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ABSTRACT: Detailed knowledge about contamination and passivation compounds on the surface of lithium metal anodes (LMAs)
is essential to enable their use in all-solid-state batteries (ASSBs). Time-of-flight secondary ion mass spectrometry (ToF-SIMS), a
highly surface-sensitive technique, can be used to reliably characterize the surface status of LMAs. However, as ToF-SIMS data are
usually highly complex, manual data analysis can be difficult and time-consuming. In this study, machine learning techniques,
especially logistic regression (LR), are used to identify the characteristic secondary ions of 5 different pure lithium compounds.
Furthermore, these models are applied to the mixture and LMA samples to enable identification of their compositions based on the
measured ToF-SIMS spectra. This machine-learning-based analysis approach shows good performance in identifying characteristic
ions of the analyzed compounds that fit well with their chemical nature. Moreover, satisfying accuracy in identifying the
compositions of unseen new samples is achieved. In addition, the scope and limitations of such a strategy in practical applications are
discussed. This work presents a robust analytical method that can assist researchers in simplifying the analysis of the studied lithium
compound samples, offering the potential for broader applications in other material systems.
KEYWORDS: lithium metal anode, all-solid-state battery, ToF-SIMS, machine-learning-assisted analysis, data science

1. INTRODUCTION

Lithium metal anodes (LMAs) are of great interest for future
battery applications due to their high theoretical specific
capacity and low redox potential. Particularly, LMAs have great
potential for their use in all-solid-state batteries (ASSBs),
because they are currently the sole option that could lead to
ASSBs with a higher energy density than commercial lithium-
ion batteries (LIBs) using liquid electrolytes and graphite
anodes.1 However, the application of LMAs still faces severe
challenges, such as morphological instability and low Coulomb
efficiency.2,3 Different investigations carried out so far on this
topic indicate that one critical aspect of LMAs is the
degradation process at the surface. Hence, the precise
knowledge about contaminations and passivation compounds
on its surface is key to unlocking LMA-based ASSBs.4−7

In this context, we have previously reported how X-ray
photoelectron spectroscopy (XPS) and time-of-flight secon-
dary ion mass spectrometry (ToF-SIMS) can be used to
reliably characterize lithium metal surfaces.8 On the one hand,
XPS allows one to obtain both quantitative information on the
surface elements and compounds and their qualitative depth
distributions (depth profiling). On the other hand, ToF-SIMS
depth profiling can complement the XPS results with higher
lateral resolution and quantitative depth information, even if
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ToF-SIMS results are not inherently compound-specific and
the method is only semiquantitative due to matrix effects.
Despite these limitations, ToF-SIMS has already been
demonstrated to be a powerful analytical technique to probe
LMA surfaces. In 2014, Karen et al. described how ToF-SIMS
can help to identify reaction products of lithium−air battery
electrodes by using pure lithium compounds as reference
materials.9 In particular, the authors used an argon gas cluster
ion beam (GCIB) to stabilize the lithium compounds, which
facilitated the identification of the characteristic secondary
ions. Following a similar approach, we have previously
identified characteristic secondary ions of different lithium
compounds by comparing their signal intensity after cleaning
through argon cluster ions sputtering.8 Even if the peak
interpretation is enhanced through this approach, it is still not
enough to draw conclusions without any prior characterization,
for instance, by XPS. To overcome this limitation, a more
sophisticated data analysis method is needed, which is the
main objective of the present work.
Manual analysis of ToF-SIMS spectra is particularly

challenging and time-consuming due to the presence of several
hundreds of peaks. Furthermore, important information may
be overlooked or missed easily. Data science techniques,
especially machine learning (ML) models, which possess the
ability to explore the latent relationships behind data, are
gaining more and more popularity in the analysis of ToF-SIMS
data. Besides, a widely utilized approach to support ToF-SIMS
data interpretation, the multivariate data analysis (MVA),10−13

can indicate, for instance, the relationships between different
peaks and their relative importance, as well as information on
the peaks’ variance. MVA also takes advantage of many
unsupervised learning methods in the machine learning field,
like principal component analysis (PCA),14−16 multivariate
curve resolution (MCR),17 and non-negative matrix factoriza-
tion (NMF).18−23 For example, Heller et al. applied PCA and
MCR to study the degradation products in lithium-ion
batteries with only very limited prior knowledge,24 while
Schroder et al. used PCA to improve the understanding of
ToF-SIMS depth profiles of LIB solid-electrolyte interphases
(SEI),25 and Higgins et al. developed a workflow with NMF to
extract salient features of associated chemical changes at halide
perovskite interfaces and to separate the light- and voltage-
dependent dynamics.26 Many other ML models, such as
support vector machines, decision-trees-based models such as
random forest model, hierarchical clustering analysis, neural
networks and so on, have been successfully applied in the field
of mass spectrometry for potential enhancement of data
analysis and interpretation,27−33 as well as many other battery
related fields.34 Among these algorithm architectures, logistic
regression (LR) is a commonly used machine learning
approach that has been effectively adopted in various research
areas.35 The main advantages of this approach are its easy
implementation, efficient (lower computational cost) training,
and low probability of overfitting.
In the presented work, the ToF-SIMS spectral data of

various lithium metal anodes are studied by using the LR
model. With the help of other machine learning techniques,
the performance of the model is evaluated, and its behavior is
explained from various aspects. To be specific, the LR model is
first used to identify the characteristic ions for the pure
compounds, and their corresponding chemical information is
analyzed. Additionally, this model is further applied to mixtures
of these compounds and real LMA samples for composition

identification, which evaluates the extrapolative prediction
ability of the models and the possible variety of scenarios that
it can apply. Overall, the reported identification of specific ion
species and the application to LMA samples demonstrate that
the machine learning-assisted analysis methods have the
potential to provide quick, automated, and accurate ToF-
SIMS data analysis, which can help researchers to better
distinguish the different components present in their sample(s)
given little or no previous knowledge.

2. EXPERIMENTAL SECTION
2.1. Sample Preparation. 5 different lithium compounds,

namely, Li2CO3, Li2O, Li3N, LiH, and LiOH, were pressed into
pellets (3 t, 1.5 min) under Ar-atmosphere. Mixtures of
Li2CO3+LiOH (marked as sample No. 1 in Table 2) and LiH
+Li2O (sample No. 2) were prepared by mixing equal weights of the
selected lithium compounds in a vial by shaking and then following
the same pressing. As reference LMA samples, one commercial
lithium foil exposed to an N2-plasma (marked as sample No. 3 in
Table 2) and two untreated foils (samples No. 4 and 5, pieces of the
same pure lithium metal foils, and they were stored in a glovebox for 6
months) were chosen. The LMA samples were cut into small pieces
each with an area of about 1.1 cm2. All samples were mounted on a
LEICA sample holder by using electronically insulating tape. The
subsequent transfer to the ToF-SIMS instrument was also done under
Ar-atmosphere.
2.2. Data Acquisition and Management. The ToF-SIMS

measurements were performed using a TOF.SIMS 5−100 instrument
(ION-TOF GmbH, Muenster, Germany) equipped with a 25 kV
Bicluster primary ion gun for analysis and with a 20 kV gas cluster ion
beam (GCIB) for sputtering. For the pure lithium compounds,
mixtures (samples No. 1 and 2), and N2-plasma sample (sample No.
3), the corresponding surface regions were sputter-cleaned with
(Ar1500+) using a fluence of 4 × 1015 ions/cm2 (10 kV, 10 nA) before
the analysis. For the lithium foil, different fluences (1 frame = 9 × 1013
ions/cm2 for sample No. 4 or 150 s = 9.5 × 1015 ions/cm2 for sample
No. 5) were applied to reach certain specific sample regions. For
analysis, areas of 100 × 100 μm2 were measured in spectrometry
mode, using Bi3+ (20 kV, 1 pA) as the primary ion by setting an ion
dose density of 1012 ions/cm2. Measurements were done in negative
ion mode with a cycle time of 100 μs. A flood gun was used for charge
compensation during the sputtering and analysis. For each material,
12 different spots were examined. Besides, the research data
infrastructure Kadi4Mat was used to share and manage data for
continuously developing the machine learning model.36

2.3. Data Preprocessing. The software SurfaceLab (version 7.1,
IONTOF GmbH, Muenster, Germany) was used for the first
processing of the ToF-SIMS data. All spectra were calibrated to the
ion signals 6Li−, Li−, O−, OH− and O2

−. Following that, an automated
peak search was conducted up to mass-to-charge (m/z) = 120 a.u. and
for peaks with a minimum of 100 counts, after which the borders of
the found peaks were calibrated to uniform ranges for subsequent
comparison. The peak area was exported for all selected peaks and
spectra to be used for further analysis.

3. RESULTS AND DISCUSSION
The first aim of this study was to build machine learning
models to identify the key secondary ions representing
different lithium compounds based on their ToF-SIMS spectra.
For this purpose, a ToF-SIMS data set was collected, which
contained 60 spectra from 5 different pure lithium-containing
materials (12 spectra each), namely, Li2CO3, Li2O, Li3N, LiH,
and LiOH. These compounds are commonly expected to be
present on LMAs. The second goal of the present work was to
use these models to recognize the lithium compounds present
on LMA surfaces based on their ToF-SIMS spectra. In this
study, the logistic regression (LR) model was mainly used to

ACS Applied Materials & Interfaces www.acsami.org Research Article

https://doi.org/10.1021/acsami.3c09643
ACS Appl. Mater. Interfaces 2023, 15, 50469−50478

50470

www.acsami.org?ref=pdf
https://doi.org/10.1021/acsami.3c09643?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


reach the aforementioned goals, whose accuracies were tested
by analyzing two mixture samples (i.e., containing more than
one substance, as expected by real-world LMAs) and three real
LMAs samples. For each mixture and LMA sample, 12 spectra
were collected. In addition to the LR model, principal
component analysis (PCA), as one of the most widely used
MVA techniques that can represent the basis for many other
methods,37 was also used to facilitate the analysis of data, and
its results were compared with LR model in Supporting
Information Section S1.
3.1. Logistic Regression Workflow. A logistic regression

(LR) model was developed to distinguish between the
different lithium compounds and determine the characteristic
m/z peaks. Logistic regression (or logit regression), despite its
name, is a kind of classification model in statistical learning. In
the binary classification case, it is used to model the probability
(p) that given data belong to (or do not belong) to a certain
class. In the simplest case, it uses the following equation to
model the probability:

=
+ · +xp

e
( )

1
1 w x b( )

where p(x) is the probability of being part of a certain class, e is
the mathematical constant Euler’s number, x ∈ Rn are the
input variables, w ∈ Rn are the weights (coefficients), and the
bias b ∈ R is the intercept. As can be seen from this equation,
the model attempts to learn a mathematical function that
predicts by evaluating a combination of features x. The
parameter w can intuitively be expressed as the relative
importance of each feature in the prediction, and it is therefore
used to quantify the feature importance and infer the most
important m/z peaks for the different compounds. Further-
more, since the model can predict the probability value of
belonging to each class of compounds, such a prediction can be
used to assist in recognizing the compositions of the mixture
and LMA samples. A more detailed description of the LR
model is given in Supporting Information Section S2. In this
work, the Python machine learning library scikit-learn was used
as the implementation of the LR model.38

The schematic diagram of the workflow followed to build
the LR model is illustrated in Figure 1, and it mainly consists of
four processing steps (from left to right in the figure):

1. Preprocessing: The raw ToF-SIMS data were denoised
and scaled to have comparable values between different

variables, which is one of the key steps preceding any
ML-based approach. In the field of ToF-SIMS analysis,
there are many commonly used preprocessing methods.
However, no general method was found yet to be able to
fit all the situations.39−42 In this study, we found that the
min−max scaling method performed well on our data set
(see Supporting Information Section S3 for detailed
discussion). For the min−max scaling, each intensity
value of spectra is first subtracted from the minimum
value of the corresponding m/z peak and is then divided
by its intensity range (difference between the original
maximum and minimum intensity of that m/z peak). In
this way, the intensity in each m/z peak is scaled to a
range between 0 and 1. This kind of scaling approach
was found to be beneficial for the identification of the
specific secondary ions, allowing the distinction between
the samples.

2. Model training and evaluation: The LR model was trained
to classify the 5 pure lithium compounds based on their
measured ToF-SIMS spectra. An accurate model should
not only be able to classify samples it has been trained
on, but it should also perform well on new samples that
it has not seen before. The K-fold cross-validation (CV)
strategy was used to take full advantage of the limited
amount of ToF-SIMS data and to assess the predictive
performance of the LR model in a fair manner.43 In K-
fold cross-validation, the original samples are randomly
partitioned into K complementary subsets, where only
one single subset is kept as the test set for evaluating the
performance of the model, while the remaining K − 1
are used to train the ML model. This process is iterated
K times, where in each iteration a different subset is used
for the model evaluation and the rest for the training.
The prediction accuracy is quantified as the number of
correct predictions divided by the total one, and through
the F-score. The K evaluation results are then averaged
to assess the overall performance of the model. Besides,
in many cases, an optional extra unseen test data set can
also be utilized to further evaluate the model perform-
ance. In this study, there was no such kind of additional
test set due to the limited number of measured samples.
A 5-fold cross-validation scheme was adopted, and in
each cross-validation step, the min−max scaling was
performed. The scaling parameters are defined as a
function of the training set, and these same parameters

Figure 1. Schematic workflow adopted to build the LR model applied to the analysis of ToF-SIMS data, which consists of data preprocessing,
model training, 5-fold cross-validation to evaluate its performance, application on unseen samples (predictions), and analysis of the classification
results. More information about ToF-SIMS spectra, such as the importance of specific peaks or the composition of the mixture samples, can be
obtained by a further analysis of the model results.
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are applied to the associated test set. This allows keeping
the test set as “unseen” for the model, which ensures the
fairness of the model evaluation procedure. Considering
the limited amount of training data (60 spectra from 5
pure compounds) and the large variance within the data,
this process is critical to ensure robust results.

3. Prediction: As mentioned above, the fitted LR model was
evaluated on 5 test sets (12 spectra each) of pure Li
compounds through 5-fold CV, to ensure its correctness.
Once the LR model accuracy for pure Li compounds
was assessed, it was further applied to compound
mixtures, to test its capability of identifying their
compositions, and to real LMA samples. In this case,
the probability of each sample belonging to any pure Li
compound was computed through the trained LR
model, and it was considered that a given Li compound
was present when the associated probability was high
enough to suggest this.

4. Analysis: To better analyze and interpret the results of
the LR model, the data of ToF-SIMS spectra were
reduced to low dimensions with the aid of PCA to
visualize the classification results from the LR model.
Moreover, feature importance obtained from the LR
model’s parameters was utilized to infer which were the
specific ions allowing to better distinguish among
different compounds. The final identification of the
key specific ions was based on the average feature
importance calculated during the 5-fold CV.

3.2. Identification of Specific Secondary Ions. The
trained LR model was able to make accurate (>99%)
classifications of the measured 5 kinds of pure Li compound
samples. Its detailed performance evaluation and comparison
with other common machine learning classification models are
summarized in Supporting Information Section S4. Based on
the feature importance given by the LR model, the character-
istic peaks are identified for the 5 lithium compounds samples,
and they are listed in Table 1, where the 15 top m/z values are
reported in the order of importance. For Li2CO3, Li3N, LiH,

and LiOH, the LR model has identified at least 12 out of 15
characteristic peaks (marked in bold font) that have the
highest intensities in the peak area plots and show good
compatibility with their corresponding chemical nature. A few
peaks also match chemical information despite their relatively
low intensity (marked in normal font). Moreover, almost no
secondary ions are found to mismatch their chemical
information (marked in italics). Furthermore, for a better
comparison, these data are also analyzed by the PCA method
and are discussed in Supporting Information Section S1.
Besides, it is worth noting that the result for Li2O is

unsatisfying, as the selective identification of Li2O through
ToF-SIMS can be particularly difficult due to its similarities
with Li2CO3. For example, some peaks, such as LiO− and
LiO2

−, which could be intuitively regarded as specific for Li2O,
appear to be even more intense in the Li2CO3 samples. As a
result, no prominent secondary ions solely specific to Li2O can
be determined by the LR model within our sample data set,
and a specific analysis is illustrated in Supporting Information
Section S5.
3.3. Identification of Compositions for Mixtures and

LMAs Samples. The identified specific peaks for the different
lithium compounds can help researchers recognize these
materials from their ToF-SIMS spectra, especially for those
having unique characteristic peak(s). In addition, it is desirable
to be able to identify chemical species with no particular
characteristic peak, such as Li2O in the present samples.
However, realistic samples may contain several different
compounds, from which secondary ions could originate that
overlap on the characteristic peaks identified for the pure Li
compounds under consideration. This could significantly
complicate the spectrometric analysis. To identify the
compositions on a mixture sample, the obtained LR model is
used to infer the possible components based on the probability
values it outputs for different substances. Additionally, other
MVA techniques, namely, PCA, NMF, and random forest
model, are also tested and their results are provided as a
comparison and complement to the LR model (discussed in
Supporting Information Sections S1, S8, and S11).

Table 1. Results of Identified Specific Peaks Presented in Different Font Styles for Better Illustrationa

LiH Li3N Li2CO3 LiOH Li2O

no. m/z Ion m/z Ion m/z Ion m/z Ion m/z Ion

1 9.03 LiH2
− 27.00 CHN− 67.00 LiCO3

− 65.04 Li2O3H3
− 48.00 C4−

2 8.03 6LiH2
− 26.00 CN− 66.00 6LiCO3

− 64.04 Li2O3H2
− 49.01 C4H−

3 17.05 Li2H3
− 21.02 LiN− 43.99 CO2

− 49.05 Li2O2H3
− 49.05 Li2O2H3

−

4 25.08 Li3H4
− 22.02 LiNH− 59.99 CO3

− 63.03 Li2O3H− 8.02 LiH−

5 16.05 Li2H2
− 15.01 NH− 12.00 C− 41.02 LiO2H2

− 31.99 O2
−

6 24.09 6LiLi2H4
− 23.04 LiNH2

− 68.01 LiCO3H− 34.00 H2O2
− 65.04 Li2O3H3

−

7 16.05 6LiLiH3
− 30.00 NO− 54.00 6LiO3

− 33.00 O2H− 15.04 Li2H−

8 15.04 Li2H− 34.03 CHNLi− 51.01 H3O3
− 56.01 LiO3H− 56.01 LiO3H−

9 33.10 Li4H5
− 16.02 NH2

− 60.99 CO3H− 40.01 LiO2H− 60.99 CO3H−

10 8.02 LiH− 33.02 CNLi− 55.00 LiO3
− 18.01 H2O− 36.00 C3−

11 7.02 6LiH− 24.04 LiNH3
− 61.99 CO3H2

− 19.01 H3O− 64.04 Li2O3H2
−

12 22.06 Li3H− 21.05 Li3− 39.00 LiO2
− 33.99 H2O2

− 12.00 C−

13 33.05 Li2OH3
− 38.04 CH3OLi− 62.02 Li2O3

− 31.99 O2
− 63.03 Li2O3H−

14 14.04 6LiLiH− 14.03 Li2− 38.01 6LiO2
− 47.03 Li2O2H− 33.99 PH3

−

15 24.00 C2− 13.03 6LiLi− 46.03 Li2O2
− 63.96 O4

− 55.00 LiO3
−

aIon fragments marked in bold show the highest intensities in the peak area plots for the corresponding compound and that the chemical
information on the identified ions fits well with the compound. Ion fragments marked in normal font do not show the highest intensities for the
corresponding compound, but the chemical information may still fit. Ion fragments marked in italics indicate that the chemical information does
not fit with the compound.
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3.3.1. Identification of Compositions for Mixture Samples
Using LR. The obtained LR model not only performs
classification but also outputs the probability of belonging to
a given class, which can be used to infer the possible
components in mixtures without much need for manual
interpretation. To better understand the predicted probability
values from the LR model and the work process of the model,
5 pure lithium compounds and 2 mixture samples
(Li2CO3+LiOH and LiH+Li2O) are projected to the low-
dimension space with PCA for better visualization (shown in
Figure 2a,c). It can be seen that both mixtures lie in the
position between their corresponding two constituents.
Besides, the decision boundary plots of LiH are also shown
in Figure 2b,d. They serve as the schematic diagram to
illustrate how the compositions of a Li2O+LiH mixture sample
can be identified by the LR model, i.e., the probability
associated with its presence. These decision boundary plots
were obtained as follows: the PC1−3 spaces were uniformly
gridded into dense data points, which were then inversely
mapped back to the original feature space (m/z peaks), and
their corresponding probabilities of being LiH were calculated

by the LR model. The inverse mapping is performed in this
way: PCA scores S can be given by S = XW, where X is the raw
(centered) data matrix and W is the matrix consisting of
eigenvectors, therefore, the inverse reconstruction of data X̂ to
the original feature space is calculated by X̂ = SWT. In the
schematic diagram, only pure LiH (red star), Li2O (blue cross)
substances, and the associated mixture samples (purple
triangle) are shown for the convenience of visualization. The
warmer the color, the higher the probability that LiH is present
according to the model, while a cold color indicates a low
probability. It can be clearly seen that the mixtures lie in
between the two reference compounds and are biased toward
Li2O (especially in PC2−3), which is consistent with the
predicted probability values (0.83 for Li2O and 0.14 for LiH)
for this mixture sample (sample No. 2 in Table 2). In
conclusion, for mixture samples, their corresponding compo-
sitions can be estimated qualitatively based on the LR model’s
predictions.
Table 2 reports the probabilities predicted by the LR model

for the two prepared mixtures (sample Nos. 1 and 2). For
these mixtures, the model can correctly predict their

Figure 2. 2D scores plots (a) and (c) of the first 3 PCs (the corresponding proportions of variances are listed in parentheses) for the five pure
lithium compounds and two mixture samples (Li2CO3+LiOH and LiH+Li2O). Schematic diagrams of the decision boundary obtained from the
trained LR model between LiH and Li2O are shown next to the corresponding PCs in parts b and (d), where a higher probability of being LiH is
colored in warmer color.

Table 2. Predicted Probability for the Mixture and LMA Samples from the LR Model

composition probability

no. compositions (expected) category remark Li2CO3 Li2O Li3N LiH LiOH

1 Li2CO3+LiOH mixture 1:1 mixed 0.54 0.00 0.00 0.00 0.46
2 LiH+Li2O mixture 1:1 mixed 0.00 0.83 0.03 0.14 0.00
3 Li3N LMA N2-plasma treated 0.01 0.12 0.87 0.00 0.00
4 Li2CO3+LiOH LMA smaller sputter dose 0.72 0.00 0.02 0.00 0.26
5 Li2O+LiH LMA double sputter dose 0.00 0.40 0.05 0.55 0.00
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compositions as it yields the highest probabilities for these
corresponding compounds. Before examining the predicted
values in detail, it should be noted that during the
measurement of SIMS spectra, the secondary ion currents
are ideally proportional to the amount of a species, but it
usually could not strictly reflect the quantitative composition of
the measured sample due to varying ionization probabilities
caused by matrix effects. Therefore, the predicted values from
the model are used only as a qualitative indicator rather than a
quantitative metric. For the mixture sample No. 1, a mixture of
Li2CO3 and LiOH in 1:1 weight proportion (molar ratio is
about 1:3.1), the model predicts a probability value of 0.54 for
Li2CO3 and 0.46 for LiOH, which match well the position of
these mixture samples in Figure 2: They are indeed located in
the middle of pure Li2CO3 and LiOH compounds, explaining
why the model makes such a prediction of roughly equal
proportions. On the other hand, for mixture No. 2 (1:1 weight
mixed from Li2O and LiH), the model predicts a probability of
0.83 for Li2O and only 0.14 for LiH, implying that they may
contain more Li2O. This can be supported by the fact that
these mixture samples lie toward Li2O in decision boundary
plots, indicating they are more similar to Li2O. Furthermore, it
is found that the model also predicts a very small value of 0.03
for Li3N, which is not expected on this sample. Such a
prediction is presumably due to the interference from noisy
peaks, and a closer examination is given in Supporting
Information Section S9. Overall, the analysis of the above
results reveals that the possible compounds in a mixture can be
qualitatively identified according to the predicted probability

values from the LR model, although these values do not strictly
correspond to their expected molar or weight ratios.
Furthermore, the model can predict compounds that do not
show specific peaks, namely, Li2O, which could be helpful for
an accurate determination.

3.3.2. Identification of the Compositions for LMA
Samples. Based on the analysis above, the LR model was
applied to the real LMA samples (Nos. 3−5 in Table 2).
Besides, to better investigate and understand the reasons for
the model to make such predictions, the intensity values of the
LMA ToF-SIMS spectra in the top 5 characteristic m/z peaks
of the five examined pure compounds, are exhibited in Figure
3. For better comparison, all spectra data are scaled together
using the min−max scaling method. Furthermore, these
samples are projected to low-dimensional space with PCA to
facilitate intuitive inspection, which is shown and discussed in
Supporting Information, Section S7.
Sample No. 3 is a lithium metal foil that was exposed to a

N2-plasma to produce Li3N on its surface. As can be read from
Table 2, the model predicts the highest probability value for
Li3N (0.87), which is in line with the expectation of nitride
formation and can also be demonstrated by the large intensity
values of these samples in the characteristic m/z peaks of Li3N
(shown in Figure 3). It is worth noting that the model outputs
a small probability value for Li2O (0.12), suggesting the
possible presence of Li2O. To investigate this inference, XPS
measurements are performed on this sample, whose results not
only confirm the formation of Li3N but also reveal that there
are indeed some oxide residuals on this sample (Supporting

Figure 3. Scaled intensity values for the five top specific m/z peaks (labeled in each subplot) for five pure lithium compounds and three LMA
samples in these peaks. Each circular area plot (in polar coordinates) represents one pure compound, where its corresponding intensity in each m/z
peak is marked in a darker color, while other materials are marked in a lighter color.
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Information Section S6). These are presumed to be introduced
by either oxidation processes during sample transport or other
contamination. Thus, the model successfully helps to identify
the component that may be overlooked otherwise, and it
reminds researchers to process the samples carefully to reduce
possible influencing impurities.
In the following, particular attention will be given to the

other two LMA samples, as they allow discussion of potential
difficulties in the interpretation of the LR results and therefore
its limitations. It should be noted that during the training
process, the LR model has only seen the data of pure lithium
compounds, but it is now applied to unseen samples that may
contain multiple components. Before the ToF-SIMS spectra
were measured, different sputter times were applied. The
longer the sputtering time is, the more sample volume is
ablated, and the subsequent analysis should give information
about deeper parts of that sample.
For sample No. 4, only 1 frame (= 9 × 1013 ions/cm2,

smaller sputter dose) was sputtered to remove contaminants
from the very outermost surface layer. The model correctly
predicts the presence of Li2CO3 (0.72) and LiOH (0.26) on
this sample, which is consistent with the XPS analysis of
lithium metal foil, showing the existence of Li2CO3 and LiOH
as published previously.8 However, a direct comparison
between their results is not possible, as ToF-SIMS is more
surface sensitive (1−3 upmost atom layers) than XPS (about
10 nm). Therefore, these results could indicate that Li2CO3
and LiOH are the dominating components on the very top of
the sample surface and consequently mainly detected with
ToF-SIMS. In addition, it should be noted that an unusual data
distribution of this sample can be observed in Figure 3, as
intensity values in some peaks are even higher than that of the
pure samples. For example, in the characteristic peak of Li2CO3
where m/z = 59.99 (CO3

‑), the intensity value of sample No. 4
is even ∼3.5 times higher than that of the pure Li2CO3 sample.
This phenomenon is understandable as this sample was
measured after a shorter sputter time to obtain information on
the outmost layer. Such a large value, though this signal may
come from additional contaminations like hydrocarbons, could
dominate the model’s behavior and may lead to misleading
results. Hence, this sample is regarded as an outlier and to
mitigate the possible negative impact, a data treatment is
performed to truncate the particularly high peak values
(detailed in Supporting Information Section S10).
For sample No. 5, a sputter time of 150 s was applied prior

to the ToF-SIMS measurements, which allows for the
investigation of a deeper part of the lithium metal foil. The
model predicts the presence of Li2O (0.40), and XPS analysis
also indicates the presence of Li2O mainly after longer
sputtering, while going even deeper in the sample can lead
to the detection of lithium metal.8 Additionally, the model also
predicts LiH (0.55) on this sample, which is difficult to
determine with XPS measurements, as it can only rule out the
presence of large amounts of LiH, making the potential
identification of LiH through ToF-SIMS especially interesting.
To further study this, the original ToF-SIMS spectra are
investigated. Considering the longer sputtering time applied to
sample No. 5, its outermost layers should have already been
removed completely before the analysis. This agrees with the
lack of peaks associated with Li2CO3 (illustrated in Figure 3),
explaining why the model predicts a probability value of 0.0 for
this compound. On the contrary, certain signal intensity is

detected in the characteristic m/z peaks of LiH, which further
confirms the accuracy of the model.
Besides, the very small probability values associated with

Li3N for samples No. 4 (0.02) and No. 5 (0.05) attract
attention and raise concerns about the model’s prediction.
Similar to the case of mixture sample No. 2, the original peak
profiles of this sample (especially characteristic peaks for Li3N)
are carefully examined to investigate whether the model has
misclassified species. From the peak profiles (detailed in
Supporting Information Section S9) it is known that certain
strong intensities are detected in some characteristic peaks for
Li3N, which suggests a possible presence of Li3N on these
samples, showing that the model’s predictions are reasonable.
However, these peaks seem to be very noisy, which may
interfere with the model’s prediction, explaining why the LR
model predicts a very low probability value of Li3N. However,
it is not particularly clear where these peaks originate from.
Possible reasons could be that a small portion of particles was
brought on these samples when sputtering the Li3N LMA
sample as the samples were in the analysis chamber at the same
time. Alternatively, another option is that these two LMA
samples were brought into contact inadvertently. On the one
hand, the short period of sputtering time on sample No. 4 was
not sufficient to remove all contaminations on the sample
surface, which might lead to different charging of the LMA
sample. This can result in a different data distribution in the
measured spectrum of this sample compared to those of pure
samples, for which a longer sputter time was applied. On the
other hand, for sample No. 5, after a longer sputtering time, it
has possibly reached the metallic lithium area, the signal of
which may add a different intensity distribution to the
measured spectra, which may interfere with the model to
some degree, making an accurate prediction challenging.
However, as the correlation of sputter times in ToF-SIMS
and XPS is difficult and the lithium metal does not show any
specific signals in ToF-SIMS analysis itself, from the available
results alone it is impossible to infer whether the lithium metal
is present or not. When this is the case, researchers need to
examine the raw data to ensure the reliability of the model.
Nevertheless, such samples can still be analyzed more easily
and quickly with the help of the characteristic peaks previously
identified by the model. Last, we emphasize the importance of
considering comparable sputter times and the need to reduce
surface contamination, which is critical to ensure the accuracy
of machine learning models applied to ToF-SIMS analysis.
Finally, it should also be noted once more that the LR model

has seen only the data of pure lithium compounds but it is now
applied to unseen mixture samples with unusual data
distribution (extrapolation), which is a considerably challeng-
ing task. A possible improvement would be to add mixture
samples to the training process. However, the scarcity of
mixture samples in this work hinders this realization. To
overcome this problem, a data augmentation method is used to
synthesize pseudomixture samples, with which the original
problem of identifying composition is transformed as a
regression problem, and a random forest regression model is
fitted to predict the quantity of substance (detailed in
Supporting Information Section S11). Such a model can
better predict the presence of Li3N, which can serve as a
supplement and comparison to the LR model. In addition to
this, increasing the number of data samples, e.g., performing
ToF-SIMS imaging to record richer information, or preparing
more samples of various pure substances to enrich the
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database, is expected to improve the models’ performance and
is considered as a future work.
In summary, the LR model performs satisfactorily on the

three tested LMA samples despite the challenge of
extrapolation. With the help of the characteristic peaks
obtained from the model and the predicted probability
associated with the different compounds, the compositions of
the mixture and LMA samples can be identified qualitatively in
a faster and simplified way. Besides, it is worth noting that
detecting and handling the outlier samples are necessary steps
to offer a more robust result. Hence, a more elaborate
measuring procedure would need to be designed to ensure as
much as possible a consistent distribution of data across the
sample to mitigate the possible negative effects. Moreover,
depth profiles can be measured to investigate probabilities
change as a function of sputter time utilizing the high
sensitivity and lateral resolution of ToF-SIMS. This could be
helpful in identifying any artifact introduced by sputtering and
assist in making more confident interpretations about
oxidation, surface segregation, and other related activities
such as the matrix effects.44,45

4. CONCLUSIONS
In this work, machine learning methods, especially the logistic
regression (LR) model, were used to analyze ToF-SIMS
spectra of 5 different lithium compounds that are expected to
appear on lithium metal anodes, namely, Li2CO3, Li2O, Li3N,
LiH, and LiOH. The LR model was utilized to identify the
characteristic ions describing each of these compounds based
on their measured ToF-SIMS spectra, which match well with
their chemical nature and can be used as reference values for
facilitating related studies. The LR model was further applied
to the compound mixtures and real lithium metal anode
samples for composition identification. After preprocessing, the
results are more than satisfying, as the model can qualitatively
identify compositions with the help of the predicted
probability of individual compounds. This is valuable since
the model was trained only on pure compounds, but it was
shown to be also applicable to unseen samples that may
contain multiple components. In addition, the model has also
helped the researcher to find previously overlooked substances
on some samples, though they are inferred to be most likely
introduced accidentally through contamination, hence remind-
ing researchers to process samples carefully to reduce possible
influencing impurities. Moreover, special attention was given to
the samples obtained under different measurement conditions,
whose different data distributions may mislead model judg-
ments. Its original profile was carefully inspected to accurately
identify the components. However, this process can be
simplified by previous identifications of the most characteristic
ion fragments associated with each pure Li compound.
In conclusion, the strategies presented in this work are

promising for an intuitive, mostly automatized, and robust
ToF-SIMS data analysis, which can assist the researcher in
recognizing characteristic ions of compounds and identifying
possible compositions of mixtures and LMA samples in a fast
and intuitive way with few or no previous knowledge. In future
work, the proposed method can be adapted to more complex
samples, for example, samples with multicomponents and real
solid-electrolyte interphases (SEIs), to further extend its
applicability.
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