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Despite decades of research, a universal method for prediction of roughness-induced
skin friction in a turbulent flow over an arbitrary rough surface is still elusive. The
purpose of the present work is to examine two possibilities; first, predicting equivalent
sand-grain roughness size ks based on the roughness height probability density function
and power spectrum (PS) leveraging machine learning as a regression tool; and second,
extracting information about relevance of different roughness scales to skin-friction drag
by interpreting the output of the trained data-driven model. The model is an ensemble
neural network (ENN) consisting of 50 deep neural networks. The data for the training
of the model are obtained from direct numerical simulations (DNS) of turbulent flow
in plane channels over 85 irregular multi-scale roughness samples at friction Reynolds
number Reτ = 800. The 85 roughness samples are selected from a repository of 4200
samples, covering a wide parameter space, through an active learning (AL) framework.
The selection is made in several iterations, based on the informativeness of samples in
the repository, quantified by the variance of ENN predictions. This AL framework aims
to maximize the generalizability of the predictions with a certain amount of data. This is
examined using three different testing data sets with different types of roughness, including
21 surfaces from the literature. The model yields overall mean error 5 %–10 % on different
testing data sets. Subsequently, a data interpretation technique, known as layer-wise
relevance propagation, is applied to measure the contributions of different roughness
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wavelengths to the predicted ks. High-pass filtering is then applied to the roughness PS
to exclude the wavenumbers identified as drag-irrelevant. The filtered rough surfaces are
investigated using DNS, and it is demonstrated that despite significant impact of filtering
on the roughness topographical appearance and statistics, the skin-friction coefficient of
the original roughness is preserved successfully.

Key words: turbulent flows

1. Introduction

Surface degradation in flow-related engineering applications can take various forms, such
as wearing or fouling, resulting in roughness on the solid surfaces. The most significant
effect of surface roughness, in a practical sense, is an increase in the skin-friction drag
under turbulent flow conditions. As an example, the uncertainties in the prediction of
roughness-induced skin friction on ship hulls subjected to bio-fouling can cause multiple
billion dollars of energy waste every year (Schultz et al. 2011; Chung et al. 2021).
Understandably, study of turbulent flow over rough surfaces has been an active area
of research for nearly a century (Nikuradse 1933; Schlichting 1936; Perry, Schofield &
Joubert 1969; Krogstad, Antonia & Browne 1992; Raupach 1992; Bhaganagar, Kim &
Coleman 2004; Busse, Thakkar & Sandham 2017; Jouybari et al. 2022).

The seminal work by Nikuradse (1933) has provided the following researchers with
a common ‘currency’ to measure roughness-induced drag; that is, equivalent sand-grain
roughness size, ks, defined as the sand-grain size in Nikuradse’s experiments producing
the same skin-friction coefficient as a rough surface of interest in the fully rough regime.
Equivalent sand-grain size is related to the downward shift in the logarithmic region of the
inner-scaled mean velocity profile observed widely on rough walls, which is referred to as
roughness function �U+ (Hama 1954). In the fully rough regime, where the skin-friction
coefficient is independent of Reynolds number,

�U+ = 1
κ

ln(k+
s ) + B − 8.5, (1.1)

where κ is the von Kármán constant, and B is the smooth-wall log-law intercept (Jiménez
2004).

One must note that ks is, by definition, a flow variable and not a geometric one. As
a result, for any ‘new’ rough surface, it needs to be determined through a (physical
or high-fidelity numerical) experiment in which the skin-friction drag is measured.
Obviously, such an exercise is not practical in many applications; therefore, a great amount
of effort in the past few decades has been devoted to determining ks of an arbitrary
roughness a priori, i.e. based merely on its geometry (see e.g. van Rij, Belnap & Ligrani
2002; Flack & Schultz 2010; Chan et al. 2015; Forooghi et al. 2017; Thakkar, Busse &
Sandham 2017; Flack, Schultz & Barros 2020). A comprehensive description of these
efforts can be found in the reviews by Chung et al. (2021) and Flack & Chung (2022).
Essentially, they can be summarized as attempts to regress correlations between ks (or
�U+) and a few statistical parameters of roughness geometry based on available data.
Some widely used parameters in this context are skewness of roughness height probability
density function (p.d.f.) (Flack & Schultz 2010), effective (or mean absolute) slope
(Napoli, Armenio & DeMarchis 2008), and correlation length of rough surface geometry
(Thakkar et al. 2017).

975 A34-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

88
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.881


Predicting ks and identifying drag-relevant roughness scales

As a result of increased computational capacities in recent years, direct numerical
simulations (DNS) have become a source of data for development of accurate roughness
correlations as pointed out by Flack (2018). In this regard, the idea of DNS in minimal
channels, proposed by Chung et al. (2015), has enabled characterizing larger numbers
of roughness samples with a certain computational resource. Availability of more data,
on the one hand, has opened the door to utilization of machine learning (ML) based
regression tools, and on the other hand, enables inclusion of more roughness information
(beyond only a few parameters) as the input to such tools. The latter point is particularly
important since there is increasing evidence that both statistical and spectral information
on roughness geometry are required for prediction of flow response to a multi-scale
roughness (Alves Portela, Busse & Sandham 2021). In this regard, it has been shown that
ks for multi-scale random roughness can be determined nearly uniquely with a combined
knowledge of roughness height p.d.f. and its power spectrum (PS) (Yang et al. 2022, 2023).

The first ML-based ‘data-driven’ tool for prediction of ks has been reported recently
by Jouybari et al. (2021). These authors used deep neural network and Gaussian process
regression to train models with 17 inputs, including widely used roughness parameters
and their products. The training data for their model are obtained from DNS of flow over
certain types of artificially generated roughness, which were also used to evaluate the
model. Lee et al. (2022) used a neural network similar to that of Jouybari et al. (2021)
and showed that improvements in predictive performance can be achieved if the network
is ‘pre-trained’ on existing empirical correlations. While these pioneering works deliver
promising results, the data-driven approach arguably has the potential to realize truly
universal models, which can generalize beyond a certain class of roughness. The present
work is an attempt to explore this potential. To this end, a model is trained on a wide
variety of multi-scale irregular roughness samples, selected based on an adaptive approach
(explained shortly), which is aimed at enhancing the universality of the predictions. This is
evaluated using ‘unseen’ roughness from different testing data sets with different natures.
Moreover, unlike the previous efforts, the present model incorporates the complete p.d.f.
and PS of roughness as inputs rather than a finite set of predetermined parameters.

Considerable attention has been paid in recent literature to the multi-scale nature
of realistic roughness and the significance of its ‘spectral content’. It has been
suggested that beyond a certain threshold, large roughness wavelengths may impact the
roughness-induced drag less significantly (Barros, Schultz & Flack 2018; Yang et al.
2022). While parametric studies of roughness PS (Anderson & Meneveau 2011; Barros
et al. 2018) or Fourier filtering (Busse, Lützner & Sandham 2015; Alves Portela et al.
2021) can shed light on this matter, in the present work we explore the possibility of
evaluating directly contributions of different roughness scales utilizing the information
embedded in the data-driven model developed in this study. This is motivated by the fact
that the (discretized) PS is a direct input to the model, which hints at the potential to extract
information about the role of different wavelengths through interpretation of the model.

In order to train the data-driven roughness model, ks for several roughness samples
should be determined. This is referred to as ‘labelling’ those samples, borrowing the
term from the ML terminology. Moreover, each roughness sample along with its ks value
is called a training ‘data point’. One should note that labelling is a computationally
expensive process due to the need to perform DNS. In dealing with such scenarios, ML
methods classified under active learning (AL) – also known as query-based learning (Abe
& Mamitsuka 1998) or optimal experimental design (Fedorov 1972) in different contexts
– have been proven particularly advantageous (Zhu et al. 2005; Settles & Craven 2008;
Bangert et al. 2021). In AL, selection of the training data is navigated in a way such that
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the information gain from a certain amount of available data is maximized (Settles 2009).
The ‘informativeness’ of a potential data point is commonly measured by the uncertainty
in its prediction, which needs to be determined without labelling, e.g. through the standard
deviation of the predictive distribution of a Bayesian model (Gal & Ghahramani 2016) or
the variation of the predictions among a number of individual models (Raychaudhuri &
Hamey 1995).

Two major AL categories can be identified in the literature (Lang & Baum 1992;
Lewis & Gale 1994; Angluin 2004). The methods based on membership query synthesis
expand an existing data set by creating and labelling new samples that the model is most
curious about. In contrast, the methods based on pool-based sampling utilize a ‘bounded’
unlabelled data set (also called a repository) U , select and label the most informative
samples from U , and include them in the labelled training data set L. In the present
work, pool-based sampling is deemed more suitable as it can prevent creating unrealistic
samples (Lang & Baum 1992). Moreover, identification of the most informative samples
follows a query-by-committee (QBC) strategy (Seung, Opper & Sompolinsky 1992), in
which variance in the outputs of an ensemble of individual models (the committee) is the
basis for the next query. A detailed description of the implemented QBC is provided in § 2.

In summary, the present work aims to answer two questions; first, whether ‘universal’
data-driven predictions of ks can be approached using a complete statistical-spectral
representation of roughness (i.e. with p.d.f. and PS as inputs). We leverage AL to facilitate
achieving this goal. The second question is whether and how the information embedded in
a data-driven model can provide insight on the contributions of different roughness scales
to the added drag. Following this introduction, the roughness generation approach, DNS
and the ML methodology are described in § 2. In § 3, first the results and performance of
the model are discussed, then the analysis of drag-relevant scales is presented. Section 4
summarizes the main conclusions.

2. Methodology

2.1. Roughness repository
The (unlabelled) roughness ‘repository’ U is constructed by a collection of 4200
artificial irregular rough surfaces. These surfaces are generated through a mathematical
roughness generation method where the PS and p.d.f. of each roughness can be prescribed
(Pérez-Ràfols & Almqvist 2019). For creation of the present repository, p.d.f. and PS
are parametrized, as described shortly, and their parameters are varied randomly within
a realistic range to generate a variety of roughness samples while imitating the random
nature of roughness formation in practical applications.

In total, three types of p.d.f. – namely, Gaussian, Weibull and bimodal – are used, and for
each new roughness added to the repository, one type is randomly selected. The Weibull
distribution of random variable k – here the roughness height – follows

fW(k) = KβKk(K−1) exp(−(βk)K), (2.1)

where the shape parameter 0.7 < K < 1.7 is selected randomly with β = 1.0. In the
present notation, k denotes the local roughness height as a function of wall-parallel
coordinates (x, z). The bimodal distribution is obtained by combining two Gaussian
distributions through (Peng & Bhushan 2000)

fB(k) = fG(k|0, 1) + fG(k|μ, σ) − fG(k|0, 1)fG(k|μ, σ), (2.2)
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where fG(x|μ, σ) is the p.d.f. of the Gaussian distribution with randomized mean 0 <

μ < 0.5 and randomized standard deviation 0 < σ < 0.5. The p.d.f. variable k is then
scaled from 0 to the roughness peak-to-trough height kt = max(k) − min(k), whose
value is determined randomly in the range 0.06 < kt/H < 0.18, where H is the channel
half-height.

The PS of the roughness samples in the repository is controlled by two randomized
parameters, namely the roll-off length Lr (Jacobs, Junge & Pastewka 2017) and the
power-law decline rate θPS (Lyashenko, Pastewka & Persson 2013), whose values are
selected in the ranges 0.1 < Lr/(log(λ0/λ1)) < 0.6 and −3 < θPS < −0.1. Here, λ0 and
λ1 represent the upper and lower bounds of the PS, or the largest and smallest wavelengths
forming the roughness topography. Random perturbations are added to the PS to achieve
higher randomness in PS. The lower bound of the roughness wavelength is set to λ1 =
0.04H to ensure that the finest structures can be discretized by an adequate number of
grid points. The upper bound of the roughness wavelength λ0 is selected randomly in the
range 0.5H < λ0 < 2H. As will be discussed later, the roughness sample size as well as
the simulation domain size should both be adjusted to accommodate this wavelength.

Eventually, 4200 separate pairs of p.d.f. and PS are generated using the described
random process, each leading to one rough surface added to the repository U . A
representation of the parameter space covered by these samples is illustrated in § 3.1.
Moreover, examples of the generated samples can be seen in Appendix A.

2.2. Direct numerical simulations
Direct numerical simulations are employed to solve the turbulent flow over selected rough
surfaces from the repository in a plane channel driven by a constant pressure gradient.
Each simulation leads to determination of the ks value for the respective roughness
sample – a practice referred to as ‘labelling’ in this paper. The DNS are performed
with a pseudo-spectral Navier–Stokes solver SIMSON (Chevalier et al. 2007). Fourier
and Chebyshev series are employed for the discretization in wall-parallel and wall-normal
directions, respectively. Time integration is carried out using a third-order Runge–Kutta
method for the advective and forcing terms, and a second-order Crank–Nicolson method
for the viscous terms. The roughness representation in the fluid domain is based on the
immersed boundary method (IBM) of Goldstein, Handler & Sirovich (1993). The code
and the IBM have been validated previously and used in several publications in the past
(Forooghi et al. 2018a; Vanderwel et al. 2019; Yang et al. 2022). The solved Navier–Stokes
equation gives

∇ · u = 0, (2.3)

∂u
∂t

+ ∇ · (uu) = − 1
ρ

∇p + ν ∇2u − 1
ρ

Pxex + f IBM, (2.4)

where u = (u, v, w)T is the velocity vector, and Px is the mean pressure gradient in the
flow direction added as a constant and uniform source term to the momentum equation
to drive the flow. Moreover, p, ex, ρ, ν and f IBM denote pressure fluctuation, streamwise
unit vector, density, kinematic viscosity and external body force term due to the IBM,
respectively. Periodic boundary conditions are applied in the streamwise and spanwise
directions. The friction Reynolds number is defined as Reτ = uτ (H − kmd)/ν, where
uτ = √

τw/ρ and τw = −Px(H − kmd) are the friction velocity and the wall shear stress,
respectively. Here, H and H − kmd are channel half-height without and with roughness,
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λ0/H Lx/H Lz/H Ly/H Nx Nz Ny Δ+
x Δ+

z Δ+
y,min Δ+

y,max

0.5 ≥ λ0/H ≥ 0.6 1.8 0.6 2 400 160 451 3.6 3.0 0.02 5.7
0.6 > λ0/H ≥ 0.7 2.1 0.7 2 576 144 451 2.9 3.9 0.02 5.7
0.7 > λ0/H ≥ 0.8 2.4 0.8 2 480 192 451 4.0 3.3 0.02 5.7
0.8 > λ0/H ≥ 0.9 2.7 0.9 2 640 256 451 3.4 2.8 0.02 5.7
0.9 > λ0/H ≥ 1.0 3.0 1.0 2 640 256 451 3.8 3.1 0.02 5.7
1.0 > λ0/H ≥ 1.1 3.3 1.1 2 720 288 451 3.7 3.1 0.02 5.7
1.1 > λ0/H ≥ 1.2 3.6 1.2 2 720 288 451 4.0 3.3 0.02 5.7
1.2 > λ0/H ≥ 1.3 3.9 1.3 2 800 320 451 3.9 3.3 0.02 5.7
1.3 > λ0/H ≥ 1.4 4.2 1.4 2 960 384 451 3.5 2.9 0.02 5.7
1.4 > λ0/H ≥ 1.5 4.5 1.5 2 960 384 451 3.8 3.1 0.02 5.7
1.5 > λ0/H ≥ 1.6 4.8 1.6 2 960 384 451 4.0 3.3 0.02 5.7
1.6 > λ0/H ≥ 1.7 5.1 1.7 2 1080 432 451 3.8 3.1 0.02 5.7
1.7 > λ0/H ≥ 1.8 5.4 1.8 2 1200 480 451 3.6 3.0 0.02 5.7
1.8 > λ0/H ≥ 1.9 5.7 1.9 2 1200 480 451 3.8 3.2 0.02 5.7
1.9 > λ0/H ≥ 2.0 6.0 2.0 2 1200 480 451 4.0 3.3 0.02 5.7

Table 1. Simulation set-ups.

kmd being the mean (meltdown) roughness height. In the present work, all simulations are
performed at Reτ = 800.

Due to the high computational demand of many DNS, the concept of DNS in minimal
channels (Chung et al. 2015; MacDonald et al. 2016) is adopted for the considered
simulations. Recently, Yang et al. (2022) showed the applicability of this concept for flow
over irregular roughness subject to certain criteria. Accordingly, a roughness function over
a rough surface can be predicted accurately by a comparison of mean velocity profiles
in smooth and rough minimal channels if the size of the channels satisfies the following
conditions:

L+
z ≥ max

(
100,

k̃+

0.4
, λ+0

)
, L+

x ≥ max
(
1000, 3L+

z , λ+0
)
. (2.5a,b)

Here, Lz and Lx are the spanwise and streamwise extents of the minimal channel,
respectively, λ0 is the largest wavelength in the roughness spectrum, and k̃ is the
characteristic physical roughness height. The plus superscript indicates viscous scaling
hereafter. The above condition suggests that the minimal channel size of each roughness
should be determined based on λ0 (which in practice defines the most strict constraint). As
described before, λ0 is known for each generated roughness sample. Table 1 summarizes
the simulation set up for all DNS based on the respective λ0 value. Due to the different
sizes of the simulation domains, the chosen numbers of grid points differ according to the
mesh size, but in all cases, Δ+

x,z ≤ 4. In wall-normal directions, cosine stretching mesh is
adopted for the Chebyshev discretization. The mesh independence is confirmed in a set of
additional tests.

For each investigated roughness, �U+ is determined from the offset in the logarithmic
velocity profile comparing corresponding rough and smooth DNS. Notably, when plotting
mean velocity profiles, zero-plane displacement y0 is applied in order to achieve parallel
velocity profiles in the logarithmic layer, where y0 is determined as the moment centroid
of the drag profile on the rough surface following Jackson’s method (Jackson 1981). It
is worth noting that in the extensive literature on rough wall-bounded turbulent flows,
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various definitions of y0 have been proposed, and furthermore, the choice of virtual wall
position can affect the predicted rough-wall shear stress τw and thus the resulting ks value
(Chan-Braun, García-Villalba & Uhlmann 2011). Therefore, it is important to recognize
this as a possible source of uncertainty, and take into account the definitions of τw and y0
when comparing data from different sources.

It is also important to determine if the flow has reached the fully rough regime in
each simulation. To this end, �U+ is combined with (1.1) to yield a testing value of
k+

s . Then, following the threshold adopted by Jouybari et al. (2021), a roughness with
k+

s ≥ 50 is deemed to be in the fully rough regime, and all samples not matching this
criterion are excluded from the training or testing process. The selected threshold k+

s ≥ 50
is somewhat lower than the common threshold of k+

s ≥ 70 (Flack & Schultz 2010) and
thus may introduce into the database some data points with limited transitionally rough
behaviour. This threshold is, however, chosen deliberately as a trade-off to maximize the
number of training data given the limited computational resources. One should note that an
increase in the threshold value of k+

s while maintaining the same parameter space would
be possible by increasing Reτ . This would, however, lead to an obvious compromise in the
final performance of the model by reducing the number of training data points at a given
computational cost.

Overall, 85 roughness samples are DNS-labelled and eventually included in the labelled
data set L to train the final AL-based model. The procedure for selection of these training
samples is explained in detail in the following. Eight out of the 85 labelled samples
are located in the range of 50 � k+

s � 70. We observe that incorporating these samples
into the training process improves model performance. This improvement in the model
performance can be attributed both to the incorporation of more informative samples
according to AL as well as to the regularization effect of data diversity introduced by
including transitionally rough training samples, which makes the model more robust and
mitigates over-fitting (Bishop 1995; Reed & Marks 1999).

2.3. Machine learning
The ML model in the present work is constructed in a QBC fashion by building an
ensemble neural network (ENN) model consisting of 50 independent neural networks
(NNs) with identical architecture as the ‘committee’ members. Similar to the methods
proposed by Raychaudhuri & Hamey (1995) and Burbidge, Jem & King (2007), the
prediction uncertainty of the ENN model is defined as the variance of the predictions
among the members, σkr .

The workflow of the AL framework is sketched in figure 1. Two collections of roughness
samples are included in the framework. These are the (unlabelled) repository U and the
(labelled) training data set L. As a starting point in the AL framework, 30 samples are
selected randomly from the repository, labelled (i.e. their ks is calculated) through DNS,
and used to train a first ENN model, which is referred to as the ‘base model’. This
preliminary base model is subsequently improved throughout multiple AL iterations. In
each AL iteration, approximately 20 new roughness samples from U are DNS-labelled and
added to L for training of the ENN. These are the samples in U with the highest prediction
variances according to the most recent ENN. This QBC strategy leads to an effective
exploration of the repository and adding the new data at the most uncertain regions of
the parameter space.

The function of the ENN model is to regress the (dimensionless) equivalent sand-grain
roughness kr = ks/k99, and to calculate the variance of the predictions σkr as a basis for
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Repository Labelled data set

ENN model
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U L
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0

Figure 1. Schematic of the AL framework.
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q/q0Lz/H

Figure 2. Schematic of a single NN in an ENN.

QBC (k99 is the 99 % confidence interval of the roughness p.d.f., which is used as the
representative physical scale of roughness height in this paper). The ENN is composed of
multiple NNs with similar structures that is shown in figure 2. The input vector I of the NN
contains the discretized roughness p.d.f. and PS along with three additional characteristic
features of the rough surface, i.e. kt/k99 and the normalized largest and smallest roughness
wavelength λ∗0 = λ0/k99 and λ∗1 = λ1/k99, respectively. The input elements in I that
represent the roughness p.d.f. and PS are obtained by discretizing equidistantly the
roughness p.d.f. and PS each into 30 values within the height range 0 < k < kt and the
wavenumber range 2π/λ1 > 2π/λ > 2π/λ0. Each NN in the ensemble is constructed
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with one input layer with 63 (3 + 30 + 30) input elements, three hidden layers with 64,
128 and 32 nonlinear neurons with rectified linear units (ReLUs) activation (max{0, x}),
and one linear neuron in the output layer. The optimal number of neurons at each layer is
determined through a grid search of a range of numbers that achieves the lowest model
prediction error on Tinter. The L2-regularization is applied to the loss function. Adaptive
momentum estimation (Adam) is employed to train the model. The final prediction of
the ENN is defined as the mean prediction over the 50 NNs, namely μkr = ∑50

i=1 k̂r,i/50,
where k̂r represents the prediction of a single NN, and the index i indicates the index

of the NN. The prediction variance is calculated as σkr =
√∑50

i=1(k̂r,i − μkr)
2/50. It is

worth noting that each NN in the ENN model is trained individually based on 90 % of the
randomly selected samples in the labelled data set L, while the rest of the samples are used
for validation. The initial weights of the neurons in each NN are assigned randomly at the
beginning of the training process. In such a way, the diversity among the QBC members is
ensured, which is an important factor in determining the generalization of the ENN model
(Melville & Mooney 2003). It is important to note that the current ensemble members used
in the model are deterministic NNs, and the uncertainty of the training data from DNS is
assumed to be minimal. However, when considering experimental training data, where
(aleatoric) uncertainties arise from possible measurement errors, the performance of the
current ENN approach may be compromised due to its limited capability in handling such
uncertainties. In these scenarios, the utilization of probabilistic models – such as Bayesian
NNs – may be more suitable as they allow for the explicit incorporation of measurement
uncertainties.

2.4. Testing data sets
In the present work, three distinct testing data sets are introduced to evaluate the model
performance and its universality. The difference among the data sets lies in the nature
and origin of the samples that they contain. The first data set, Tinter, is composed of 20
samples chosen randomly from U that have never been seen by the model during the
training process.

Despite the fact that the employed roughness generation method can generate irregular,
multi-scale surfaces resembling realistic roughness, we test the model separately for
additional rough surfaces extracted from scanning of naturally occurring roughness, which
form the second testing data set, Text,1. There are five samples in this ‘external’ data set.
These include roughness generated by ice accretion (Velandia & Bansmer 2019), deposit
in internal combustion engine (Forooghi et al. 2018b), and a grit-blasted surface (Thakkar
et al. 2017). In addition to that, we test the model against a second external data set,
Text,2, which contains irregular roughness samples from the database provided by Jouybari
et al. (2021). In this data set, many roughness samples are generated by placing ellipsoidal
elements of different sizes and orientations on a smooth wall, making them rather distinct
from the type of roughness used to train the model. We separate this testing data set from
the other two as it contains a specific type of artificial roughness.

3. Results

3.1. Assessment of the AL framework
In this subsection, we explore if the AL framework enhances the training behaviour of the
model. To do so, we compare a model trained with AL-selected data points to one trained
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Figure 3. Plots of (a) PS and (b) p.d.f. of 4200 roughness samples in the roughness repository (grey). The
samples selected for training are distinguished with different colours. While the AL model tends to explore the
PS and p.d.f. domain, the EQ model contains samples that are placed closely to the known initial database.
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Figure 4. (a) Prediction variance σkr obtained by three different models for all the samples in repository U .
(b) The average error obtained by the three models for 10 high-variance samples and 10 low-variance samples
in Tinter (sorted based on the variance of the base model). The total averaged errors are displayed in the legend.
Insets show the distribution of the statistical parameters as well as the corresponding kr of the new samples
with AL and EQ sampling strategies with identical colour code.

with an arbitrary selection of data points. To avoid the computational cost of running
many eventually unused DNS, the comparison is made for only one AL iteration. Figure 3
shows all p.d.f. and PS pairs contained in the repository U (grey) and those randomly
selected for the initial base model (green), as well as those selected for further training
(other colours). The wide range of available roughness can be understood from the area
covered by grey curves. As explained before, once the base model is trained using the
initial randomly selected data set, it is used to determine which samples from the repository
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U should be selected for the next round of training. In figure 4(a), the green line shows the
prediction variance σkr of all roughness samples in the repository based on the base model.
Here, the abscissa is the sample number sorted from high to low σkr values. According to
the AL framework, the samples selected for the next round are the ones with the largest σkr .
These are shown in red in figure 3. For comparison, a second sampling strategy (denoted
as EQ) is employed in which the same number of samples as in AL are selected, but
they are distributed equidistantly along the abscissa of figure 4(a). These samples are
shown in blue in figure 3. It is observed clearly in figure 3 that the AL model explores
surfaces that are least similar to those in the initial data set (green) and tend to cover
the entire repository, with a higher weight given to the marginal cases. Furthermore, the
parameter distribution as well as the corresponding kr values of the selected roughness
by means of AL and EQ is compared in the insets of figure 4. It can be seen that both
the AL and EQ models generally prioritize selecting samples within the waviness regime,
i.e. effective slope ES < 0.35 (Napoli et al. 2008). This preference may arise from the
fact that the resulting drag in the waviness regime (ES < 0.35) is sensitive to changes in
ES (Schultz & Flack 2009). Conversely, beyond this regime (ES > 0.35), the resulting
�U+ saturates in relation to increasing ES, making these samples less interesting for
both labelling strategies. On the other hand, the AL model particularly tends to sample
the roughness with positive skewness and low correlation length. This can similarly be a
result of the roughness effect being highly sensitive to the variations in roughness statistics
within these ranges of parameters, which is in line with previous findings (Schultz & Flack
2009; Busse & Jelly 2023).

Subsequently, two separate models are trained based on the AL and EQ strategies. These
models are applied separately to determine the variance of prediction for roughness in the
repository, and the results are depicted in figure 4(a) using red and blue lines. It is evident
from the results that both the AL and EQ models generally reduce the prediction variance.
However, a more substantial decline in the values of σkr is achieved by the AL model.
This is the expected behaviour as AL is designed to reduce the prediction uncertainty by
targeting regions of the parameter space where the uncertainty is the largest. Interestingly,
some increase in σkr of the EQ model can be observed for a number of samples with
very high σkr , which can be a sign that the performance of the EQ model in the ‘difficult’
tasks deteriorates as it is not trained well for those tasks due to ineffective selection of
its training data. Moreover, the prediction errors (calculated based on correct ks values
of testing data set Tinter obtained by DNS) are illustrated in figure 4(b). The averaged
prediction errors, Err, achieved by the base model, the AL model and the EQ model for
the entire Tinter are 19.1 %, 16.0 % and 22.0 %, respectively. While the AL model yields
a meaningful reduction in Err, the overall performance of the EQ model deteriorates,
possibly due to the over-fitting, which in our case refers to the condition where the model
is trained to fit a limited number of relatively similar data points so precisely that its ability
to extrapolate on dissimilar testing data is degraded (Hastie, Tibshirani & Friedman 2009).
To better analyse this observation, the testing data set Tinter is split evenly into two subsets
according to their σkr , namely the high- and low-variance subsets. The Err values for both
high- and low-variance subsets are illustrated in the figure. It is clear that while the EQ
strategy improves the model performance for the already low-variance test data, its error
increases for high-variance test data, which can be taken as an indication of over-fitting as
described above. The AL sampling strategy, in contrast, seems to protect the model from
over-fitting – especially in the circumstance of a small training data set – hence the error
is reduced for both high- and low-certainty test data as a result of effective selection of
training data.
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Figure 5. (a) Pair plots of roughness statistics. Lower left: the distributions of the samples in U (grey) and L
(green). Diagonal: histograms of single roughness statistics in U . Upper right: joint probability distributions of
statistics overlaid by test data in Tinter (orange) and Text,1&2 (purple). (b) Values of kr = ks/k99 obtained from
DNS (ground truth) as a function of the selected statistics. Colour code is the same as in (a).

3.2. Performance of the final model
Having demonstrated the advantage of AL over random sampling, three additional AL
iterations are carried out. The distributions of the PS and p.d.f. of the selected roughness
from the second to the fourth AL iterations are displayed in figure 3 with black lines. A
number of roughness maps from each AL round are also displayed in Appendix A.

The total number of data points for training of the model after four iterations adds up to
85; these are the data that form L. The scatter plots of some widely investigated roughness
parameters in L as well as in the unlabelled repository U are displayed in the lower left
part of figure 5(a). In the figure, k(x, z) is the elevation map of the roughness, Sk =
1/(Sk3

rms)
∫

S(k − kmd)
3 dS represents the skewness, where S is the wall-projected surface

area, and kmd = (1/S)
∫

S k dS is the meltdown height of the roughness. The effective slope
is defined as ES = (1/S)

∫
S |∂k/∂x| dS. Here, LCorr is the correlation length representing

the horizontal separation at which the roughness height autocorrelation function drops
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Figure 6. The arithmetically averaged Err (%) as well as maximum Err of the model after different training
rounds on each of the testing data sets Tinter , Text,1 and Text,2. The mean Err is represented with a closed circle,
while the maximum Err is displayed with an open circle of corresponding colour. The maximum Err for Text,2
at AL round 1 is out of the plot range.

under 0.2. An inverse correlation can be observed between LCorr and ES, which is expected
as roughness with larger dominant wavelength tends to have lower mean slope. The
distribution of other statistics in U appears to be reasonably random.

For the sake of comparison, additionally the test data are represented in the upper right
part of figure 5(a), with orange (for Tinter) and purple (for Text,1&2) symbols. It is worth
noting that only the roughness samples that locate in the fully rough regime at the currently
investigated Reτ are included in L and shown in the figure. Figure 5(b) shows the values
of kr (from DNS) against the three roughness statistics for all labelled data in the training
and testing data sets. As can be observed clearly in the figure, while equivalent sand-grain
roughness shows some general correlation with each of these statistics (increasing with
Sk and ES, decreasing with LCorr), the collapse of data is far from perfect. Clearly, no
roughness statistics can capture entirely the effect of an irregular multi-scale roughness
topography on drag, which is essentially a motivation behind seeking an NN-based model
to find the functional relation between ks and a higher-order representation of roughness
(here p.d.f. and PS).

Eventually, the final model is trained on the entire labelled data set L. The mean and
maximum error values achieved by this model on all three testing data sets, as well as
those errors after each training round, are displayed separately in figure 6. The figure
shows a generally decreasing trend in both mean and maximum error as the model is
trained progressively for more AL rounds, despite some exceptions to the general trend
in the first two rounds when the number of data points is low. It is notable that the AL
model is particularly successful in bringing down the maximum error, and hence can be
considered reliable over a wide range of scenarios.

One should mention that the model performs consistently well for three different testing
data sets with different natures. While the data set Tinter covers an extensive parameter
space – hence containing more extreme cases – it is generated employing the same method
as the training data. Therefore, to avoid a biased evaluation of the model, two ‘external’
testing data sets from literature are also included. The data set Text,2 is believed to be
particularly challenging for the model, since it is formed by roughness generated artificially
using discrete elements (Jouybari et al. 2021), which is fundamentally different from the
target roughness of this study. Nevertheless, the final model yields very similar errors for
all data sets; what can be taken as an indication of its generalizability. The averaged errors
of the final model within the data sets Tinter, Text,1, and Text,2 are approximately 9.3 %,
5.2 % and 10.2 %, respectively.

975 A34-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

88
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.881


J. Yang, A. Stroh, S. Lee, S. Bagheri, B. Frohnapfel and P. Forooghi

It is crucial to acknowledge that the present model is developed under the assumption
of statistical surface homogeneity. However, when reaching beyond this assumption, the
presence of surface heterogeneity introduces additional complexity to the problem that
cannot be represented adequately by the current training samples. As a consequence, the
effect of heterogeneous roughness structures (Hinze 1967; Stroh et al. 2020) cannot be
accounted for adequately by the current model.

3.3. Data-driven exploration of drag-relevant roughness scales
The fact that naturally occurring roughness usually has a multi-scale nature with
continuous spectrum is well established (Sayles & Thomas 1978). How spectral content
of roughness affects skin-friction drag, and whether a certain range of length scales
dominates it, are, however, questions receiving attention more recently (Anderson &
Meneveau 2011; Mejia-Alvarez & Christensen 2010; Barros et al. 2018; Medjnoun et al.
2021). In this sense, Busse et al. (2015) applied low-pass Fourier filtering to a realistic
roughness and observed no significant effect on skin-friction drag when the filtered
wavelengths were lower than a certain threshold. On the other hand, Barros et al. (2018)
used high-pass filtering and suggested that very large length scales may not contribute
significantly to drag. Alves Portela et al. (2021) examined three filtered surfaces, each
maintaining one-third of the original spectral content associated with large, intermediate
or small scales. In all cases, the filtered scales were shown to include ‘drag-relevant’
information. While both lower and higher limits of drag-relevant scales (if they exist)
can be a matter of discussion, the present study focuses mainly on the latter. Possibly
related to that question, Schultz & Flack (2009) documented the equivalent sand-grain
size of pyramid-like roughness with wavelengths higher (hence lower effective slopes)
than a certain value not to scale in the same way as those with smaller wavelengths. These
authors coined the term ‘wavy’ for the high-wavelength roughness behaviour. Later, Yuan
& Piomelli (2014a) revealed that the wavy regime may emerge at a different threshold
(in terms of effective slope) in a multi-scale roughness compared to the single-scale
pyramid-like roughness. Recently, Yang et al. (2022) showed that the spectral coherence
of roughness topography and time-averaged drag force on a rough wall drops at large
streamwise wavelengths, which, in line with the finding of Barros et al. (2018), suggests
decreasing drag relevance of large scales.

In the present work, we are particularly interested to explore the possibility of extracting
the drag-relevant scales from the knowledge embedded in the data-driven model. In doing
so, we employ the layer-wise relevance propagation (LRP) technique (Bach et al. 2015),
which has proven successful previously in other contexts as a way to interpret decisions of
NN models (Samek et al. 2017; Arras et al. 2017). LRP is an instance-based technique,
which can be used to quantify the contribution of each input feature (here points in
discretized p.d.f. and PS) to the output of the model (here kr = ks/k99) for a single test
case (here a roughness sample). According to this technique, the contribution score (or
relevance) of neuron j at each layer of the deep NN can be expressed as

Rj =
∑

l

(
ajwjl∑
j ajwjl

)
Rl, (3.1)

where Rl is the contribution score of neuron l in the subsequent layer. In (3.1), w and a
are the weight and activation of the neuron that are obtained when the model is used to
predict one instance (here the kr for the roughness sample of interest). Note that in our NN,
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Figure 7. Height maps, p.d.f.s and discretized colour-coded pre-multiplied roughness height PS of three
exemplary samples (a) A, (b) B, and (c) C. The spectra are coloured by the LRP contribution scores.

the last layer corresponds to the predicted output, and the first layer to the input roughness
information. For better interpretability, we assign the value 1 to the contribution score (or
relevance) of the output neuron. As a result, the sum of contribution scores of all inputs
must be 1. Note that the contribution scores shown in this section are averaged over the 50
NN members.

In order to extract drag-relevant scales, we consider the following idea. A wavelength
that does not affect ks (which is a measure of added drag) still contributes to an increasing
variance of the roughness height, and hence k99. Therefore, the related output of the NN,
which is the ratio ks/k99, is decreased. An input that decreases the output shows a negative
LRP contribution score. With that in mind, figure 7 shows three exemplary roughness
samples (named A, B and C) and their discretized PS. Each discrete wavenumber in a PS is
an input to the model, thus has a contribution score, which is indicated using the specified
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kmd/H k99/H Sk ES LCorr/H

Roughness A original 0.043 0.076 0.149 0.520 0.149
Roughness A filtered 0.052 0.065 0.115 0.519 0.092

Roughness B original 0.041 0.069 0 0.146 0.198
Roughness B filtered 0.024 0.041 0.170 0.128 0.102

Roughness C original 0.026 0.078 0.885 0.129 0.234
Roughness C filtered 0.034 0.056 0.307 0.122 0.126

Table 2. Statistical properties of selected surfaces A, B and C.

colour code. The spectra are shown in pre-multiplied form, and the p.d.f. of each roughness
is also displayed. Samples with both Gaussian and non-Gaussian p.d.f.s are included. It is
observed in figure 7 that the small wavenumbers (i.e. large wavelengths) generally have
more negative contribution scores, which is in accordance to the suggestion of Barros
et al. (2018). Indeed, the most negative contributions belong consistently to the largest
wavelengths for all samples. On the other hand, smaller wavelengths generally show larger
contribution scores, but the trend is not monotonic. This might indicate that drag-relevant
scales reside within a certain range of the spectral content.

In order to examine whether or not negative LRP contribution score indeed indicates
drag irrelevance, we apply high-pass filtering to the samples in figure 7, and examine the
resulting roughness using DNS under the same conditions as for the original roughness.
The position of the filter is chosen to be the largest wavelength with non-positive
contribution score (a three-point moving average is applied to smooth the LRP scores
beforehand). Figure 8 shows the height map of original versus filtered samples, the spectra
with filter positions, and the inner-scaled mean velocity profiles before and after filtering
for samples A, B and C. Some statistical properties of all original and filtered samples are
also displayed in table 2. It is clear from figure 8 that the velocity profiles of original and
filtered samples collapse very well in the logarithmic region and beyond, which obviously
leads to similar values of the roughness function and the drag coefficient. This observation
lends support to the hypothesis that the large roughness scales beyond a threshold do
not have a meaningful contribution to the added drag, and that LRP analysis can be a
data-driven route to identifying those scales a priori. One obvious application of this
finding can be in selection of sampling size for the investigations of roughness effect.
In practice, it is not always possible to obtain roughness samples that are large enough to
encompass the full spectrum of scales. However, once the range of drag-relevant scales is
covered completely by a roughness sample, a miscalculation due to a limited sample size
can be avoided.

Interestingly, in all samples shown in figure 8, the filtered scales have a significant
contribution to the roughness height variance based on the pre-multiplied roughness
spectra. This is also reflected in the significant decrease in roughness height k99 and LCorr

in table 2, as anticipated. Additionally, based on the three observed cases, the reductions
in the ES values are found proportional to the filtered fraction of the PS. Other statistical
parameters also undergo changes due to filtering, while obviously none of these changes is
relevant in determining the drag. It is worth noting that in addition to the roughness height
k99 and ES, other drag-determining quantities, such as Sk, undergo a general reduction
for roughness C. According to some existing empirical correlations (e.g. the correlations
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Figure 8. (a,d,g) The original and high-pass filtered roughness, (b,e,h) the pre-multiplied roughness height
PS with the filtered scales indicated by grey shading, and (c, f ,i) the inner-scaled mean velocity profiles out of
DNS on the original and filtered roughness. Note that the DNS are carried out in minimal channels.

proposed by Chan et al. 2015; Forooghi et al. 2017; Flack et al. 2020), the simultaneous
reduction in these statistics should lead to a lower ks. This is, however, not the case in
reality based on the DNS results, which can be reminiscent of the suggestion by Barros
et al. (2018) that a high-pass filtering is necessary if predictive correlations are to capture
the correct trend between ks and the roughness statistics.This also provides an indication
for the hypothesis that while statistical parameters can correlate the equivalent sand-grain
size of irregular roughness to some degree, only a combined statistical–spectral approach
can fully capture the physics of roughness-induced drag.

Furthermore, it is observed in figure 8 that the mean velocity profiles of original
and filtered can exhibit some deviation very close to the wall. These deviations can be
attributed to the altered volume occupied by roughness close to the wall, as reflected by
their kmd and Sk values. However, these do not seem to have a significant influence beyond
the region occupied by roughness.
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Figure 9. Time-averaged streamwise velocity distribution ū+ in selected z-normal planes for the original and
filtered cases A–C. The overlaid white contour lines mark the regions of reversed flow (ū < 0). The blanketing
layer (iso-contours of ū+ = 5) is displayed with red contour lines. The grey colour represents the rough
structures. The calculation of blanketing layer depth �Dū+=5 is illustrated schematically in (a). (a) roughness
A, original, (b) roughness A, filtered, (c) roughness B, original, (d) roughness B, filtered, (e) roughness C,
original and ( f ) roughness C, filtered.

To shed further light on why the filtered large scales do not contribute to added drag,
exemplary x–y planes of the time-averaged streamwise velocity field are examined in
figure 9. The overlaid white contour lines are iso-contours of streamwise mean velocity
ū = 0, which mark the regions of reversed flow. As expected, roughness A exhibits
relatively frequent flow recirculation due to larger local surface slope. In contrast, the
occurrences of flow separation over roughnesses B and C seem to be less frequent, which
could be linked to the waviness characteristics (Schultz & Flack 2009) and less dominant
form drag as a result of the low surface slope. When comparing the flow fields over filtered
and original roughness, it is evident that the locations of flow recirculation are the same,
and filtering has a minimal impact on the extent of reversed flow regions. Moreover, in
figure 9, red contours are used to show the blanketing layer, which, following Busse et al.
(2017), is defined as the flow region confined by iso-surfaces of ū+ = 5. On a smooth
wall, the blanketing layer would be identical to the viscous sub-layer, while on a rough
wall, it can be an indication of how the near-wall flow adapts to the roughness topography.
Similarly to the observations in Busse et al. (2017), one can observe in figure 9 that the
blanketing layers in the cases shown do not follow the small roughness scales and steep
roughness patterns. This behaviour can be recognized better if the ‘depth’ of the blanketing
layer, i.e. �Dū+=5(x, z) = yū+=5(x, z) − k(x, z), is considered.
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Figure 10. Blanketing layer depth �Dū+=5(x, z) = yū+=5(x, z) − k(x, z) measured from the rough surface for
the original and filtered cases A–C.

The maps of �Dū+=5(x, z) are shown in figure 10, where a visual inspection reveals
relative insensitivity of the blanketing layers to the smaller scales of roughness topography
(which appear when the roughness height is subtracted from the ū+ = 5 iso-contour
height). Interestingly, in the same figure, a fair level of similarity is observed between
the �Dū+=5(x, z) maps of the corresponding original and filtered cases. This can be a
hint that the blanketing layer has adapted to the filtered scales. This idea is examined in
Appendix B through a spectral analysis of �Dū+=5(x, z) for cases A–C. Based on this
analysis, one might be able to hypothesize that the drag-irrelevant roughness scales are
indeed those to which the blanketing layer can adapt. As a final remark, a relation between
the drag and blanketing layer depth is physically plausible as a change in this depth is
generally accompanied by modifications in local flow phenomena (flow separation, strong
changes in local velocity gradient on the wall, etc.) that can be linked to added drag.

3.4. Turbulent statistics over original and filtered roughness
In the previous subsection, we used an LRP analysis of the trained model to identify which
roughness scales contribute to the added skin-friction drag. While �U+ is arguably the
most important flow statistic in the practical sense, due to its relation to drag, roughness
also affects higher-order flow statistics, particularly in the so-called ‘roughness sub-layer’
(Chung et al. 2021). In the present study, we focus specifically on comparing the turbulent
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and dispersive stresses over pairs of unfiltered and filtered samples A, B and C from § 3.3
as the main means of momentum transfer away from the wall.

The velocity fluctuations in rough channels can be decomposed into turbulent and
time-averaged spatial fluctuations following the triple decomposition of the velocity field
proposed by Raupach (1992):

ui(x, y, z, t) = 〈ūi〉( y) + ũi(x, y, z) + u′
i(x, y, z, t). (3.2)

Here, 〈ūi〉( y) is the time-averaged (overbar) and x–z-plane-averaged (angle brackets)
velocity, ũi(x, y, z) = ūi(x, y, z) − 〈ūi〉( y) is the spatial variation of the time-averaged
velocity, and u′

i(x, y, z, t) is the space- and time-dependent turbulent fluctuation. Extrinsic
plane-averaging is utilized in the present calculation of statistics, i.e. the solid regions
are included in the averaging procedure with zero velocity (similar to e.g. Yuan &
Piomelli 2014b; Stroh et al. 2020). Based on the above decomposition, local turbulent
stresses u′

iu
′
j(x, y, z) can be interpreted as measures of momentum transfer due to turbulent

fluctuations. Analogous to the local turbulent stresses, one can define the dispersive
stresses 〈ũiũj〉( y) as the momentum transfer due to roughness-induced spatial fluctuations.
Furthermore, double-averaged turbulent stresses are calculated through spatial averaging
of the local turbulent stresses, i.e. 〈u′

iu
′
j〉( y).

The comparison of turbulent stresses for the three considered rough surfaces A, B and
C in filtered and unfiltered states are shown in the near-wall region ( y − y0)

+ < 200 in
figure 11 (red colour). Only a minor difference between original and filtered roughness
can be observed for the turbulent Reynolds stresses. For the 〈u′u′〉+ component, the
peak values are comparable, although for samples B and C, filtering increases the peak
value slightly. Roughness has been shown previously to damp inner-scaled streamwise
turbulent stress that can be related to the suppression of elongated near-wall turbulent
structures (Yuan & Piomelli 2014b; Forooghi et al. 2018a). This effect seems not to be
affected significantly by elimination of drag-irrelevant large roughness scales. Moreover,
the agreement can be observed for the other two normal turbulent stresses as well as
the shear stress (〈w′w′〉+ is not shown for the sake of brevity). Excellent agreement of
wall-normal turbulent stresses is reminiscent of the suggestion by Orlandi & Leonardi
(2008) that the roughness function is related to this component of turbulent stress.
Furthermore, the collapse of shear stress profiles is an indication of similarity in the
vertical mean momentum transport due to turbulence. The agreement of these components
thus contributes to the concordance of the mean velocity profiles in the log-layer.

For the dispersive stresses, it is apparent that the only component affected by filtering
of roughness is the streamwise normal component 〈ũũ〉+, for which the peak values
are reduced by filtering. It is worth mentioning that same trend (reduction of the 〈ũũ〉+
peak values, and agreement of other dispersive stresses) can be observed if an intrinsic
averaging approach is used (not shown for brevity). Despite the possible shift of the
zero-plane y0 after filtering, the peak of 〈ũũ〉+ is observed consistently at the vicinity
of the respective zero-planes, i.e. at ( y − y0) ≈ 0. The discernible reduction in this
peak value suggests a less pronounced inhomogeneity of the mean streamwise velocity
when larger wavelengths are filtered. Arguably, the large-scale undulations present in the
original roughness lead to large-scale variations in mean velocity, resulting in greater flow
inhomogeneity, as also pointed out by Yuan & Jouybari (2018).

Despite the fact that the values of dispersive shear stress are small in all cases,
a comparison among the three cases shown can provide certain insight into the
roughness-flow interactions. As depicted in figures 11(c, f,i), roughness A exhibits a
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Figure 11. Double-averaged turbulent and dispersive stresses for roughnesses A, B and C.

positive −〈ũṽ〉+ peak, whereas roughnesses B and C display negative peaks. Such a
negative sign can be attributed to the ‘waviness effect’ since a wavy structure (one with
relatively low slope) causes an acceleration of the mean flow on the windward side, and a
deceleration on the leeward side (Alves Portela et al. 2021). Positive −〈ũṽ〉+, on the other
hand, can be linked to recirculation behind steep roughness elements (Yuan & Jouybari
2018). This is in line with the fact that roughness A has a much larger ES compared to the
other two. The collapse of dispersive shear stress profiles in figure 11 shows that none of
these behaviours is affected by the applied filtering.

The results shown so far indicate that the streamwise dispersive stress is the only
second-order one-point velocity statistic affected by filtering of drag-irrelevant scales.
This, however, does not modify the shear stress profile as discussed above. To elaborate this
finding further, joint p.d.f.s of local dispersive motions in the wall-parallel plane y = y0
are calculated for all three samples, along with their filtered counterparts, and shown
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ũ+in ũ+in
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Figure 12. Joint p.d.f.s of ũ+
in and ṽ+

in at plane y = y0, values in roughness excluded. Contour lines range from
0.05 to 1.55, with step 0.1. Subscript in indicates being a result of intrinsic averaging.

in figure 12. Here, intrinsic averaging is used, meaning that the areas inside roughness
are excluded for calculation of the dispersive velocities shown in the joint p.d.f. The
subscript in denotes intrinsic averaging. Following the idea of quadrant analysis (Wallace,
Eckelmann & Brodkey 1972), the ũ+

in–ṽ+
in plane is divided into four quadrants, Q1–Q4,

based on the signs of ũ+
in and ṽ+

in . While the joint p.d.f.s look relatively similar before and
after high-pass filtering, it is observed that filtering results in contours shrinking along
the ũ+

in-axis. This is in line with the reduction of peak values of streamwise dispersive
components discussed before. Notably, the joint p.d.f. retains its near-symmetry with
respect to the ṽ+

in-axis, which means that reduction of extreme ũ+
in fluctuations shows no

preference in the direction of momentum transfer. This results in the similar shape of the
contours apart from horizontal stretching. An obvious outcome is that the shear stress
profiles are unaffected by modifications in ũ+

in.

4. Conclusions

In this study, we present a new approach for predicting the normalized equivalent
sand-grain height kr = ks/k99 of homogeneous irregular roughness based on roughness
p.d.f. and PS utilizing a machine learning ENN model. The model is developed within the
AL framework to reduce effectively the required amount of training data. This framework
searches for roughness samples with the highest prediction variances σkr in an unlabelled
repository U of 4200 samples. Eventually, a labelled data set L comprising 85 AL-selected
samples is constricted and utilized to derive the ENN model. The significant improvement
of the learning efficiency of the model through AL is demonstrated by comparing it with
a non-AL approach. Furthermore, it is observed that the employment of AL serves to
mitigate effectively the deleterious effects of over-fitting, as evidenced by the observed
general drop in prediction error. The mean prediction errors of the final AL-ENN model
for an internal testing data set Tinter, as well as two external data sets containing both
realistic and artificially generated roughness, Text,1 and Text,2, are 9.3 %, 5.2 % and 10.2 %,
respectively. The consistently good predictions for testing data with different natures can
be taken as a sign that a universal model is approached.
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Moreover, novel physical insights on the interactions between roughness and turbulent
flow are sought by exploring the information embedded in the data-driven model. To this
end, the LRP technique is employed to evaluate the contributions of different wavenumbers
in the discretized roughness PS towards the predicted value kr. The PS content identified
with a positive contribution according to the LRP is interpreted as ‘drag-relevant’.
Subsequently, high-pass filtering is used to exclude the drag-irrelevant scales, and based
on the DNS results for exemplary cases, it is observed that despite the considerable
variations in the roughness appearance and statistics, the mean velocity profiles of these
high-pass filtered samples collapse well into the original samples in the logarithmic layer,
thus having the same ks values. The LRP-identified drag-irrelevant structures are studied
further through an analysis of the behaviour of the blanketing layers over filtered and
original roughness. Similarity is observed when maps of blanketing layer ‘depth’ �Dū+=5
of filtered and original roughness are compared. This can indicate that the blanketing layer
can adapt to the drag-irrelevant scales. Furthermore, turbulent and dispersive stresses over
original and filtered roughness are compared; it is shown that the turbulent stresses are not
affected meaningfully by removal of the drag-irrelevant structures. Agreement is observed
for both turbulent and dispersive shear stresses, which indicates identical momentum
transport patterns in the wall-normal direction over original and filtered roughness. The
sole effect of filtering observed on one-point second-order velocity statistics is the reduced
streamwise dispersive stress, which can be an indication of less inhomogeneity of mean
flow over the filtered roughness. Finally, the joint p.d.f.s of streamwise and wall-normal
dispersive velocity components are compared for original and filtered roughness , and
it is observed that the probability contours are generally similar, with the streamwise
component having a smaller extent in the filtered case. No strong change of preference
towards a certain quadrant results from filtering.

In summary, according to the present results, it can be stated that use of roughness height
p.d.f. and PS as the model inputs, combined with an AL framework for exploring the vast
parameter space, has the potential for developing universal roughness predictive models.
Additionally, the present work shows a clear potential to extract physical information from
the data-driven models through interpretation techniques, here the LRP.

The LRP-based analysis presented in this work is obviously a first step towards
utilizing data-driven models beyond merely predictive tools in the context of rough-wall
turbulence. Future investigations can explore other avenues to extract knowledge on the
roughness–turbulence interactions from such models. The present LRP-based analysis
can also be investigated further towards more rigorous criteria for identifying the
drag-irrelevant structures. Furthermore, the LRP-based filtering can be a basis for
developing more accurate empirical correlations incorporating solely the drag-relevant
structures. Finally, one should note that the present work merely focuses on roughness
topographies of isotropic and homogeneous nature. Extension towards more general
anisotropic and/or heterogeneous roughness is another obvious direction for future
research.
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Figure 13. Examples of roughness samples included in L. Patches of same size extracted from different
samples. (a–e) correspond to initial round and AL rounds 1–4, respectively.
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Figure 14. Pre-multiplied spectra of blanketing layer depth �Dū+=5 overlaid with that of the corresponding
roughness topography. Symbols indicate the spectrum in different directions, while green lines show the
azimuthal average. The scatter of the symbols indicates the anisotropic characteristics of the map. Structures
smaller than the smallest in-plane roughness wavelength λ1 are omitted.

Appendix A. Exemplary roughness at each round

Exemplary rough surfaces selected from each iteration, along with their statistical
parameters and ks values, are shown in figure 13.

Appendix B. Spectral analysis of blanketing layer depth

In order to investigate further possible links between the blanketing layer depth
�Dū+=5(x, z) = yū+=5(x, z) − k(x, z) and drag-irrelevant scales, we plot pre-multiplied
PS of the blanketing layer depth maps over the original rough surfaces in figure 14. For
more clarity, the two-dimensional spectra are averaged azimuthally and plotted in green.
Moreover, the locations of LRP-identified filters and the pre-multiplied roughness spectra
are also added to the plots. Interestingly, all spectra show a significant decrease in the
contribution of wavelengths larger than (wavenumbers smaller than) the filter. Note that
all plots in figure 14 belong to the original cases, with no influence from the filtering. A
wavelength that is present in the roughness topography but absent in the blanketing layer
depth is one to which the layer has adapted. Therefore, the fact that the spectrum drops for
drag-irrelevant scales might suggest that those scales are the ones to which the blanketing
layer can adapt.

Despite the above discussion, further systematic investigations are required to establish
conclusive evidence, as the present study covers limited ranges of roughness scales and
Reynolds numbers. Ideally, data on surfaces with more ‘drag-irrelevant’ large scales and
at a much wider range of Reynolds numbers are required to establish a solid hypothesis.
Additionally, one should bear in mind that the current results are obtained in the fully
rough regime, and as discussed by Busse et al. (2017), blanketing layers can behave
differently at different regimes.
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