annotated images as would be needed to

obtain good results via supervised learning. A step towards a more flexible learning

scenario has been argued for by Choe et al. [177], namely training with both weak

and dense sets of annotations in a semi-weakly supervised way. This style of training

with diverse mixes of available semantic information is sometimes also referred to as

mixed- or omni-supervised training [178, 179, 180]. With a segmentation solution in

this style of training, it is possible to, from an algorithmic perspective, influence the

annotation process, by accepting a varying granularity of annotations at once, in our

case, freeing the time-constrained experts to flexibly provide any annotation type that

they have the time for – be it a few pixe-wise masks, or additional weak annotations.

Early explorations combined pixel-wise masks with image-level information [181] and

bounding boxes [165]. Both scenarios using masks with image-level labels [182, 183,

184, 105, 185, 186, 187] and masks with boxes [157, 188, 189, 190, 191] were explored

frequently, yet, the former scenario was often investigated only briefly in these works.

More seldom annotation mixes explored in literature include the combination of mask

annotations with scribbles [146, 192] or unlabeled images with scribbles [178]. The

most diverse use of annotation types in segmentation was in Li et al.’s work [156] on
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bootstraping a panoptic segmentation system, for which at different stages image-

level labels, boxes and masks come into play. This thesis aims at quantifying the

effect of different semi-weakly supervision scenarios for segmentation to get a deeper

insight into which annotation type combinations are most effective in yielding good

results at manageable costs for expert-driven domains. This includes methodological

contributions we put forward to effectively benefit from diverse semantic annotation

types beyond pairs of annotations types as previously done. Thereby we open up

possibilities for expert annotators to spend their time flexibly on annotations of

different granularity to the biggest effect.

3.4 Orthogonal research fields

This thesis is centered around reducing the effort for annotation in expert-driven

domains from an algorithmic, neural network training strategy perspective, where

we aim at making the annotation process flexible by accepting a broad variety of

semantic cues. Yet, there exist research fields with aligned goals, i.e. reducing the

annotation effort, that are orthogonal to semi-weakly supervised segmentation and

thus could be applied jointly. Next, we briefly mention and outline these fields.

Active learning: In active learning, the main idea is to, before annotation, estimate

how much benefit each of the unlabeled examples will have on the model performance

when it is supplied with an annotation. For semantic segmentation a variety of ap-

proaches exist, from the utilization of adversarial learning [193, 194] to estimation of

uncertainty maps [195] which sometimes are computed through multiple augmenta-

tions [196]. During the process of active learning, segmentation models are trained,

which could also be done in a semi-weakly fashion leveraging our training strategies,

which on top offer the possibility to extend the active learning scenario to include

suggestions on which annotation type is the most beneficial for each unlabeled image

in terms of a performance gain and cost trade-off. To get a better view on results of

active learning, intertwining it with semi-supervised methods has even been argued
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for [197] and was explored already [198] including in the expert-driven histopathol-

ogy domain [199], which further validates that methods presented in this thesis are

readily applicable.

Interactive segmentation: Rather than decreasing the amount of pixel-wise an-

notations, which we will investigate in our experiments, in interactive segmenta-

tion [200, 201, 202] the goal is to lower the time it takes for each pixel-wise annotation

to be drawn. This is done by instead of carefully delineating segments in images,

asking the annotator to provide a sequence of clicks, and with each click computing a

higher quality mask suggestion. Interactive segmentation is common to the medical

domain including for volumetric imagery [203, 204, 205, 206], and can be utilized to

lower the time for each pixel-wise annotation before semi-weakly supervised training,

or semi-weak algorithms could use the information form sparse clicks as additional

supervision signal.

Transfer learning: The idea of transfer learning is to pre-train a model on a large

dataset in order to learn general, transferable features which will be useful for fine-

tuning the model on a down-steam task where only few annotations are available.

Transfer learning has proven useful to reduce the amount of annotations needed

in the medical domain [207], where, for classification, the number of annotations

could be reduced by 40%, 59% and 70% for mammography [208], chest x-ray [209]

and dermatology [207], respectively, without performance degradation. Reductions

in annotations for segmentation in expert-driven domains, where the datasets are

much smaller than for classification has also been investigated [210, 211, 212] and

could easily be combined with the benefits of the annotation-efficient solutions in

this thesis.

Annotation budget allocation: This thesis investigates the implications of train-

ing segmentation models with different annotation type mixes, which coarsely relates

to annotation budget-focused research on investigating whether to annotate images

with dense or weak annotations [213] or trying to estimate the data requirements

of an algorithm [214, 215, 216]. Combining these works with the methodological
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contributions to integrate diverse annotations, which will be presented next, could

paint a broader picture and lead to more economical annotation-budget allocation

strategies for practitioners.
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4 Learning with weak or strong annotations

Neural network-based semantic segmentation algorithms generally require a lot of

pixel-wise annotations to produce strong results. This chapter investigates how ef-

fectively these algorithms can be trained when drastically reducing the amount of

annotated data and how their performance evolves when successively granting them

more and more pixel-wise annotations. Then, current semi-supervised algorithms

are explored towards their behavior in this setting, and the paradigm of semi-weakly

supervised segmentation is studied as pathway to more flexibly profit from different

types of semantic information. Specifically, it is investigated how the performance

changes when intertwining pixel-wise annotations with image-level information which

provides experts with more options to annotate. Further, naive weakly supervised

training is put to the test, in order to investigate whether supplying models with

only box information – depriving them from mask information completely – is an

economical pathway to kick-start segmentation training, or whether few mask an-

notations aside unlabeled or weakly labeled images are unreasonably effective and

provide the better annotation pathway.

This section is based on a publication in CVPR 2021 [33].

4.1 Introduction

The availability of massive heaps of labeled training data [64, 14] facilitated by the

internet and the parallelism from specially designed computing hardware in combina-

tion enabled more extensive and efficient training of deep neural networks, bringing

large leaps in performance with them [11, 47, 48]. This led neural networks and their

training via error back-propagation [217] to be front-runners on a diverse variety of

computer vision tasks, from classification [11, 47, 48, 46], to detection [218, 219, 220]

and semantic segmentation [43, 44, 40, 41] to name some of the most prominent. To
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consolidate this progress into other domains than internet-driven imagery, for exam-

ple into medical imaging, one major hurdle presents itself: the effort of setting up

new and large enough annotated datasets for the training data requirements of deep

neural networks. For setting up a semantic segmentation dataset in e.g. the medical

domain not only are time-intensive, pixel-wise annotations covering the whole image

needed, but medical experts need to provide them as it requires a lot of experience

and training to grasp the nuances of pathology and abnormality in medical scans [32].

Yet, these highly skilled experts do not go through the long training to develop their

abilities for annotating images with precise semantic location information, but, in

case of medical experts, to spend their time on quite literally saving lives. This

results in a small time-budget based on the expert’s availability for providing anno-

tations, putting heavy restrictions on the number of annotated samples the semantic

segmentation algorithms are trained with, often far below the size of natural image

datasets with multiple thousand pixel-wise annotations.

The following chapter is an investigation into the performance of semantic segmenta-

tion algorithms when they are supplied only with a handful of pixel-wise annotations

in the expert-driven medical domain of retinal fluid segmentation in optical coher-

ence tomography scans [221]. Specifically, a variety of semi-supervised semantic

segmentation algorithms are trained with extremely few pixel-wise annotations and

some unlabeled retinal scans. In order to better grasp how big the requirement for

pixel-wise labels for acceptable segmentation performance actually is, the amount of

pixel-wise annotations is increased successively in an effort to close the performance

gap as compared to training with the full pixel-wise annotated dataset. Thereafter,

we investigate how well a naive weakly supervised approach which uses bounding

boxes as most time-consuming annotation performs, and whether skipping costly

pixel-wise annotations completely in favor of boxes is a valid option. To take a first

step towards uncovering the implications of learning from annotation type mixes,

all experiments are repeated using not pixel-wise and unlabeled retinal scans but

pixel-wise and image-level labeled scans, probing into the semi-weakly supervised
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A How far can current segmentation models go with very few pixel-wise annotations in expert-driven domains?

Are weak annotations sufficient, or are pixel-wise annotations a vital kick-start for training segmentation models in 
expert-driven domains?

How can we leverage pairs of different annotation types in training a segmentation model and does it help?
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Figure 3: Overview of the main research questions in this chapter, they will be
explored on an optical coherence tomography dataset [8] where medical doctors
are needed in the annotation process. Further, the Mean-taught Deep Supervision
method is outlined which can help in annotation-scarce, expert-driven domains.

segmentation paradigm and quantifying its segmentation performance. All these

experimental settings are carried out with a rigorous ten-fold cross validation evalu-

ation protocol to reduce the performance fluctuations that are expected in scenarios

with extremely few annotations.

Ahead of these investigations, the scenario of semi-weakly supervised retinal fluid

segmentation is formally introduced in Section 4.1.1 and the algorithmic solution to

this task, the Mean-taught Deep Supervision model, which can be trained in a fully

supervised, semi-supervised and semi-weakly supervised manner is presented. It is

motivated by insights from semi-supervised learning [104], extended with the idea of

deep supervision and a first pathway in this thesis for integrating different annotation

types at once. The three main research questions of this chapter are summarized

visually in Figure 3.
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4.1.1 Problem statement

Next, the task of semantic segmentation is outlined, which we aim at tackling through

semi-weakly supervised learning. Generally, semantic segmentation algorithms are

trained using an image dataset:

D = {x1, ..., xn|xi ∈ R3×H×W} . (II.1)

For classical supervised learning, each image xi in dataset D is associated with a

dense annotation, or mask mi:

M = {m1, ...,mk|mi ∈ [0, 1](C+1)×H×W} . (II.2)

Note, for mi ∈ M, we assume that at each spatial position (x, y) ∈ H ×W only a

single class is set to one (one-hot encoding). A segmentation algorithm makes use of

these rich resources D and M to train a model in order to, for a novel image xt that

has not been seen before in training, compute a segmentation si ∈ [0, 1](C+1)×H×W

which correctly categorizes each pixel into one of the C + 1 classes.

As we described earlier, in expert-driven domains, acquiring a dataset with pixel-wise

masks M is very labour-intensive and heavily dependent on the experts availability

to annotate. The paradigm of semi-supervised semantic segmentation can be used

even when only a subset of the images in D are associated with masks, i.e. when

|M| < |D|. In semi-supervised learning a usual assumption is that the unlabeled

portion is much smaller than the labeled portion (|M| ≪ |D|).

The second paradigm that addresses the issue of dealing with the limited time of

annotators is the paradigm of weakly supervised learning. Here, instead of integrat-

ing unlabeled images or learning from costly pixel-wise annotations, segmentation

algorithms are trained on a dataset D which is associated not with masks but with
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weaker and thereby easier to acquire annotations:

B = {b1, ..., bn|bi ∈ [0, 1](C+1)×H×W} , (II.3)

I = {l1, ..., ln|li ∈ [0, 1](C+1)} . (II.4)

Common choices for weaker annotations are bounding boxes B, which give coarse

location cues covering the whole extent of an entity or completely location-less cues

such as global image-level labels I that merely indicate the presence or absence of

a class. We replace the common representation of bounding boxes as two points

(x1, y1), (x2, y2) ∈ H ×W by a mask-like notation, where a foreground class c is set

to one at all spatial positions that fall inside one of the bounding boxes of class c.

As a special case, the background class C + 1 is set to one at all left empty regions.

Even though the training annotations change for weakly supervised segmentation,

the goal still is to infer a correct pixel-wise prediction for unseen images.

Both semi- and weakly supervised segmentation offer valuable options towards mod-

eling learning and towards designing annotation pipelines. What we are interested in

is profiting from both directions as we 1 want to profit from pixel-wise annotations

and potentially unlabeled images but 2 also gain the option to additionally learn

from weak annotations. Therefore, we define the semi-weakly supervised segmen-

tation scenario as training a segmentation algorithm based on the dataset D and

associated annotations consisting of any subset of M, B, I, where each of these an-

notation type sets may only cover a portion of D. In experiments of this chapter, we

make a first assessment of semi-weakly training and investigate the effects of learning

from annotation type combinations: M+I and B+I. There, images which are not

supplied with a mask mi or a box bi are annotated with an image-level label li.

4.1.2 Preliminaries

Next, some general notation is introduced in order to, more concisely, write about

methodological intricacies in the following sections.
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Image processing First, we outline how an image is processed via an encoder-

decoder segmentation architecture. Throughout the segmentation network, there

exist feature maps f ∈ Rd×H×W after all convolutional, normalization and activation

function computations when processing an image. We refer to the leading dimension

as the number of feature channels, the following two dimensions H and W to the

spatial dimensions or the spatial extent of feature maps. Encoder-decoder segmenta-

tion architectures generally process an image via an encoder part which successively

spatially compresses the image from the dimensions 3 ×H ×W into a feature map

f0 ∈ H0 ×W0. The decoder structure in encoder-decoder architectures then succes-

sively up-scales the feature map f0. This repeated up-scaling leads to a sequence of

intermediate feature maps f0, . . . , fh, with the outermost feature map fh ∈ Rd×H×W

and with the property that for a feature map fi ∈ Rd×Hi×Wi we assume that:

∀i∈{0,...,h};i<j : Hi ≤ Hj ∧ Wi ≤ Wj . (II.5)

Thus, the feature maps in the decoder monotonically increase in the spatial dimen-

sions. In our experiments, the feature maps’ spatial sizes decrease by a factor of two

after each encoder-block and repeatedly double in size in the decoder. The feature

maps in the decoder of the segmentation model will later be utilized to integrate a

deep supervision learning signal. To end up with a pixel-wise prediction the segmen-

tation network produces a feature map f which is transformed by an output-head

containing C+1 1×1 convolutions to map it onto the number of classes to segment.

We adapt this slightly and formulate output-heads κ(·) as a sequence of 1 × 1 con-

volution, batch normalization [222] and ReLU non-linearity [223] followed by a final

1 × 1 convolution. Computing predictions based on a given feature map fi will be

referred to as κi(fi) ∈ RC+1×Hi×Wi , with κi(·) denoting an output-head for a specific

feature map resolution in the decoder. Further, some of our models work with multi-

ple output-heads at the outermost layer, which leads to an added output-head next

to the standard output-head κ(·). This setup is commonly employed in multi-task

architectures [224, 225].
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Supervision signals To optimize the encoder-decoder network towards a set of

parameters that gets closer to solving the semantic segmentation task, loss functions

are needed in order to evaluate the discrepancy between the current output of the

model with respect to the correct segmentation. Steering the parameters into the

correct direction via stochastic gradient descent for images where mask annotations

are present can be done by minimizing the pixel-wise cross-entropy loss:

LCE(κ, f,m) = − 1

H ·W

H,W,C∑︂
i,j,c=1

mc,i,j · log(α(κ(f))c,i,j) , (II.6)

here, α(·) is the softmax function applied along the first dimension.

As hinted at earlier, we aim at introducing intermediate supervision signals via deep

supervision into the network training. For this, we will need a cross-entropy loss

formulation which allows for the presence of multiple classes at the same spatial

location, which leads us to the commonly used binary cross-entropy loss:

BCE(o, t) = t · log(σ(o)) + (1 − t) log(1 − σ(o)) (II.7)

LBCE(κ, f,m) = − 1

H ·W · C

H,W,C∑︂
i,j,c=1

BCE(κ(f)c,i,j,mc,i,j) (II.8)

This loss most commonly uses a sigmoid normalization σ(·) which we will also make

use of in the ensuing section.

4.2 Multi-label deeply supervised networks

In the following sections, we show a specific technique to train networks in a flexi-

ble semi-weakly supervised scheme which we term Self-taught Deep Supervision and

extend it to the so called Mean-taught Deep Supervision training setup. These tech-

niques will enable the investigation of the research questions of this chapter, as they

can be trained with a varying annotation type mix. But first, we introduce a sim-

ple trick to add a semantically consistent deep supervision variant into the network
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Intermediate Feature Map 𝑓

Receptive Field of Feature𝑓:,𝑥,𝑦

Encoder-Decoder Segmentation Architecture

𝑓 :,𝑥,𝑦

Semantic Structures in 
Receptive Field of Feature𝑓:,𝑥,𝑦

Figure 4: Intermediate features can encompass a multitude of semantic classes within
their receptive field and thus can be considered descriptors of these image patches.
This insight is the founding consideration for the Multi-label Deep Supervision loss.

training, the Multi-label Deep Supervision loss formulation, which both semi-weakly

supervised training schemes make use of.

4.2.1 Multi-label deep supervision

The idea of deep supervision was first introduced for image classification [93] with

the problem formulation to merely identify a single class in each image. To integrate

a learning signal, the intermediate feature maps were pooled spatially and associated

with a layer-specific classifier, the predictions of which can be used to calculate a

loss. In semantic segmentation, where the locality of semantic structures is front

and center, retaining the spatial extent of the feature maps enables a sensitivity

towards location through the deep supervision learning signal. As the intermediate

feature maps, which are supplied with a deep supervision learning signal, are smaller

(f0, . . . , fh−1) than the full-scale ground-truth this spatial mismatch has to be ad-

dressed. Apart from [226] which use a nearest-neighbor interpolation to down-scale

the ground-truth annotation and thereby losing semantic information, most com-

monly the feature map is up-scaled [88, 89, 90, 92] using an interpolation strategy

or learned up-scaling and subsequently adds an output-head on top of the up-scaled

feature map to end up at full-scale pixel-wise predictions.

This second way of up-scaling the intermediate feature map and segmenting it is
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a quite hard task, specifically, it is the same task that the entirety of the network

tries to achieve. Therefore, designing deep supervision in such a way forces the

network to, for an exemplary intermediate feature map fsmall ∈ Rd×10×10 and a

corresponding ground-truth mask mbig ∈ Rc×100×100 to up-scale each feature f :,x,y
small at

the spatial location (x, y) to infer a complete patch of size 10 × 10 to accommodate

the big ground-truth annotation. This way of modeling has the shortcoming that

the network itself hast to learn an up-scaling at each intermediate feature map and

thereby the intermediate features need to convey complex information about the

fine-grained spatial relations in the full-scale output space which in the small feature

maps after the encoder of the encoder-decoder architecture might be hard to unravel.

To circumvent these challenges, we take the route of [226] and down-scale the ground-

truth. Yet, we want to achieve this without loosing semantic information in the pro-

cess, which the nearest-neighbor interpolation choice of down-scaling does, as it only

allows for one class at each spatial location. In Figure 4, we visualize the motivation

for our approach. There, for a feature vector f :x,y at a given spatial position (x, y) in

an intermediate feature map f we can display its receptive field, i.e. highlight which

pixels from the input image went into the computation of f :x,y. When overlaying the

receptive field of the feature f :,x,y with the corresponding ground-truth mask (Fig-

ure 4 right hand side), we see, that f :,x,y should achieve to encode all semantic classes

contained in the overlaid field. With this view, individual features in intermediate

layers can be seen as patch descriptors with regard to the input image. To make

sure that these individual features capture the semantics contained in the patch that

they describe, we propose to enforce a multi-label loss with the target for a feature

vector f :x,y consisting of all present semantic classes in its receptive field. As we

aim to do this by down-scaling the ground-truth, the model does not have to learn

an up-scaling procedure in the intermediate output branches which also leads to a

reduced learnable parameter count.

With the formulation of ground-truth masks as binary tensors (II.2), producing the
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Figure 5: The process of integrating segmentation mask information into intermedi-
ate layers in the decoder of a segmentation architecture utilizing our Multi-label Deep
Supervision mechanism. Using max-pooling on multi-label binary masks retains se-
mantic information as displayed to the right.

down-scaled multi-label ground-truth can be achieved efficiently by applying a max-

pooling kernel on top of the binary ground-truth with a fitting kernel-size and stride

to match the individual feature map’s spatial extent. This is a semantic preserving

way of down-scaling the mask annotation, as the occurrence of a class is not lost in

the interpolation procedure. We refer to the down-scaled target for an intermediate

feature map fi as m∗
i ∈ RC+1×Hi×Wi , where the multi-label binary target for the

patch descriptor f :,x,y
i is simply m∗ :,x,y

i as it encompasses the aggregated semantic

classes of the associated patch from the input image. To integrate the down-scaled

ground-truths, we use separate output-heads κi(·) which convolve over the interme-

diate feature map fi and produce a prediction κi(fi) ∈ RC+1×Wi×Hi of the same

spatial extent as fi. These output-heads are applied throughout the decoder part

of the segmentation architecture as displayed in Figure 5, and are supplied with the

semantic preserving down-scaled targets as shown on right hand side. To train these

intermediate segmentation output-heads, the following multi-label segmentation loss
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function is applied:

L(f1, . . . , fh,m
∗
1, . . . ,m

∗
h) =

1

h

h∑︂
k=1

LBCE(κk, fk,m
∗
k). (II.9)

We term this loss function Multi-label Deep Supervision, as it reformulates the deep

supervision integration into binary class-wise predictions to preserve all semantic

classes within the receptive field at each spatial location in the hierarchical feature

maps of the segmentation decoder. Our training with this loss is paired with a

standard cross-entropy loss function as in Equation (II.6) on the outer-most layer

which also serves as prediction output-head for segmentation inference.

4.2.2 Self-taught deep supervision

Integrating Multi-label Deep Supervision into the network training naively only ex-

tends supervised learning with an additional loss term. Yet, what we can make use of

to leverage it in a semi-supervised fashion is it’s combination with pseudo-labels [99].

This is motivated by the idea that inferring noisy labels for images without associ-

ated masks via the segmentation network itself offers a way to make use of unlabeled

images. Self-inferring the labels for images will often lead to a faulty segmentation

which then is still used to train with. Yet, if we integrate the noisy Pseudo-labels

using the Multi-label Deep Supervision formulation, by down-scaling them, small

inaccuracies can be smoothed out and features, i.e. patch-descriptors within inter-

mediate layers leverage the smoothed pseudo-label version which can better match

the unavailable ground-truth, as the toy example on the right side of Figure 6 show-

cases. This loss design directly enables learning the semantic segmentation from

noisy pseudo-labels at very coarse granularity (small scale) and successively a more

refined segmentation in later decoder layers which have to capture more detailed

semantic structures up to the full resolution.

With these considerations, we introduce the Self-taught Deep Supervision training

strategy and architecture, which is trained on masks in a supervised fashion with the
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Figure 6: The proposed approach combines pseudo-labeling via a mean-teacher with
a novel perspective on deep supervision. By perturbing the input to the teacher and
reversing geometric transformations in output-space, we streamline mean-teachers for
segmentation. The new deep supervision, i.e. Multi-label Deep Supervision introduces
a smoothing effect for noisy pseudo-labels: At smaller scales, erroneous predictions
(red) like small shifts or few missed pixel-classifications get smoothed out.

cross-entropy and Multi-label Deep Supervision losses. To enable semi-supervised

learning we infer a pseudo-label p̂ for an unlabeled image from it’s corresponding

outermost feature map fh online using the network prediction κ(fh) itself:

p̂ =

H,W∑︂
i,j

arg max
c

α(κ(fh)c,i,j) , (II.10)

which assigns the class with the highest classification score to a pixel. Afterwards, we

form binary tensors from the pseudo-label p̂ and insert it into the Multi-label Deep

Supervision loss. On the outermost, full scale feature map fh we utilize the standard

output-head κ(·) for the clean, accurately annotated images coupled with the cross-

entropy loss and a second output-head κh(·) for the pseudo-labeled images as part of

the Multi-label Deep Supervison loss. This design has experimentally shown to work

better, specifically, when the clean output-head is utilized for computing pseudo-

labels as well as in inference. Dual-head architecture designs with stop-gradients

(ours: implicit stop-gradient via pseudo-labels) have also been found to be crucial
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for producing non-collapsing representations in self-supervised literature [111].

When moving from the semi-supervised training scenario to training in a semi-weakly

supervised fashion with mask annotations and image-level labels li, a processing step

is added where the pseudo-labels are filtered. Specifically, we integrate the image-

level labels by adjusting a given pseudo-label p̂i such that the classes occurring in

the pseudo-label are also present in li. This process singles out some faulty segments

in the pseudo-label, directly improving its quality. This naive and simple integration

of weak labels is a first step towards assessing whether strong- and weak annotations

can complement each other and produce an advantageous segmentation performance

while giving rise to a more flexible annotation budget allocation.

4.2.3 Mean-taught deep supervision

Lastly, we propose to integrate a process which aims at producing more robust

pseudo-labels through training towards invariance to perturbations in input space,

i.e. when a single image is augmented differently, and towards consistency in output

space, such that differently parameterized models lead to a similar segmentation.

The Self-taught Deep Supervision variant will be extended with the paradigm of a

mean-teacher setup [104], and thus, we refer to this alternate version as Mean-taught

Deep Supervision. The idea of mean-teachers resides in keeping track of a second

so called teacher network which shares the same architecture as the student net-

work. Yet, the teacher is not updated by error-back-propagation, but rather by the

exponential moving average of the student parameters over the previous iterations:

θteachert = α · θteachert−1 + (1 − α) · θstudentt , (II.11)

where θteachert are the teacher’s parameters at iteration t, similarly θstudentt are the

parameters of the student at the same iteration and α is a smoothing coefficient. This

formulation was previously introduced for semi-supervised classification [104] and

was adapted for semantic segmentation [108, 109, 107] afterwards. By continuously
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updating the teacher model with the parameters of the student, the moving average of

those parameters is said to produce a model which is more robust, as it encompasses a

combination of all models in previous iterations. Tarvainen et al. formed an objective

function by aiming at aligning the student’s softmax predictions to the teacher’s via

a mean-squared error (MSE) loss [104]. We extend this by also utilizing the teacher

to derive hard pseudo-labels and leverage them in our Multi-label Deep Supervision

that the student is trained with.

Previous adaptations of the mean-teacher framework to semantic segmentation did

not perturb the input image to the teacher model [107] or made use of CutMix-

like augmentations [108, 109]. What we propose is to differently perturb the input

image to the teacher as opposed to the input to the student, but still obtain two

outputs that align pixel-wise for successive pseudo-label supervision. Specifically,

the input to the student network is an image which is augmented with commonly

used augmentations (color jittering, flipping), the weakly augmented image xweakly.

The input to the teacher network applies further augmentations to xweakly. Firstly,

stronger photometric perturbations γ(·) are added (e.g. color jittering) and after-

wards geometric augmentations φ(·) (e.g. flipping) leading to a strongly augmented

version of the image xstrongly = φ(γ(xweakly)). To achieve aligned outputs between

the teacher and the student networks, after the forward pass of xstrongly through

the teacher network to obtain softmax predictions, the geometric augmentations are

reversed, which we note down by φ−1(·). As such, the aligned pseudo-label from

the teacher’s prediction is computed via Equation (II.10) and geometrically altered

through φ−1(p̂). This process is an important detail to make the mean-teacher work

for semantic segmentation and commonly used image augmentation strategies.

As the teacher network is said to produce more robust predictions, it is also used for

inferring the semantic segmentation of test images. The complete Mean-taught Deep

Supervision setup is displayed in Figure 6.
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4.3 Experiments and results

In this section, we first describe the datasets and experimental setup to test the Multi-

label Deep Supervision loss as well as the Self- and Mean-taught Deep Supervision

training strategies. To rigorously test them, we outline our evaluation protocol for

training runs with very few annotations as well as different annotation types and

explain competing methods we compare to. Finally, we present the quantitative

and qualitative results which lead us towards addressing our research questions as

previously outlined (see Figure 3).

4.3.1 Datasets

To investigate scarce annotation training schedules and semi-weakly supervised se-

mantic segmentation, we build our experiments on top of the expert-driven, medical

domain of retinal fluid segmentation in optical coherence tomography (OCT) scans.

Here, we obtain b-scans (2D images) from the imaged volumetric data from the RE-

TOUCH dataset [8]. The volumes are distributed among three different OCT device

types, Spectralis, Cirrus and Topcon, where we carry out the majority of experi-

ments on the Spectralis b-scans, and verify the results on the data of Cirrus and

Topcon on a smaller set of experiments. We chose the Spectralis vendor for the main

experiments due to it being the smallest of the datasets (49 b-scans per volume vs.

128 b-scans per volume), which suits the setting of working with small amounts of

data well. As the imaged b-scans from the three vendors differ in appearance quite

significantly, as seen in Figure 7, we also do not consider training models on a larger

fused dataset. This is in coherence with literature [8] and again suits our objective

of working with small datasets and few annotations. The dataset is fully annotated

with pixel-wise masks for three types of retinal fluids: Intraretinal Fluid, Subreti-

nal Fluid and Pigment Epithelial Detachments for which we automatically derive

bounding boxes and image-level labels to investigate weakly supervised as well as

semi-weakly supervised segmentation scenarios.
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Figure 7: B-scan images taken from [8] indicating how diverse optical coherence
tomography devices from different vendors image the approximately same region in
the same patient’s retina. Spectralis, Cirrus and Topcon devices produce different
contrast, noise and image resolution.

4.3.2 Evaluation protocol

Our research questions encompass investigating the efficacy of semantic segmentation

algorithms when faced with extremely few annotations, i.e. starting with merely one

example per semantic class and successively doubling the amount. Thus, for the

three classes in the RETOUCH dataset, we consider scenarios with 3, 6, 12 and

24 pixel-wise annotated b-scans. Therefore, we enumerate all training b-scans and

further make sure, that in an interval of the size three, all diseases are present (as

far as possible). With this setup, we can ensure, that in each of the 3, 6, 12 and 24

supervision scenarios at least 1, 2, 4 and 8 images contain each of the three classes.

By enumerating the training set in this way, we also guarantee that e.g. the scenario

with 24 annotated b-scans subsumes the scenarios with 3, 6 and 12 annotations. Put

differently, we successively extend the small sets of annotated b-scans to investigate

the effect of adding annotations in the early process of compiling datasets and how

segmentation performance changes with it.

We will consider two main streams of experiments, which use 1 pixel-wise masks as

the strongest type of annotations and 2 bounding boxes as the strongest annotation

type. Both these streams of experiments are further divided into two flavours of

experiments, where we investigate them either in a semi-supervised fashion, where

we pair the masks or boxes with unlabeled b-scans or in a semi-weakly supervised

fashion in which we investigate them paired with image-level labels. With these

training and evaluation setups, we are able to answer our three research questions.
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To end up at robust results, we carry out all the mentioned experiments with ten-

fold cross-validation. This respects the sensitivity in the optimization process in low

annotation scenarios and as we re-shuffle and re-enumerate the training images in

each cross-validation split, the influence of specific b-scan annotations is reduced.

The splits are generated randomly and independent for each vendor but stay the

same when different algorithms are evaluated. The process is as follows: We ran-

domly select 5 volumes for validation and 5 for testing, while the remaining volumes

(Spectralis: 14, Cirrus: 14, Topcon: 12) belong to the training set. As we train on

the b-scans which are extracted from those volumes and not on the volumes directly,

with this setup we ensure cross-volume validation (i.e. the entire test and validation

volumes are unseen during training and stem from entirely different patients).

To evaluate the efficacy, we follow the standard procedure for segmentation models

and infer the class-prediction P for all pixels in all testing b-scans with a given model

and calculate the Intersection over Union (IoU) using the ground-truth G:

IoU(P,G) =
P ∩G

P ∪G
(II.12)

To evaluate the performance on retinal fluid segmentation, we calculate the IoU

for all C classes (i.e., Intraretinal Fluid, Subretinal Fluid and Pigment Epithelial

Detachments):

mIoU(P,G) =
1

C

C∑︂
c

Pc ∩Gc

Pc ∪Gc

(II.13)

The mean IoU is computed by averaging these individual class IoUs, here Pc and Gc

refer to binary predictions and ground-truth related to class c. As we perform ten-

fold cross-validation the final measures which we display are the average mean IoU

and the standard deviation over these S splits (i.e., each result reflects ten trained

segmentation models):

average mIoU =
1

S

S∑︂
s

mIoU(P s, Gs) (II.14)
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Here, P s and Gs are the predictions and ground-truth of the current split s. In the

following results we generally write mIoU as shorthand for average mean IoU.

4.3.3 Implementation details

Before training segmentation models on the individual b-scans extracted from the

volumes, we apply a retinal OCT pre-processing [227], where anisotropic filtering is

done and the lower edge of the retina is warped such that it approximates a straight

line. The segmentation models are further trained on resized b-scans of size 200×200

enabling bigger mini-batches in training.

In order to produce directly comparable results, we employ the same semantic seg-

mentation architecture for all our experiments. As the Unet architecture by Ron-

neberger et al. [44] has proven to be an off-the-shelf annotation-efficient segmentation

variant as indicated by its successful application in many medical, expert-driven do-

mains [8, 7, 228], we chose it as our backbone workhorse. Specifically, we implement

all approaches on top of a fully convolutional Unet with batch norm layers [222] and

four down-scaling encoder-blocks and four up-scaling (bi-linear interpolation vari-

ant) decoder-blocks. We refer to the feature maps after each of the convolutional

decoder blocks as f0 through f4, where f4 is the feature map directly before the

output-head yielding full-size, pixel-wise predictions. For our Self- and Mean-taught

Deep Supervision models, we utilize two output-heads on f4 and for the Multi-label

Deep Supervision loss individual output-heads on top of the feature maps f0, . . . , f3

as specified in Section 4.1.2.

The main training hyper-parameters are tuned once for a vanilla Unet which utilizes

mask annotations only in training. The mini-batch size is set to 16 b-scans, which

are all augmented by horizontal flipping with a probability of 50% and a random

adjustment of brightness, contrast, hue and saturation by a factor between 0.0 and

0.1. The network weights are initialized with Xavier initialization [229], the training

is set to 100 epochs and stochastic gradient descent optimization with a momentum

term of 0.9 is used. After 80 epochs the learning rate is adjusted from 0.01 to 0.001.
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The best model is found via early stopping, i.e., by evaluating models every 10 epochs

on the validation set and using the best performing model on the validation set in

terms of mIoU and apply it to the test set once after training is completed.

4.3.4 Competing approaches

Standard Unet: As all approaches use a similar network architecture, namely

the encoder-decoder network Unet, our first baseline is simply training it using

the strongest available annotations in the training setup with the cross-entropy loss

of Equation (II.6). This means, if the strongest annotation type available is pixel-wise

mask annotations, we only use those and do not consider unlabeled- or weakly labeled

images. In case we have bounding boxes as strongest annotation type, we train the

Unet similarly by considering the boxes as coarse pixel-wise masks. This is a naive

weakly supervised integration of box annotations, yet it does not require designing

hand-crafted constraints for different imaging domains. For small expert-driven do-

mains such constraints generally have to be evaluated and potentially designed anew

as standard approaches from natural image domains [166, 167] might not work due

to wildly different image properties. As only considering images with either masks

or boxes results in considerably small numbers of iterations per epoch (3,6,12 or

24 iterations) in our scenarios, we train this variant for 1000 epochs instead of the

regular 100 epochs. These Unets are the lower bound, all other algorithms should

outperform this training strategy.

Multi-label Deep Supervision: We investigate if the Multi-label Deep Supervision

loss already brings about improvements when it is integrated into the above Unet

training, where only annotated pixel-wise masks or boxes are leveraged. This baseline

extends the above standard Unet training with our novel loss for all decoder feature

maps f0, . . . , f4.

Invariant Information Clustering (IIC): For semi-supervised learning, we con-

sider Unets, which extend the standard Unet training with an additional self-supervised

loss term based on the invariant information clustering (IIC ) loss of Ji et al. [230]
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which is integrated for all unlabeled images on the feature map f4. By integrating

unlabeled data aside the labeled data, this model functions as lower baseline for

semi-supervised training strategies.

Multiple-Instance Learning (MIL): As a lower baseline for semi-weakly super-

vised algorithms with access to image-level labels, we leverage a Multiple-Instance

Learning (MIL) segmentation model. This model is partially trained with pixel-wise

masks or bounding boxes through cross-entropy and on top integrates image-level la-

bels by average pooling the feature map f4 in the spatial dimension and successively

classifying the pooled feature. For this classification, we enforce binary cross-entropy

for multi-label settings as in Equation (II.8) with the image-level label as the target.

Deeply Supervised IIC and Deeply Supervised MIL: As part of our idea is

based on integrating deep supervision, we show the performance of the IIC - and

MIL-model when the losses are integrated through deep supervision into all feature

maps f0, . . . , f4 of the decoder. These baselines give insight into deeply supervised

training for semi- and semi-weakly supervised segmentation, we refer to them as

Deeply Supervised IIC and Deeply Supervised MIL.

Perone and Cohen-Adad: From semi-supervised segmentation literature in the

medical domain, we further test the consistency-based approach of Perone and

Cohen-Adad [107] by re-implementing it. Strictly following their training scheme

led to diverging models, thus, we modified it by using cross-entropy- instead of the

DICE loss [67] and adapt their α parameter to 0.5 without a ramp up phase as well

as a simple balanced loss weighting.

Self-taught Deep Supervision and Mean-taught Deep Supervision: Lastly,

our proposed training schemes Self-taught Deep Supervision and Mean-taught Deep

Supervision are both able to make use of masks or boxes aside unlabeled- or image-

level labeled images. Therefore, they can be trained either semi- or semi-weakly

by integrating the pseudo-labeling techniques as outlined in Section 4.2.2 and Sec-

tion 4.2.3.
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4.3.5 Hyper-parameter sensitivity studies

We investigate the performance of our Mean-taught Deep Supervision on the valida-

tion sets of the ten cross-validation splits in the scenario where only 24 annotated

masks are available and the remaining images are supplied with image-level labels.

larger γ inference α MSE validation mIoU

– student 0.0 – 57.80 ± 4.68

– student 0.1 ✓ 58.26 ± 4.27

✓ student 0.1 ✓ 58.54 ± 3.62

✓ teacher 0.1 ✓ 60.15 ± 4.14

✓ teacher 0.5 ✓ 61.36± 4.73

✓ teacher 0.5 – 61.24 ± 3.69

Table 1: Ablation for Mean-Taught Deep Supervision
using 24 masks and image-level labels. First line indi-
cates the Self-Taught Deep Supervision performance.

The experiments succes-

sively add different parts

of our method, starting

from not using a mean-

teacher model but merely

the network itself to provide

pseudo-labels, i.e. starting

from the Self-taught Deep

Supervision model in the

first line of Table 1. Then,

in the second line, we add

the teacher model with a

smoothing coefficient α =

0.1. Here, the standard mean-teacher MSE loss is integrated as well as our pseudo-

label based Multi-label Deep Supervision loss which improve the performance slightly.

Increasing the severity of photometic augmentations γ (brightness, hue, contrast, sat-

uration) from a factor of 0.1 to 0.4 also increases the performance a bit in line three.

Inferring segmentation results with the mean-teacher model instead of the student

as well as increasing the smoothing coefficient to 0.5 lead to absolute improvements

of +1.61% and further +1.21% in validation mIoU as indicated in lines four and

five. The configuration in line five results in the best segmentation as indicated

by the validation accuracy which is why we use it for the main experiments. The

last line in Table 1 omits the MSE loss from the standard mean-teacher setup [104]

to show, that without it, our Mean-taught Deep Supervision training strategy still

works and is not dependent on it. For additional experiments which investigate the
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performance of different configurations of the baseline approaches IIC, MIL and their

deeply supervised versions, please refer to Appendix A.

4.3.6 Quantitative results

After setting the hyper-parameters and validating that we have strong baselines for

the scenarios of semi-supervised- and semi-weakly supervised training we now turn

our attention towards the testing results of the ten splits for retinal fluid segmenta-

tion. First, in Table 2 we show the results when training segmentation algorithms

with costly pixel-wise masks as strongest supervision. The columns indicate how

many such masks were used to train the segmentation models ranging from merely

3, i.e. one mask per class, to 24 masks with the upper limit termed Full Access, where

all 416 masks of the training split are used to train with. Two experiments make

use of only these masks in training, the Unet baseline and the Unet trained with

our Multi-label Deep Supervision loss in addition. As expected, the Unet baseline in

the first row, which is the lower baseline for all models, improves for each scenario

with more masks. Likewise, as expected, successively adding more masks comes with

diminishing returns, the first three additional masks (3 to 6) come with a +82.3% rel-

ative improvement, while adding six more (6 to 12) increases the results by a relative

+31.2% and the next added 12 masks (12 to 24) gives +37.4% relative improvements.

When adding the Multi-label Deep Supervision loss to the same mask-only training,

quite similar relative improvements are achieved when moving from 3 to 6 and 6

to 12 masks, with +83.1% and +30.5%, respectively. Yet, it already starts with

a +3.18% higher mIoU in the 3 annotated mask scenario and therefore leads to a

better segmentation accuracy throughout all scenarios. This improvement still holds

when all masks are available, where our loss function improves the standard Unet

performance by +3.73% mIoU showing that the multi-label loss on different scales

in the decoder leads to finding better local minima in the optimization process. For

an annotation-efficient training the desire is to have a higher starting performance

with fewer mask annotations (e.g. at 3 masks) and simultaneously have the steepest
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Mask Supervision

Method 3 6 12 24 Full Access

Baseline [44] 14.80 ± 6.50 26.98 ± 7.83 35.39 ±6.36 48.63 ±5.17 62.09 ±4.77

Multi-label Deep Supervision (Ours) 17.98 ± 8.20 32.92 ± 7.35 42.96 ±6.71 52.68 ±6.82 65.82 ±4.64

S
em

i-
su
p
.

IIC Baseline8 [230] 22.45 ± 9.36 32.02 ± 7.23 41.48 ±7.26 53.08 ±6.13 65.16 ±3.80

Deeply supervised IIC8 20.78 ± 8.83 31.39 ±10.26 39.18 ±6.94 50.10 ±7.92 65.18 ±3.85

Perone and Cohen-Adad10 [107] 16.17 ±10.74 33.10 ±10.24 45.80 ±7.51 54.75 ±5.96 65.49 ±4.14

Self-taught Deep Supervision (Ours) 10.37 ± 8.29 28.62 ±12.96 43.57 ±9.97 56.11 ±6.30 66.24 ±4.67

Mean-taught Deep Supervision10 (Ours) 16.31 ±15.48 35.17 ±11.35 53.52 ±8.72 58.84 ±6.57 66.31 ±4.66

S
em

i-
w
ea
k MIL Baseline 15.44 ±11.10 25.46 ± 8.57 41.34 ±9.66 49.07 ±8.20 61.50 ±5.64

Deeply supervised MIL 20.02 ± 9.17 31.50 ± 8.88 44.29 ±5.03 51.13 ±3.93 62.04 ±3.92

Self-taught Deep Supervision (Ours) 20.47 ± 8.62 36.40 ± 8.91 49.39 ±9.95 59.29 ±7.52 66.34 ±3.81

Mean-taught Deep Supervision10 (Ours) 21.91 ±13.49 42.14 ±14.25 54.70 ±9.26 60.45 ±5.71 66.39 ±4.29

Table 2: Results on Spectralis in average mIoU over 10 splits with standard deviation
for a set of algorithms trained with varying amounts of mask annotations (3, 6, 12, 24,
all). We compare approaches using only masks, semi-supervised approaches adding
unlabeled images and semi-weakly supervised algorithms utilizing also image-level
labels (best results in category bold). Superscripts indicate smaller batch sizes.

relative increase in performance early on (e.g. from 3 to 6 masks).

Next, we look into the performance of semi-supervised segmentation algorithms high-

lighted with pink in Table 2. The multi-task Unet with the added IIC loss performs

best in the extreme case with merely 3 mask annotations, where it achieves 22.45%

mIoU. All approaches which construct pseudo-targets from the unlabeled data and

integrate them with a loss function, namely Perone and Cohen-Adad and our Self-

taught- and Mean-taught Deep Supervision methods struggle in this extreme case

and in the case of Self-taught Deep Supervision even lead to a degradation below the

standard Unet results. This behaviour can be explained by the known problem of

confirmation bias [231] which leads to overfitting to the faulty pseudo-targets when

the predictions are unreliable. With more expert-annotated masks, i.e. 6, 12 and 24,

these methods are better equipped to approximate the unavailable ground-truth for

the unlabeled b-scans and more reliably outperform the IIC multi-task method. In
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these three scenarios the design choices which lead from the Self-taught- to the Mean-

taught variant of our method show to be critical. The move to include the mean-

teacher structure and the training towards higher consistency between differently

perturbed versions of the same image for pseudo-label computation in the Multi-

label Deep Supervision loss result in improvements of +6.55%, +9.95% and +2.73%

mIoU. With these results, the Mean-taught Deep Supervision method achieves the

best mIoU values for the scenarios from 6 masks to full access in the semi-supervision

category. Something to note is, that both the self-supervised proxy-task of IIC and

the consistency loss terms of the remaining semi-supervised methods also led to

improvements in the setting when all b-scans have associated masks available.

In Section 4.2.2 we outlined a process to integrate image-level labels into the training

procedure of the Self-taught- and Mean-taught Deep Supervision models. This semi-

weakly supervised training of our proposed methods is compared to the Multiple-

Instance Learning baselines highlighted with cyan in Table 2. The integration of

image-level labels via Multiple-Instance Learning in the MIL baseline provides a

weak learning signal which only starts to consistently outperform the standard Unet

trained solely with masks when integrating it into all layers of the decoder, i.e. with

the Deeply supervised MIL variant. Yet, in the case when all masks are available, this

semi-weakly training strategy does not improve upon the standard Unet basline, as

the semantic information from image-level labels do not add to the semantic masks

which are present for all b-scans, while the consistency training in our approaches still

help. Where image-level labels clearly help is in counteracting the confirmation bias

of our pseudo-label-based Self-taught- and Mean-taught Deep Supervision methods

early on in the 3 mask +413 image-level label scenario and the 6 mask +410 image-

level label scenario. There, they lead to improvements of +10.1% and +7.78% mIoU

for the Self-taught Deep Supervision method and to +5.6%, +6.97% for Mean-taught

Deep Supervision. The large increase in absolute mIoU in the starting scenario of

3 mask +413 image-level labels is coupled with a steep relative increase of +92.3%

when adding 3 more mask annotations, showing the annotation-efficiency of the
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Bounding Box Supervision

Method 3 6 12 24 Full Access

Baseline [44] 12.49 ±4.28 18.32 ±4.94 25.62 ±3.08 29.55 ±2.77 38.45 ±4.44

Multi-label Deep Supervision (Ours) 14.59 ±5.81 19.62 ±6.21 27.89 ±3.44 32.02 ±4.78 38.66 ±3.36

S
em

i-
su
p
.

IIC Baseline8 [230] 15.40 ±7.07 18.15 ±7.49 26.05 ±6.00 30.07 ±4.32 38.45 ±4.65

Deeply supervised IIC8 12.77 ±7.15 17.76 ±6.26 28.99 ±4.60 30.64 ±3.05 38.81 ±4.48

Perone and Cohen-Adad10 [107] 11.17 ±7.41 19.02 ±8.46 27.44 ±5.81 31.72 ±3.87 39.38 ±3.56

Self-taught Deep Supervision (Ours) 5.14 ±3.84 9.62 ±7.35 24.47 ±6.12 32.71 ±3.56 39.39 ±3.63

Mean-taught Deep Supervision10 (Ours) 8.21 ±3.96 14.28 ±7.48 24.79 ±5.79 34.14 ±3.10 39.04 ±4.15

S
em

i-
w
ea
k MIL Baseline 15.82 ±6.55 16.95 ±6.19 22.56 ±4.56 26.48 ±5.51 37.15 ±4.06

Deeply supervised MIL 17.14 ±8.06 20.18 ±4.61 24.15 ±4.95 29.12 ±4.75 37.94 ±3.35

Self-taught Deep Supervision (Ours) 16.04 ±8.52 22.15 ±6.29 28.63 ±4.04 32.37 ±3.75 38.97 ±3.59

Mean-taught Deep Supervision10 (Ours) 15.81 ±8.59 21.97 ±8.17 29.83 ±5.30 34.81 ±3.62 38.66 ±4.73

Table 3: Results on Spectralis in average mIoU over 10 splits with standard deviation
for a set of algorithms trained with varying amounts of box annotations (3, 6, 12, 24,
all). We compare approaches using only boxes, semi-supervised approaches adding
unlabeled images and semi-weakly supervised algorithms utilizing also image-level
labels (best results in category bold). Superscripts indicate smaller batch sizes.

Mean-taught Deep Supervision method.

In Table 3, we carry out the same experiments as in Table 2 but exchange the

mask annotations with cheaper bounding box annotations as strongest supervisory

signal. The observation which stays the same in this setup is that integrating the

Multi-label Deep Supervision loss again improves the results as opposed to standard

Unet training, although more gradually. This behaviour can be traced back to the

much lower performance ceiling of 38.45% mIoU of a Unet trained with bounding

boxes for all b-scans. While our approaches still perform favourably in the semi-

weakly supervised category for scenarios with 6 masks and more, the margins are

generally much less pronounced. To compare the annotation types used in Table 2

and in Table 3, one observation that can be made is that the models trained with

full access to 416 bounding boxes still performs worse than semi-supervised models

with access to merely 12 masks, and worse than semi-weakly supervised models using
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Mask Supervision
Method 6 12 24 Full Access

Cirrus
Baseline [44] 12.31 ±5.41 19.43 ±8.00 30.10 ± 9.34 48.92 ±11.94

Multi-label Deep Supervision (Ours) 15.99 ±6.87 25.12 ±8.58 33.53 ± 9.44 50.47 ±10.84

S
em

i

Perone and Cohen-Adad10 [107] 12.36 ±6.12 24.99 ±6.49 33.79 ±10.15 49.75 ±12.87

Mean-taught Deep Supervision10 (Ours) 9.18 ±8.53 23.33 ±7.37 35.82 ±11.40 51.24 ±10.94

Topcon
Baseline [44] 14.79 ± 9.34 21.19 ±11.57 27.61 ±10.31 42.22 ±10.42

Multi-label Deep Supervision (Ours)18.20 ±10.48 20.92 ±13.02 33.71 ±11.92 45.85 ±10.32

S
em

i

Perone and Cohen-Adad10 [107] 15.26 ±12.74 21.88 ±12.48 27.67 ±13.81 41.43 ± 8.18

Mean-taught Deep Supervision10 (Ours) 14.39 ±11.19 23.92 ±15.25 33.87 ± 8.25 42.70 ±10.97

Table 4: Results in average mIoU over 10 splits with standard deviation for a set of
algorithms trained with varying amounts of mask annotations (6, 12, 24, all) on data
of OCT vendors Cirrus and Topcon. We compare approaches using only masks and
semi-supervised approaches adding unlabeled images (overall best results bold).
Superscripts indicate smaller batch sizes.

only 6 masks and 410 cheaper image-level labels. Thus, an annotation of an image

with bounding boxes needs to be obtained in about 12
416

≈ 2.88% of the time of one

annotated pixel-wise mask to be economical, when the target performance lies at

around 40% mIoU. As the target performance is set higher, with the diminishing

returns of additional annotations and the large gap in best performance between

mask- and box annotated images, a target performance of e.g. 60% mIoU would

require much more box annotated images than are in the training set. On such

a small dataset the semi-weakly supervised paradigm with our Mean-taught Deep

Supervision is still able to achieve this performance with merely 24 mask annotations

and 392 image-level labels.

In Table 4, we expand some of the experiments to the Cirrus and Topcon datasets

within RETOUCH [8] to get a broader picture. There, our Multi-label Deep Super-

vision loss and the Mean-taught Deep Supervision setup perform best. The semi-

supervised scenarios with merely 6 pixel-wise annotated masks exhibit worse mIoU
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scores as opposed to only training with masks, which might hint at a too stark in-

fluence of the pseudo-label-based loss terms due to a higher amount of unlabeled

b-scans in the Cirrus and Topcon sets. This behaviour might further hint at con-

firmation bias from too imprecise predictions, which for these datasets is reduced

when moving towards the 24 mask cases, i.e. when enough ground-truth masks are

available to infer better pseudo-labels.

4.3.7 Qualitative results

For a visual display of the performance of different segmentation algorithms on retinal

fluid segmentation, in Figure 8 we see how they match up against each other when

successively supplied with more and more costly pixel-wise annotations. The top two

rows display the segmentation results of algorithms trained with mask annotations

only, the four rows below show the semi-weakly trained algorithms which are trained

with masks and image-level labels. Comparing the Baseline Unet and Multi-label

Deep Supervision, it can be observed that throughout the low supervision scenarios,

the former produces small speckles in the segmentation, confusing different fluid

types with one another, i.e. Subretinal fluid is segmented as Intraretinal Fluid.

Concerning the semi-weakly supervised algorithms, both our Self-taught- and Mean-

taught Deep Supervision methods are able to, with 6 masks only, localize the most

significant regions where the three fluid types occur, even the Pigment Epithelial

Detachments which is the most challenging class to segment in the dataset. The

baseline methods struggle with segmenting the large Subretinal fluid regions up to

the 24 mask scenario, where they start to capture it more fully.

4.4 Discussion

Medical applications for semantic segmentation systems are prime examples of expert-

driven domains, where annotations are costly to acquire and largely depend on the

availability of experts, i.e. medical doctors. To cope with these scenarios and still suc-

cessfully train segmentation models with severely limited pixel-wise annotations, we
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Input 6 12 24 Full Access Target

Baseline

Our approach – Multi-label Deep Supervision
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Our approach – Self-taught Deep Supervision

Our approach – Mean-taught Deep Supervision

Figure 8: The progression of segmentation results for algorithms trained with suc-
cessively more mask annotations, from 6 to 12, 24, and all available masks. The first
two approaches use only masks, while the remaining four approaches are trained in
the semi-weakly supervised style using masks and image-level labeled data.

addressed three research questions. We trained segmentation models with extremely

few pixel-wise annotations and investigated how their performance progresses when

additional masks are provided. In this respect, we saw, that segmentation models

struggle considerably in the extreme case when only singular annotated images are

available per class.

Further, we quantified, that every additional annotation comes with diminishing

returns in performance, meaning that a similar increase in segmentation performance

at low performance levels is associated with less annotation effort as compared to an
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increase starting at a higher performance. By integrating unlabeled data using semi-

supervised algorithms from literature, we are able to see, that with this learning

paradigm, segmentation algorithms can achieve similar segmentation results with

fewer costly pixel-wise annotations in the expert-driven domain at hand. We further,

observed that with our Multi-label Deep Supervision loss and the flexible Mean-taught

Deep Supervision method we are able to achieve a higher performance increase at

early phases of annotation, where only very few, e.g. two annotations per class are

available.

We also investigated the performance of segmentation algorithms when they are sup-

plied with bounding boxes as strongest supervision signal instead of masks, in order

to investigate whether the effort of obtaining costly pixel-wise annotations is worth

it. In our investigations, we set up the segmentation algorithms to learn from bound-

ing box supervision in a very simple way by exchanging the pixel-wise annotations

with boxes. This regimen does not use hand-crafted additional constraints frequently

used in weakly supervised literature, as they are often designed for natural imagery

and might not be applicable to arbitrary expert-driven domains with imagery far

from object-centric data. Thus, by looking into the performance of these simple

weakly supervised algorithms, we were able to compare them with mask-supervised

segmentation algorithms. Specifically, we see, that very few pixel-wise annotations,

e.g. 12 masks are already able to outperform segmentation algorithms supervised by

multiple hundreds of images annotated with bounding boxes. With the diminishing

returns of additional annotations, to train algorithms sufficiently with high target

performance goals, only resorting to box annotations is not necessarily more econom-

ical as masks are more expensive but far fewer mask annotations are necessary as

opposed to box-annotated images. If the datasets are very small, completely anno-

tating the images with boxes might fail in satisfying performance requirements, while

our experiments show, that the flexible learning paradigm of semi-weakly supervised

learning can fulfill them. This more flexible view on the algorithmic side of learning

semantic segmentation models, i.e. being able to profit from different annotation
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types has effects on the annotation process as well: narrow annotation processes

that restrict themselves to one annotation type might not be optimal as each anno-

tation comes with diminishing returns and the added semantic information, e.g. the

wrongly assigned class for a segment in a specific image, might also be fixed by a

coarser and cheaper image-level annotation. Especially when the annotation budget

is small, being able to gradually narrow down a performance target with added coarse

annotations spares the expert’s time as opposed to mindlessly adding pixel-wise an-

notations. For imaging data that occupies a certain visual redundancy, such as the

redundancy between b-scans that lie adjacent to each other in the original volume,

adding pixel-wise annotations might even be unnecessary to a certain extent, which

we investigate in the next chapter. Contributions of this chapter summarize as:

Contribution 1:

Current segmentation algorithms progressively get better in segmenting images when

more and more annotations are supplied. With our Multi-label Deep Supervision loss,

we increase the starting performance of models that are exposed to merely pixel-wise

annotated data. Thus, models trained with this loss are able to get more out of the

individual mask annotations by using them to generate a stronger learning signal

and engraving semantic information already in earlier layers of the network.

Contribution 2:

The performance of models using costly pixel-wise masks is compared to models

supplied with bounding boxes in the training process. This enabled the comparison

of the number of mask annotations and bounding boxes needed to achieve varying

target performances and sheds light on the efficacy of different annotation types for

small datasets. Resorting to only bounding boxes entails a lower ceiling performance

at the cost of annotating more images, which directly influences the annotation

process where the question of annotating few masks or a lot of bounding boxes has

to stand in relation.
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Contribution 3:

We proposed the Mean-taught Deep Supervision method which is able to flexibly inte-

grate different annotation modalities, such as pixel-wise annotated data or bounding

boxes as well as image-level labels or unlabeled data. With our design, the annotation

process can be broken up by not requiring a single annotation type but enabling the

training with a mix of annotation types, which enables a more flexible and economic

spending of annotation budgets.

While the exploration in this chapter already helps in making segmentation algo-

rithms more annotation efficient, another angle that might enable better usage of

the expert’s availability for annotations might be to respect that some image data

includes a lot of redundant visual information. To cope with this redundancy and

not spend the expert’s time on annotating redundant portions which only exhibit

limited performance gains, in the next chapter, we investigate how to learn from

volumetric data, when it is only partially annotated. Developing a training strat-

egy that is able to learn from volumetric data without having to provide volumetric

annotations could drastically reduce the annotation effort and make 3D volumetric

segmentation better feasible in expert-driven domains.
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5 Learning with partial annotations

This chapter opens up a pathway to circumvent expensive and prohibitively time-

consuming dense volume annotation needed for volume segmentation training by

designing a training algorithm which builds on partial annotations and entirely unla-

beled volumes. We tackle this semi-weakly supervised volume segmentation scenario

via designing a positional- and a semantic coherence constraint which we enforce

through an auxiliary loss function which shapes a voxel-embedding branch. By test-

ing our so called Contrastive Constrained Regularization (Con2R) approach and

compare it to traditional semi-supervised volume segmentation algorithms on two

medical volume segmentation datasets, we are able to show that it achieves the best

performance. Specifically, Con2R is able to, with less than 4% of labeled sub-regions,

still reach up to 88% segmentation accuracy as compared to a fully supervised base-

line which has access to dense volumetric annotations.

This section is based on a publication in ECCV 2022 [34].

5.1 Introduction

Apart from different appearance properties such as contrast, noise and a different

amount of spectral channels, there often exists a difference in the imaged spa-

tial dimensions in expert-driven domains. As such, many imaging procedures in-

clude an additional spatial dimension, making the imaged data volumetric in na-

ture [221, 232, 233, 234, 235, 236]. Examples of volume data is often found in the

medical domain, there computed tomography [232, 233], magnetic resonance tomog-

raphy [234] or optical coherence tomography [221] can yield volumes, not merely

individual images. In order to make use of this additional spatial dimension, re-

searchers developed 3D segmentation algorithms [66]. While these volumetric seg-

mentation algorithms have been proven successful, they are generally trained using

fully annotated volumes. For applications where the expert’s time to annotate is
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Figure 9: Overview of the main research questions in this chapter, they will be
explored on an optical coherence tomography dataset [8] and magnetic resonance
imaging [7] where medical doctors are needed in the annotation process. We further
outline the Contrastive Constrained Regularization method which can help in expert-
driven domains where volumetric data has to be segmented.

already scarce, requesting 3D annotations instead of 2D annotations further reduces

the number of annotated samples proportional to the extent of the added dimension.

Volumetric segmentation models, through the three dimensional input and three di-

mensional processing steps, e.g. 3D convolutions, have the potential to learn more

sophisticated patterns useful for the segmentation task. Yet, the process of anno-

tating full volumes can be put into question, as adjacent slices within the volumes

often contain quite similar visual patterns, which might lead to redundancy in the

annotation process and opens the question whether a different modus operandi for

annotation might be more considerate towards the expert’s availability.

In this chapter we want to start gathering insight into whether 3D segmentation

models can be supervised in a more economical fashion by supplying them only with
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partially annotated volumes. There, we are interested in how well a standard model

can be trained with partial labels, with respect to its segmentation performance. To

take into account semi-supervised literature, which generally utilizes full densely an-

notated volumes aside completely unlabeled ones, we perform semi-weakly supervised

volume segmentation, where we make use of a mix of partially annotated volumes

and unlabeled volumes in training. We develop a method for semi-weakly semantic

volume segmentation by considering how to bring the three dimensional nature of

the input image to the output predictions of a 3D segmentation model even though

we only have partial, 2D label fragments. All models are tested on retinal fluid

segmentation in optical coherence tomography [8] and brain tumor segmentation in

magnetic resonance imaging [7].

We start by introducing the problem formulation of semi-weakly volume segmen-

tation using partial and unlabeled data in Sec. 5.1.1. Then we present a solution

to this training scenario, the Contrastive Constrained Regularization method, which

encompasses a data-driven proxy task to address the issue of only having two dimen-

sional targets while desiring three dimensional predictions. The method is motivated

by the implications on the annotation process, which can be carried out in a more

expert-centric fashion, potentially circumventing low-yield, redundant annotations

and leaving the choice of interesting regions to annotate to the expert annotator.

The research questions of this chapter are summarized visually in Figure 9.

5.1.1 Problem statement

We are concerned with the problem of segmenting volumetric data, i.e. 3D imaging

data voxel-wise. Therefore, for any given input volume v ∈ Rcdim×D×H×W , with cdim

input channels and the spatial dimensions depth D, height H, width W of the volume

to be segmented, we want to predict the class association of each voxel forming the

prediction p ∈ {0, 1}C×D×H×W with C class indices to segment.

In standard supervised training, every volume in the training set has to be associated

with a complete dense mask annotation m ∈ {0, 1}C×D×H×W , which is prohibitively
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Subregions in volumes densely labeled
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Figure 10: Left : densely supervised volume segmentation builds upon fully anno-
tated volumes which are prohibitively expensive and might suffer from redundancy
in adjacent slice annotations. Center : semi-supervision allows volumes without an-
notations, redundancy issue remains. Right : we propose to train with partially-
and unlabeled volumes, freeing up experts to annotate across different volumes
providing diverse annotations, while lowering the risk of spending time on redun-
dant/uninformative volume portions.

expensive and thereby shrinks the deliverable amount of samples in a dataset. Data-

efficient learning for semantic volume segmentation is generally carried out through a

semi-supervised paradigm, where algorithms are supplied with a few fully annotated

volumes and completely unlabeled volumes. What we investigate is the case, when

we do not want to burden the expert annotators with annotating complete volumes

but just regions within a volume. Therefore, instead, we train from partially labeled

volumes, where only a subset of 2D slices of the volumes are annotated, while the

rest of the volume is unlabeled. Furthermore, we pair those partially labeled volumes

with completely unlabeled volumes. This semi-weakly training strategy as well as

the other two learning paradigms are displayed in Figure 10.

To formalize this semi-weakly volume segmentation, we first define a dataset of vol-

umes:

D = {v1, ..., vN |vi ∈ Rcdim×D×H×W} , (II.15)

containing a total number of N volumes. In our training setting, instead of having
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complete masks m associated to each of the volumes in D, we train models with

access to:

M = {(m1, a1), ..., (mN , aN)|(mi, ai) ∈ (RC×D×H×W , {0, 1}D)} . (II.16)

This setting defines for a volume vi ∈ D both a ground-truth mask mi and a binary

indication adi ∈ {0, 1} which indicates whether at the depth position 1 ≤ d ≤ D

a slice annotation is present or not. In case ai
.
= 0D, the volume vi is completely

unlabeled, in case it contains D ones, it has a label for each voxel in the volume.

We are interested in data-scarce scenarios, therefore, we conduct experiments mostly

in settings where
∑︁D

d=1 a
d
i ≪ D, i.e. volumes vi are only partially and very sparsely

annotated. As this still allows for a high amount of partially annotated volumes,

which might be out of reach for expert-driven scenarios, we also define, that in total,

we only have access to a small number of annotated slices in the whole dataset:∑︁N,D
i,d=1 a

d
i ≪ N · D. With the training data D and M we still want to train a

volume segmentation model, which is able to, even though trained with partially

annotated volumes, produce full volumetric segmentations for new, never seen before

volume data. While the goal stays consistent with fully supervised segmentation,

the alteration of the training scenario enables the experts to also annotate partial

volumes and use their time to cover more, visually diverse volumes rather labeling

very similar, volumetrically adjacent regions.

5.1.2 Preliminaries

For easier understanding, next the notation for volume indexing and volume pro-

cessing is defined. We index an input volume v, or any volumetric tensor for that

matter, using a three dimensional voxel location x by writing vx. The interest in our

investigation lies in volume segmentation architectures such as 3D encoder-decoder

models [66], which we formalize to produce voxel-wise features f ∈ Rfdim×D×H×W .

These features f can be turned into semantic predictions p by using an output-head
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κ(·) which is parameterized by C 1×1×1 convolution kernels and trained using the

few annotated voxels in the partially labeled volumes. Additionally, to this standard

3D processing pipeline, our method makes use of an additional transformation head

which we note down as τ(·) and parameterize by a normalization layer, 1 × 1 × 1

convolution layer, a LeakyReLU activation function and a final edim 1 × 1 × 1 con-

volutional kernels. Similarly to κ(·), τ(·) operates on the voxel-wise features f to

produce voxel-wise embeddings e ∈ Redim×D×H×W . An embedding ex at location

x is meant to describe the imaging properties of the input voxel vx in terms of an

edim dimensional vector, while the corresponding semantic prediction px captures the

class association at the same input voxel. Next, we describe our method, Contrastive

Constrained Regularization (Con2R), for training volume segmentation models with

only sparse and unlabeled data.

5.2 Graph-constraints as regularization

In our semi-weakly supervised volume segmentation scenario we are not supplied

with densely labeled volumes, but only have access to sparsely- or not at all labeled

data. Therefore, we opt to design data-driven constraints on the hypothesis space

of valid model parameter configurations. These constraints shall be designed in

such a way as to nudge the model towards a configuration which, in the output

space, where we are only supplied with sparse annotations, nonetheless produces

three dimensionally coherent predictions. To achieve this, we take the common

view of the input volume as a graph [135, 136, 133, 137]. Specifically, we design a

complete bi-partite weighted graph G = (Q,N , E , σ). This graph consists of two sets

of vertices, which we term the Query-set Q and the Neighborhood-set N , both of

which containing voxel-embeddings ex produced by the transformation head τ(·) and

sub-sampled1 from all locations in the volumetric voxel-embedding tensor e. For our

1The sub-sampling step and design as a bi-partite graph is introduced to reduce the compu-
tational demand, a graph where all voxels are fully connected to each other is computationally
infeasible, especially in our case where we intend to compute pairwise similarities and backpropa-
gate through each connection.
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purposes, we set the size of the two sets of voxel-embeddings |Q| = |N |, though,

this can be chosen differently. In the graph G, the vertices ex in the Query-set Q are

connected to all embeddings ey ∈ N through edges (x, y) ∈ E . Importantly, these

edges carry a weight, which we set to σ(x, y) = exT ey/(||ex|| · ||ey||), i.e. the cosine

similarity between the voxel-embeddings they connect, making G a similarity graph.

With this formulation, it is now possible to quantify how different voxel-embeddings,

or, the input voxels they encode, relate to each other in the currently trained model.

As the computation of the similarity graph G is differentiable, we can enforce the

model to align the current similarities of voxel-embeddings to some specified target

similarities. This mechanism enables us to define similarities between individual

voxel-pairs in order to regularize the model in the training process. At this point,

we need to define what similarities two voxel-embeddings actually should have. For

this, we need to design a function T (·) which, for each voxel-embedding pair returns

a specific target similarity, that the model should produce.

Let’s consider the hypothetical case where we have dense supervision. In this case,

choosing T (·) to be solely based on the agreement between the annotation of the two

vertices is a reasonable choice. This would enforce that voxel-embeddings belonging

to the same class to be embedded similarly. In our experimental design, we do

not have such dense annotations, therefore we need to base the target similarities

on workable assumptions that augment the incomplete knowledge about the voxel

semantics we have.

5.2.1 Graph-based contrastive constraints

Here, we describe the considerations that go into designing the target similarity

function T (·) and the subsequently derived data-driven constraints that we use to

define it: the receptive smoothness and semantic coherence constraints.

Receptive smoothness constraint In semi-supervised learning, there is the well-

known smoothness assumption [237] stating that samples close to each other likely

share a class label. Prior work on semi-supervised learning [108, 104] used this
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Figure 11: Simplified 2D graph. We impose con-
straints on the relationships between pairs of vox-
els. These constraints are determined by positional
proximity, which is assessed based on the overlap of
receptive fields, and similarity in class predictions.

assumption to enforce consis-

tent predictions between a sin-

gle sample which was aug-

mented in different ways. In a

related fashion, we want to en-

hance this smoothness assump-

tion to consider the magnitude

of such a perturbation and for-

mulate: samples closer to each

other are more likely to share a

class label. Taking the graph

design introduced above, this

assumption can be integrated

into model training, by design-

ing similarity targets which are

conditioned on the magnitude

of a perturbation. To this in-

tent, we consider translations

as a form of perturbation, and

with this, we can specify the similarity between two voxel-embeddings to be propor-

tional to the relative position shift of the corresponding voxels in the input volume.

Considering the two embeddings ex ∈ Q and ey ∈ N we compose the positional

proximity of two voxel-embeddings in the volume by using the relative intersection

of sub-volumes centered at the positions x and y, which we smooth by a small ε if

the intersection approaches zero:

ρ(x, y,R(·)) = max(
|R(x) ∩R(y)|

|R(x)|
, ε) , (II.17)

where the receptive field function R(·) returns for a voxel position x all spatially re-

lated voxels that fall into the sub-volume centered at x. To display Equation (II.17)
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visually, we depict this idea of quantifying how close two voxels are based on what

portion of their receptive fields (or receptive volumes in our case) they share, in Fig. 11.

For a more convenient visualization, we show the positional proximity idea for the

2D case, in the image labeled by (2). Our voxel-embeddings result from process-

ing input volumes with a volumetric segmentation model, which in our case is an

encoder-decoder architecture [66], and therefore, each voxel-embedding was com-

puted via successively encoding and then decoding local neighborhoods in a convolu-

tional fashion. Thus, for each voxel-embedding a defined amount of the input voxels

went into computing it: the input voxels which fall into its receptive volume. By

defining the positional proximity of two voxels through the portion of voxels they

share in their receptive volume the notion of similarity has a direct link to their

shared patterns in the input. Voxel B in Fig. 11 gets attributed a higher similarity

to voxel A as opposed to voxel D, as it shares a larger portion of voxels that went

into computing their embeddings with A and therefore should be embedded closer

to A than to D. We form the positional proximity constraint P(·) by marginalizing

positional similarities ρ(·) over the whole neighborhood embeddings ez ∈ N :

P(x, y,R(·)) =
ρ(x, y,R(·))∑︁

ez∈N ρ(x, z,R(·))
. (II.18)

In case we do not have any information about the class membership of voxels, this

design of computing target similarities for the weights in G leads to the model having

to encode the full extent of the three dimensional receptive volumes of the input into

the embeddings from which the segmentation output-head κ(·) can profit. When

we have only access to partial annotations, this might help in aligning an unlabeled

voxel-embedding to the embedding of a spatially close labeled voxel in the embedding

space and thereby enable κ(·) to better assign the matching semantic class.

Semantic coherence constraint To embed spatially close voxels more similarly

than spatially far apart ones is sensible to encourage the formation of clusters based

on shared local visual patterns, but does not fully respect the semantic segmentation
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task. In semantic segmentation, the same semantic class can occur at far apart

locations which using the positional proximity constraint in isolation, would lead to

voxel-embeddings of the same class which lie far apart to be embedded maximally

dissimilar. This would be the case in Figure 11 (3), where voxel C lies closer to B

than to D, but actually shares the predicted semantics (pink class) with D, hence

embeddings of C and D should be more similar than C and B. This shows, while

useful, the positional proximity constraint has to be offset with a constraint that

considers the possibility of two distant voxels belonging to the same semantic class

and thus, enforce a coherence between them. For the embeddings ex and ey belonging

to Q and N , respectively, we consider the semantic predictions px and py generated

by the segmentation output-head κ(·), which itself is trained using the few partial

volume labels. Now, in order to quantify the semantic similarity S(·) of two voxels

at locations x and y using the softmax class prediction p at those locations, different

functions have been proposed [136]. We apply the symmetrized negative Kullbalk-

Leibler divergence as similarity measure:

SN-KL(px, py) = −1

2
·
(︃
py · log

(︃
py

px

)︃
+ px · log

(︃
px

py

)︃)︃
, (II.19)

as for the positional proximity constraint, we also marginalize over the predictions

at all locations of the neigborhood set:

S(x, y, p) =
exp(SN-KL(px, py))∑︁

ez∈N exp(SN-KL(px, pz))
. (II.20)

The continuous values of px and py can thereby be transformed into a single value,

which is higher the more similar these semantic voxel-predictions are and smaller

if the class predictions do not match well. With the semantic proximity S(·) and

the positional proximity P(·), the full target similarities T (·) for the weights in the

differentiable similarity graph G can be formulated next.

Alignment to target similarity graph In order to restrict the similarities in our

graph G, we begin by introducing the function T (·) to calculate the desired target
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similarities between pairs of voxel embeddings. For a given edge (x, y) connecting

voxel embeddings, the model is expected to generate a similarity value σ(x, y) that

aligns with the target similarity:

T (x, y,R(·), p) = α · P(x, y,R(·)) + (1 − α) · S(x, y, p) . (II.21)

The weight α ∈ [0, 1] enables us to balance the influence of the receptive smoothness

and semantic coherence constraints in the optimization process. By utilizing the

targets produced by T , we can align the computed voxel embeddings of a given input

volume to these desired similarity targets, thus promoting receptive smoothness and

semantic coherence in our model training. We leverage the common contrastive

similarity formulation for this alignment:

O(ex, ey) =
exp(σ(x, y))∑︁

ez∈N exp(σ(x, z))
, (II.22)

which encodes the voxel-embeddings and the similarities among them (i.e. the graph

G) that the current segmentation model produces. The loss function which can be

optimized via back-propagation is formed by minimizing the cross-entropy between

the computed targets T (·) and the similarities O(·):

L(Q,N ) = −
∑︂

ex∈Q,ey∈N

T (x, y,R(·), p) · log(O(ex, ey)) . (II.23)

Lastly, we make the loss symmetrical by adopting the idea described in [111] to selec-

tively back-propagate through either Q or N . As a result, our proposed Contrastive

Constrained Regularization loss function LCon2R can be expressed as:

LCon2R(Q,N ) =
1

2
· (L(Q, N̄ ) + L(N , Q̄)) . (II.24)

The notation of Q̄ and N̄ is intended to show that the respective voxel-embedding

sets are detached from the computation graph, which means they are treated as
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Figure 12: Our approach, referred to as Con2R, utilizes both weakly- and strongly
augmented volumes to generate voxel-wise embeddings and construct a similarity
graph with them. We aim to align this graph with a target similarity graph, which
we compute based on positional- and semantic proximity constraints using network
predictions as well as partial labels, if provided. This alignment procedure allows us
to learn consistent 3D predictions solely using unlabeled and partially labeled data.

constants in back-propagation.

5.2.2 Graph-constrained semi-weak learning

Our loss formulation LCon2R is the crucial part in our overall Contrastive Constrained

Regularization (Con2R) training strategy, which we display in its entirety in Fig-

ure 12. With a naive semantic segmentation strategy, we train the 3D segmentation

model by using weakly augmented volumes Aweak(vi) as input and learn the model

weights including weights in the output-head κ(·) by back-propagating a standard

cross-entropy loss LEntropy (cf. Equation (II.6)) only for voxel-predictions that are

associated to the few available partial annotations. In order to compute the similar-

ity targets T (·) in LCon2R, we need semantic predictions p. These are gathered by

simply processing the weakly augmented volume with the network and applying a
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softmax function on top of the output of κ(·), yielding normalized class associations

for each voxel. In case the input volume has associated partial labels, we further

exchange the predictions at the labeled regions with the ground-truth and obtain

the more precise semantic predictions p∗i :

p∗i = pi · (1 − ai) + mi · ai , (II.25)

To make use of augmentation consistency in our training strategy, we compute the

embedding graph O(·) based on a strongly augmented version of the same volume

Astrong(vi), which necessitates a second forward pass through the network with the

transformation output-head τ(·) to produce voxel-wise embedding vectors. To be

consistent and aligned, the geometric augmentations in Astrong(vi) also have to be ap-

plied to the semantic predictions p∗i as well. Then, with the correct alignment between

voxel-embeddings and predictions, voxel locations can be sampled, i.e. the Query-

and Neighborhood-sets can be set up, and the similarity targets can be computed

with the location- and semantic prediction information. With this, all ingredients of

LCon2R are ready and the objective resolves to minimizing Ltotal = LEntropy +LCon2R.

5.3 Experiments and results

In this section, we begin by providing an overview of the datasets and experimental

setup used to showcase the Con2R training strategy. To evaluate its effectiveness, we

outline our protocol for training with partial annotations and discuss the methods

we compare against. Lastly, we present quantitative and qualitative results, which

prompt a discussion about the previously stated research questions in Figure 9.

5.3.1 Datasets

We assess the effectiveness of our method using two widely recognized volumetric

datasets, the RETOUCH OCT dataset [8], which focuses on retinal fluid segmen-

tation. This dataset consists of three classes: Intraretinal fluid (IRF), Subretinal
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fluid (SRF), and Pigment Epithelium Detachment (PED). While multiple vendors of

OCT devices are included in the dataset, we specifically concentrate on the Spectralis

device, which has volumes composed of 49 b-scans. Additionally, we evaluate our

approach on the task of brain tumor sub-region segmentation in magnetic resonance

images. The data used for this evaluation is obtained from the medical decathlon data

collection [7], which encompasses data from multiple BraTS challenges [238, 83, 82].

The tumor sub-regions we focus on are edema (EDM), enhancing tumor (EN), and

non-enhancing tumor (NEN), within volumes of depth 155.

5.3.2 Evaluation protocol

Our focus lies on investigating scenarios where we have extremely few partial pixel-

wise volume annotations, i.e. slice annotations, for which we outline the evaluation

protocol next. The datasets encompassing volumes are split five times independently

into train and test sets, whereas the training set of volumes is further divided into

a train and validation portion of volumes, specifically for the RETOUCH dataset

into 14 train, 5 validation and 5 test volumes and for the BraTS data 242 train, 121

validation and 121 test volumes. In coherence with the previously outlined procedure

in Section 4.3.2, we report the mean and standard deviation of the performance

of all models along these five-fold cross-validation results in order to respect the

scarce data setting we are diving into. We evaluate the segmentation performance

via the average mIoU measure, as defined in Equation (II.14), over the five splits.

When setting up the train, validation and test sets, we make sure that all classes

are covered in them. Further, for the train sets, we shuffle all train volume slices

and enumerate them and then, subsequently build a sequence of scenarios, where

only the first 3, 6, 12, or 24 slices are associated with pixel-wise annotations, with

only a small condition, namely that all classes are present in the different scenarios.

This naturally builds a sequence of a small partially labeled dataset which slowly

grows bigger in terms of annotations. Thereby, we have scenarios where randomly

selected slices, i.e. sub regions in the volumes, or, partial annotations are the basis
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for training segmentation models, while all remaining slices are unlabeled, fulfilling

our initial supervision design of Section 5.1.1. In terms of notation of this previous

section, e.g. the scenario with 12 annotated slices, these annotations are distributed

randomly among all volumes:
∑︁N,D

i,d=1 a
d
i = 12.

5.3.3 Implementation details

To train models in a semi-weakly supervised manner with partial annotations suc-

cessfully, we notice that oversampling the partially labeled volumes to ensure, that

in each iteration at least one labeled slice is present was important. Therefore, we

constructed the batches of size two by always including a partially labeled volume (as

also suggested in semi-supervised literature [231]) to not deviate to solutions mainly

considering the predominant unlabeled volumes.

As neural volume segmentation architecture we chose the established 3D Unet [66] in

a configuration with 64, 128, 256, 256 channels in the encoder building blocks and the

fitting reverse sequence in the decoder. The encoder building blocks are twice the

sequence of: group normalization [239] with eight groups, convolution with kernel

size three, padding one and ReLU activation function. To optimize the network

weights we use SGD with a momentum term of 0.9, weight decay of 0.00001 and

a learning rate of 0.01. We train a lower bound model which is only trained with

cross-entropy loss on the partially labeled volumes [66] and does not consider the

unlabeled volumes or unlabled portions of the partially labeled volumes. This lower

bound model is initialized with Xavier initialization [229], while all other approaches

are initialized with the weights of the respective lower bound model in the specific

supervision scenario. The models are trained a total of 100 epochs and evaluated on

the validation set every 10 epochs, with the best performing validation model being

applied once to the test set after training to be evaluated.

We train the 3D Unets on volumes which are resized to 49 × 160 × 160 for the

RETOUCH dataset and to 155 × 110 × 110 for BraTS. Afterwards, we crop sub

volumes from the depth dimension to end up at 16 × 160 × 160 and 32 × 110 ×
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110 volumes for training on RETOUCH and BraTS, respectively. This process is

necessary to train the networks with a batch size of two on 11GB NVIDIA RTX

2080 Ti GPUs.

The general weak data augmentations we employ is flipping the input volumes in

longitudinal- and vertical directions in 50% of the cases. For approaches requiring

strong augmentations including our Con2R approach (Section 5.2.2), we apply bright-

ness and sharpness augmentations with randomly sampled magnitudes between [0, 2]

as well as an adapted CutOut [240] augmentation which cuts sub-volume chunks of

16 × 16 × 16 from the input volume and sets them to zero. We found this aug-

mentation configuration to work best for the datasets by thoroughly tuning baseline

methods which we selected from semi-supervised 2D- as well as volume segmenta-

tion literature and adapted to our semi-weakly training scenario, and which we will

outline in the following section.

5.3.4 Competing approaches

Standard 3D Unet [66]: The first baseline we train to set the lower bound is a

3D Unet where only the labeled regions in the partially annotated volumes influence

the optimization through a cross-entropy loss as in [66]. This is the lower baseline

that all other more sophisticated methods to train the 3D Unet architecture should

be able to outperform.

Pseudo-label (PL) [99, 62]: To establish a first naive semi-supervised baseline for

comparison, we adopt the widely used pseudo-labeling approach, a classical semi-

supervised method and adapt it naively to volume segmentation. To set up pseudo-

labels, we predict the semantic assignment (argmax of class predictions) for all voxels

in all training volumes using the standard 3D Unet baseline and augment the volumes

where we have partial annotation information using the methodology described in

Equation (II.25). This equates to offline pseudo-labeling, which did not yield good

results for our datasets and therefore, we refined this approach with the self-training

normalization term of [62] which is described in Section B.1 of the Appendix.
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Mean-Teacher (MT) [104]: We adopt the widely used Mean-Teacher framework,

originally proposed for semi-supervised classification, and adapt it to handle volu-

metric inputs and dense predictions. The segmentation adaptation of this approach

has been explored previously in [241, 33]. Our training procedure involves aligning

the predictions of the student network with those of the teacher network, which are

obtained by forwarding differently augmented volumes through the networks. To

ensure pixel alignment between the student and teacher outputs for the consistency

loss, we apply reverse geometric augmentations on the teacher predictions to match

the output of the student. This is consistent to the procedure previously intro-

duced in Section 4.2.3. Determining the exponential-moving average decay factor

empirically led us to set α = 0.5 for the best results, consistent with our previous

investigation in Section 4.3.5, Table 1 for the 2D segmentation case.

Uncertainty-aware Mean-Teacher (UA MT) [125]: In this variant of the Mean-

Teacher approach, uncertainty estimation using Monte-Carlo dropout [242] was in-

troduced to selectively apply the consistency loss between student and teacher. This

is done by computing the voxel-wise uncertainty of the model and threshold it, to

only apply the consistency loss to volume regions below the threshold. Our experi-

mentation, which is available in Section B.2, determined a threshold value of 0.5 and

performing 8 forward passes for the Monte-Carlo dropout to yield the best results.

FixMatch [102]: FixMatch is a highly effective method primarily developed for 2D

classification tasks. It combines pseudo-labeling with consistency regularization by

incorporating both weak and strong augmentations as described earlier. As we apply

this approach to segmentation, we take into account the alignment of predictions be-

tween the strongly augmented branch and the weakly augmented branch and employ

a similar strategy to what we describe for the Mean-Teacher. In our experiments,

we found that using a confidence threshold of 0.5 on the network predictions from

the weakly augmented branch yielded favorable segmentation results.

Contrastive Constrained Regularization (Con2R): Our own Con2R method

is trained by sampling Query- and Neighborhood sets of size |Q| = |N | = 1, 728
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R validation mIoU

16 × 16 × 16 49.1 ± 4.7%
32 × 32 × 32 47.1 ± 2.7%
64 × 64 × 64 46.3 ± 2.3%

160 × 160 × 160 46.5 ± 6.1%

Table 5: Effect of receptive vol-
ume size R on the mean IoU

|Q|, |N | validation mIoU

216 46.9 ± 4.5%
512 46.9 ± 3.4%

1, 000 47.8 ± 5.0%
1, 728 49.1 ± 4.7%

Table 6: Effect of number of ver-
tices in graph G on the mean IoU

Table 7: Validation performance of Con2R when
tuning α, IoU reported along five validation splits
with mean and standard deviation displayed

for RETOUCH and a size of 3, 375 for BraTS. This relates to the maximal number

of voxel-embeddings possible to be sampled within our computational budget. The

interpolation between the positional- and semantic constraints for setting up the

target graph is controlled by α = 0.2. The receptive volume size R is 16×16×16 and

32 × 32 × 32 for RETOUCH and BraTS, respectively. For the embedding graph, we

compute edim = 64 dimensional voxel-embeddings and smooth the target similarity

graph with ε = 10−7.

5.3.5 Hyper-parameter sensitivity studies

We study the sensitivity of our Con2R method to its hyper-parameters by experi-

menting in the scenario of having 24 annotated slices among the training volumes on

the RETOUCH data. In Table 5, we present the impact of selecting the receptive

field size in R on the accuracy of volume segmentation. The highest accuracy is

achieved when using a receptive field size of 16 × 16 × 16, which corresponds to the

maximum depth of the input volume crops. Thus, as we train with volumes that are
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Partial Volume Supervision
Method 3 6 12 24 Full Access

3D Unet [66] 12.0 ± 5.6 18.1 ± 11.5 31.1 ± 12.4 43.8 ± 2.5 54.9 ± 0.9

PL [99, 62] 13.0 ± 6.3 20.6 ± 13.4 30.9 ± 11.5 45.7 ± 2.2 55.4 ± 1.5
MT [241, 104] 12.0 ± 6.6 20.2 ± 12.4 34.4 ± 11.4 45.3 ± 3.1 53.4 ± 1.9
FixMatch [102] 10.4 ± 5.7 18.7 ± 10.6 34.7 ± 6.8 46.2 ± 3.8 54.4 ± 3.3
UA MT [125] 13.0 ± 6.7 20.0 ± 11.9 36.5 ± 9.2 45.7 ± 1.9 56.3± 1.7
Con2R (Ours) 14.8± 8.7 22.5± 10.0 38.6± 7.5 48.2± 3.1 54.6 ± 1.2

Table 8: RETOUCH results in mIoU for semi-weakly supervised learning, number of
annotated b-scans successively increased from 3 to 24 and full access as upper limit

32 slices deep for the BraTS task, we adjust R to 32×32×32. It is worth noting that

larger receptive field sizes result in a degradation of performance, and we hypothesize

that the shape and size of objects in the dataset being segmented also play a crucial

role in determining an appropriate choice. In Table 6, we explore the effect when

varying the number of sampled vertices in the Query- and Neighborhood-set from

the volume-graph. Increasing this number consistently enhances the effectiveness

of Con2R. To accommodate the available GPU capacity, we simply set this hyper-

parameter to the maximum values of 1, 728 for the RETOUCH dataset and to 3, 375

for BraTS. Lastly, we investigate the influence of the weight α on the relationship be-

tween the positional- and semantic constraints (Table 7). We observe that semantic

constraints alone (α = 0.0) yield favorable outcomes, while surprisingly, positional

constraints alone (α = 1.0) also lead to solid results. However, the optimal perfor-

mance is achieved with α = 0.2, putting more weight on the semantic constraint part

of Equation (II.21). Ablations of baselines can be found in Appendix Section B.

5.3.6 Quantitative results

Equipped with methods which have good hyper-parameters for learning with par-

tially annotated volumes and experimental settings to test their efficacy in low su-

pervision scenarios, we investigate in Table 8 how they perform with 3, 6, 12, 24
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annotations on the RETOUCH retinal fluid segmentation dataset. The performance

ceiling is given by the Full Access scenario situated furthest to the right. There,

the mIoU values range between 53.4% and 56.3% with the lowest performance by

the Mean-Teacher baseline, indicating that the consistency loss does not add im-

portant information in the training when fully annotated volumes are present, while

the highest performance is achieved by the Uncertainty-aware Mean-Teacher which

alterates the 3D Unet architecture by the integration of dropout layers which have

a positive effect in this scenario. What we are most interested in, is the behavior

of the segmentation models when they are supplied with very few annotations, as

this brings us closer to answers for the research questions of this chapter (Figure 9).

Thus, we can look into the lower baseline, i.e. training a 3D Unet model with only

partial volume annotations naively [66]. The initial segmentation performance, as

expected when training a model with as few as 3 slice annotations, remains very

low at 12.0% mIoU. This can be broken down to 4.0% mIoU per slice annotation.

When 3 more annotations are added, the mIoU increases by 6.1% absolute mIoU,

which boils down to 2.0% per added annotation from the 3 to the 6 annotation

scenario. Adding further 6 and 12 annotations (scenarios 12 and 24), the added

value brought about by each annotation diminishes to 2.1% or 1.1% mIoU, while

of course the absolute performance increases. A more annotation-efficient segmen-

tation algorithm should produce a high absolute performance with few annotations.

Framed differently, the added value of each slice annotation, should be higher for

early annotations, i.e. the first few annotations should each have a bigger impact on

the segmentation performance. For our Con2R method, this is the case, as for the

four scenarios, it successively adds 4.9% per annotation in the 3 scenario, still 2.6%

for the next 3 annotations in the 6 scenario while the next 6 more examples increase

the performance each by 2.7%. In the scenario where Con2R is trained using 24

annotations, the individual contribution of the added annotations 12 annotations as

compared to the previous scenario gets smaller to 0.8% per annotation, while the

absolute performance of Con2R is still the best among the compared methods with
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Partial Volume Supervision

Method
3 6 12 24

IRF SRF PED IRF SRF PED IRF SRF PED IRF SRF PED

3D Unet [66] 21.1 11.5 3.3 21.0 24.6 8.6 23.4 49.9 20.0 30.5 73.0 27.8

PL [99, 62] 22.4 13.0 3.7 23.5 27.3 11.0 24.2 52.9 15.6 32.3 73.9 30.8
MT [241, 104] 18.4 12.9 4.8 20.7 29.4 10.5 24.5 59.7 19.0 30.9 76.6 28.3
FixMatch [102] 16.5 13.1 1.4 21.4 27.7 7.0 20.0 64.9 19.2 33.4 76.8 28.3
UA MT [125] 22.3 12.9 3.7 21.1 29.6 9.4 27.2 61.1 21.2 31.9 75.9 29.3
Con2R (Ours) 20.2 16.4 7.8 22.1 31.8 13.6 27.3 65.2 23.3 31.6 79.1 34.0

Table 9: RETOUCH class-wise results in mIoU for semi-weakly supervised learning,
number of annotated b-scans successively increased from 3 to 24

48.2% mIoU due to the steeper performance gains early on. A broad view of the

results of the adapted semi-supervised methods shows, that semi-supervision is with

exception of two low supervision scenarios always beneficial. The two scenarios which

fall below the lower baseline are FixMatch trained with 3 annotations, which might

well be due to the severity of the training scenario and the Pseudo-label method

trained with 12 annotation masks, which shows its general instability in training, as

also discussed in Section B.1. In terms of absolute performance, Con2R outper-

forms the other baselines by +1.8%, +1.9%, +2.1% and +2.0% average mean IoU in

the scenarios using 3 through 24 annotations. Table 9 gives a deeper view into these

performance differences and where they come from. There, the individual disease

classes are listed with their respective IoU. We can directly see, that our Con2R

model performs considerably better than all competing approaches on the Subreti-

nal Fluid and Pigment Epithelial Detachments. Qualitatively, these classes

cover larger, connected areas in the volumes while Intraretinal Fluid often occu-

pies small spots and tends towards more sprinkled regions. This can be explained

with the hypothesis that larger classes profit more from the assumption that close

voxels should resemble similar embeddings (positional proximity assumption), as this

is more often true if voxels are surrounded by semantically similar voxels, i.e. large

semantic areas. Yet, compared to the baseline 3D Unet, Con2R’s way of training
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the models and enforcing consistency among differently augmented input volumes

still helps in segmenting Intraretinal Fluid better for the scenarios 6, 12 and 24,

merely falling short for this class when only 3 annotations are available during train-

ing. The efficacy of our method regarding the Subretinal Fluid class can bee seen

in the 24 annotation case, there Con2R segments Subretinal Fluid with an IoU of

79.1% which is quite close to the best fully supervised result of 84.4%, reached by

Uncertainty-aware Mean-Teacher, which had access to the full 686 annotated slices.

Partial Volume Supervision

Method
24 Full Access

EDM EN NEN mean mean

3D Unet [66] 48.7 19.6 48.1 38.8± 3.4 51.7± 7.0

PL [99, 62] 49.1 21.3 50.5 40.3± 2.5 52.2± 8.4

MT [241, 104] 49.1 21.7 45.0 38.6± 4.5 53.7± 5.7

FixMatch [102] 50.1 24.2 53.1 42.4± 4.9 51.0± 6.5

UA MT [125] 49.2 22.6 51.3 41.1± 3.5 52.6± 6.0

Con2R (Ours) 51.8 23.9 53.9 43.2± 3.5 54.6± 7.7

Table 10: BraTS class-wise results in mIoU for semi-weakly
supervised learning, number of annotated b-scans is set to
24 and full access is shown as upper limit

A second task which

we investigate our al-

gorithms on is brain

tumor sub-region seg-

mentation, i.e. training

models on the BraTS

data. On this data,

we experiment with a

scarce annotation sce-

nario using only 24 an-

notated slices among

the volumes as well

as quantify the Full

Access upper bound

in Table 10. In this setting, when training with 24 annotated slices, there is an even

more extreme imbalance between annotated regions and unlabeled regions, namely

37, 486 of the slices in the volumes are unlabeled. Still, all semi-supervised segmen-

tation methods outperform the 3D Unet baseline with Con2R outperforming it with

an absolute +4.4%. Compared to the best semi-supervised method, which is Fix-

Match, our method adds another +0.8% mIoU. The performance of Con2R with a

fraction of 0.06% annotations compared to the Full Access scenario, already amounts

to 79.1% of the Full Access performance. This again highlights that the lion’s share
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of annotation effort goes into lifting the performance ceiling higher and the growing

impediment of achieving it with human labor, giving reason to developing better

segmentation models in general as well as making them more annotation-efficient.

5.3.7 Qualitative results

Next, we gather some qualitative insights of the trained segmentation models, start-

ing with the results on the optical coherence dataset RETOUCH in Figure 13. There,

we see, that training with partially annotated volumes using merely 3 annotated slices

in total, leads to very poor segmentation results for all approaches. The only fluid

type which starts to be recognized in the correct location is (the blue) Subretinal

Fluid. Adding 3 more slice annotations only helps the Con2R model in starting to

grasp the Pigment Epithelial Detachments in pink, while the remaining meth-

ods incorrectly predict the green Intraretinal Fluid class, but still, results are quite

poor overall. The baselines FixMatch and Uncertainty-aware Mean-Teacher correctly

pick up the spatial relations between Pigment Epithelial Detachments and Sub-

retinal Fluids when supervised with 12 partial annotations, just like Con2R. Yet,

where Con2R comes out on top is in the 24 scenario, where we see how the data-

driven constraints which we integrated into the training procedure really help in

forming consistent segmentations. Here, we see that all other approaches produce

speckled predictions, where Subretinal Fluid predictions leak into the Pigment

Epithelial Detachement prediction, while due to the positional coherence con-

straint, our method produces smooth semantic predictions without such semantic

region leakage.

For qualitative results on the BraTS dataset, we present segmentations for the semi-

weakly supervised scenario where only 24 slices are annotated, in Figure 14. As also

indicated by the previous quantitative results, 3D Unet and the plain Mean-Teacher

methods either over-segment or severely under-segment the sub-tumor regions. The

other competing methods over-segment the green edema class notably while training

our Con2R model could capture details such as the small split at the bottom of the
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3 6 12 24 Ground-truth

3D Unet Baseline

Pseudo-label

Mean-Teacher

FixMatch

Uncertainty-aware Mean-Teacher

Con2R (Ours)

Figure 13: Segmentation progression when increasing the number of annotations
from 3 to 24 in semi-weak retinal fluid segmentation, results for IRF, SRF and
PED overlayed with input OCT scan. Right column: ground-truth.
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3D Unet PL MT FixMatch UA-MT Con2R Ground-truth

Figure 14: Segmentation results with 24 annotations in semi-weak brain tumor sub-
region segmentation, results overlayed with first input channel of MRI scan

edema area.

A qualitative side-effect of Con2R is the possibility to use the learned embeddings of

the trained transformation head τ(·) to propagate a semantically labeled slice through

the volume, as shown in Figure 15. There we use a single slice annotation from a

previously unseen volume from the test set to propagate the semantic information

through the whole volume. The label propagation can be achieved by searching,

for each unlabeled voxel, the most similar voxel-embedding among the voxels of the

annotated slice. Then the class of the most similar annotated voxel is assigned. The

similarity computation is done via the cosine similarity. In the figure, the marked

ground-truth slice is used to propagate its semantic information through the whole

volume, displayed in the second row. For adjacent slices the propagated segmentation

is reasonable, though it deteriorates the further away the unlabeled voxels lie in the

volume as evident by the faulty segmentation of slices to the far right. In the third

row the predictions of the standard output-head is shown, which for this example

fails to segment the pink Pigment Epithelial Detachment class. On the other

hand, the simple propagation strategy based on a query slice can only propagate class

information present in the annotated slice. An additional visualization concerning

the voxel-embeddings of a trained model can be found in Section B.4.

5.4 Discussion

When faced with segmentation tasks for volumetric data, a big challenge in profiting

form the additional spatial dimension to learn diverse 3D patterns weights heavy on
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Individual slices in a volume at increasing depth
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Figure 15: Qualitative segmentation for an OCT volume using a Con2R model
trained with 24 slice annotations. The first row shows the ground-truth annota-
tion of the volume, the second row is the resulting segmentation when propagating
the marked ground-truth slice annotation via voxel-embbeding similarities, the third
row shows standard predictions by the same trained Con2R model.

the annotation process: the additional dimension increases the annotation effort for

each training example. Especially in expert-driven domains, where time to annotate

is scarce, annotating whole volumes to train segmentation models becomes a big hur-

dle. What happens if we supply volumetric segmentation models only with sparsely

populated, partial volume annotations? In the above experimental investigation, we

gave insight into models trained in such a scenario and explored how they behave

with extremely few slice annotations. We uncover that naively training volume seg-

mentation models is outperformed by semi-supervised algorithms, which we adapt to

accept partially annotated volumes aside of unlabeled volumes. Yet, semi-supervised

volume segmentation algorithms leave behind some uncollected rewards, which we

found out by designing a proxy-task that specifically respects the nature of partial

annotations and enforces data-driven constraints that are rooted directly in the seg-

mentation task. With advantageous effects on the segmentation performance when

training with this proxy-task, we enable experts to, rather than providing dense an-

notations, cover a wider diversity of volumes with only sparse annotations. Further,

models can already be trained with very few slice annotations and therefore, the
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whole pipeline of annotation and segmentation model training can be designed in an

iterative fashion. What our method can further contribute to such a procedure is the

possibility to use the voxel-embeddings from a model trained on small amounts of an-

notations as tool to propagate the slice annotation information to adjacent frames of

the volume data, potentially easing the annotation of volumes. The flexible training

strategy in our Con2R method enables learning from more convenient partial labels

and unlabeled data, easing the process for expert annotators. At the same time, the

design to alter the segmentation architecture to include a second voxel-embedding

output branch and our loss function to ensure positional- and semantic coherence

among the voxel-embeddings, offers potential for a future redesign of the annotation

processes towards an interactive- and expert-centric design.

Contribution 1:

We investigated volume segmentation scenarios where algorithms are supplied with

partial volume annotations as well as completely unlabeled volumes. In this setting,

we evaluated the performance of current semi-supervised algorithms and how their

behavior changes with more and more annotated regions distributed over the training

set volumes.

Contribution 2:

We proposed the Contrastive Constrained Regularization training strategy, where

we designed a positional proximity- as well as a semantic coherence constraint with

the aim to overcome the mismatch between dense volumetric predictions and sparse,

partial annotations, which are supplied in training. With this we achieve the best

semantic segmentation performance on two medical datasets in optical coherence-

and magnetic resonance imaging and show that our Con2R method profits most

from additional slice annotations in extremely scarce supervision scenarios.

In the next chapter, we consolidate the insights we have gathered in chapter 4 and

chapter 5 and design an algorithms which is able to profit from as diverse annotations
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as pixel-wise annotations, bounding boxes, single points, image-level labels as well

as entirely unlabeled images. There we build on the insights we gathered in previous

chapters, e.g. the idea of pseudo-label filtering, the siamese architecture design as

well as the view through trained embeddings on the segmentation task. We side-line

the introduction of a novel method to learn from diverse, heterogeneous semantic

annotations by more systematic means to analyze semi-weakly supervised algorithms.
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6 Unified learning with diverse annotation types

The limiting factor for bringing semantic segmentation solutions to expert-driven do-

mains is the process of acquiring annotations. In order to ease annotation and center

it more around expert-annotators, we aim at, from the algorithmic side, accepting

diverse annotation types, making it possible for experts to spend their time more ef-

ficiently on annotations of different granularity and thereby of a varying expenditure

of time. The question we consider in this chapter is how segmentation models can be

trained with such diverse annotations, which we answer by designing the Decoupled

Semantic Prototypes (DSP) method. DSP is a semi-weakly supervised contrastive

loss term which unifies learning from as diverse signals as masks, bounding boxes,

points, image-level labels as well as unlabeled data. By also proposing the notion of

an Annotation Compression Ratio, we are able to quantify what mixtures of annota-

tion types bring the highest performance, and uncover implications for time-saving

in the annotation process. Our segmentation solution DSP and analysis of its per-

formance in varying supervision scenarios has direct effects on how the expert’s time

can be used more effectively for bringing semantic segmentation into expert domains.

This section is based on a publication in CVPR 2023 [35], experiments were done

on the HoreKa supercomputer funded by the Ministry of Science, Research and the

Arts Baden-Württemberg and by the Federal Ministry of Education and Research.

6.1 Introduction

In the previous chapters training strategies for segmentation algorithms with var-

ied, but specific annotation types were presented to ease the annotation process for

experts and redesign it from an algorithmic perspective. Such semi-weakly annota-

tion combination included pixel-wise masks and unlabeled images, partially labeled

volumes plus unlabeled volumes and masks combined with image-level labels. As
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How can segmentation models be trained with diverse annotation types?

How can semi-weakly supervised semantic segmentation algorithms be analyzed 
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How well do different annotation type mixes perform?
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A

Figure 16: Overview of the main research questions in this chapter, they will be
explored on an electron microscopy dataset [9] where biologists are needed in the
annotation process. We further outline the Decoupled Semantic Prototype method
which can be trained with diverse annotation types making it flexible and putting
expert annotators into the center of the pipeline.

we outlined in the respective chapters, this already enables for more diverse anno-

tations in the segmentation network training procedure which frees experts to more

flexibly spend their time for annotations. Yet, an open question remains: Can a

model be trained with an even more diverse set of annotation types to free the ex-

perts even more from annotation restrictions? In this chapter we investigate this

fundamental question and design a segmentation method which is able to make use

of pixel-wise masks, bounding boxes, point annotations, image-level labels as well

as unlabeled images at once. Thereby, our training procedure is able to accept the
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most prominent semi- and weak supervision signals from literature at once. With

this algorithm, we can for the first time shed light on how well a model performs

with such diverse annotation types mixed together as opposed to just pairs of an-

notations in isolation. As in previous chapters, we are especially interested in the

performance of segmentation algorithms, when they are trained with only very few

pixel-wise annotations, and how the performance evolves when successively adding

more. To this extent, we explore a more systematic procedure to investigate this

by introducing the notion of an Annotation Compression Ratio, with which a model

is trained. With this more systematic approach to measure an individual segmen-

tation algorithm’s performance by exponentially reducing the amount of pixel-wise

annotations used to train a model, we can gather interesting insights. Further, by

using different annotation type combinations, we can investigate which annotation

type mixes perform best, and whether heterogeneous annotation types in a training

set are a disadvantage or might even be a better, more economical choice. With

the design of the new segmentation algorithm as well as the segmentation results for

different annotation mixes implications on the annotation process for expert-driven

segmentation datasets can be drawn. The main research targets of this chapter are

summarized in Figure 16.

6.1.1 Problem statement

To train segmentation models, we define a training dataset D = {x1, . . . , xn|xℓ ∈
Rcdim×H×W} comprised of images xℓ with dimensions Rcdim×H×W . Here, cdim repre-

sents the number of color or intensity channels, while H and W denote the height

and width of the images, respectively. Our training approach is designed to accom-

modate a variety of annotation types, allowing for a broad semi-weakly supervised

segmentation scenario. In this scenario, which is depicted in Figure 17, images xℓ

can be either unlabeled U , accompanied by pixel-wise masks M, weakly annotated

with bounding boxes B, point annotations P , or image-level labels I. Annotation

types are defined as previously described in Section 4.1.2, except for bounding boxes
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Figure 17: Algorithms which can be trained with as di-
verse annotation types as masks, boxes, points, image-
level labels and unlabeled images can help in facilitat-
ing the annotation time of experts more conveniently.

and point annotations which

we refer to as either two co-

ordinates (u1, v1), (u2, v2) ∈
[0, . . . , H− 1]× [0, . . . ,W −
1] on the image defining a

box accompanied by a class

association ∈ [0, 1]C or a

single coordinate, i.e. point,

associated with a class la-

bel, respectively. It is worth

noting that images anno-

tated with pixel-wise masks

provide access to weaker

annotation types such as

point, box and image-level

labels, as they can be de-

rived from them, while box-

and point annotated images

inherently contain information about the image-level label of the image.

6.1.2 Preliminaries

A key idea of our method is to extend our previous idea of chapter 5, i.e. using

pixel-wise embeddings, and enforce a contrastive loss function which can work with

diverse semantic cues based on different annotation modalities and thereby enforce

dependencies on a pixel level. Hence, it is necessary to assign an embedding vector

to each pixel in the image. In contrast to conventional segmentation networks that

employ a 1 × 1 convolution and pixel-wise cross-entropy loss for training, we pro-

pose a network architecture ε that generates embeddings F ∈ RD×H·W consisting of

embedding vectors fi ∈ RD corresponding to each pixel i. Such an architecture can



88 PART II. SEMI-WEAKLY SEGMENTATION

be obtained by simply omitting the last 1 × 1 convolution from any given network,

making it applicable to previous segmentation architectures. Next, we introduce se-

mantic prototypes, which can be used to map the individual pixel-embeddings fi to

the semantic classes again.

6.2 Decoupled semantic prototypical networks

While operating on pixel-wise embeddings will enable us to design a contrastive loss

function in a D dimensional embedding space to profit from different annotation

types, first representations of the semantic classes in this space are needed and a

way to associate individual pixel-embeddings to them. Therefore, we make use of

semantic prototypes pjc ∈ RD, which are learnable parameters in the form of vectors.

Here, c indicates the class which is represented by the prototype, while j indexes the

specific prototype in a set of prototypes Pc for this class. To obtain a class prediction

for a pixel-embedding f , we compute the cosine similarity of it to all prototypes pjc:

σ(f, pjc) =
f⊤pjc

||f || · ||pjc||
. (II.26)

This formula yields the similarity between a single prototype of a class c to a single

pixel-embedding f . To end up at a class-score for f the mean similarity to all

prototypes of class c, i.e. the set Pc, has to be computed:

sc(f, Pc) =
1

|Pc|
·
∑︂
j∈Pc

σ(f, pjc) . (II.27)

With this aggregation, the score sc quantifies how similar a pixel-embedding is to all

prototypes representing class c. To normalize these scores, we apply a temperature

scaled softmax function:

sc̄(f, Pc) =
exp (sc(f, Pc)) /τ∑︁C
i=1 exp (sc(f, Pi)/τ)

, (II.28)
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where τ is the temperature parameter. The scores sc̄ can be interpreted as class

predictions similar to classical predictions produced by a conventional 1 × 1 convo-

lutional output-head. Thus, sc̄ can be used in conjunction with a cross-entropy loss

when a pixel-wise annotation is available to train the segmentation network. In order

to infer the segmentation of an image at inference time, pixel-embeddings need to be

computed using the segmentation network ε to obtain f ∈ F and associated to the

classes by computing sc̄ for all C classes. Then, the class c with the highest score for

each pixel-embedding is set as the predicted class: arg maxc{sc̄(f, Pc)}Cc=1 .

A note on semantic prototypes All prototypes in P are learned end-to-end via

loss functions and back-propagation. Although the mathematical formulation above,

at first glance, looks quite different from the standard 1 × 1 convolutional output-

head it is quite similar. As all prototypes can be put into a single matrix of shape

D × |Pc| · C and via a matrix-multiplication for the similarity computation with

the pixel-embeddings F of shape D × H · W it would be equivalent to applying

|Pc| · C 1 × 1 convolutions to each pixel-embedding. The main difference to the

standard segmentation procedure lies in that we have |Pc| outputs per class and the

prototypes are normalized, which would equate to the weights within the |Pc|·C 1×1

convolutions being normalized. This connection relates our semantic prototypes to

weight normalization as proposed by Salimans et al. [243] with the exception, that

there arbitrary magnitudes ̸= 1 of the weight vectors are allowed, while we stay at

unit length for each prototype and we further normalize the input pixel-embeddings.

In a more descriptive way, our prototypes can be thought of as implicitly finding

semantic cluster centers which differentiates them from the proposition of Zhou et

al. [244] where online clustering is applied to explicitly obtain prototypes for segmen-

tation. There is also a coarse relation to class queries as used in some segmentation

transformer architectures [245]. With our altered view on segmentation, it can also

be thought of as, instead of predicting one-hot categorical vectors directly, our model

learns in a data driven way D-dimensional class representations that encompass the
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same embedding space as representations of pixels. On top, due to the usage of mul-

tiple semantic prototypes per class this modelling allows for classes to be represented

by a multi-modal distribution of representation vectors in this embedding space.

6.2.1 Decoupled semantic prototypes

While the semantic prototypes can be trained end-to-end via enforcing a cross-

entropy loss on the scores s̄c(f, Pc), this requires pixel-wise annotations for pixel-

embeddings f which we might only have access to very few. What the design choice

of Sec. 6.2, i.e., working on an embedding space and on similarities between pixel-

embeddings and class-representative prototypes enables is a well-directed manipula-

tion of that embedding space. Such a directed manipulation can be achieved via the

tool of contrastive learning, where associations between certain pairs of representa-

tions are enforced and their cosine similarity increased, while other associations get

weakened by penalizing a high cosine similarity among them. In constrastive litera-

ture, associations that should be strengthened are termed positive pairs while associ-

ations that should be weakened are referred to as negative pairs [246, 247, 113, 114].

Generally, contrastive loss terms are built by using different data augmentations on

a single image and process it via a network to obtain two high dimensional feature

representations of the same image zi and ẑi. The idea is that because the represen-

tations stem from the same image, merely altered with an augmentation that largely

preserves the semantic content, they can be deemed as positive pairs while all asso-

ciations between zi and a representation zj obtained from another image is seen as

negative. In terms of a loss function, we adapt the notation of [114] and write:

− log
exp (σ(zi, ẑi)/τ)

Zi

, (II.29)

with the positive association in the numerator and Zi denoting the negative pairs

with respect to zi. In a batch of size B the standard contrastive loss as formulated
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e.g. in [113] can be noted down as:

Zi = exp (σ(zi, ẑj)/τ) +
B∑︂

j=1,j ̸=i

exp (σ(zi, ẑj)/τ) + exp (σ(zi, zj)/τ) . (II.30)

Here, the denominator, i.e. the set of negative pairs is made up of all pairs between

the positive representation zi and all remaining vectors, except for the pair with itself

(zi, zi). Thus, this contrastive formulation can be seen as a classification task with

the individual instance representations as the targets and only one instance, ẑi, has

the label 1 while all other instances, in the denominator, have the label 0. Yeh et

al. propsed to completely decouple the denominator from the pair which encodes the

same instance in their Decoupled Contrastive Loss (DCL) formulation:

Zi =
B∑︂

j=1,j ̸=i

exp (σ(zi, ẑj)/τ) + exp (σ(zi, zj)/τ) . (II.31)

Here, both pairs (zi, zi) as well as the augmented pair (zi, zî) are omitted from the

denominator. This DCL adjustment led to stronger self-supervised performance for

small batch sizes. We modify the idea of decoupling the numerator and the denom-

inator in that we intent to decouple them not based on a single instance which has

been augmented twice, but we completely decouple the denominator from the class

association of the pair in the numerator. But first, we outline which representations

are contrastively paired and input in the cosine similarity computations σ(·). In Sec-

tion 6.2, we modified arbitrary segmentation architectures by omitting the penul-

timate 1 × 1 convolution output-head, operating directly on pixel-embeddings and

adding semantic prototype vectors which are associated to the classes. In our variant

of the contrastive loss function, we insert associations between pixel-embeddings fi

and the prototypes pj, or more precisely the association of a pixel-emebdding to the

set of semantic prototypes for a specific class sc(fi, Pc). Adapting Equation (II.29)
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results in:

L(fi, c) = − log
exp (sc(fi, Pc)/τ)

Zi,c

. (II.32)

The normalization factor Zi,c now has to include all B ·H ·W pixels in all images of

the batch, which are associated to all prototypes of the C classes:

Zi,c =
B·H·W∑︂
j=1

C∑︂
k=1,j ̸=i∧k ̸=c

exp (sk(fj, Pk)/τ) . (II.33)

With the condition j ̸= i, we follow the design of the DCL formulation, in order to

decouple the positive instance, here sc(fi, Pc), in the numerator from the denomina-

tor. Yet, leaving the condition as is would omit all associations between the positive

pixel-embedding fi and classes other than c, therefore we extend the condition to

j ̸= i ∧ k ̸= c which explicitly rules out exp (sc(fi, Pc)/τ) from the denominator.

Thus, Equation (II.33) is the naive adaptation of DCL to our prototypical segmen-

tation setup. While using the original DCL [114] design is clearly beneficial with the

image-wide representations zi, for semantic segmentation it comes with the draw-

back that each pixel-embedding of the images is included in the contrastive term,

which entails that when the positive association of the numerator lies within a large

semantically coherent region, all pixel-embedding associations of this region will be

present in the denominator. What this leads to is that semantically matching pixel-

embeddings will be pushed apart from each other in the minimization of the loss.

Put differently, the value of the numerator is increased and the value of the de-

nominator decreased by means of increasing the mean cosine similarity σ(·) between

fi and pj ∈ Pc and decreasing this similarity for all other pixel-embeddings. Our

pathway towards solving this problem lies in adjusting the denominator in a way

to only include pixel-embeddings for which it can with high certainty be said that

they do not match class c of the numerator. To this extent we enable the usage of

any semantic cues in the form of different annotation types that may be available
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for a given image in the batch. The altered normalization factor which decouples

the denominator from the positive semantic class of the numerator can be stated the

following way:

Zi,c =
B·H·W∑︂
j=1

C∑︂
k=1,k

.
=c→k/∈Aj

exp (sk(fj, Pk)/τ) . (II.34)

In this equation, the condition for including an association between a pixel-embedding

and prototype set is adjusted. Firstly, if the precondition k
.
= c of the implication

is false, i.e. when k ̸= c all pixel-embedding associations to prototype sets other

than the positive class c are included in the denominator (ex falso quodlibet). The

second case is the critical part, the case when we are considering including a pixel-

embedding which is associated to the positive class c, i.e. k
.
= c is true. Then we have

to check whether the semantic annotations for the j-th pixel indicate that it may

belong to the class k (which is the positive class due to the fulfilled precondition).

We formalize this via the notation of Aj, which denotes the set of all possible classes

for the pixel j based on the present annotations. If the pixel j lies in an unlabeled

region, it could potentially be associated to all classes, therefore Aj is the set of all

classes and |Aj| = C. When the pixel j belongs to an image with an image-level

label, Aj includes the set of all classes present in the image-level label. Further, if

the image that the pixel j belongs to is associated with bounding boxes, Aj is the set

of classes which have a bounding box overlapping with the coordinates of the pixel.

Lastly, point- and mask annotations provide exact information about the class of

the annotated pixel, thus, Aj for a pixel j with these annotations only includes the

single annotated class, i.e. |Aj| = 1. With this function A which returns the set of

all possible classes at the pixel locations, the denominator in Equation (II.34) can

be decoupled from the positive class completely. This happens in the right hand side

of the implcation k
.
= c → k /∈ Aj in case the precodition is fulfilled. There, we

only allow the inclusion of an association sk(fj, Pk) iff the positive class is not in the

set of possible classes Aj. With this strict exclusion of pixels-embeddings, we make
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Figure 18: For our decoupled semantic prototypes, we disentangle the denominator of
a contrastive term from the positive class based on diverse annotation types: masks,
points, bounding boxes, image-level labels without and with positive class presence
and unlabeled images. Yellow class (mitochondria) is the positive class, gray coloring
in class score maps indicates regions of negatives omitted from the denominator.

sure that the denominator is completely decoupled from the positive semantic class.

Here, we accept that some pixel-embeddings are excluded from the denominator even

though their actual class might not have been the positive class, e.g. pixels within

a bounding box might not belong to the box-class. On the other hand, in semantic

segmentation it is possible to have bounding boxes completely filled with a rectangu-

lar class segment, thus this conservative over-exclusion of pixels is compatible with

such edge-cases in segmentation and does not assume or even constrain the explicit

class distributions within the images. In Figure 18 the process of decoupling the

denominator of the contrastive term from a positive class by excluding associations

sk(fj, Pk) based on the possible present classes Aj is visualized.

By decoupling the contrastive term with respect to the positive class c, we ensure that

only pixel-embedding-prototype pairs are pushed apart from the positive pair, that



6. LEARNING WITH DIVERSE ANNOTATION TYPES 95

with the certainty of a given annotation do not contain the positive class. Through

our class-decoupling, all pixel-embeddings for a class c share the same negatives in the

batch, which therefore only have to be computed once per class, and not per instance

pairing, as in standard contrastive learning (cf. Section C.1 of the appendix).

6.2.2 Positive associations for decoupled semantic contrast

While Equation (II.34) provides a clear instruction on how to design the denominator

and select the negatives for the contrastive term, the selection of positive associations

in the numerator of Equation (II.29) has to be addressed next. For pixel-embeddings

fi which are associated to an exact class c, e.g. for mask- and point annotations the

selection of the positive is natural: sc(fi, Pc). Yet, reducing the set of positives to

stem only from annotations that satisfy |Ai| = 1 would severely reduce the set of

positives and narrow the annotation types that could be used. In the following we

outline how positives are chosen dependent on the annotation type present for a

pixel-embedding fi.

Pixel-wise masks For pixel-wise masks, we know exactly which class the pixel-

embedding relates to. While directly taking sc(fi, Pc) as the positive association

is possible, we opt for integrating the notion of an instance-segment by pooling all

sc(fi, Pc) belonging to the same connected component in the mask. This pooled

pixel-embedding-prototype pair is then considered as a positive of the contrastive

term. We denote the positives obtained from mask annotations in a batch with

respect to a class c as Ωm
c .

Point annotations For pixel-embeddings fi associated to a point annotation with

class c, the embedding-prototype association sc(fi, Pc) can be directly used in the

numerator as positive pair. All point annotated positive pairs of class c within a

batch make up the set Ωp
c .

Image-level labels In case an image-level label contains the class c, a positive em-

bedding fi can be derived from the image via the idea of Multiple-Instance Learning

(MIL) [159]. In MIL, the image can be considered as a bag of pixels, whereas the
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image-level label is the label of the whole bag. To still derive class assignments for

the individual pixels in the bag, a pooling function can be used to form a so called

bag-level prediction. For our bag of pixel-embeddings, we therefore form a bag-level

prediction by mean pooling all pixel-embedding associations to the positive class in

the image: 1
H·W

∑︁
fi∈F sc(fi, Pc), where F is the whole embedding map for the given

image. Ωim
c is the set of positives in the batch obtained by pooling embedding maps

of images with image-level labels containing the class c.

Bounding boxes In the work of Tian et al. [248], the authors leverage an implict

property of bounding boxes which is that on each horizontal level and each vertical

level of a bounding box, at least one pixel has to be associated to the box class c. With

this property, we select the positive associations from bounding box annotations.

Specifically, along all horizontal- and vertical lines of a box, we select the maximum

embedding-prototype associations sc(fi, Pc) and sum them up. By max-pooling along

these lines in the box, we enforce that at least one pixel on each of these lines has to

be associated to the box class c. This also respects semantic segmentation edge-cases

where a segment is only one-pixel thin and diagonally oriented, which could lead to a

large box with w ·h pixels (box-width w and box-height h) but only
√
w2 + h2 pixels

associated to the box class. The set of positives derived from bounding-boxes is Ωb
c.

Unlabeled regions In case a complete image or regions within an image are not

labeled, all these unlabeled pixels could potentially belong to any of the C classes.

Thus, no positive candidates can be derived from them and they serve solely as

providers of negatives in Equation (II.34).

Bringing together the full contrastive term with both the selected positives and

decoupled negatives, the loss fuction can be written as:

LDSP =
∑︂

l∈{m,b,p,im}

λl

C∑︂
c=1

∑︂
fi∈Ωl

c

L(fi, c) , (II.35)
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Figure 19: Our segmentation architecture which embeds each pixel of an input image
into an embedding space and associates it with learned prototype vectors to obtain
semantic predictions. On the right, we integrate the idea of pseudo-label filtering in
order to refine self-inferred pseudo-labels with the available weak annotations.

where λl are weighting factors for the individual annotation type-based loss compo-

nents. Details for the normalization of annotation type specific components can be

found in Section C.1 of the appendix.

6.2.3 Pseudo-label filtering

In Section 4.2.2, we utilized a naive way to introduce weak annotations into the

training of segmentation models, namely the notion of filtering pseudo-labels based

on the weak annotations. We adapt the idea of forming a hard pixel-wise target for

weakly annotated images using the network itself and then making this prediction

coherent with the information given in either the image-level label, bounding boxes

or point annotations. This is done, by altering the pre-softmax scores as follows:

1. Image-level labels: All predictions for class c are set to −∞ if c is abscent

from the image-level label.
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2. Bounding boxes: At locations outside of all boxes with box-class c set the

predictions for class c to −∞.

3. Point annotations: At locations where point annotations are present, set the

prediction to the point-class.

After filtering the predictions of the network in this fashion, a pseudo-label can be

derived by computing the arg max as described in Section 4.2.2, (II.10). Specifically,

we obtain pixel-wise predictions from a slightly augmented version of the input image

and filter it for a more robust pseudo-label. As done frequently in semi-supervised

literature [102, 34] we use this pseudo-label as target for a second prediction which

is based on a strongly augmented version of the same image. This is similar in

nature to the volume processing in Section 5.2.2. Based on the filtered pseudo-labels

for weakly annotated images and standard pseudo-labels for unlabeled images, we

subsequently compute a pixel-wise cross-entropy loss, which we refer to as LPLF and

display in Figure 19.

To enrich the baselines for our scenario of learning from mixed annotations, we add

LPLF to strong semi-supervised baselines making them semi-weakly trainable.

6.2.4 Decoupled prototypical nets for semi-weak supervision

With the altered architecture to segment images based on pixel-embeddings and

learned semantic prototypes, the decoupled contrastive loss as well as the paradigm

of strongly- and weakly augmented pseudo-label filtering, we can put together the

complete training strategy. It consists of a standard pixel-wise cross-entropy loss LCE

(compare Equation (II.6)) for images where masks are available, our contrastive loss

LDSP for images with arbitrary annotation types which we apply on both weakly-

and strongly augmented images, as well as the pseudo-label filtering loss LPLF for

augmentation invariance and additional integration of weak labels in training. This
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leads to the complete loss function for semi-weakly supervised training of our De-

coupled Semantic Prototypes for expert-centric segmentation:

Ltotal = LCE + LPLF + LDSP . (II.36)

6.3 Annotation compression ratio for semi-weak evaluation

The design of semi-supervised segmentation experiments is oftentimes done by ar-

bitrary definitions of mask-annotated portions with respect to the whole training

set, e.g. 5%, 10%, 20%. In previous chapters, we started investigating semi-weakly

supervised segmentation by looking into the extreme case, i.e. using only one example

per class and then subsequently doubling them in order to gain insight into the per-

formance progression in these extreme scenarios. While both pathways give valuable

insights into the behavior of segmentation algorithms with few annotations, i.e. their

annotation-efficiency, a more systematic way of measuring this property is desirable.

When we are given a dataset which is fully annotated with a base annotation type

and we train an algorithm with a small annotation-portion of the whole annotation

set, the algorithm can be thought of as compressing these annotations. With the

perspective of compressing annotations when using fewer of them, we define the

Annotation Compression Ratio (ACR) with regard to a base annotation type, which

in our case of segmentation is pixel-wise annotation:

ACR =
# total base annotations

# used base annotations
. (II.37)

This describes the degree of compression of the full annotations of a dataset, which

can be used to see how different algorithms perform at different compression ratios.

When training a segmentation algorithm with half of the masks in a dataset, it is

trained at an ACR = 2, this notation is also common in the field of neural network

pruning [249]. To make measuring the progression of algorithms with respect to

the needed annotations at train time more systematic, we propose to successively
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increase the ACR in an exponential fashion, i.e. 1, 2, 4, 8, 16, . . . which respects that

the accuracy as a function of the amount of annotations is generally regarded to

follow power laws [250]. This way of probing the annotation efficiency at exponen-

tially increasing ACRs equates to successively cutting the amount of annotations at

training time in half. Instead of cutting mask annotations completely and training

in a semi-supervised fashion, what we intend to do is to substitute them with weak

annotations to end up at semi-weakly supervised training scenarios.

6.4 Experiments and results

In the next section, we present the experimental setup in which we test our semi-

weakly Decoupled Semantic Prototypes method towards its annotation-efficiency via

rigorous evaluation protocols leveraging the notion of the Annotation Compression

Ratio. We present quantitative and qualitative results on an expert-driven test-bed

for cell organelle segmentation within focused ion beam electron microscopy images.

Afterwards, we discuss the insights from our expert-centric segmentation solution

and how its experimental results relate to the research questions of this chapter.

6.4.1 Datasets

As dataset collection to benchmark semi-weakly supervised semantic segmentation

approaches, we select the challenging OpenOrganelle data by Heinrich et al. [9].

In this collection, there are several individual large electron microscopy volumes,

which each contain a whole imaged cell. Each such volume can be regarded as

a dataset, where we put our focus on the datasets HELA-2, HELA-3, JURKAT-

1 and MACROPHAGE-2 due to their difficulty and diversity. Example images

showcasing the variability among different electron microscopy datasets is displayed

in Figure 20. With the excessive size of these volumes obtained by focused ion beam

scanning electron microscopes (FIB-SEM), they are only annotated in manageable

sub-volumes. We use these annotated sub-volumes and extract small 2D slices from

them to train our 2D segmentation models using the pixel-wise annotations which
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HELA-2 HELA-3 MACROPHAGE-2 JURKAT-1

Figure 20: The cell organelle electron microscopy collection OpenOrganelle by Hein-
rich et al. [9] is highly variable regarding image properties across datasets.

cover very detailed cell organelle classes. In order to follow a strict protocol, we cre-

ate cross-validation splits in a way such that training, validation and testing contain

distinct sets of these sub-volumes. Further, we have to ensure, that in all train-, val-,

test-sets, all classes are present. To have enough classes which are present in three

different sub-volumes for this cross-validation setup, we merge classes in a biologi-

cally coherent fashion, e.g. mitochondria, mitochondria membrane and mitochondria

DNA are merged into a single mitochondria class. After this merging process via

a biologically motivated class hierarchy [9], we have 11 cell organelle classes for the

HELA-2 dataset, 10 for HELA-3, 8 for JURKAT-1 as well as MACROPAHGE-2

which are present in at least three sub-volumes. Classes which occur in less than

three sub-volumes after merging are omitted as they do not fulfill the cross-validation

requirement. In order to obtain multiple cross-validation splits, we shuffle the sub-

volumes of a dataset and randomly distribute them into train-, val-, test-sets with the

restriction, that all three sets contain all classes. As in previous chapters, we enumer-

ate all slices within the training set for a reproducible selection of arbitrary portions

of their annotations. This is done similarly to what we described in Section 4.3.2. For

the largest dataset, namely HELA-2, we create a total of 10 cross-validation splits,

for the remaining three datasets we use 5 to ease the computational requirements.

6.4.2 Evaluation protocol

In our experiments, we successively and exponentially reduce the amount of mask

annotations used to train the different segmentation algorithms, i.e. we consecutively
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double the ACR from 1 to 64, which equates to going from 100% to circa 1.6% of

mask annotations. While reducing costly mask annotations, in our first stack of

experimental setups, we substitute the omitted masks with either image-level labels

or bounding boxes or point annotations. What we are equally as interested in is the

scenario, when a model is trained with a diverse mix of annotations, covering: masks

M, boxes B, points P , image-level labels I and unlabeled images U . To this end, we

also successively increase the ACR as before, but instead of substituting masks with

a single annotation type, we uniformly distribute all remaining annotation variants

(B, P , I, U) among the images which are not associated to a pixel-wise annotation

anymore. As an example for this mixed supervision scenario, with an ACR = 2, the

models are trained with 50% pixel-wise masks, 12.5% unlabeled, 12.5% image-level

labels, 12.5% point annotations, 12.5% bounding boxes.

To evaluate the efficacy, we follow the common procedure for segmentation models

and infer the class-prediction P for all pixels in all testing images with a given model

and calculate the DICE coefficient (or F1 score) using the ground-truth G:

DICE(P,G) =
2|P ∩G|
|P | + |G|

(II.38)

To evaluate the performance on cell organelle segmentation, we calculate the DICE

for all C classes of the respective electron microscopy datasets:

mDICE(P,G) =
1

C

C∑︂
c

2|Pc ∩Gc|
|Pc| + |Gc|

(II.39)

The mean DICE is computed by averaging these individual class DICE scores, here

Pc and Gc refer to binary predictions and ground-truth related to class c. As we

perform cross-validation with multiple folds the final measures which we display are

the average mean DICE and the standard deviation over S splits (i.e., each result
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reflects S trained segmentation models):

average mDICE =
1

S

S∑︂
s

mDICE(P s, Gs) (II.40)

Here, P s and Gs are the predictions and ground-truth of the current split s. In the

following results we generally write mDICE as shorthand for average mean DICE.

6.4.3 Implementation details

In our experimental setup, we adopt a consistent implementation of all methods

employing the widely used Unet architecture proposed by Ronneberger et al. [44].

While our segmentation approach and the baselines can be applied to other segmen-

tation architectures, we deliberately select Unets for their inherent stability, ensuring

that side-effects such as the absence of intricately tuned learning rate warm-ups are

minimized. This is especially important due to the large number of trained models

we will obtain in our experiments, e.g. with 7 ACRs and 10 cross-validation splits for

the HELA-2 dataset at least 70 models are trained per segmentation approach per

semi-weakly supervision scenario. All models undergo training using the AdamW

optimizer [251] with β1 = 0.9 and β2 = 0.999. A fixed learning rate of 6e−5 is

employed, along with a weight decay of 0.01 and Xavier initialization [229] for the

network weights. The training process is conducted on a multi-GPU setup consisting

of four NVIDIA A100-40 GPUs, each with a memory capacity of 40 GB. Training is

performed for 100 epochs on each split of the dataset. During training, validation is

carried out every 10 epochs, and the model with the best validation performance is

evaluated on the corresponding test set after completion of training. To accommo-

date the varying memory requirements of different training methods, the batch size is

set to the maximum possible value within the method’s memory constraints, ranging

between 16 and 28. To ensure compatibility with batch processing, it is necessary for

the inputs to have equal sizes. However, the sub-volumes of the investigated datasets
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occasionally exhibit varying image width and height. We address this issue by zero-

padding all images to match the respective maximum size. For weak augmentation, a

set of transformations is applied, including horizontal and vertical flipping, rotations

by 0◦, 90◦, 180◦, 270◦, as well as brightness, contrast, saturation, and hue jittering,

each with a factor of 0.2. To further augment the data with strong augmentations in

addition to flipping and rotation, a jitter factor of 0.4 is applied, and CutOut [240]

is employed up to nine times, removing small regions from the image.

6.4.4 Competing approaches

Basic Unet [44]: As a lower baseline, the shared architecture of all methods, the

Unet architecture, is trained with only the pixel-wise annotated masks that are avail-

able in the respective experimental setup. The trained models serve as initialization

for all remaining approaches.

Pseudo-label [99]: A common baseline for semi-supervised settings is training the

network with pixel-wise annotations in a standard fashion and for unlabeled data,

self-infer a pseudo-label and utilize it as target for the unlabeled example. In this

baseline, we add the notion of pseudo-label filtering from Section 6.2.3, enabling it

to use weak annotations as well.

Con2R [34]: As a semi-weakly designed method, we test the Con2R approach

from chapter 5 on 2D cell organelle segmentation instead of 3D volume process-

ing. Therefore, we adjust the receptive volume size R to a two dimensional 16 × 16

size. With some tuning, we noticed that the performance of this approach is posi-

tively affected when sampling the query- and neighbor sets for strongly- and weakly

augmented versions of the input instead of just using the strongly augmented branch.

Further, the semantic consistency constraint can be altered to also leverage pseudo-

label-filtered predictions in case weak labels are available. For this we apply the

filtering rules as well as a softmax normalization, which then serves as input to the

semantic consistency computations.

FixMatch [102]: As a strong baseline, we adapt FixMatch from semi-supervised
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classification to segmentation and further make it semi-weakly trainable by adding

pseudo-label filtering as done for the prior two baselines.

Classification branch [186]: When we train models semi-weakly using pixel-wise

annotations and image-level labels (scenario M + I), the approach of Mlynarski et

al. fits as baseline, as they train an auxiliary classification branch of the segmenta-

tion network to integrate image-level labels conveniently into the training procedure.

With this alteration, the Unet is altered towards a dual-head architecture with a

segmentation and a classification output-head.

Euclidean/Geodesic point branch: We also investigate the scenario of training

with pixel-wise annotations as well as point annotations (scenario M+P). For this

more exotic supervision variant, we are not aware of existing techniques. There-

fore, we take inspiration from interactive segmentation [252] where point cues are

commonly used via distance maps. Coherently to the previous dual-head architec-

ture, we design a semi-weakly supervised baseline, which regresses either the point

annotation-based euclidean- or geodesic distance maps in a second output branch.

Box loss: For training with masks and bounding boxes (scenario M + B), an ap-

proach based on the box-based loss of Tian et al. [248] is used. Other mask- and box

supervised approaches often rely on priors [157, 154] which tend to hold for natural

images but not for expert-centric domains such as electron microscopy imaging.

DSP (Ours): To calculate pixel-embeddings, we modify the Unet architecture by

replacing its final output convolution layer. We replace it by a sequence of operations,

including batch normalization [222], 1 × 1 convolution with 64 kernels, LeakyReLU

activation, and a final 1 × 1 convolution with 64 kernels. Through this replacement,

at the end of the network, we obtain D = 64 dimensional embeddings. For each

class, we utilize |Pc| = 5 learned prototypes and a temperature parameter τ = 0.05,

ensuring a proper scaling of the similarities between embeddings and prototypes.

Additionally, we assign weights to the annotation type-specific components of the

loss as λm, λb, λp, λim, with each weight set to 0.1.
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6.4.5 Hyper-parameter sensitivity studies

LPLF λm λb λp λim τ |Pc| DICE

1.0 0.0 0.0 0.0 0.0 0.05 10 55.9%
1.0 1.0 1.0 1.0 1.0 0.05 10 58.4%
1.0 1.0 0.2 0.5 0.3 0.05 10 57.7%
1.0 0.1 0.1 0.1 0.1 0.05 10 59.5%
1.0 0.01 0.01 0.01 0.01 0.05 10 56.8%

1.0 0.1 0.1 0.1 0.1 1.0 10 41.9%
1.0 0.1 0.1 0.1 0.1 0.5 10 49.3%
1.0 0.1 0.1 0.1 0.1 0.01 10 58.6%
1.0 0.1 0.1 0.1 0.1 0.005 10 59.4%

1.0 0.1 0.1 0.1 0.1 0.05 1 59.0%
1.0 0.1 0.1 0.1 0.1 0.05 5 60.7%

0.0 0.0 0.0 0.0 0.0 0.05 5 48.9%

Table 11: Hyper-parameter sensitivity
study for DSP on the first split of the
HELA-2 dataset. Training is done in the
mixed supervision scenario at an ACR of
8. The configuration of λm, λb, λp, λim = 0
equates to not using LDSP .

Before carrying out the main exper-

iments, we investigate the sensitivity

of DSP ’s hyper-parameters towards the

performance as measured in mDICE. We

carried out these experiments on the first

split of the HELA-2 dataset at an ACR

of 8 and report the validation perfor-

mance in Table 11. In the first batch

of experiments, we investigate how the

weighting factors λ affect the segmenta-

tion efficacy. We see that moving from

not using LDSP with λm, λb, λp, λim = 0

to an equal weighting of 1 improves the

results considerably. Choosing a weight-

ing which roughly leads to similar loss

values for the individual components in

row three as well as choosing a too low

weight of 0.01 for the contrastive losses

in row five led to worse performance. Best results of 59.5% are achieved by a simple

equal weighting with a factor of λm, λb, λp, λim = 0.1. In the second group of ablation

experiments, we alter the softmax temperature parameter τ , which we identify as

an important hyperparameter, largely affecting the performance. Here, the original

temperature of 0.05 from the previous batch of experiments remain the best results.

The architectural design with our decoupled semantic prototypes allows for an arbi-

trary number of prototypes representing an individual class. In the third group we

find, that between 1, 5 and 10 prototypes per class, 5 yield the best performance for

the dataset at hand with 60.7% DICE. To showcase that the architectural alteration

alone is not the singular factor leading to these improved results, we drop both LDSP
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and the pseudo-label filtering loss LPLF in the last row, where we can clearly observe

a deterioration in performance to 48.9% DICE. An ablation study for the baseline

methods can be found in Section C.5 of the appendix.

6.4.6 Quantitative results

Next, we evaluate all presented baseline methods on the task of semi-weakly super-

vised cell organelle segmentation. First, in Figure 21 we will show the results of all

algorithms trained on the HELA-2 dataset with (a) masks and image-level labels

(M+I), (b) masks and bounding boxes (M+B), (c) masks with point annotations

(M + P) and (d) mixed supervision with: masks, image-level labels, boxes, points

and unlabeled data (M+I+B+P+U). And finally, we show the generalization ca-

pability of our method on the datasets HELA-3, MACROPHAGE-2 and JURKAT-1

which we all investigate in the mixed supervision scenario in Figure 22. In order to

keep the number of experiments manageable, for all mixed supervision scenarios, we

only evaluate the lower baseline, our method DSP and the best baseline method from

the experiments with pairs of annotation types (a) – (c). We present all results in

graphs which plot the performance against the Annotation Compression Ratio, while

the corresponding numerical values are available in Section C.2 of the appendix.

Supervision M + I: The first thing that can be investigated is the lower base-

line, i.e. the Unet trained with merely the available masks at the given ACR. The

basic Unet is always displayed in black and stays similar across experiments in Fig-

ure 21. As expected, reducing the amount of pixel-wise annotations also reduces the

segmentation performance with the steepest decline happening between the ACRs 8

and 32, where it declines from 43.6% to 24.6% mDICE, an absolute drop of −19%. At

an ACR of 64, i.e. with merely 36 pixel-wise annotations left, the basic Unet reaches

20.2% mDICE, which is better than a random baseline at 5.1% or predicting the most

frequent class at 6.1% but is an overall very poor segmentation performance. In Fig-

ure 21a we can observe, that the integration of image-level information as done in

Con2R, Pseudo-label and the Classification branch model certainly helps in slowing
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(a) Masks + image-level labels on HELA-2.
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(b) Masks + bounding boxes on HELA-2.
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(c) Masks + point labels on HELA-2.
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(d) Mixed on HELA-2.
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Figure 21: Graphs showing the performance in average mean DICE along 10 cross-
validation splits with standard deviation. Experiments of semi-weakly supervised
training on HELA-2 for different supervision combinations (noted above the graphs).
Performance reported as function of amount of masks present during training.

the degradation of the segmentation performance. Especially, the simple Pseudo-

label method, which we augmented with the idea of pseudo-label filtering performs

quite reasonably up to an ACR of 16, dropping only by −4% absolute mDICE as

compared to the fully supervised 50.1%. In the extreme case scenario, the Pseudo-

label method improves the basic Unet results by +7.7% absolute mDICE, showing
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the value of adding image-level labels into the training, when only very few pixel-

wise annotations are present. The two best performing models in Figure 21a are

FixMatch with the pseudo-label filtering alteration and our DSP method. Directly

from the start, i.e. at an ACR of 1, these two methods achieve a higher mDICE per-

formance than all competing methods, reaching up to 53.4% for DSP and 52.9% for

FixMatch. This notable positive offset in performance might stem from the addition

of weak- and strong augmentations and suitable ways to integrate them for a certain

degree of augmentation invariance. Comparing FixMatch and DSP in this scenario

with masks and image-level labels, they lead to a quite similar performance.

Supervision M+B: In Figure 21b, we can observe a similar behavior of the meth-

ods: the Unet baseline deteriorates fastest, in the middle ground Con2R, Pseudo-

label and the Box-loss baselines perform slightly better, while FixMatch and DSP

work best. Looking into the especially annotation scarce scenarios with ACRs of 32

and 64, the benefit of contrastive modeling in DSP is clearly evident, as it outper-

forms FixMatch by +3.8% and +4.8% mDICE respectively. This strong performance,

which is specifically present when very few masks are available is a valuable property

for expert-centric applications which typically operate in this territory.

Supervision M + P : When conducting training with mask and point supervi-

sion, in Figure 21c, the difference between the two front runners FixMatch and our

DSP method becomes more pronounced. Our method outperforms FixMatch by

+1.3%, +2.8%, +5.2%, +5.1% mDICE for ACRs from 8 to 64, again showing strong

performance gaps especially in the scenarios where few masks are available. When

comparing the performance of DSP between supervision configurations in Figure 21a,

Figure 21b and Figure 21c, we can confirm, that aside mask annotations, bounding

boxes provide the most information for training semantic segmentation models, with

points following and image-level labels yielding the least hints for better training.

Supervision M + I + B + P + U : Next, in Figure 21d, we investigate the setting,

when models are faced with a diverse mix of annotation types, namely masks, boxes,

points, image-level labels and entirely unlabeled images, which is our core motivation
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(a) Mixed on HELA-3.
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(b) Mixed on MACROPHAGE-2.
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(c) Mixed on JURKAT-1.
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Figure 22: Results on HELA-3,
MACROPHAGE-2 and JURKAT-1
over 5 splits in the mixed scenario.

in order to mature segmentation approaches

towards flexible integration of heterogeneous

semantic cues, making them more flexible to-

wards expert-provided information. The first

thing that can be noticed is, that the perfor-

mance of FixMatch in the mixed supervision

scenario is slightly better than when trained

with masks and boxes with the exception of

the extreme cases at ACRs of 16 and 64. If we

compare the graph of FixMatch with DSP, we

see that starting at an ACR of 4 the two graphs

decouple from each other and DSP coming

out on top, decreasing in performance much

slower. The performance when training DSP

with mixed annotation types is the best among

all the different supervision scenarios we inves-

tigated in the very scarce annotation regimes

of ACR 32 and 64. At an ACR of 64, with

a performance of 49.5 ± 6.1% mDICE when

trained with 36 mask annotations aside the

mixed weaker annotation types, DSP comes

close to the fully mask-supervised performance

of the basic Unet which lies at 50.1± 4.6% us-

ing all 2321 mask annotations. When compar-

ing the relative performance drop from ACR

1 to 64 (reduction of 98.4% in mask anno-

tations), the basic Unet performance drops

by −59.7%, FixMatch performance drops by

−30.6% while DSP performs steadily and only
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drops by a relative −7.3%. In absolute terms, DSP achieves an absolute mDICE in-

crease over the performance of FixMatch at ACR = 64 of +12.8%. The results

indicate that leveraging a diverse mix of annotation types as opposed to supplying

only pairs of annotation types is not merely possible with DSP, but even has an

advantageous effect on the segmentation efficacy. This might be due to DSP en-

abling a flexible integration of boxes which delimit entities and encode their spatial

extent as well as point annotations which hint at important, central points on the

semantic segments. In Figures 22a to 22c, we show that our Decoupled Semantic

Prototypes method is also able to generalize to other datasets from the OpenOr-

ganelle family when trained with the diverse mix of annotation types. For large

ACRs, i.e. 16, 32, 64, DSP is able to outperform other approaches, making best use

of the few mask annotations and the remaining mix of annotation types. On the

JURKAT-1 dataset, all methods struggle in producing strong segmentation models

when masks are scarce, which might go back to challenging image properties such as

low contrast in the dataset.

A note on significance To make sure our Decoupled Semantic Prototypes bring

about a significant improvement when masks are scarce on the HELA-2 data as

compared to prior art, we compare it using ASO [253] with a confidence level α =

0.05, where we found the score distribution of our DSP based on ten cross-validation

results to be stochastically dominant over FixMatch for the following scenarios:

M + B : ACR = 32, 64 (ϵmin = 0.22, 0.11)

M + P : ACR = 16, 32, 64 (ϵmin = 0.12, 0.33, 0.02)

M + B + P + I + U : ACR = 16, 32, 64 (ϵmin = 0.38, 0.06, 0.00)

For reference, if ϵmin < 0.5, DSP is stochastically dominant over FixMatch in more

cases than vice versa, as such it can be declared as superior. As noted earlier, in

the M + I scenario, both DSP and FixMatch perform comparably well, which is

supported by our significance analysis. Yet, it has to be noted that we attribute

FixMatch our pseudo-label filtering scheme to make it compatible with weak an-

notations. When comparing the basic semi-supervised FixMatch results with DSP
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models trained with additional image-level labels, the score distribution of DSP is

found to be stochastically dominant over FixMatch in the annotation scarce scenar-

ios ACR = 32, 64 (ϵmin = 0.48, 0.00) which is to be expected due to the miss-match

in annotations used. For this analysis we made use of the Almost Stochastic Order

test [253, 254] as implemented by [255].

6.4.7 Qualitative results

After gathering insights from quantitative segmentation results across a broad set

of baseline algorithms as well as our Decoupled Semantic Prototypes, we display the

basic Unet results, the FixMatch and DSP segmentations trained in the mixed su-

pervision scenario in Figure 23. Starting with the lower baseline, we see that the

Unet trained exclusively with masks produces an acceptable organelle segmentation

when supplied with sufficient pixel-wise annotations in the ACR = 2, 4, 8 scenarios.

Starting with an ACR of 16, we can observe in the first row, that the mitochon-

drium class (yellow) is not captured anymore and the cytosol class (pink) starts

leaking into the extra cellular space (transparent) at the top of the image. Fur-

ther, the cell nucleus class (blue) is segmented very crudely and speckles of this

class get scattered over the bottom half of the image. The Unet fails in accurately

capturing the majority of cell organelle outlines for ACRs 16, 32, 64, which is also

confirmed in a second example in row four, where with 72 pixel-wise annotations

(ACR = 32), it is merely capable to coarsely segment the majority classes cytosol

and extra cellular space, while with 36 pixel-wise annotations (ACR = 64), cytosol

is predicted for almost all pixels. For the extreme case of ACR = 64, FixMatch

results look better as compared to the basic Unet, while it also mostly captures the

majority cytosol class in row five, it is at least able to distinguish between the in-

side of the cell and the extra cellular regions. Yet, it has to be noted, that FixMatch

was trained with an additional mix of weak annotations which through pseudo-label

filtering and the training towards augmentation invariance is able to produce these

slightly better results. Such differences to the basic Unet also show in row two,
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Figure 23: Qualitative segmentation results when training with a different amount of
pixel-wise annotations plus a diverse set of annotation types: bounding boxes, points,
image-level labels and unlabeled images. Two different images of cell organelles from
the HELA-2 dataset are segmented with a Unet, FixMatch and our DSP.

where for ACR = 64 nuanced contours of the cell organelles get captured better.

When looking into the segmentation progression using more pixel-wise annotations,

FixMatch produces perceptible organelle segmentations already for ACR = 16, while

the basic Unet requires double the amount of annotations at ACR = 8 to produce

visually matching results. For FixMatch one trained model, at ACR = 4 heavily

over-segments the mitochondrium class for the given image which underlines the
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Figure 24: Difference of segmentation results when supervising Decoupled Semantic
Prototypes with different combinations of annotation types on an image of the HELA-
2 cell organelle segmentation data.

need for multiple cross-validation splits in order to ease such effects happening in

stochastic optimization, and rank the different segmentation approaches by their

mean performance along multiple runs with differently split train-val-test sets. Mov-

ing towards our DSP approach, we can see, that it is able to much better utilize the

weak annotation types to perform semantic segmentation in scenarios with very few

pixel-wise annotations. For an ACR = 64, which equates to only 36 masks and the

addition of boxes, points, image-level labels and unlabeled data through our con-

trastive decoupling visually improves noticeably upon the baseline results. Already

there it is able to correctly capture the mitochondrium class, with only a few

miss-classifications within the segment, but also the very thin plasma membrane

(orange) gets captured accurately in this scenario both in row three and six. The

improvement with more and more pixel-wise annotations can be observed in the seg-

mentation of – for non experts – partially similar looking endoplasmic reticulum
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(turquoise), Multivesicular bodies (green) and vesicles (grass green) classes. Yet,

DSP struggles with the microtubules class (purple), which is hard to capture for

all of the tested methods.

As we trained DSP in four different supervision scenarios, in Figure 24 we are able to

display how training with masks and image-level labels (M + I), masks and points

(M + P), masks and boxes (M + B) as well as mixed supervision (M + I + P +

B+U) affects its visual segmentation results. While training with masks and image-

level labels helps in correcting miss-classified contours as compared to a basic Unet

(compare Figure 23, row one), it does not help to identify coherent semantic regions

as it does not supply added location information to the model. This changes when

points are used, there, the model is able to identify larger regions lying on the actual

organelles, yet with very few pixel-wise annotations, e.g. in the ACR = 64 scenario,

if fails in correctly delineating the outlines of individual organelles. Using bounding

boxes improves this problem visibly for the mitochondrium class but still produces

miss-classifications within the nucleus (blue) and nuclear envelope (dark blue) for

ACR = 64, which the model trained with a mix of all annotation types is able to

correct.

6.5 Discussion

In the classical semantic segmentation pipeline, after the image collection phase, an-

notators supply a pixel-wise annotation to each of the images. When the availability

of expert annotators is the critical resource, the limited time they have to anno-

tate images has to be spent with caution. From an algorithmic standpoint, prior

segmentation solutions were designed to work with pixel-wise masks exclusively, or

added unlabeled data. Some work considered training segmentation models with

two types of annotations such as masks and image-level labels. In our method De-

coupled Semantic Prototypes we have shown that it is possible to go beyond these

paradigms and integrate a wide diversity of annotation types into a unified training

objective, namely masks, bounding boxes, points, image-level labels and unlabeled
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images. This algorithmic solution has effects on the annotation phase of segmenta-

tion applications in expert-driven domains, as now, the expert annotators can spend

their time more economically by flexibly providing different semantic cues which the

subsequent segmentation algorithm can utilize to produce a more accurate trained

model. Thus, it is now possible to opt for different degrees of granularity in an-

notations of a dataset which has either implications on the budget to be spent or

the number of images which can be associated with semantic information. At the

same time, such a flexible annotation phase has a large impact on how well the seg-

mentation model performs. Instructing the experts to only annotate images with

pixel-wise masks may lead to a sub-optimal allocation of the annotators time. When

the expert’s time is limited, it may be much more economical to gather the lions

share of performance gain from only a few masks in conjunction with a diverse mix

of annotation types for the majority of the images. This strategy yields datasets

where the majority of images are linked to semantic information, while the classical

strategy of only annotating pixel-wise covers only a small portion of images with se-

mantic information, sacrificing diversity in the semantically annotated images. With

our DSP algorithm, following this mixed-annotation strategy, with a reduction of

98.4% in mask annotations it achieves 98.8% of the performance as compared to a

naive training algorithm which requires a dataset being completely annotated with

dense, pixel-wise masks. When comparing our approach trained with masks, boxes,

points, image-level labels and unlabeled data to trainings where only two of these

annotation types are used, the diverse mix always outperforms the less diverse mix

when very few masks are available. This, shows that in a scarce annotation scenario,

as prevalent in expert-driven domains due to the expert’s time constraints, opting

for a mix of annotations can even be beneficial for the performance of a system.

Lastly, being able to profit form diverse annotation types also enables an iterative

annotation process, where annotations of different images are successively refined

from unlabeled to image-level labels, to points and boxes and at the end to masks.

Our flexible algorithm can make use of all images with their respective annotation
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types at their different maturity stages. Our contributions summarize as follows:

Contribution 1:

We proposed an algorithm which is able to profit from annotation types as diverse

as pixel-wise annotations, points, bounding boxes, image-level labels and unlabeled

images to train a semantic segmentation model. With this, new ways of supervising

segmentation models and thus, new ways for dataset annotation are made possible,

which is a key component for applications and domains, where the annotation time

is scarce due to the need for expert annotators.

Contribution 2:

With the notion of an exponentially increasing Annotation Compression Ratio, we

offer a pathway to more systematically analyze semi-weakly supervised algorithms

towards their efficient use of annotations with respect to their task accuracy. This

way of designing an evaluation protocol is able to more precisely show how the

accuracy of an algorithm progresses as it is supplied with fewer and fewer annotations

of a specific type.

Contribution 3:

With our thorough evaluation and extensive experiments, we are able to quantify the

effects of training different algorithms with different annotation type mixes, such as

masks and image-level labels, masks and bounding boxes, masks and point annota-

tions as well as models using masks, boxes, points, image-level labels and unlabeled

data. This first analysis of its kind for semantic segmentation uncovers, that train-

ing with a broad diversity of annotation types is beneficial for the trained model’s

accuracy and superior to all other tested supervision scenarios, even though the an-

notation time spent is strictly smaller (under the assumption that boxes and points

are more costly than image-level labels).
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This concludes Part II: Expert-centric Semi-weakly Supervised Semantic Segmenta-

tion of this thesis. Next, concluding remarks regarding the impact of this work on

the filed and exciting directions for continuing this research are discussed.
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7 Impact on the field

This thesis has advanced the research field of working with limited resources for

the semantic segmentation of image data. Previous approaches either integrated

unlabeled data besides pixel-wise annotations or exclusively worked with weak anno-

tations and assumptions about the data distribution, while with our methodological

contributions we enable networks to be supervised flexibly by diverse sets of an-

notation types or unlabeled images. We showed how to systematically probe into

the annotation-efficiency of segmentation algorithms and gathered new information

on the effects of supervising models with a broad mix of semantic cues. Here, we

summarize the main contribution and opened pathways for exploring semi-weakly

supervised segmentation solutions.

7.1 New research directions

Semi-weakly supervised volume segmentation: Learning from unlabeled vol-

umes in conjunction with partially labeled volumes using sparse 2D labels was for-

malized in our work (Section 5.1.1) and introduced as a promising pathway towards

easing the requirement of densely labeled volumetric data. The effect of establish-

ing this research direction is two-fold: First, the developed solutions can be readily

used to right now ease the requirement of dense volume annotations and profit from

sparsely annotated as well as completely unlabeled volumes, making the annotation

process easier for annotators. Secondly, with the clear establishment of the task of

semi-weakly supervised volume segmentation, we set of a new promising way to view

volume segmentation and to develop further solutions.

Semi-weakly supervised segmentation: Besides maturing the task of semi-

weakly supervised segmentation to expert-driven domains such as retinal fluid seg-

mentation in optical coherence tomography scans (Section 4.3) and cell organelle
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segmentation in electron microscopy imaging (Section 6.4) we also formalized semi-

weakly learning for semantic segmentation with diverse annotation type mixes, namely

pixel-wise annotations, bounding boxes, point annotations, image-level labels and un-

labeled data, where we directly propose a solution to work with such diverse sets of

annotations. By establishing this semi-weakly supervised setting for training segmen-

tation models, we set the stage for the exploration of segmentation solutions which

are more flexible and accept diverse annotation types, which has direct implications

on how images can be annotated, offering practitioners a broader set of possibilities

to bring semantic segmentation solutions into new expert-centric domains.

7.2 New tools and insights in annotation scarce training

Establishment of clear protocols: Training segmentation models in scenarios

where extremely few annotations are present comes with challenges in robustly mea-

suring the results and establishing a performance ordering. For semi-weakly semantic

segmentation on retinal fluid segmentation, brain tumor segmentation as well as cell

organelle segmentation we establish evaluation protocols (Section 4.3.2, Section 5.3.2,

Section 6.4.2) for a rigorous cross-validation reducing the effects of individual anno-

tations and obtaining more reliable results which can be sidelined by suitable sig-

nificance tests for deep neural networks. Our contribution here includes evaluation

protocols utilizing the Annotation Compression Ratio (Section 6.3) to better quan-

tify different degrees of precisely annotated supervision settings while varying the

mix of annotation types used in training.

Insights from experiments: We included over 3, 400 network training results

across all of our experiments which made it possible to gather considerable insights

into how well semi-supervised and semi-weakly supervised segmentation solutions

perform in scenarios where extremely few pixel-wise annotations are available (Sec-

tion 4.3.6, Section 5.3.6, Section 6.4.6). This analysis further uncovered what effect

different annotation mixes, or semi-weak supervision strategies have on the efficacy
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of segmentation models and which strategies work better in these scenarios with a

low amount of precise annotations, as prevalent in expert-centric applications.

7.3 Novel methods for semi-weakly supervised segmentation

At the center of this thesis, we propose novel methodological pathways to tackle se-

mantic segmentation scenarios when costly, pixel-wise annotations are scarce. This

perspective from the methodological side enables new possibilities to bring semantic

segmentation solutions to applications, as it opens up how experts annotate image

data, making the annotation process more flexible and enabling more cautious con-

sideration of how to spend the expert-annotator’s time to a maximum effect. Due

to the wide variety of imagining techniques in expert-driven domains and thereby

wildly different imagining properties, we have put special emphasis on designing al-

gorithms which do not make harsh assumptions on the data distribution but are

motivated from the standpoint of the task we want to solve, i.e. semantic segmenta-

tion, to enable better transferable methods as opposed to previous approaches. We

proposed the Mean-taught Deep Supervision method (Section 4.2.3) including the

Multi-label Deep Supervision loss function (Section 4.2.1), which enables networks

to be trained better with noisy pseudo-labels through considerate, deep integration

of these self-inferred semantic cues. Further, for training models with 2D partial la-

bels in conjunction with completely unlabeled volumes, our Contrastive Constrained

Regularization method (Section 5.2) can bring about performance improvements

through considerations regarding common properties of the semantic segmentation

task, i.e. smoothness properties both considering the semantic prediction space and

a positional prior assumption (Section 5.2.1). Finally, we enable for the first time,

the training with as diverse annotation types as masks, bounding boxes, points,

image-level labels and unlabeled images for semantic segmentation with our Decou-

pled Semantic Prototypes method (Section 6.2). Our new, yet simple way of utilizing

diverse annotation types enables a streamlined integration of supervision from dif-

ferently granular labels, enabling expert-annotators to provide what they have the
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time for as well as bringing in more junior experts in training for providing coarser

semantic information. This advancement is sidelined by a more broadly formulated

pseudo-label filtering notion for semantic segmentation (Section 6.2.3), which can

easily be added to semi-supervised algorithms in order to make them semi-weakly

trainable. Aside from bringing about a performance increase for semantic segmenta-

tion on the tested imaging data, our algorithms offer the possibility for flexible and

annotation-efficient semantic segmentation in expert-driven domains.

8 Open questions for future work

With the proposed algorithms for bringing semantic segmentation better into scarce

annotation environments, different pathways spring up which could be investigated in

the future. These pathways include direct, natural extensions of the work presented

here as well as the bigger picture when considering how a natural interaction between

experts and an expert-centric learning system could look like in the future and which

fundamental questions have to be answered first. As such, we continue the strain

of thought from all previous chapters and outline promising research directions and

goals to strive for in future endeavors to advance semantic segmentation in expert-

driven domains.

8.1 A holistic view on annotation budgets

In essence, how many images can be supplied with annotations boils down to how

large the annotation-time budget is, which may be constrained by monetary bud-

gets, or by the availability of expert-annotators. With our Annotation Compression

Ratio, we made a first step towards a more systematic evaluation of semi-supervised

or semi-weakly supervised algorithms. Yet, pushing this idea further and consid-

ering not just a basic annotation type but integrating the costs of all annotation
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types used via their associated average annotation-time expenditures into the Anno-

tation Compression Ratio would open up a holistic view on the connection between

annotation-time budgets and semantic segmentation efficacy. This could include in-

vestigations into measuring the time expenditure for one annotation of a specific

type and how this varies between different datasets, imaging domains as well as the

seniority of annotators in expert-driven domains.

8.2 A heuristic for dataset annotation

Equipped with an extended Annotation Compression Ratio and our proposed De-

coupled Semantic Prototypes method which can handle diverse mixes of annotation

types, all ingredients are there for a large scale investigation into the effect of train-

ing with different portions of annotation types. This is, at first glance, a natural

extension of our work in chapter 6. Yet, when sampling the space of differently com-

posed training sets in terms of number and types of annotations more densely and

measuring it’s effect on performance across a wide variety of datasets, a heuristic

for annotating future datasets or guidelines for annotation become graspable. With

a heuristic on how to go forward with the annotation of a set of unlabeled images,

guidance can be given to practitioners, through which future segmentation endeav-

ours could be greatly accelerated, while also spending the annotation budget in a

much more economical, time-saving and results-driven fashion.

8.3 Heterogeneous training signals for flexible interaction

When humans teach other humans new skills or insights, it is an inherently multi-

modal process which may include any combination of verbal descriptions and inter-

actions, pointing or gesturing, looking at few examples or reading in a text book

supplied with figures and images. With our algorithms we were able to expand the

realm of cues from which a single model can learn segmentation tasks to diverse sub-

sets of masks, boxes, points, image-level labels and unlabeled data. By doing so, we
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made the process of providing semantic information to the algorithm more flexible.

Yet, there are a lot more ways to explain such information, including communication

channels which are more natural to human nature such as the combination between

speech, text and descriptive visuals. Extending training signals for a segmentation

model to cover audio- or textual descriptions of a segmentation task at hand, learn-

ing from the gaze movement of a medical doctor when assessing a medical scan or

extracting domain knowledge from highly technical textbooks may be a pathway to

make the process of annotation or more generally of conveying a segmentation task

even more flexible and natural. Probing into this field would require the investigation

how segmentation tasks can be described via speech or text and unify a wide array

of intricate training signals.
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A Additional details for chapter 4

In this section, we show in more detail how we designed and tuned the baseline

methods IIC and MIL as well as their deeply supervised versions from chapter 4.

A.1 IIC baseline

We integrate an additional information invariant over-clustering output-head on top

of the Unet architecture besides the already present segmentation output-head and

integrate the loss function as proposed in Ji et al. [230] leading to the IIC baseline.

epochs clusters f validation (mIoU)

100 – – 62.42 ± 4.11

200 – – 62.54 ± 3.88

100 5 f4 63.42 ± 4.32

100 10 f4 64.33 ± 2.84

100 20 f4 64.63 ± 3.36

100* 10 f{0−4} 65.23± 3.58

Table A1: Ablation study for models with IIC
training as indicated by the column clusters,
trained with full access to pixel-wise annotations.
Smaller batch size (8 instead of 16) due to memory
constraints indicated by the * symbol.

To investigate the performance

of this model, we evaluate it on

the validation scenario with full

access to pixel-wise mask anno-

tations and leverage the IIC loss

for the IIC output-head and the

standard cross-entropy loss for

the segmentation output-head.

The results are presented in Ta-

ble A1 starting with the first

line, which shows a standard

Unet trained with all pixel-wise

annotations on our evaluation

setup for the RETOUCH reti-

nal fluid segmentation dataset [8]. As IIC is trained with two forward passes per

iteration, the second line provides results for a Unet with double the iterations to

ensure that merely double the amount of processed images is not the deciding factor

in IIC’s performance. The next three lines in Table A1 show IIC’s segmentation per-

formance with an increasing number of clusters in the over-clustering output-head.
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It is evident that adding more clusters increases the performance. Yet, more clus-

ters (output-channels) also increase the memory footprint which is why we used 10

clusters for the experiments in chapter 4, in order to have a manageable memory con-

sumption and faster training iterations. The overall best results for IIC are achieved

when adding 10 over-clustering output-heads onto the feature maps f0, . . . , f4 in the

decoder. Yet, due to the added over-clustering output-heads, this Deeply Supervised

IIC configuration leads to an even higher memory consumption which necessitated a

decrease in batch size from 16 to 8 images. The neighborhood displacement hyper-

parameter (see [230] Section 3.3 Implementation for details) is always set to 5.

As the over-clustering output-heads are trained completely unsupervised, it is not

clear beforehand on what regions in an image they activate. In Figure A1, we display

the input OCT b-scan, the associated ground truth for retinal fluid segmentation as

well as the activation in each channel of the over-clustering output-head by scaling

the channel’s values to a range of [0, 1]. Some of the channels show high activation

in the different anatomical layers of the retina and also on the outside of the retina.

Some approaches for retinal fluid segmentation integrate retinal layer segmentation

explicitly into their training [256], thus, it is apparent that IIC’s ability to learn this

retinal anatomy leads to better segmentation as was seen in Table A1.

Input b-scan 1 Input b-scan 2

Figure A1: B-scans and their associated ground-truth annotation displayed alongside
the feature scaled activation of 10 individual channels in the over-clustering output-
heads of a trained IIC model. Left: b-scan of retina with fluid, right: healthy b-scan.



A. ADDITIONAL DETAILS FOR CHAPTER 4 135

A.2 MIL baseline

For the MIL baseline model which spatially pools feature maps and applies a binary

cross-entropy loss to enforce a multi-class image-level label as target, we investigate

which feature map combination in the Unet decoder best fits to apply the MIL loss to.

In Table A2, we see the results when training the MIL baseline models with 24 pixel-

wise and additional image-level labels for the remaining images as outlined in our

training protocol. Compared to the Unet which is trained only on pixel-wise masks

in line one, all MIL-trained models successfully integrate image-level information,

regardless of the feature map combination in the decoder the MIL loss is applied to.

G f validation (mIoU)

– – 46.84 ± 6.49

✓ f4 49.48 ± 4.88

✓ f{3,4} 50.13 ± 6.25

✓ f{2,3,4} 51.81 ± 5.58

✓ f{1,2,3,4} 51.47 ± 4.03

✓ f{0,1,2,3,4} 53.52± 4.69

✓ f{0,1,2,3} 52.85 ± 4.50

✓ f{0,1,2} 51.81 ± 6.25

✓ f{0,1} 51.68 ± 5.48

✓ f0 50.23 ± 7.38

Table A2: Ablation study for models with MIL
training and its deep integration into different fea-
ture maps f . First row indicates performance with-
out image-level labels, second row Baseline MIL,
using f{0,1,2,3,4} equates to Deeply Supervised MIL.

Yet, applying it to all de-

coder feature maps f0, . . . , f4

yields the best performance.

This configuration serves as our

Deeply Supervised MIL base-

line. Next, we investigated

which pooling function for the

Multiple-Instance Learning loss

leads to the best results in Ta-

ble A3, considering the same

24 annotation plus image-level

label scenario as in Table A2.

First, we test max pooling,

which was previously done in

a completely weakly super-

vised segmentation setting by

Pathak et al. [138]. Compared to the Unet trained on the masks only,

using max pooling for the MIL loss in our Deeply Supervised MIL train-

ing only very marginally increased the performance, while the standard devi-

ation almost doubles. When exchanging max pooling with average pooling,
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we get much better and more stable results as indicated by the last row.

G pooling function validation (mIoU)

– 46.84 ± 6.49

✓ max pooling 46.96 ± 12.73

✓ average pooling 53.52± 4.69

Table A3: Ablation results for pooling functions as
used in the Deeply Supervised MIL-trained model.

Therefore, we conclude that the

average pooling MIL variant is

more robust in optimization and

leads to better results. This

is in coherence with weakly su-

pervised literature, where clas-

sifiers are often trained with

global average pooling layers to

extract coarse location cues in so called class activation maps [162]. The MIL base-

lines in chapter 4 are all trained with average pooling to aggregate features spatially.

B Additional details for chapter 5

In this section, we show in more detail how we designed and tuned some base-

line methods, specifically, Pseudo-label, Uncertainty-aware Mean-Teacher as well as

FixMatch and we show how the augmentation strategies used in chapter 5 were de-

termined. It is described how baselines were adapted from 2D to 3D, which strong

augmentations are suitable for training and which method specific hyper-parameters

yield the best results to end up at strong baselines.

B.1 Pseudo-label

In implementing the Pseudo-label [99] baseline, we opted for an online pseudo-

labeling procedure, where the unlabeled volumes are associated to pseudo-labels by

on-the-fly predicting them within the training iteration using the current 3D Unet

itself. This naive implementation led to diverging results, thus, we adapted it to

an offline approach where the pseudo-labels are computed before training using the

standard 3D Unet baseline which was trained on the annotated portions of the partial

labels only. By integrating the loss normalization from [62] the segmentation results
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got better. This normalization uses the loss on the partially labeled Lh regions and

the loss on pseudo-labeled data Lp and weights them by:

L̂ =
1

1 + α
(Lh + α

Lh̄

Lp̄

· Lp) , (IV.1)

where Lh̄ and Lp̄ denote the exponential moving averages over the two losses. The

momentum parameter as specified in [62] is set to α = 4.0, subsequently we minimize

the loss L̂.

B.2 Uncertainty-aware Mean-Teacher

threshold val mIoU

γ = 0.1 42.98 ± 5.06

γ = 0.3 42.96 ± 5.44

γ = 0.5 44.45 ± 4.06

γ = 0.7 41.98 ± 7.13

Table A4: Uncertainty-aware Mean-Teacher re-
sults with different thresholds.

We integrate the Uncertainty-

aware Mean-Teacher [125] into

the volumetric segmentation

setting, by basing it on the 3D

Unet architecture and adding

the dropout layers needed for

Monte-Carlo [242] sampling-

based uncertainty calculations

directly after the encoder as well

as before the pixel-wise classification layer. We set the dropout probability co-

herently to the one in the original paper at 50%. Since we initialize all semi-

supervised models with weights pre-trained on the available partial annotations

(specifically, the standard 3D Unet models), we do not utilize the Gaussian schedul-

ing or the successive up-weighting of the semi-supervised loss term as outlined in

the training details of [125]. The Uncertainty-aware Mean-Teacher selects confi-

dent portions which determine the regions that are used for the consistency loss

via the formula U < Umax · γ. In Table A4, we ablate which threshold value γ

for the uncertainty values U works best on the validation set, which is γ = 0.5.
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threshold val mIoU

4 forward passes 44.16 ± 5.89

8 forward passes 44.45 ± 4.06

Table A5: Uncertainty-aware Mean-Teacher
results with different numbers of stochastic
forward passes in Monte-Carlo dropout.

threshold val mIoU

classical dropout 44.45 ± 4.06

3D feature dropout 39.50 ± 5.10

Table A6: Uncertainty-aware Mean-Teacher
results with different dropout variants.

A hyper-parameter for Monte-Carlo

dropout is how often a single volume is

forwarded through the 3D Unet to ob-

tain multiple stochastic predictions for

computing the voxel-wise uncertainty

values U . In Table A5 we see that in-

creasing the forwardpasses leads to a

better validation performance, but also

adds computational load. Therefore,

we select 8 forward passes for com-

puting U . In adapting Monte-Carlo

dropout to volume segmentation, we

investigate whether dropping out com-

plete channels, i.e. 3D features or classical dropout works better in Table A6.

B.3 FixMatch

horizontal vertical longitudinal val mIoU

✓ ✓ ✓ 46.05 ± 5.03

- ✓ ✓ 47.17 ± 4.13

✓ - ✓ 46.35 ± 6.72

- - ✓ 45.94 ± 6.00

- - - 43.06 ± 6.32

Table A7: FixMatch validation results when
changing the weak flip augmentation strategy.

As a strong baseline, we train

FixMatch [102] models utilizing

a standard cross-entropy loss

to compare the predictions ob-

tained from strongly augmented

volumes with the pseudo-labels

derived from weakly augmented

volumes. Regarding weak flip

augmentation strategies we con-

duct experiments in Table A7.

From the analysis, employing a conservative weak augmentation scheme of only flip-

ping volumes in the longitudinal- and vertical directions with a probability of 50%
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brightness gamma sharpness val mIoU

✓ - - 45.78 ± 7.75

- ✓ - 44.12 ± 8.14

- - ✓ 45.20 ± 8.06

✓ ✓ - 28.38 ± 20.04

✓ - ✓ 46.05 ± 5.03

- ✓ ✓ 42.47 ± 7.03

✓ ✓ ✓ 23.12 ± 19.95

Table A8: FixMatch validation results when
varying the photometric augmentation strategy.

CutOut size val mIoU

none 47.17 ± 4.13

4 × 4 × 4 46.26 ± 5.57

8 × 8 × 8 45.72 ± 6.14

16 × 16 × 16 48.22 ± 5.65

Table A9: FixMatch results when using
CutOut [240], we vary the cut out cube size.

learning rate val mIoU

constant lr = 0.01 48.22 ± 5.65

cosine 45.27 ± 5.73

Table A10: FixMatch results with different learn-
ing rate schedules.

leads to the best performance.

As for the strong augmentation

strategy, we evaluate photomet-

ric augmentations in Table A8

by adjusting brightness, gamma

value and sharpness. The exper-

iments indicate, that FixMatch

with brightness- and sharpness

perturbations using a magnitude

sampled uniformly from [0, 2] in

addition to flipping as choice for

strong augmentations work best

on the validation split. An-

other possible addition to the

strong augmentation branch is

the CutOut [240] augmentation

used in semi-supervised classifi-

cation. Instead of cutting out

image portions from 2D images,

we cut out small volumes from

the input to the strongly aug-

mented prediction branch and ig-

nore corresponding areas in the

pseudo-labels. For 2D segmen-

tation with FixMatch, CutOut

was previously studied in [257], we evaluate the volumetric CutOut variant

in Tab. A9. Cutting out large chunks of size 16 × 16 × 16 produced the best

validation results. Regarding the learning rate scheduling in training, the orig-

inal publication included a cosine annealing strategy, yet, in our setting we
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confidence threshold τ val mIoU

τ = 0 45.54 ± 6.72

τ = 0.2 43.84 ± 6.50

τ = 0.5 46.05 ± 5.03

τ = 0.7 43.74 ± 8.23

τ = 0.95 43.77 ± 7.78

Table A11: FixMatch results when tuning
the pseudo-label confidence threshold τ .

weighting factor λu val mIoU

λu = 1.0 46.05 ± 5.03

λu = 0.5 45.78 ± 6.13

Table A12: FixMatch results with differ-
ent weighting of unlabeled examples.

find that a simple constant learning rate

produces better results in Tab. A10.

Similarly, we find, in Tab. A11, that

choosing a pseudo-label threshold of τ =

0.5 for our volume segmentation task

worked better than τ = 0.95 which

was used for the original classification

task. Finally, we investigate the im-

pact on the performance when down-

weighting the loss for the unlabeled data

by λu in Table A12, which is a common

semi-supervised strategy [231] to man-

age a too pronounced impact of unla-

beled data. We find that assigning an

equal weight to the loss on labeled and

pseudo-labeled data yields the best vali-

dation performance, which might be due to the fact, that we already balance the loss

impact of partially labeled and unlabeled volumes by constructing balanced batches.

B.4 Con2R voxel-embedding visualization

Figure A2: Left: Slice of input OCT
volume, right: associated ground-truth.

To get a qualitative grasp of what Con2R

learns in the voxel-embedding branch, we

visualize voxel-embeddings for the voxels of

an individual slice taken from an OCT vol-

ume which we see in Figure A2. To visual-

ize it, we forward the OCT volume through

the trained network and obtain the voxel-

embeddings from the output-head τ(·).
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Figure A3: Individual voxel-embedding channels obtained from the output head τ(·)
and normalized by channel-wise feature-scaling for visualization purposes.
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Then, we take each of the 64 dimensions of a single depth dimension (i.e. the corre-

sponding depth of the slice in Figure A2) and visualize them all as 2D images in Fig-

ure A3 after normalizing their values. The embedding channels display very diverse

and semantically relevant structures of the OCT slice, including retinal boundaries,

fluid-types, the outside of the retina as well as the different layers of the retina.

C Additional details for chapter 6

C.1 Simplification and efficient computation of DSP’s loss

For a more efficient implementation, we present, how the contrastive LDSP loss term

can be adjusted due to the fact that it decouples individual classes in the loss com-

putation. In case of semantic segmentation this is especially important, as for each

pixel individual contrastive negatives would have to be collected. Yet, via our de-

coupled design, negatives have to be computed only for each class instead of each

pixel. Next, we outline how we implemented the final loss term of Equation (II.35)

in a more efficient manner, with which we begin here:

LDSP =
∑︂

l∈{m,b,p,im}

λl

C∑︂
c=1

∑︂
fi∈Ωl

c

L(fi, c) . (IV.2)

In the last sum of this equation, for a class c and an annotation type l, the sum can

be written, with the definition of L(fi, c) (Equation (II.32)), as:

∑︂
fi∈Ωl

c

L(fi, c) =
∑︂
fi∈Ωl

c

− log
exp (sc(fi, Pc)/τ)

Zi,c

. (IV.3)
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Now, Zi,c from Equation (II.34) can be inserted into this formula, yielding our de-

coupled contrastive term:

Zi,c =
B·H·W∑︂
j=1

C∑︂
k=1,k

.
=c→k/∈Aj

exp (sk(fj, Pk)/τ) . (IV.4)

The requirement k
.
= c → k /∈ Aj in the second sum is designed to accept negatives

either when k ̸= c, i.e. it can be safely assumed that the pair is not related to the

positive class c or when k
.
= c and c /∈ Aj is the case, meaning that the annotation

for the given pair provides definitive information that it is not related to the positive

class. Due to this decoupling of the denominator Zi,c becomes independent of fi and

only dependent on the current positive class c, so we write Zc for short. By applying

the logarithmic division law to Equation (IV.3), it can be simplified into:

∑︂
fi∈Ωl

c

L(fi, c) =
∑︂
fi∈Ωl

c

−(log exp (sc(fi, Pc)/τ) − logZc) (IV.5)

=
∑︂
fi∈Ωl

c

− (sc(fi, Pc)/τ − logZc) . (IV.6)

Now that Zc is independent from fi it can be brought in front of the summation by

multiplying it by the number of positives in the set Ωl
c:∑︂

fi∈Ωl
c

L(fi, c) = |Ωl
c| · logZc −

∑︂
fi∈Ωl

c

sc(fi, Pc)/τ . (IV.7)

Scaling the negatives Zc by a value > 1 produced large values for the loss, which was

experimentally hard to handle. To counteract this, we re-scaled the loss by instead

dividing it by |Ωl
c|, leading to:

L(c) = logZc −
1

|Ωl
c|
·
∑︂
fi∈Ωl

c

sc(fi, Pc)/τ . (IV.8)
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Integrating everything into our final loss, which is how we implement it, we obtain

the loss function L⋆
DSP :

L⋆
DSP =

∑︂
l∈{m,b,p,im}

λl

C∑︂
c=1

L(c) · δ(|Ωl
c| ≠ 0) , (IV.9)

here, the delta function δ(·) is used to prevent division by zero which would happen

in case |Ωl
c| = 0, i.e. when class c does not occur in the batch. We use this loss on

both augmentation branches, the weakly- and the strongly augmented images.

C.2 Quantitative segmentation results in numerical form

Method I B P ACR = 1 ACR = 2 ACR = 4 ACR = 8 ACR = 16 ACR = 32 ACR = 64

UNet – – – 50.1± 4.6 50.3± 5.6 48.2± 4.9 43.6± 7.0 34.2± 6.6 24.6± 3.7 20.2± 6.5

CLS Branch [186] ✓ – – 50.4± 5.5 50.3± 5.1 50.4± 4.6 47.3± 5.8 43.8± 6.4 34.6± 7.3 26.1± 8.2

Box Proj. [248] – ✓ – 48.4± 4.9 49.7± 5.2 49.9± 4.6 47.8± 5.9 43.0± 5.7 33.5± 6.5 26.7± 8.5

Euclidean branch – – ✓ 51.3± 4.6 50.9± 5.2 50.4± 5.3 48.7± 6.1 41.4± 6.9 31.0± 5.9 19.9± 7.5

Geodesic branch – – ✓ 50.4± 4.2 49.6± 5.4 50.4± 4.0 48.6± 6.0 42.2± 6.0 33.5± 5.8 23.6± 6.1

Pseudo-label [99]
✓ – – 50.1± 4.6 50.5± 5.5 50.2± 4.9 49.3± 5.4 46.1± 6.2 35.8± 6.9 27.9± 6.8
– ✓ – 50.1± 4.6 50.7± 5.1 50.6± 5.1 48.1± 4.7 45.2± 6.2 34.3± 6.2 27.9± 6.0
– – ✓ 50.1± 4.6 50.9± 5.0 50.1± 5.0 48.5± 5.1 45.8± 5.1 35.1± 6.7 26.9± 6.3

Con2R [34]
✓ – – 47.8± 6.6 49.6± 4.9 49.2± 5.6 47.4± 6.6 41.4± 6.1 30.3± 6.7 20.9± 6.4
– ✓ – 47.8± 6.6 49.3± 5.7 49.1± 5.6 47.7± 6.3 41.5± 6.2 32.3± 6.6 21.7± 7.2
– – ✓ 47.8± 6.6 48.7± 5.2 48.9± 6.2 47.7± 6.4 42.3± 6.6 31.7± 5.7 21.5± 5.7

FixMatch [102]

– – – 52.9± 3.9 53.5± 4.5 53.6± 4.1 53.0± 5.1 48.0± 6.7 37.8± 7.9 22.4± 11.7
✓ – – 52.9± 3.9 53.8± 4.5 53.7± 4.7 52.4± 4.6 49.1± 6.9 42.6± 8.2 33.0± 10.5
– ✓ – 52.9± 3.9 53.3± 4.0 52.8± 4.7 52.7± 4.4 51.2± 5.7 43.9± 10.5 39.4± 8.9
– – ✓ 52.9± 3.9 53.7± 4.5 53.5± 4.6 52.1± 4.7 49.5± 6.1 42.5± 9.1 32.6± 10.8

DSP (Ours)
✓ – – 53.4± 3.6 53.8± 5.0 53.5± 4.5 52.0± 5.6 49.8± 6.3 42.4± 8.2 32.5± 10.4
– ✓ – 53.4± 3.6 53.7± 4.8 53.0± 3.6 52.9± 5.0 50.9± 5.7 47.7± 7.0 44.2± 10.1
– – ✓ 53.4± 3.6 53.7± 4.4 53.5± 4.9 53.4± 4.8 52.3± 4.6 47.7± 8.2 37.7± 12.5

Table A13: Segmentation results of semi-weakly supervised algorithms for cell or-
ganelle segmentation on the HELA-2 dataset in numerical form obtained at increas-
ing Annotation Compression Ratios and with different annotation types. Numbers
are reported in average mean DICE and standard deviation along 10 cross-validation
experiments. Random baseline: 5.1±0.3 DICE. Class-prior baseline: 6.1±0.6 DICE.

In Figure 21 and Figure 22 of chapter 6 the segmentation results are displayed as

graphs with the Annotation Compression Ratio on the x-axis and the average mean
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Method mixed ACR = 1 ACR = 2 ACR = 4 ACR = 8 ACR = 16 ACR = 32 ACR = 64

HELA-2

UNet – 50.1± 4.6 50.3± 5.6 48.2± 4.9 43.6± 7.0 34.2± 6.6 24.6± 3.7 20.2± 6.5

FixMatch [102] ✓ 52.9± 3.9 53.8± 4.4 53.0± 4.2 52.9± 4.7 50.2± 6.3 46.0± 7.4 36.7± 11.6

DSP (Ours) ✓ 53.4± 3.6 53.7± 4.5 54.0± 4.0 54.2± 4.6 52.1± 5.6 51.6± 6.0 49.5± 6.1

HELA-3

UNet – 47.3± 7.2 45.6± 7.4 44.8± 8.4 41.6± 8.5 42.0± 6.5 34.5± 6.4 28.8± 9.4

FixMatch [102] ✓ 54.2± 3.4 54.5± 3.7 55.9± 2.8 55.7± 2.7 54.6± 3.0 48.7± 4.1 49.4± 5.4

DSP (Ours) ✓ 54.5± 3.9 53.9± 5.0 54.6± 3.0 55.5± 2.1 56.2± 1.7 53.3± 5.0 52.4± 4.2

MACROPHAGE-2

UNet – 30.7± 5.5 29.2± 7.7 22.1± 4.2 19.0± 6.3 10.5± 7.5 5.7± 2.7 9.3± 6.9

FixMatch [102] ✓ 44.3± 2.1 42.5± 7.2 40.1± 6.7 23.7± 8.4 12.2± 6.8 11.7± 8.4 13.3± 18.8

DSP (Ours) ✓ 45.0± 2.6 43.6± 8.5 43.0± 8.9 31.3± 10.4 21.1± 8.9 14.5± 11.4 15.3± 14.8

JURKAT-1

UNet – 28.4± 8.2 26.4± 6.3 21.1± 5.1 14.2± 7.1 5.0± 2.0 8.2± 3.4 5.1± 1.9

FixMatch [102] ✓ 32.7± 9.6 32.6± 8.6 32.3± 9.5 15.7± 7.1 5.7± 3.5 6.3± 3.9 6.5± 2.7

DSP (Ours) ✓ 32.9± 9.1 32.4± 8.3 29.5± 5.3 18.0± 7.6 7.8± 4.1 10.5± 5.9 6.3± 3.6

Table A14: Segmentation results of semi-weakly supervised training of FixMatch
and DSP algorithms with diverse annotation types (masks, bounding boxes, points,
image-level labels, unlabaled data), lower baseline Unet trained with masks. Num-
bers reported in average mean DICE and standard deviation along 10 cross-validation
splits for HELA-2, 5 splits for HELA-3, MACROPHAGE-2 and JURKAT-1.

DICE on the y-axis. This way of displaying the results makes interpreting the pro-

gression of segmentation performance with fewer and fewer pixel-wise annotations

more graspable. For completeness, here, we provide the numerical counterpart to

these graphs. In Table A13 the numerical results of the tested algorithms on the

HELA-2 dataset are displayed, which include experiments using different pairs of

annotation types for training. Numerical results for training with the complete mix

of annotation types we present in Table A14, which includes results from all the

cell organelle datasets, i.e. HELA-2, HELA-3, MACROPHAGE-2, and JURKAT-

1. In Table A13, we further include the semi-supervised results of FixMatch [102],

which can be used to directly compare to the semi-weakly versions which make use of



146 PART IV. APPENDIX

Figure A4: Three plots of the learned class-wise prototypes (colored stars) and ran-
domly selected pixel-embeddings (gray crosses) throughout the training process (left
to right: after 10, 50 and 100 epochs of training). Prototypes and embeddings are
projected via t-SNE.

pseudo-label filtering. Especially for high ACRs, i.e. 16, 32, 64, we can clearly grasp

that the added filtering process makes FixMatch a strong baseline for our training

scenarios.

C.3 Additional qualitative insights for Decoupled Semantic

Prototypes

In DSP we train an altered segmentation architecture where semantic prototypes

are used to assign class correspondence. We visualize the learned prototypes as

well as randomly selected pixel-embeddings via t-SNE projection [258] in Figure A4.

There, we show how the semantic prototypes form clusters which delimit the semantic

regions in the embedding space during training after the 10th, 50th and 100th epoch.

C.4 Additional details on the OpenOrganelle dataset, classes

and pre-processing

In the dataset description of the OpenOrganelle data [9], we outlined the biologically

motivated merging process for which we use the class hierarchy from the code of the



C. ADDITIONAL DETAILS FOR CHAPTER 6 147

Class name HELA-2 HELA-3 MACROPHAGE-2 JURKAT-1

Extracellular Space ✓ ✓ ✓ ✓
Plasma Membrane ✓ ✓ ✓
Mitochondria ✓ ✓ ✓
Vesicle ✓ ✓ ✓ ✓
Multivesicular bodies ✓ ✓ ✓ ✓
Lysosome ✓ ✓
Endoplasmic Reticulum ✓ ✓ ✓ ✓
Nucleus ✓ ✓ ✓ ✓
Nucelear Envelope ✓ ✓
Microtubule ✓ ✓ ✓
Cytosol ✓ ✓ ✓ ✓

Figure A5: Classes from the OpenOrganelle dataset [9] which satisfy the cross-
validation requirements of our evaluation protocol.

original publication1. For the different datasets of OpenOrganelle, a varying amount

of classes satisfy the cross-validation requirement of being present in at least three

sub-volumes, which we show in Figure A5.

Next, we show the average number of images within each train-, validation and test

split of the different datasets:

• HELA-2 : 2321 training images, 924 validation images, and 930 testing images

• HELA-3 : 1634 training images, 731 validation images, and 791 testing images

• MACROPHAGE-2 : 1482 training images, 685 validation images, and 740 test-

ing images

• JURKAT-1 : 1525 training images, 745 validation images, and 742 testing im-

ages

A central part in our experiments is processing image data with a wide diversity of

annotation types. To achieve this, we took the pixel-wise annotations of the OpenOr-

ganelle dataset and derived weak annotations from them. Creating image-level labels

1https://github.com/saalfeldlab/CNNectome/blob/7c5250edf2ba8ce43127c457b755ea30721f638f/

CNNectome/utils/hierarchy.py

https://github.com/saalfeldlab/CNNectome/blob/7c5250edf2ba8ce43127c457b755ea30721f638f/CNNectome/utils/hierarchy.py
https://github.com/saalfeldlab/CNNectome/blob/7c5250edf2ba8ce43127c457b755ea30721f638f/CNNectome/utils/hierarchy.py
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merely includes counting the unique classes within the mask, while bounding boxes

includes computing the connected components of the pixel-wise mask and drawing a

box around each of these components, while concurrently saving the class member-

ship of the component. To set up point annotations, there are several valid choices.

We opted for modeling point clicks by taking inspiration from psychology which

states that humans generally point at objects by clicking on the medial axis [259] or

the center of regions [202]. Therefore, we computed the medoids for each connected

component of the pixel-wise annotation and saving its location and the class there.

C.5 Training details and baseline descriptions

In constructing the batches for training semi-weakly supervised learning methods,

we make sure that each sampled mini-batch consists on average of all annotation

types to equal portions. This can be achieved by over-sampling images which are

annotated with a less frequent annotation type, which is a strategy common to semi-

supervised learning where the small portion of mask annotated images are heavily

over-sampled [102, 34].

Pseudo-label [99]: We make use of online pseudo-labeling, where we compute the

pseudo-labels on the fly while training.

FixMatch [102]: To adapt FixMatch to the semi-weakly supervised segmentation

setting, in Table A15, we investigated the effect of different thresholds as proposed

in the original publication. There, we found that not applying a threshold yields

the best results. In the same table, we also investigated which strong augmentations

lead to the best segmentation results. For this, we analyzed the effect of applying

CutOut [240] with a size of 32 × 32 multiple times at random locations of the input

image with a probability of 50%. The results in Table A15 indicate, that the best

results were achieved when applying it up to nine times. This strong augmentation

is used for FixMatch, Con2R and our DSP method.
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threshold DICE

0.0 51.7 ± 3.6
0.1 51.3 ± 4.2
0.2 51.2 ± 3.9
0.3 51.4 ± 3.5
0.4 51.4 ± 4.2
0.5 51.0 ± 4.0
0.6 51.6 ± 3.9
0.7 51.0 ± 3.7
0.8 51.0 ± 3.6
0.9 50.8 ± 3.6
0.95 50.5 ± 3.4

# CutOut DICE

0 48.5 ± 3.7
1 49.0 ± 4.1
2 50.0 ± 3.1
3 50.3 ± 3.6
4 50.4 ± 4.0
5 50.4 ± 4.0
6 50.4 ± 4.0
7 50.8 ± 3.5
8 50.8 ± 4.2
9 51.7 ± 3.6
10 51.1 ± 3.4

Table A15: Experiments for FixMatch [102] reported in average mDICE on the
HELA-2 dataset and ACR = 8 scenario. Left: Ablation of the pseudo-label thresh-
old. Right: Ablation of the maximum amount of CutOuts in strong augmentations.

Classification branch [186]: For this baseline, we follow the description of Mly-

narski et al. [186] as close as possible in order to augment the Unet backbone segmen-

tation network [44] with an additional classification branch. To address the difference

in image size as used in the original implementation, we add four more convolutions

with ReLU activations after the mean pooling operation and a single convolution of

size 11×11 to end up at the matching size as in the paper. Thus, after this, we apply

the exact classification branch with linear layers, ReLU and residual connections as

Mlynarski et al.. To make sure we have the strongest possible variant of this method,

we investigated whether the idea of Bae et al. [185], i.e. using the classification pre-

diction to constrain the segmentation output in inference can help in producing more

accurate results. For our use-case of cell organelle segmentation, this process did not

help. It is most likely only successful if the classification predictions are exceptional.

Euclidean/Geodesic point branch: We designed baselines for the scenario of

training with pixel-wise mask annotations as well as point annotations. For this we

train multi-task Unets [44] which have an additional output-head to regress distance

maps which are generated from the point annotations. Therefore, for all points of

the same class within an image we compute a class-specific distance map, where

each value in this map indicates the smallest distance to one of the given points.
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Figure A6: Class-specific geodesic distances for point cues (red). The leftmost image
in the bottom row is the input image from the HELA-2 dataset.

In Figure A6, we visualize distance maps based on the geodesic distance for an

image with point annotations, which indicates the rich structural information the

model learns through regressing these maps during training. We choose the geodesic-

and the euclidean distance for the compuation of these distance maps. The choice

of the geodesic distance is motivated by the integration of click cues from interactive

segmentation [252] and weakly supervised medical segmentation [260]. Integrating a

loss based on the regression of distance maps is commonly explored in the medical

fieled as well as more specifically for cell datasets [261, 262].

Box loss [248]: By incorporating the bounding box-based loss proposed by Tian et

al. [248], we extend its application to our scenario where both masks and bounding

boxes are available. This loss is directly applied to the segmentation output-head.
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D Curriculum vitae – Simon Michael Reiß

Education

Oct ’17 - Feb ’20 Master’s degree in computer science

Karlsruhe Institute of Technology

Specialization: study profile artificial intelligence

Oct ’13 - Nov ’16 Bachelor’s degree in software engineering

University of Stuttgart

Jun ’13 Abitur diploma

Gymnasium in der Taus, Backnang

Academic work experience

Apr ’20 - Jul ’23 Research associate at Computer Vision for

Human-Computer Interaction Lab working in a

collaboration project with Carl Zeiss AG

Topic: Semantic image segmentation with few and coarse

annotations
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Feb ’20 Master’s thesis at Computer Vision for

Human-Computer Interaction Lab

Supervision: M. Sc. A. Roitberg

Examination: Prof. Dr.-Ing. Rainer Stiefelhagen

Topic: Zero-shot recognition of composite activities in

context of driver observation

Aug ’18 - Feb ’20 Student research assistant at Computer Vision for

Human-Computer Interaction Lab working on in-vehicle

human activity recognition

Supervision: M. Sc. A. Roitberg

Topics: Action recognition, image-to-image translation

Nov ’16 Bachelor’s thesis at Fraunhofer Institute for Industrial

Engineering IAO

Supervision: M. Sc. Julien Ostermann, M. Sc. Kristian

Lehmann, Dipl.-Inf. Sebastian Wagner

Examination: Prof. Dr. Dr. h. c. Frank Leymann

Topic: Services for data platforms – module to analyze

and process urban time-based sensor data

Additional experience

Teaching Supervision of master’s theses, supervision of students in

the Practical Course Computer Vision for

Human-Computer Interaction as well as in the Seminar

Computer Vision for Human-Computer Interaction

Preparing and giving lectures for the courses Deep

Learning for Computer Vision I: Basics and Deep

Learning for Computer Vision II: Advanced Topics
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CVPR21, ICCV21, WACV22, CVPR22, ECCV22,
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IEEE/CVF Conference on Computer Vision and Pattern
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European Conference on Computer Vision, 2022, Tel
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IEEE/CVF Conference on Computer Vision and Pattern
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E Authored publications in order of appearance

This doctoral research resulted in the following thesis-related publications:

1. Every annotation counts: Multi-label deep supervision for medical

image segmentation

Simon Reiß, Constantin Seibold, Alexander Freytag, Erik Rodner, Rainer Stiefel-

hagen

Conference on Computer Vision and Pattern Recognition (CVPR), 2021

2. Graph-Constrained Contrastive Regularization for Semi-weakly Vol-

umetric Segmentation

Simon Reiß, Constantin Seibold, Alexander Freytag, Erik Rodner, Rainer Stiefel-

hagen

European Conference on Computer Vision (ECCV), 2022

3. Decoupled Semantic Prototypes enable learning from diverse anno-

tation types for semi-weakly segmentation in expert-driven domains

Simon Reiß, Constantin Seibold, Alexander Freytag, Erik Rodner, Rainer Stiefel-

hagen

Conference on Computer Vision and Pattern Recognition (CVPR), 2023

The following publications were co-authored by Simon Reiß but are not directly
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1. Drive&act: A multi-modal dataset for fine-grained driver behavior

recognition in autonomous vehicles

Manuel Martin, Alina Roitberg, Monica Haurilet, Matthias Horne, Simon Reiß,

Michael Voit, Rainer Stiefelhagen

International Conference on Computer Vision (ICCV), 2019

2. Activity-aware attributes for zero-shot driver behavior recognition

Simon Reiß, Alina Roitberg, Monica Haurilet, Rainer Stiefelhagen
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AAAI Conference on Artificial Intelligence (AAAI), 2022
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