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Abstract
The paper presents a comparative analysis of three systems of dynamic equa-
tions for fluid-saturated solids: the exact equations and two simplified versions
known as the 𝑢-𝑝 approximations obtained by neglecting certain acceleration
terms in the exact equations. The constitutive relations for the solid skeleton
are written in the general anisotropic incrementally linear form without con-
sidering any specific constitutive model or a particular type of anisotropy. The
dynamic equations are compared in relation to the existence of solutions in the
form of plane harmonic waves. Emphasis is placed on finding conditions for the
non-existence or existence of growing waves whose amplitude increases in time
or space as the wave propagates. The conditions are formulated in terms of the
acoustic tensor of the skeleton and the compressibility of the pore fluid. In par-
ticular, it is shown that for a hyperelastic skeleton, the exact equations and one of
the 𝑢-𝑝 approximations do not have growing wave solutions, whereas the other
𝑢-𝑝 approximation may have such solutions even if the skeleton is hyperelastic.
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1 INTRODUCTION

The 𝑢-𝑝 approximation is a simplified version of the dynamic equations for porous fluid-saturated solids. It is obtained by
neglecting certain acceleration terms in the governing equations in order to eliminate the pore fluid velocity from the set
of unknown variables. The 𝑢-𝑝 approximation was proposed in the early 1980s1,2 as a means of reducing computational
costs in the numerical solution of earthquake engineering problems for which the use of the simplified equations was
shown to be justified. The 𝑢-𝑝 approximation is still widely used for the numerical modelling of the dynamic deformation
of saturated solids, especially in geomechanics.3–18 The validity of the 𝑢-𝑝 approximation is usually assessed in terms of
accuracy understood as the deviation of the solutions obtained with the 𝑢-𝑝 equations from the solutions obtained with
the exact (full) equations in which all acceleration terms are retained. The main factors that influence the accuracy of
the 𝑢-𝑝 approximation are the frequency content of the motion and the permeability of the medium. Depending on the
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2 OSINOV

number of acceleration terms neglected in the equations, there exist two versions of the 𝑢-𝑝 approximation, one of them
being less accurate than the other.
In Part I of the present study,19 the two 𝑢-𝑝 approximations are comparedwith the exact formulation from the viewpoint

of well-posedness of boundary value problems, addressing the question of hyperbolicity of the governing equations. The
present paper continues the qualitative analysis of the 𝑢-𝑝 approximations and the comparisonwith the exact formulation.
Here we study solutions in the form of plane harmonic waves assuming linearly elastic skeleton with arbitrary anisotropy.
We consider two types of waves that have either complex frequencies (first type) or complex wave numbers (second type).
Emphasis is placed on the existence of growingwaves whose amplitude increases exponentially in time (for the first type)
or in space (for the second type) as the wave propagates. The objective of this study is to find conditions which guarantee
the non-existence or existence of growingwaves for the exact formulation and the two 𝑢-𝑝 approximations. The conditions
for the non-existence or existence of growing waves are presented in the form of propositions. The conditions involve the
acoustic tensor of the skeleton, the pore fluid compressibility, the density of the solid and fluid phases and the porosity.
Hyperbolicity studied in Part I19 is a characteristic of mathematical acceptability of the model. The study of growing

waves concerns physical acceptability: waves with growing amplitudes are not observed in real media and should be
regarded as physically unacceptable. For a saturated solid with a hyperelastic skeleton, the non-existence of growing wave
solutions may be considered as a necessary condition for physical acceptability of the dynamic equations. As follows from
the propositions proved in the paper, the exact equations and one of the 𝑢-𝑝 approximations meet this requirement, but
this is not always the case for the other 𝑢-𝑝 approximation.
The structure of the paper is as follows. The governing equations of the exact and𝑢-𝑝 formulations are given in Section 2.

Growing wave solutions are defined in Section 3. Results on the existence of growing waves are presented and discussed
in Sections 4 and 5. Proofs of the propositions formulated in Section 4 are provided separately in Sections 6–10.

2 GOVERNING EQUATIONS

The governing equations are written in Cartesian coordinates 𝑥1, 𝑥2, 𝑥3 in component form with the summation conven-
tion for repeated indices. Assuming small strains, the material time derivatives are replaced with the partial derivatives
neglecting the convective terms. The skeleton is assumed to be linearly elastic. The constitutive equations for a dry porous
solid or a saturated solid under fully drained conditions (no changes in the pore pressure) are written in the rate form

𝜕𝜎𝑗𝑖

𝜕𝑡
= 𝐶𝑗𝑖𝑘𝑙

𝜕𝑣𝑠𝑘
𝜕𝑥𝑙

, (1)

where 𝜎𝑗𝑖 are the stress components, 𝐶𝑗𝑖𝑘𝑙 are the components of the stiffness tensor, 𝑣𝑠𝑘 are the velocity components
of the skeleton (the first subscripts ‘s’ stands for ‘solid’, the second subscript indicates the component), and 𝑡 is the time
variable. We do not assume any specific type of anisotropy, so that the stiffness tensor in Equation (1) is arbitrary except
that it must possess bothminor symmetries (the left minor symmetry is due to the symmetry of the stress tensor, while the
right minor symmetry follows from the fact that the stress rate is independent of the skew-symmetric part of the velocity
gradient).
For a fluid-saturated solid, 𝜎𝑗𝑖 are the components of the effective stresses defined as20–22

𝜎𝑗𝑖 = 𝜎
𝑡𝑜𝑡𝑎𝑙
𝑗𝑖

+

(
𝛿𝑗𝑖 −

𝐶𝑗𝑖𝑘𝑘

3𝐾𝑠

)
𝑝𝑓, (2)

where𝜎𝑡𝑜𝑡𝑎𝑙
𝑗𝑖

are the total stress components,𝑝𝑓 is the pore fluid pressure (positive for compression),𝐾𝑠 is the bulkmodulus
of the solid phase (the material of the skeleton) and 𝛿𝑗𝑖 is the Kronecker delta.
The evolution equation for the pore pressure is21,22

𝜕𝑝𝑓

𝜕𝑡
= −𝑄∗

(
𝛿𝑗𝑖 − 𝑛𝛿𝑗𝑖 −

𝐶𝑘𝑘𝑗𝑖

3𝐾𝑠

)
𝜕𝑣𝑠𝑗

𝜕𝑥𝑖
− 𝑄∗𝑛

𝜕𝑣𝑓𝑙

𝜕𝑥𝑙
, (3)

where

1

𝑄∗
=
𝑛

𝐾𝑓
+
1

𝐾𝑠

(
1 − 𝑛 −

𝐶𝑖𝑖𝑗𝑗

9𝐾𝑠

)
, (4)
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OSINOV 3

𝑣𝑓𝑖 are the velocity components of the pore fluid (the first subscript ‘f’ stands for ‘fluid’, the second subscript indicates the
component), 𝐾𝑓 is the pore fluid bulk modulus and 𝑛 is the porosity. The porosity gradient is neglected.
If the stiffness tensor of the skeleton is such that

𝐶𝑗𝑖𝑘𝑘 = 𝐶𝑘𝑘𝑗𝑖 = 3𝐾𝛿𝑗𝑖, (5)

where 𝐾 is a scalar, then the effective stresses (2) can be written as

𝜎𝑗𝑖 = 𝜎
𝑡𝑜𝑡𝑎𝑙
𝑗𝑖

+ 𝛼𝑝𝑓𝛿𝑗𝑖, (6)

where

𝛼 = 1 −
𝐾

𝐾𝑠
. (7)

Equation (3) for the pore pressure becomes

𝜕𝑝𝑓

𝜕𝑡
= −𝑄(𝛼 − 𝑛)

𝜕𝑣𝑠𝑘
𝜕𝑥𝑘

− 𝑄𝑛
𝜕𝑣𝑓𝑘

𝜕𝑥𝑘
, (8)

where
1

𝑄
=
𝑛

𝐾𝑓
+
𝛼 − 𝑛

𝐾𝑠
. (9)

If condition (5) is satisfied, the equations of motion for the solid and fluid phases are2,3

𝜕𝜎𝑗𝑖

𝜕𝑥𝑗
− (𝛼 − 𝑛)

𝜕𝑝𝑓

𝜕𝑥𝑖
+
𝑛2

𝑘
(𝑣𝑓𝑖 − 𝑣𝑠𝑖) = (1 − 𝑛)𝜚𝑠

𝜕𝑣𝑠𝑖
𝜕𝑡
, (10)

−𝑛
𝜕𝑝𝑓

𝜕𝑥𝑖
−
𝑛2

𝑘
(𝑣𝑓𝑖 − 𝑣𝑠𝑖) = 𝑛𝜚𝑓

𝜕𝑣𝑓𝑖

𝜕𝑡
, (11)

where 𝜚𝑠, 𝜚𝑓 are the densities of the solid and fluid phases, and 𝑘 is the permeability with the dimension
[length3×time/mass] connected with the hydraulic conductivity 𝑘′ [length/time] by the relation 𝑘 = 𝑘′∕(𝜚𝑓𝑔), where 𝑔 is
the acceleration due to gravity.
Condition (5) is satisfied, in particular, for an isotropic skeleton with the bulk modulus𝐾, but is weaker than the condi-

tion of isotropy. If condition (5) is not satisfied, Equations (6)–(10) should be viewed as approximate relations in which the
scalar 𝛼 characterizes the bulk compressibility of the skeleton. If 𝐾𝑠 ≫ |𝐶𝑗𝑖𝑘𝑙|, the solid phase may be considered incom-
pressible compared with the skeleton, and Equations (6)–(10) with 𝛼 = 1 are correct independently of whether condition
(5) is satisfied or not. We will use Equations (8)–(10) with the scalar 𝛼 and assume in addition that 𝛼 satisfies the inequal-
ity 𝛼 > 𝑛 justified for elastic porous solids.23–25 This inequality will be used in the proofs of propositions. In particular, it
guarantees that 𝑄 > 0.
System (1), (8), (10), (11) with the unknown functions 𝑣𝑠𝑖, 𝑣𝑓𝑖, 𝜎𝑗𝑖, 𝑝𝑓 will be referred to as the exact formulation.
The first 𝑢-𝑝 approximation is obtained by neglecting the relative fluid–solid acceleration and writing 𝜕𝑣𝑠𝑖∕𝜕𝑡 in Equa-

tion (11) in place of 𝜕𝑣𝑓𝑖∕𝜕𝑡. This allows the fluid velocity components 𝑣𝑓𝑖 to be eliminated from the equations (see Refs.
2, 3, 19 for detail). The resulting system for 𝑣𝑠𝑖, 𝜎𝑗𝑖, 𝑝𝑓 consists of the constitutive equations (1) for the effective stresses,
the equations of motion for the whole continuum,

𝜕𝜎𝑗𝑖

𝜕𝑥𝑗
− 𝛼

𝜕𝑝𝑓

𝜕𝑥𝑖
= 𝜚

𝜕𝑣𝑠𝑖
𝜕𝑡

(12)

with

𝜚 = (1 − 𝑛)𝜚𝑠 + 𝑛𝜚𝑓, (13)
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4 OSINOV

TABLE 1 Unknown functions and governing equations. 𝐯𝑠, 𝐯𝑓, 𝝈, 𝑝𝑓 are the solid velocity, the fluid velocity, the effective stress and the
pore pressure.

Unknown functions Governing equations
Exact formulation 𝐯𝑠, 𝐯𝑓, 𝝈, 𝑝𝑓 (1), (8), (10), (11)
𝑢-𝑝 approximation UP1 𝐯𝑠, 𝝈, 𝑝𝑓 (1), (12), (14)
𝑢-𝑝 approximation UP2 𝐯𝑠, 𝝈, 𝑝𝑓 (1), (12), (15)

and the evolution equation for the pore pressure,

𝜕𝑝𝑓

𝜕𝑡
= −𝑄𝛼

𝜕𝑣𝑠𝑖
𝜕𝑥𝑖

+ 𝑄𝑘
𝜕

𝜕𝑥𝑖

(
𝜚𝑓
𝜕𝑣𝑠𝑖
𝜕𝑡

+
𝜕𝑝𝑓

𝜕𝑥𝑖

)
. (14)

System (1), (12), (14) will be called the UP1 approximation. This approximation is used in Refs. 4–10
The second 𝑢-𝑝 approximation, which will be called UP2, is a further simplification obtained by neglecting the acceler-

ation term 𝜕𝑣𝑠𝑖∕𝜕𝑡 in Equation (14). The UP2 system includes the same Equations (1), (12) and, instead of Equation (14),
its simplified version

𝜕𝑝𝑓

𝜕𝑡
= −𝑄𝛼

𝜕𝑣𝑠𝑖
𝜕𝑥𝑖

+ 𝑄𝑘
𝜕2𝑝𝑓

𝜕𝑥𝑖𝜕𝑥𝑖
. (15)

Equation (15) can be obtained directly from Equation (8) using the quasi-static Darcy law, that is, Equation (11) without
the acceleration term. The UP2 formulation neglects not only the relative fluid acceleration in the equations of motion for
the whole continuum, but also the absolute fluid acceleration for the derivation of Equation (15). The UP2 approximation
is used in Refs. 11–17
The unknown functions and the equations for the exact and 𝑢-𝑝 approximations are summarized in Table 1.

3 TIME-HARMONICWAVES

Consider plane harmonic waves (so-called normal modes) of the form

𝑈(𝑥1, 𝑥2, 𝑥3, 𝑡) = 𝑈
0 exp[𝑖(𝜅𝑥𝑗𝑛𝑗 − 𝜔𝑡)], (16)

where𝑈 = (𝑈1, … ,𝑈𝑁)𝑇 is the column vector of dependent variables,𝑈0 = (𝑈01, … ,𝑈
0
𝑁)
𝑇 is the column vector of complex

constants (complex amplitudes), 𝜅 is the wave number, 𝜔 is the angular frequency, 𝑛𝑗 are the components of a unit vector
𝐧 which determines the wave propagation direction, and 𝑖 is the imaginary unit. For the exact formulation, the vector of
dependent variables is 𝑈 = (𝑣𝑠𝑖, 𝑣𝑓𝑖, 𝜎𝑗𝑖, 𝑝𝑓)𝑇 . For the UP1 and UP2 approximations, 𝑈 = (𝑣𝑠𝑖, 𝜎𝑗𝑖, 𝑝𝑓)𝑇 .
Normal mode solutions can be found by substituting the ansatz (16) into the governing equations and obtaining a

linear system for the components of 𝑈0, with 𝜅 and 𝜔 being parameters of the system. Equating the determinant of the
system to zero gives an equation from which possible pairs 𝜅, 𝜔 can be found – for instance, if one of the two quantities
is given and the other one is sought. This may be a laborious task if the solid is anisotropic. This study is not restricted to
a specific constitutive model or any special forms of anisotropy. The aim is to establish general facts concerning normal
mode solutions for the exact and approximate formulations.
We will study two types of waves (16). The first type includes waves with real wave numbers 𝜅 and complex frequen-

cies 𝜔. Such solutions describe travelling waves whose scalar amplitudes |𝑈𝑖| are spatially homogeneous and change
exponentially with time. The amplitudes grow if Im𝜔 > 0 and decrease if Im𝜔 < 0.

Definition 1. Normal modes (16) with 𝜅 ∈ ℝ and Im𝜔 > 0 will be referred to as growing waves of the first type.

Waves (16) with real frequencies 𝜔 and complex wave numbers 𝜅 belong to another type. Such solutions describe trav-
elling waves whose scalar amplitudes |𝑈𝑖| are constant at each spatial point and change exponentially in the direction of
propagation 𝐧. For 𝜔 > 0, the amplitudes grow as the wave propagates if 𝜅 lies in the 2nd or 4th quadrant of the complex
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OSINOV 5

plane. For 𝜔 < 0, the amplitudes grow if 𝜅 lies in the 1st or 3rd quadrant. All these cases are covered by the inequality

𝜔 Im𝜅2 < 0. (17)

Definition 2. Normal modes (16) with 𝜔 ∈ ℝ and 𝜔 Im𝜅2 < 0 will be referred to as growing waves of the second type.

Growing waves of either type are not observed in real media. Based on this empirical argument, we may postulate that
growingwaves cannot exist in a fluid-saturated solid with a linearly hyperelastic skeleton characterized by a positive strain
energy density function

𝑊 =
1

2
𝐶𝑗𝑖𝑘𝑙𝜀𝑗𝑖𝜀𝑘𝑙 > 0 for all 𝜺 ≠ 𝟎, (18)

where 𝐶𝑗𝑖𝑘𝑙 are constants with the minor and major symmetries, and 𝜀𝑗𝑖 are the components of the strain tensor 𝜺. For a
hyperelastic solid with the strain energy function (18), the constitutive relations (1) in rate form contain the same coeffi-
cients 𝐶𝑗𝑖𝑘𝑙 as in Equation (18). The requirement that growing waves do not exist in the hyperelastic solid may be viewed
as a necessary condition for acceptability of the dynamic equations. We will refer to this condition as the acceptability
criterion.
There is, in general, no straightforward connection between the existence of growing waves and well-posedness of ini-

tial or initial boundary value problems. An elementary discussion on the relation between well-posedness, stability of
solutions and growing waves of the first type can be found in Ref. 26, Section 3.5. As is shown there for initial value prob-
lems, ill-posedness is not a consequence of the existence of growing waves alone but follows from the unboundedness of
Im𝜔(𝜅) for 𝜅 ∈ ℝ. We will not address the question of connection between growing waves and well-posedness, restricting
ourselves to the acceptability criterion formulated above.

4 EXISTENCE OF GROWINGWAVES

In this section, we present and discuss conditions for the existence or non-existence of growing wave solutions for the
exact equations and the 𝑢-𝑝 approximations. The conditions are expressed in terms of the acoustic tensor of the skeleton,
A, with the components 𝐴𝑖𝑘 = 𝐶𝑗𝑖𝑘𝑙𝑛𝑗𝑛𝑙, where 𝑛𝑗 are the components of the unit vector n which determines the wave
propagation direction in Equation (16). We begin with the exact equations and formulate a proposition which provides
sufficient conditions for the absence of both types of growing waves.

Proposition 1. If for a given wave propagation direction, the acoustic tensor of the skeleton is symmetric and positive definite,
then Equations (1), (8), (10) and (11) of the exact formulation have no growing wave solutions for this propagation direction.

Proposition 1 is proved in Section 6.
For a hyperelastic skeleton with the strain energy function (18), the minor and major symmetries of the stiffness tensor

make the acoustic tensor symmetric for all directions n. Owing to the minor symmetries of 𝐶𝑗𝑖𝑘𝑙, the function𝑊 defined
by Equation (18) is positive not only for symmetric tensors 𝜺 but also for non-symmetric tensors. This fact ensures that
the acoustic tensor is positive definite for all directions n. Then, as follows from Proposition 1, the exact equations have
no growing wave solutions for all directions and therefore meet the acceptability criterion formulated above (the non-
existence of growing waves for the hyperelastic skeleton). At the same time, the conditions of the symmetry and positive
definiteness of the acoustic tensor for all directions are sufficient for the system of the exact equations to be hyperbolic.27
Thus, the exact equations for the hyperelastic porous solid are hyperbolic and have no growing wave solutions.
The situation is different for the UP1 approximation.

Proposition 2. If 𝜚 < 𝛼𝜚𝑓 , then for each wave propagation direction, the UP1 equations (1), (12) and (14) have growing
wave solutions of the first type for any non-zero wave number and growing wave solutions of the second type for any non-
zero frequency.

Proposition 2 is proved in Section 7. The proposition guarantees the existence of growing waves if 𝜚 < 𝛼𝜚𝑓 , irrespective
of the stiffness tensor of the skeleton, the pore fluid compressibility and the wave propagation direction. The acceptability
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6 OSINOV

criterion is violated in this case. Usually, the inequality 𝜚 < 𝛼𝜚𝑓 is not satisfied in applications. For an incompressible solid
phase, 𝛼 = 1 and the inequality 𝜚 < 𝛼𝜚𝑓 reduces to 𝜚𝑠 < 𝜚𝑓 . As shown in Ref. 19, the same inequality, 𝜚 < 𝛼𝜚𝑓 , is crucial
for the hyperbolicity conditions for the UP1 equations. For instance, in the particular case of an isotropic skeleton, the
characteristic speed of longitudinal waves becomes imaginary if 𝜚 < 𝛼𝜚𝑓 , leading to ill-posed problems.
An important role in the UP1 approximation is played by a tensor B with the components

𝐵𝑖𝑘 = 𝐴𝑖𝑘 +
𝛼𝜚𝑓

𝜚 − 𝛼𝜚𝑓
𝑛𝑖𝑛𝑗𝐴𝑗𝑘. (19)

In tensorial notations,

𝐁 = 𝐀 +
𝛼𝜚𝑓

𝜚 − 𝛼𝜚𝑓
𝐧 ⊗ 𝐧 ⋅ 𝐀. (20)

The eigenvalues of the tensor B will be denoted by 𝜁1, 𝜁2, 𝜁3. If they are real and positive, we define

𝑄𝑚𝑖𝑛 =
𝜚𝑓

𝛼𝜚
min{𝜁1, 𝜁2, 𝜁3}, 𝑄𝑚𝑎𝑥 =

𝜚𝑓

𝛼𝜚
max{𝜁1, 𝜁2, 𝜁3}. (21)

We now consider the UP1 equations with 𝜚 > 𝛼𝜚𝑓 . In the following propositions, 𝑄 is given by Equation (9).

Proposition 3. Let 𝜚 > 𝛼𝜚𝑓 , and assume that for a given wave propagation direction, the eigenvalues of the acoustic tensor
and the tensor 𝐁 are real and positive, and the acoustic tensor has a complete set of eigenvectors. If, in addition, 𝑄 < 𝑄𝑚𝑖𝑛,
then for this propagation direction, the UP1 equations (1), (12) and (14) have growing wave solutions of the first type for any
non-zero wave number and growing wave solutions of the second type for any non-zero frequency.

Proposition 3 is proved in Section 8.
The requirement that the eigenvalues of the tensor B be real and positive for all directions n is the hyperbolicity con-

dition introduced in Ref. 19 for the UP1 equations. The requirement that the eigenvalues of the acoustic tensor be real
and positive with a complete set of eigenvectors for all directions n is necessary and sufficient for hyperbolicity of the
equations for the dry solid.28 If both systems – for the dry solid and for the UP1 formulation – satisfy their hyperbolicity
conditions, then the assumptions of Proposition 3 are fulfilled. In particular, they are fulfilled for a hyperelastic skeleton
with the strain energy function (18). Proposition 3 states that growing wave solutions are not only possible in this case but
even guaranteed if the fluid bulk modulus 𝐾𝑓 is small enough so that 𝑄 < 𝑄𝑚𝑖𝑛. This violates the acceptability criterion.
Propositions 2 and 3 establish sufficient conditions for the existence of growing waves. A natural question is whether

there are sufficient conditions that exclude growing waves for the UP1 formulation. This question is answered by the next
proposition.

Proposition 4. Let 𝜚 > 𝛼𝜚𝑓 , and assume that for a given wave propagation direction, the acoustic tensor of the skeleton is
symmetric and positive definite. If, in addition, 𝑄 > 𝑄𝑚𝑎𝑥 , then the UP1 equations (1), (12) and (14) have no growing wave
solutions for this propagation direction.

Proposition 4 is proved in Section 9. The quantity𝑄𝑚𝑎𝑥 defined by Equation (21) and involved in the proposition implies
that the eigenvalues of the tensorB are real. Although Proposition 4 does not impose this condition onB, there is no incon-
sistency. It can be shown that, if 𝜚 > 𝛼𝜚𝑓 and the acoustic tensor is symmetric and positive definite, then the eigenvalues
of B are real and positive (see Ref. 19, the proof of Proposition 4 therein). Proposition 4 is similar to Proposition 1 for the
exact formulation in that both assume that the acoustic tensor of the skeleton is symmetric and positive definite. This
assumption is fulfilled for a hyperelastic skeleton with the strain energy function (18). In this case, the non-existence of
growing waves for the UP1 approximation is guaranteed if 𝜚 > 𝛼𝜚𝑓 and if the fluid bulk modulus 𝐾𝑓 is large enough so
that 𝑄 > 𝑄𝑚𝑎𝑥.
We now turn to the UP2 approximation.

Proposition 5. If for a given wave propagation direction, the acoustic tensor of the skeleton is symmetric and positive definite,
then the UP2 equations (1), (12) and (15) have no growing wave solutions for this propagation direction.
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OSINOV 7

TABLE 2 Existence of growing wave solutions for a fluid-saturated solid with a hyperelastic skeleton with the strain energy function (18).

Existence of growing waves of the first type Existence of growing waves of the second type
Exact formulation No No
UP1, 𝜚 < 𝛼𝜚𝑓 Yes, for all n and all 𝜅 ≠ 0 Yes, for all n and all 𝜔 ≠ 0

UP1, 𝜚 > 𝛼𝜚𝑓 , 𝑄 < 𝑄𝑚𝑖𝑛 Yes, for all n and all 𝜅 ≠ 0 Yes, for all n and all 𝜔 ≠ 0

UP1, 𝜚 > 𝛼𝜚𝑓 , 𝑄 > 𝑄𝑚𝑎𝑥 No No
UP2 No No

Proposition 5 is proved in Section 10. TheUP2 equationsmay have growingwave solutions if the acoustic tensor has real
positive eigenvalues but is not symmetric. The formulation of Proposition 5 is the same as that of Proposition 1 for the exact
equations. Proposition 5 imposes the same conditions on the acoustic tensor as Proposition 4 for the UP1 formulation but
without the additional requirements 𝜚 > 𝛼𝜚𝑓 and 𝑄 > 𝑄𝑚𝑎𝑥. The UP2 approximation, like the exact formulation, always
satisfies the acceptability criterion and, in this sense, might seem to be a better choice than the UP1 approximation, but it
is less accurate than the latter.
The results can be summarized as follows (see also Table 2).

∙ The exact formulation and the UP2 approximation satisfy the acceptability criterion. In the case of a hyperelastic
skeleton with the strain energy function (18), these equations have no growing wave solutions (Propositions 1 and 5).

∙ The UP1 approximation does not, in general, satisfy the acceptability criterion. If 𝜚 < 𝛼𝜚𝑓 , the UP1 equations always
have growing wave solutions of both types for all wave propagation directions, regardless of whether the skeleton is
hyperelastic or not (Proposition 2).

∙ If 𝜚 > 𝛼𝜚𝑓 and the skeleton is hyperelastic, the UP1 equations have growing wave solutions of both types for all wave
propagation directions if, in addition,𝑄 < 𝑄𝑚𝑖𝑛, and have no growingwave solutions if𝑄 > 𝑄𝑚𝑎𝑥 (Propositions 3 and 4).
Apart from the question of accuracy, the applicability of theUP1 approximation is, therefore, restricted by the conditions
𝜚 > 𝛼𝜚𝑓 , 𝑄 > 𝑄𝑚𝑎𝑥.

5 ISOTROPIC SOLID

In the particular case of an isotropic elastic skeleton with the Lamé constants 𝜆 and 𝜇, the components of the acoustic
tensor and the tensor B are

𝐴𝑖𝑘 = (𝜆 + 𝜇)𝑛𝑖𝑛𝑘 + 𝜇𝛿𝑖𝑘, (22)

𝐵𝑖𝑘 = (𝜆 + 𝜇)𝑛𝑖𝑛𝑘 + 𝜇𝛿𝑖𝑘 +
𝛼𝜚𝑓

𝜚 − 𝛼𝜚𝑓
(𝜆 + 2𝜇)𝑛𝑖𝑛𝑘. (23)

The eigenvalues of the tensor B can easily be found putting 𝑛1 = 1, 𝑛2 = 𝑛3 = 0:

𝜁1 =
𝜚

𝜚 − 𝛼𝜚𝑓
(𝜆 + 2𝜇), 𝜁2 = 𝜁3 = 𝜇. (24)

Assuming 𝜚 > 𝛼𝜚𝑓 , we have

𝑄𝑚𝑖𝑛 =
𝜚𝑓

𝛼𝜚
𝜇, 𝑄𝑚𝑎𝑥 =

𝜚𝑓

𝛼(𝜚 − 𝛼𝜚𝑓)
(𝜆 + 2𝜇). (25)

The transverse and longitudinal velocity components of the waves in an isotropic solid are uncoupled. For the UP1
equations, the transverse waves propagate without attenuation, whereas the growth or decay of the longitudinal waves
depends on 𝑄. For the UP1 formulation with 𝜚 > 𝛼𝜚𝑓 , as follows from Propositions 3 and 4, the longitudinal waves of
both types (with either real 𝜅 or real 𝜔) decay if 𝑄 > 𝑄𝑚𝑎𝑥. If 𝑄 < 𝑄𝑚𝑎𝑥, there exist growing longitudinal waves of both
types. The equality 𝑄 = 𝑄𝑚𝑎𝑥, where 𝑄𝑚𝑎𝑥 is given by Equation (25), coincides with the so-called dynamic compatibility
condition (see e.g., Ref. 27, Section 6). Since the longitudinal waves propagate independently of the transverse waves,𝑄𝑚𝑖𝑛
defined by Equation (25) plays no role for the longitudinal waves. The condition 𝑄 < 𝑄𝑚𝑖𝑛 of Proposition 3 remains true
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8 OSINOV

but is stronger than the condition 𝑄 < 𝑄𝑚𝑎𝑥. The pore fluid bulk modulus that corresponds to the equality 𝑄 = 𝑄𝑚𝑎𝑥 can
be found from Equations (9) and (25):

𝐾𝑓 =
𝑛𝜚𝑓(𝜆 + 2𝜇)𝐾𝑠

𝛼(𝜚 − 𝛼𝜚𝑓)𝐾𝑠 − (𝛼 − 𝑛)𝜚𝑓(𝜆 + 2𝜇)
. (26)

For an incompressible solid phase with (𝜆 + 2𝜇)∕𝐾𝑠 = 0 and 𝛼 = 1, Equation (26) reduces to

𝐾𝑓 =
𝑛𝜚𝑓(𝜆 + 2𝜇)

(1 − 𝑛)(𝜚𝑠 − 𝜚𝑓)
. (27)

The modulus 𝐾𝑓 estimated with Equation (26) or (27) for soil is smaller than the bulk modulus of pure water (2.2 GPa),
so the UP1 equations for fully saturated soil have no growing wave solutions. Incomplete saturation with a small amount
of free gas in the pore water (less than 1% of volume) drastically reduces the bulk modulus of the water–gas mixture
compared to pure water. (The presence of free gas also makes the modulus of the mixture strongly dependent of the pore
pressure.29) The bulkmodulus of themixture can be smaller than themodulus given by Equation (26) or (27). In this case,
besides the fact that the UP1 equations do not satisfy the acceptability criterion, the modelling of incomplete saturation
with a reduced modulus 𝐾𝑓 may be problematic because of numerical instabilities caused by the existence of growing
wave solutions.

6 PROOF OF PROPOSITION 1

Substituting the normal mode solutions (16) into Equations (1), (8), (10) and (11) results in a system for the complex
amplitudes 𝑣0

𝑠𝑖
, 𝑣0
𝑓𝑖
, 𝜎0
𝑗𝑖
, 𝑝0
𝑓
:

𝜔𝑘(1 − 𝑛)𝜚𝑠𝑣
0
𝑠𝑖
+ 𝜅𝑘𝑛𝑗𝜎

0
𝑗𝑖
− 𝜅𝑘(𝛼 − 𝑛)𝑛𝑖𝑝

0
𝑓
− 𝑖𝑛2

(
𝑣0
𝑓𝑖
− 𝑣0

𝑠𝑖

)
= 0, (28)

𝜔𝑘𝑛𝜚𝑓𝑣
0
𝑓𝑖
− 𝜅𝑘𝑛𝑛𝑖𝑝

0
𝑓
+ 𝑖𝑛2

(
𝑣0
𝑓𝑖
− 𝑣0

𝑠𝑖

)
= 0, (29)

𝜔𝜎0
𝑗𝑖
+ 𝜅𝑛𝑙𝐶𝑗𝑖𝑘𝑙𝑣

0
𝑠𝑘
= 0, (30)

𝜔𝑝0
𝑓
− 𝜅𝑄(𝛼 − 𝑛)𝑛𝑘𝑣

0
𝑠𝑘
− 𝜅𝑄𝑛𝑛𝑘𝑣

0
𝑓𝑘
= 0. (31)

Since solutions with 𝜔 = 0 are not growing waves, we assume that 𝜔 ≠ 0 and substitute 𝜎0
𝑗𝑖
and 𝑝0

𝑓
from Equations (30)

and (31) into Equations (28) and (29) to obtain a system for 𝑣0
𝑠𝑖
, 𝑣0
𝑓𝑖
:

𝜔2𝑘(1 − 𝑛)𝜚𝑠𝑣
0
𝑠𝑖
− 𝜅2𝑘𝐴𝑖𝑘𝑣

0
𝑠𝑘
− 𝜅2𝑘𝑄(𝛼 − 𝑛)𝑛𝑖𝑛𝑘

[
(𝛼 − 𝑛)𝑣0

𝑠𝑘
+ 𝑛𝑣0

𝑓𝑘

]
−𝑖𝜔𝑛2

(
𝑣0
𝑓𝑖
− 𝑣0

𝑠𝑖

)
= 0, (32)

𝜔2𝑘𝑛𝜚𝑓𝑣
0
𝑓𝑖
− 𝜅2𝑘𝑄𝑛𝑛𝑖𝑛𝑘

[
(𝛼 − 𝑛)𝑣0

𝑠𝑘
+ 𝑛𝑣0

𝑓𝑘

]
+ 𝑖𝜔𝑛2

(
𝑣0
𝑓𝑖
− 𝑣0

𝑠𝑖

)
= 0, (33)

where𝐴𝑖𝑘 = 𝐶𝑗𝑖𝑘𝑙𝑛𝑗𝑛𝑙. In the following, a bar over a symbol will denote the complex conjugate. Multiplying Equation (32)
by 𝑣0

𝑠𝑖
and Equation (33) by 𝑣0

𝑓𝑖
with summation and then adding the two equations, we obtain

𝜔2𝑎1 + 𝑖𝜔𝑎2 − 𝜅
2𝑎3 = 0, (34)

where the real quantities 𝑎1, 𝑎2 and 𝑎3 are

𝑎1 = 𝑘
[
(1 − 𝑛)𝜚𝑠𝑣

0
𝑠𝑖
𝑣0
𝑠𝑖
+ 𝑛𝜚𝑓𝑣

0
𝑓𝑖
𝑣0
𝑓𝑖

]
> 0, (35)

𝑎2 = 𝑛
2
(
𝑣0
𝑓𝑖
− 𝑣0

𝑠𝑖

)(
𝑣0
𝑓𝑖
− 𝑣0

𝑠𝑖

)
≥ 0, (36)
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OSINOV 9

𝑎3 = 𝑘𝐴𝑖𝑘𝑣
0
𝑠𝑘
𝑣0
𝑠𝑖
+ 𝑘𝑄

[
(𝛼 − 𝑛)𝑛𝑘𝑣

0
𝑠𝑘
+ 𝑛𝑛𝑘𝑣

0
𝑓𝑘

][
(𝛼 − 𝑛)𝑛𝑖𝑣

0
𝑠𝑖
+ 𝑛𝑛𝑖𝑣

0
𝑓𝑖

]
> 0. (37)

The quantity 𝐴𝑖𝑘𝑣0𝑠𝑘𝑣
0
𝑠𝑖
is real and non-negative due to the assumed symmetry and positive definiteness of the acoustic

tensor. The other terms inEquations (35)–(37) are real and non-negative because they are the products of complex numbers
and their conjugates. It is important that 𝑎1 and 𝑎3 are positive. To show this, suppose 𝑎1 is zero. Then 𝑣0𝑠𝑖 and 𝑣

0
𝑓𝑖
must be

zero, and it follows from Equations (30) and (31) that 𝜎0
𝑗𝑖
, 𝑝0
𝑓
must be zero as well, giving the trivial solution. Now suppose

𝑎3 is zero. Then 𝑣0𝑠𝑖 = 0, 𝑛𝑘𝑣
0
𝑓𝑘
= 0 from Equation (37), 𝜎0

𝑗𝑖
= 0, 𝑝0

𝑓
= 0 from Equations (30) and (31), and finally 𝑣0

𝑓𝑖
= 0

from Equation (28), leading again to the trivial solution.
If 𝜅 ∈ ℝ, we multiply Equation (34) by 𝜔̄ to obtain

𝜔|𝜔|2𝑎1 + 𝑖|𝜔|2𝑎2 − 𝜔̄𝜅2𝑎3 = 0. (38)

Separating the real and imaginary parts of this equation shows that

Im𝜔 = −
|𝜔|2𝑎2|𝜔|2𝑎1 + 𝜅2𝑎3 ≤ 0. (39)

This proves the non-existence of growing wave solutions of the first type.
If 𝜔 ∈ ℝ, separating the real and imaginary parts in Equation (34) gives

𝜔 Im𝜅2 =
𝜔2𝑎2
𝑎3

≥ 0. (40)

This proves the non-existence of growing wave solutions of the second type.

7 PROOF OF PROPOSITION 2

7.1 Real 𝜿, complex 𝝎

Substituting 𝜕𝑣𝑠𝑖∕𝜕𝑡 from Equation (12) into Equation (14), the latter becomes

𝜕𝑝𝑓

𝜕𝑡
= −𝑄𝛼

𝜕𝑣𝑠𝑖
𝜕𝑥𝑖

+
𝑄𝑘

𝜚

[
𝜚𝑓
𝜕2𝜎𝑗𝑖

𝜕𝑥𝑖𝜕𝑥𝑗
+
(
𝜚 − 𝛼𝜚𝑓

) 𝜕2𝑝𝑓
𝜕𝑥𝑖𝜕𝑥𝑖

]
. (41)

Substituting the normal mode solutions (16) into Equations (1), (12) and (41) gives a system for the complex amplitudes
𝑣0
𝑠𝑖
, 𝜎0
𝑗𝑖
, 𝑝0
𝑓
:

−𝜅𝑛𝑗𝜎
0
𝑗𝑖
+ 𝜅𝛼𝑛𝑖𝑝

0
𝑓
= 𝜔𝜚𝑣0

𝑠𝑖
, (42)

−𝜅𝐶𝑗𝑖𝑘𝑙𝑛𝑙𝑣
0
𝑠𝑘
= 𝜔𝜎0

𝑗𝑖
, (43)

𝜅𝑄𝛼𝜚𝑛𝑖𝑣
0
𝑠𝑖
− 𝑖𝜅2𝑄𝜚𝑓𝑘𝑛𝑖𝑛𝑗𝜎

0
𝑗𝑖
− 𝑖𝜅2𝑄

(
𝜚 − 𝛼𝜚𝑓

)
𝑘𝑝0

𝑓
= 𝜔𝜚𝑝0

𝑓
. (44)

System (42)–(44) is an eigenvalue problem which can be written as

𝑀𝑈 = 𝜔𝜚𝑈, (45)

where 𝜔𝜚 is the eigenvalue, 𝑈 is the eigenvector with the components 𝑣0
𝑠𝑖
, 𝜎0
𝑗𝑖
, 𝑝0
𝑓
and 𝑀 is the matrix of the eigenvalue

problem. It is readily seen from Equations (42)–(44) that the diagonal elements of the matrix 𝑀 are zero except for one
element which is

−𝑖𝜅2𝑄
(
𝜚 − 𝛼𝜚𝑓

)
𝑘. (46)
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10 OSINOV

The sum of all eigenvalues of a matrix is equal to its trace. The trace of the matrix𝑀 is equal to the diagonal element (46).
If 𝜚 < 𝛼𝜚𝑓 and 𝜅 is real and non-zero, then at least one eigenvalue 𝜔𝜚must have a positive imaginary part. This proves the
existence of growing wave solutions of the first type.

7.2 Real 𝝎, complex 𝜿

There are no growing wave solutions of the second type for 𝜅 = 0 or 𝜔 = 0, so we assume that both are non-zero. Substi-
tuting 𝑛𝑗𝜎0𝑗𝑖 from Equation (42) into Equation (44) and 𝜎0

𝑗𝑖
from Equation (43) into Equation (42), we eliminate 𝜎0

𝑗𝑖
from

the equations and obtain the system

−𝛾2𝜚𝑣0
𝑠𝑖
+ 𝐴𝑖𝑘𝑣

0
𝑠𝑘
+ 𝛼𝑛𝑖𝛾𝑝

0
𝑓
= 0, (47)

𝛾2𝑄
(
𝛼 + 𝑖𝜔𝜚𝑓𝑘

)
𝑛𝑖𝑣

0
𝑠𝑖
−
(
𝑖𝜔𝑄𝑘 + 𝛾2

)
𝛾𝑝0
𝑓
= 0, (48)

where 𝛾 = 𝜔∕𝜅. System (47), (48) is the generalized eigenvalue problem

𝐺𝑈 = 𝛾2𝐷𝑈 (49)

in which 𝛾2 is the eigenvalue, 𝑈 = (𝑣0
𝑠1
, 𝑣0
𝑠2
, 𝑣0
𝑠3
, 𝛾𝑝0

𝑓
)𝑇 is the eigenvector and the matrices are

𝐺 =

⎛⎜⎜⎜⎜⎜⎝

𝐴11 𝐴12 𝐴13 𝛼𝑛1

𝐴21 𝐴22 𝐴23 𝛼𝑛2

𝐴31 𝐴32 𝐴33 𝛼𝑛3

0 0 0 −𝑖𝜔𝑄𝑘

⎞⎟⎟⎟⎟⎟⎠
, 𝐷 =

⎛⎜⎜⎜⎜⎜⎝

𝜚 0 0 0

0 𝜚 0 0

0 0 𝜚 0

𝑙1 𝑙2 𝑙3 1

⎞⎟⎟⎟⎟⎟⎠
, (50)

where

𝑙𝑖 = −𝑄
(
𝛼 + 𝑖𝜔𝜚𝑓𝑘

)
𝑛𝑖, 𝑖 = 1, 2, 3. (51)

The matrix 𝐷 can be inverted, allowing the generalized eigenvalue problem (49) to be converted into the ordinary
eigenvalue problem

𝐷−1𝐺𝑈 = 𝛾2𝑈, (52)

where

𝐷−1 =
1

𝜚

⎛⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

−𝑙1 −𝑙2 −𝑙3 𝜚

⎞⎟⎟⎟⎟⎟⎠
. (53)

Condition (17) for growing wave solutions of the second type can equivalently be written for 𝛾 = 𝜔∕𝜅 as

𝜔 Im𝛾2 > 0. (54)

To verify whether condition (54) is satisfied, we again make use of the fact that the sum of the eigenvalues of a matrix is
equal to its trace. For the eigenvalue problem (52),

tr
(
𝐷−1𝐺

)
=
1

𝜚
(𝐴11 + 𝐴22 + 𝐴33) +

1

𝜚
𝑄
[
𝛼2 + 𝑖𝜔𝑘(𝛼𝜚𝑓 − 𝜚)

]
. (55)

Let 𝜚 < 𝛼𝜚𝑓 . If 𝜔 > 0, then at least one eigenvalue 𝛾2 must have a positive imaginary part, so condition (54) is satisfied. If
𝜔 < 0, then at least one eigenvalue must have a negative imaginary part, and condition (54) is again satisfied. This proves
the existence of growing wave solutions of the second type.
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OSINOV 11

8 PROOF OF PROPOSITION 3

8.1 Real 𝜿, complex 𝝎

We begin with the analysis of normal mode solutions of the first type with real wave numbers 𝜅 ≠ 0 and complex frequen-
cies 𝜔 ≠ 0. Substituting 𝜎0

𝑗𝑖
from Equation (43) into Equations (42) and (44) eliminates 𝜎0

𝑗𝑖
from the equations and leads

to a system for 𝑣0
𝑠𝑖
, 𝑝0
𝑓
consisting of Equation (47) and the equation

𝛾𝑄𝛼𝜚𝑛𝑖𝑣
0
𝑠𝑖
+ 𝑖𝜅𝑄𝜚𝑓𝑘𝑛𝑖𝐴𝑖𝑘𝑣

0
𝑠𝑘
− 𝑖𝜅𝑄(𝜚 − 𝛼𝜚𝑓)𝑘𝛾𝑝

0
𝑓
− 𝜚𝛾2𝑝0

𝑓
= 0, (56)

where 𝛾 = 𝜔∕𝜅. In the following, we will use calligraphic letters with subscripts to denote polynomials, with the subscript
indicating the degree of the polynomial. Equating the determinant of the matrix of system (47), (56) to zero yields an
equation of the form

7(𝛾, 𝑄) = 0, (57)

where 7(𝛾, 𝑄) is a seventh-degree polynomial in 𝛾. For our purposes, we have included 𝑄 in the function 7(𝛾, 𝑄) as an
argument. This function is

7(𝛾, 𝑄) = det

(
−𝛾2𝜚𝐼 + 𝐴 𝛼𝑁

𝛾𝑄𝛼𝜚𝑁𝑇 + 𝑖𝜅𝑄𝜚𝑓𝑘𝑁
𝑇𝐴 −𝑖𝜅𝑄(𝜚 − 𝛼𝜚𝑓)𝑘 − 𝛾𝜚

)
, (58)

where 𝐴 is the matrix of the components of the acoustic tensor, 𝐼 is the 3 × 3 identity matrix,𝑁 is the column vector with
the components of the vector n and 𝑁𝑇 denotes the transpose of 𝑁. The function (58) can be written as

7(𝛾, 𝑄) = 𝑖𝜅𝑄𝑘3(𝛾
2) + 𝛾𝜚3(𝛾

2, 𝑄), (59)

where3(𝛾2) and 3(𝛾2, 𝑄) are third-degree polynomials in 𝛾2:

3(𝛾
2) = det

(
−𝛾2𝜚𝐼 + 𝐴 𝛼𝑁

𝜚𝑓𝑁
𝑇𝐴 −(𝜚 − 𝛼𝜚𝑓)

)
, (60)

3(𝛾
2, 𝑄) = det

(
−𝛾2𝜚𝐼 + 𝐴 𝛼𝑁

𝑄𝛼𝑁𝑇 −1

)
. (61)

Another form of the function3(𝛾
2) can be obtained by multiplying the first three rows of the matrix in Equation (60)

by −𝜚𝑓𝑛1, −𝜚𝑓𝑛2, −𝜚𝑓𝑛3, respectively, and adding them to the fourth row. This eliminates the components of 𝐴 in the
fourth row and gives

3(𝛾
2) = 𝜚 det

(
−𝛾2𝜚𝐼 + 𝐴 𝛼𝑁

𝛾2𝜚𝑓𝑁
𝑇 −1

)
. (62)

For the evaluation of the determinants we will use two formulae from linear algebra. Let𝑊 be a non-singular square
matrix, 𝑋 and 𝑌 be column vectors of conformable size, and 𝑧 be a non-zero scalar. Then (Ref. 30, p. 475)

det

(
𝑊 𝑌

𝑋𝑇 𝑧

)
= 𝑧 det

(
𝑊 − 𝑧−1𝑌𝑋𝑇

)
, (63)

det
(
𝑊 +𝑌𝑋𝑇

)
= det(𝑊)

(
1 + 𝑋𝑇𝑊−1𝑌

)
. (64)

Formula (63) enables us to reduce the size of the determinants (60)–(62):

3(𝛾
2) = −(𝜚 − 𝛼𝜚𝑓) det

(
−𝛾2𝜚𝐼 + 𝐴 +

𝛼𝜚𝑓

𝜚 − 𝛼𝜚𝑓
𝑁𝑁𝑇𝐴

)
, (65)
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12 OSINOV

3(𝛾
2) = −𝜚 det

(
−𝛾2𝜚𝐼 + 𝐴 + 𝛾2𝛼𝜚𝑓𝑁𝑁

𝑇
)
, (66)

3(𝛾
2, 𝑄) = −det

(
−𝛾2𝜚𝐼 + 𝐴 + 𝑄𝛼2𝑁𝑁𝑇

)
. (67)

The assumption that the acoustic tensor has a complete set of eigenvectors means that thematrix𝐴 can be diagonalized
by a real matrix 𝑇, so that 𝐴̃ = 𝑇−1𝐴𝑇 is a diagonal matrix. Multiplying the matrices of the determinants (66), (67) by 𝑇−1
on the left and by 𝑇 on the right gives

3(𝛾
2) = −𝜚 det

(
−𝛾2𝜚𝐼 + 𝐴̃ + 𝛾2𝛼𝜚𝑓𝑅𝑆

𝑇
)
. (68)

3(𝛾
2, 𝑄) = −det

(
−𝛾2𝜚𝐼 + 𝐴̃ + 𝑄𝛼2𝑅𝑆𝑇

)
, (69)

where 𝑅 = 𝑇−1𝑁 and 𝑆 = 𝑇𝑇𝑁 are column vectors. Let 𝜂𝑖 , 𝑖 = 1, 2, 3, denote the eigenvalues of the acoustic tensor, that
is, the diagonal entries of 𝐴̃. Introduce the notation

𝛽𝑖 = −𝛾
2𝜚 + 𝜂𝑖, 𝑖 = 1, 2, 3. (70)

Applying formula (64) for the expansion of the determinants (68), (69), we obtain

3(𝛾
2) = −𝜚𝛽1𝛽2𝛽3 − 𝛾

2𝛼𝜚𝑓𝜚(𝑠1𝑟1𝛽2𝛽3 + 𝑠2𝑟2𝛽1𝛽3 + 𝑠3𝑟3𝛽1𝛽2), (71)

3(𝛾
2, 𝑄) = −𝛽1𝛽2𝛽3 − 𝑄𝛼

2(𝑠1𝑟1𝛽2𝛽3 + 𝑠2𝑟2𝛽1𝛽3 + 𝑠3𝑟3𝛽1𝛽2), (72)

where 𝑠𝑖, 𝑟𝑖 , 𝑖 = 1, 2, 3, are the components of the column vectors 𝑆, 𝑅.
Below we will make use of the following relation obtained by combining Equations (71) and (72):

𝑄𝛼3 − 𝛾
2𝜚𝑓𝜚3 = 𝜚

(
𝛾2𝜚𝑓 − 𝑄𝛼

)
𝛽1𝛽2𝛽3. (73)

Let𝑄 = 0. Then the six non-zero roots 𝛾 of Equation (57) are the roots of the equation 3(𝛾
2, 0) = 0, which are±

√
𝜂𝑖∕𝜚,

𝑖 = 1, 2, 3. Since the eigenvalues of the acoustic tensor are assumed to be real and positive, these roots are real and cor-
respond to stationary travelling waves with constant scalar amplitudes |𝑈𝑖|. The aim is to see how the roots change as 𝑄
increases (𝑄 is positive in the original differential equations). There are three cases to be considered separately.
Case 1: the eigenvalues of the acoustic tensor are different, and the components 𝑠𝑖, 𝑟𝑖 are all non-zero.
We first analyse the roots 𝛾 at small values of 𝑄. The analysis is based on the following observation. Let (𝛾, 𝑄) be a

polynomial in 𝛾 whose coefficients depend on the real parameter 𝑄, and let 𝛾 be a simple root of the equation

(𝛾, 𝑄) = 0 (74)

for some 𝑄0. In the vicinity of 𝑄0, the root 𝛾 is a function of 𝑄. As follows from the relation

𝑑 =
𝜕

𝜕𝛾
𝑑𝛾 +

𝜕

𝜕𝑄
𝑑𝑄 = 0, (75)

the derivative of the function 𝛾(𝑄) is

𝑑𝛾

𝑑𝑄
= −

𝜕

𝜕𝑄

(
𝜕

𝜕𝛾

)−1
. (76)

The location of the roots of equation (57) in the complex plane at small values of𝑄 can be revealed by calculating the partial
derivatives of 7(𝛾, 𝑄) and the resulting derivatives 𝑑𝛾∕𝑑𝑄 for the roots at 𝑄 = 0. Since the eigenvalues of the acoustic
tensor in Case 1 are different, the roots ±

√
𝜂𝑖∕𝜚 for 𝑄 = 0 are simple, so formula (76) can be applied.

The differentiation of the function (59) with the use of Equations (71) and (72) yields

𝜕7
𝜕𝛾

|||||𝑄=0 = −𝜚𝛽1𝛽2𝛽3 + 2𝛾2𝜚2(𝛽2𝛽3 + 𝛽1𝛽3 + 𝛽1𝛽2) (77)
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OSINOV 13

and, for real values of 𝛾,

Im
𝜕7
𝜕𝑄

= −𝜅𝑘𝜚
[
𝛽1𝛽2𝛽3 + 𝛾

2𝛼𝜚𝑓(𝑠1𝑟1𝛽2𝛽3 + 𝑠2𝑟2𝛽1𝛽3 + 𝑠3𝑟3𝛽1𝛽2)
]
. (78)

Substituting two roots 𝛾 = ±
√
𝜂1∕𝜚 into Equations (77) and (78) and using formula (76) with 𝛾 = 𝜔∕𝜅 (where 𝜅 is fixed),

we obtain

Im
𝑑𝜔

𝑑𝑄
=
𝜅2𝑘𝛼𝜚𝑓

2𝜚
𝑠1𝑟1. (79)

Taking 𝛾 = ±
√
𝜂2∕𝜚 and then 𝛾 = ±

√
𝜂3∕𝜚 and proceeding along the same lines, we find, respectively,

Im
𝑑𝜔

𝑑𝑄
=
𝜅2𝑘𝛼𝜚𝑓

2𝜚
𝑠2𝑟2, (80)

Im
𝑑𝜔

𝑑𝑄
=
𝜅2𝑘𝛼𝜚𝑓

2𝜚
𝑠3𝑟3. (81)

Since

𝑠1𝑟1 + 𝑠2𝑟2 + 𝑠3𝑟3 = 𝑆
𝑇𝑅 = 𝑁𝑇𝑇𝑇−1𝑁 = 1, (82)

at least one of the derivatives (79), (80), (81) must be positive and therefore at least one pair of the roots must be such that
the 𝜔 enters the half-plane Im𝜔 > 0 as 𝑄 becomes non-zero. This proves the existence of growing wave solutions of the
first type for small non-zero values of 𝑄.
As 𝑄 increases, the growing wave solutions will exist as long as there are 𝜔’s in the half-plane Im𝜔 > 0. In order for

the 𝜔’s to leave this half-plane, they must cross the real axis, so we will look for the real roots 𝛾 of Equation (57) for 𝑄 > 0.
These roots must be the real roots of the equation

3(𝛾
2) = 0 (83)

obtained by equating the imaginary part of 7 to zero, see Equation (59). As follows from Equation (65), the roots 𝛾2
of Equation (83) are 𝜁𝑖∕𝜚, 𝑖 = 1, 2, 3, where 𝜁𝑖 are the eigenvalues of the tensor 𝐁 defined by Equations (19) and (20). In
Proposition 3, the eigenvalues ofB are assumed to be real and positive. The three values of𝑄 at which the roots 𝛾2 become
equal to 𝜁𝑖∕𝜚 will be denoted by 𝑄𝑖 . They are determined by the equations

3(𝜁𝑖∕𝜚, 𝑄𝑖) = 0, 𝑖 = 1, 2, 3, (84)

obtained by equating the real part of 7 to zero, see Equation (59).
To solve Equation (84) for 𝑄𝑖 , we need to show that the product 𝛽1𝛽2𝛽3 at 𝛾2 = 𝜁𝑖∕𝜚 is non-zero. Suppose the product

is zero. Then 𝜁𝑖 = 𝜂𝑖 for some 𝑖, say 𝜁1 = 𝜂1, and it follows from Equations (71) and (83) that at least one of the equalities
𝑠1𝑟1 = 0, 𝜂2 = 𝜂1, 𝜂3 = 𝜂1 must hold, but all of them are excluded in Case 1. Equation (73) with3 = 0, 3 = 0, 𝛾2 = 𝜁𝑖∕𝜚
and 𝛽1𝛽2𝛽3 ≠ 0 yields the relation

𝑄𝑖 =
𝜚𝑓

𝛼𝜚
𝜁𝑖, 𝑖 = 1, 2, 3. (85)

The existence of growing wave solutions of the first type is guaranteed if 𝑄 is positive and less than the smallest of the
three values defined by Equation (85).
Case 1 encompasses situations where the eigenvalues of the acoustic tensor are different and the components 𝑠𝑖, 𝑟𝑖 are

non-zero. All other possibilities where these conditions are not satisfied can be divided into two groups called Case 2
and Case 3.
Case 2: the functions3 and 3 determined by Equations (71) and (72) can be represented as

3(𝛾
2) = 𝛽32(𝛾

2), (86)
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14 OSINOV

3(𝛾
2, 𝑄) = 𝛽32(𝛾

2, 𝑄), (87)

where2, 2 are quadratic polynomials in 𝛾2:

2(𝛾
2) = −𝜚𝛽1𝛽2 − 𝛾

2𝛼𝜚𝑓𝜚(𝑚1𝛽2 + 𝑚2𝛽1), (88)

2(𝛾
2, 𝑄) = −𝛽1𝛽2 − 𝑄𝛼

2(𝑚1𝛽2 + 𝑚2𝛽1), (89)

𝑚1 and𝑚2 are non-zero constants, and the eigenvalues 𝜂1, 𝜂2 (contained in 𝛽1, 𝛽2) are different. Accordingly, the function
7(𝛾, 𝑄) can be written as

7(𝛾, 𝑄) = 𝛽35(𝛾, 𝑄), (90)

where 5(𝛾, 𝑄) is a fifth-degree polynomial in 𝛾:

5(𝛾, 𝑄) = 𝑖𝜅𝑄𝑘2(𝛾
2) + 𝛾𝜚2(𝛾

2, 𝑄). (91)

The functions3, 3 are of the form (86), (87) if two eigenvalues of the acoustic tensor coincide, or if one of the terms
𝑠1𝑟1, 𝑠2𝑟2, 𝑠3𝑟3 in Equations (71) and (72) vanishes. For instance, if 𝜂3 = 𝜂2 ≠ 𝜂1 and 𝑠1𝑟1, 𝑠2𝑟2 are non-zero, then2, 2 are
obtained with𝑚1 = 𝑠1𝑟1, 𝑚2 = 𝑠2𝑟2 + 𝑠3𝑟3. If 𝜂1, 𝜂2, 𝜂3 are different, 𝑠1𝑟1, 𝑠2𝑟2 are non-zero and 𝑠3𝑟3 = 0, then𝑚1 = 𝑠1𝑟1,
𝑚2 = 𝑠2𝑟2.
One eigenvalue of the tensor 𝐁 in Case 2 coincides with the eigenvalue 𝜂3 of the acoustic tensor. Equation (57) has

two real roots 𝛾 = ±
√
𝜂3∕𝜚 for any 𝑄. We are interested in the other roots, which are the roots of the polynomial 5. The

analysis proceeds in the same way as in Case 1. For 𝑄 = 0, the non-zero roots of 5 are ±
√
𝜂𝑖∕𝜚, 𝑖 = 1, 2. Since the roots

are simple, formula (76) can be applied, producing for the roots ±
√
𝜂1∕𝜚 and ±

√
𝜂2∕𝜚, respectively,

Im
𝑑𝜔

𝑑𝑄
=
𝜅2𝑘𝛼𝜚𝑓

2𝜚
𝑚1, (92)

Im
𝑑𝜔

𝑑𝑄
=
𝜅2𝑘𝛼𝜚𝑓

2𝜚
𝑚2. (93)

Close inspection of the transition from 7 to 5 reveals that the equality

𝑚1 +𝑚2 = 𝑠1𝑟1 + 𝑠2𝑟2 + 𝑠3𝑟3 (94)

always holds, so that𝑚1 +𝑚2 = 1 due to Equation (82). Therefore, at least one of the derivatives (92), (93)must be positive,
and at least one pair of the 𝜔’s must enter the half-plane Im𝜔 > 0 as 𝑄 becomes non-zero.
The real roots 𝛾 of the polynomial 5 for 𝑄 > 0 are the real roots of the equation

2(𝛾
2) = 0. (95)

The roots 𝛾2 of Equation (95) are 𝜁𝑖∕𝜚, 𝑖 = 1, 2. The two values of 𝑄 corresponding to these roots are determined by two
equations

2(𝜁𝑖∕𝜚, 𝑄𝑖) = 0, 𝑖 = 1, 2. (96)

In order to find 𝑄𝑖 , we combine Equations (88) and (89) to obtain

𝑄𝛼2 − 𝛾
2𝜚𝑓𝜚2 = 𝜚

(
𝛾2𝜚𝑓 − 𝑄𝛼

)
𝛽1𝛽2. (97)

To be able to use this relation, we need to show that the product 𝛽1𝛽2 at 𝛾2 = 𝜁𝑖∕𝜚, 𝑖 = 1, 2, is non-zero. Suppose that it is
zero because of 𝜁1 = 𝜂1. Then it follows from Equations (88) and (95) that𝑚1(𝜂2 − 𝜂1) = 0, which is impossible in Case 2.
Equation (97) with 2 = 0, 2 = 0 and 𝛽1𝛽2 ≠ 0 leads to relation (85) for 𝑖 = 1, 2, and hence to the conclusion that there
are𝜔’s in the half-plane Im𝜔 > 0 if𝑄 is positive and less than the smallest of the two values𝑄1, 𝑄2. The statement remains
true with the stronger condition that 𝑄 be positive and less than the smallest of the three values 𝑄1, 𝑄2, 𝑄3.
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OSINOV 15

Case 3: the functions3 and 3 determined by Equations (71) and (72) can be represented as

3(𝛾
2) = 𝛽2𝛽31(𝛾

2), (98)

3(𝛾
2, 𝑄) = 𝛽2𝛽31(𝛾

2, 𝑄), (99)

where1 and 1 are linear functions in 𝛾2:

1(𝛾
2) = −𝜚𝛽1 − 𝛾

2𝛼𝜚𝑓𝜚, (100)

1(𝛾
2, 𝑄) = −𝛽1 − 𝑄𝛼

2. (101)

Accordingly, the function 7(𝛾, 𝑄) can be written as

7(𝛾, 𝑄) = 𝛽2𝛽33(𝛾, 𝑄), (102)

where 3(𝛾, 𝑄) is a third-degree polynomial in 𝛾:

3(𝛾, 𝑄) = 𝑖𝜅𝑄𝑘1(𝛾
2) + 𝛾𝜚1(𝛾

2, 𝑄). (103)

The functions3 and 3 are of the form (98), (99) if, for instance, 𝜂1 = 𝜂2 and 𝑠3𝑟3 = 0, or if 𝑠2𝑟2 = 𝑠3𝑟3 = 0. The latter
is the case for isotropic elasticity.
The eigenvalues 𝜂2, 𝜂3 of the acoustic tensor in Case 3 are also the eigenvalues of the tensor 𝐁. Equation (57) has four

real roots ±
√
𝜂2∕𝜚, ±

√
𝜂3∕𝜚 for any 𝑄. We are interested in the other roots which are the roots of the polynomial 3. For

𝑄 = 0, two non-zero roots of 3 are ±
√
𝜂1∕𝜚. Formula (76) gives

Im
𝑑𝜔

𝑑𝑄
=
𝜅2𝑘𝛼𝜚𝑓

2𝜚
> 0, (104)

so the two 𝜔’s enter the half-plane Im𝜔 > 0 as 𝑄 becomes non-zero.
The real roots 𝛾 of the polynomial 3 for 𝑄 > 0 are the real roots of the equation

1(𝛾
2) = 0. (105)

The root 𝛾2 of Equation (105) is 𝜁1∕𝜚. The corresponding value of 𝑄, denoted by 𝑄1, is determined by the equation

1(𝜁1∕𝜚, 𝑄1) = 0. (106)

Observing that 𝛽1 cannot be zero at 𝛾2 = 𝜁1∕𝜚, we can eliminate it from Equations (100) and (101) using Equations (105)
and (106), and obtain Equation (85) with 𝑖 = 1. Thus, there are 𝜔’s in the half-plane Im𝜔 > 0 if 𝑄 is positive and less than
𝑄1. This completes the proof for normal mode solutions of the first type.

8.2 Real 𝝎, complex 𝜿

For the analysis of normal mode solutions of the second type, we multiply Equation (59) by 𝜔∕𝜅 to obtain Equation (57)
in the form

4(𝛾
2, 𝑄) = 0, (107)

where 4(𝛾2, 𝑄) is a fourth-degree polynomial in 𝛾2:

4(𝛾
2, 𝑄) = 𝑖𝜔𝑄𝑘3(𝛾

2) + 𝛾2𝜚3(𝛾
2, 𝑄). (108)

The roots of Equation (107) will be analysed in the same way as the roots of Equation (57), with the only difference that, in
view of the inequality (54), we will treat 𝛾2 as an unknown quantity rather than 𝛾. The same three cases as in Section 8.1
are to be considered separately.
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16 OSINOV

Case 1: the eigenvalues of the acoustic tensor are different, and the components 𝑠𝑖, 𝑟𝑖 are all non-zero.
For 𝑄 = 0, the differentiation of the function (108) with the use of Equations (71) and (72) yields

𝜕4
𝜕(𝛾2)

|||||𝑄=0 = −𝜚𝛽1𝛽2𝛽3 + 𝛾2𝜚2(𝛽2𝛽3 + 𝛽1𝛽3 + 𝛽1𝛽2) (109)

and, for real values of 𝛾2,

Im
𝜕4
𝜕𝑄

= −𝜔𝑘𝜚
[
𝛽1𝛽2𝛽3 + 𝛾

2𝛼𝜚𝑓(𝑠1𝑟1𝛽2𝛽3 + 𝑠2𝑟2𝛽1𝛽3 + 𝑠3𝑟3𝛽1𝛽2)
]
. (110)

The non-zero roots of Equation (107) for 𝑄 = 0 are 𝛾2 = 𝜂𝑖∕𝜚, 𝑖 = 1, 2, 3. Calculating the ratio of the derivatives (110) and
(109) for these roots gives, respectively,

𝜔 Im
𝑑𝛾2

𝑑𝑄
=
𝜔2𝑘𝛼𝜚𝑓

𝜚
𝑠1𝑟1, (111)

𝜔 Im
𝑑𝛾2

𝑑𝑄
=
𝜔2𝑘𝛼𝜚𝑓

𝜚
𝑠2𝑟2, (112)

𝜔 Im
𝑑𝛾2

𝑑𝑄
=
𝜔2𝑘𝛼𝜚𝑓

𝜚
𝑠3𝑟3. (113)

Owing to the equality (82), at least one of the quantities (111)–(113) must be positive and hence there must be at least one
root 𝛾2 that satisfies the inequality (54) for small non-zero values of 𝑄.
For 𝑄 > 0, the real roots 𝛾2 of Equation (107) are 𝜁𝑖∕𝜚, 𝑖 = 1, 2, 3. The corresponding quantities 𝑄𝑖 obtained from

Equation (84) are given by relations (85).
Case 2: the functions3, 3 can be written in the form (86), (87). The function 4 becomes

4(𝛾
2, 𝑄) = 𝛽33(𝛾

2, 𝑄), (114)

where 3(𝛾2, 𝑄) is a third-degree polynomial in 𝛾2:

3(𝛾
2, 𝑄) = 𝑖𝜔𝑄𝑘2(𝛾

2) + 𝛾2𝜚2(𝛾
2, 𝑄). (115)

Equation (107) has the real root 𝛾2 = 𝜂3∕𝜚 for any𝑄. For𝑄 = 0, two non-zero roots 𝛾2 of 3 are 𝜂1∕𝜚, 𝜂2∕𝜚. For these roots
we obtain, respectively,

𝜔 Im
𝑑𝛾2

𝑑𝑄
=
𝜔2𝑘𝛼𝜚𝑓

𝜚
𝑚1, (116)

𝜔 Im
𝑑𝛾2

dQ
=
𝜔2𝑘𝛼𝜚𝑓

𝜚
𝑚2. (117)

Since𝑚1 +𝑚2 = 1, there must be at least one root 𝛾2 that satisfies the inequality (54) for small non-zero values of 𝑄. For
the real roots 𝜁1∕𝜚, 𝜁2∕𝜚 for 𝑄 > 0, Equation (97) with2 = 0, 2 = 0 and 𝛽1𝛽2 ≠ 0 leads to relation (85) for 𝑄1 and 𝑄2.
Case 3: the functions3 and 3 can be written in the form (98), (99). The function 4 becomes

4(𝛾
2, 𝑄) = 𝛽2𝛽32(𝛾

2, 𝑄), (118)

where 2(𝛾2, 𝑄) is a quadratic polynomial in 𝛾2:

2(𝛾
2, 𝑄) = 𝑖𝜔𝑄𝑘1(𝛾

2) + 𝛾2𝜚1(𝛾
2, 𝑄). (119)

Equation (107) has two real roots 𝜂2∕𝜚, 𝜂3∕𝜚 for any 𝑄. For 𝑄 = 0, the non-zero root 𝛾2 of 2 is 𝜂1∕𝜚. For this root, we
obtain

𝜔 Im
𝑑𝛾2

𝑑𝑄
=
𝜔2𝑘𝛼𝜚𝑓

𝜚
> 0, (120)
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OSINOV 17

so there is a root 𝛾2 that satisfies the inequality (54) for small non-zero values of 𝑄. Relation (85) for 𝑄1 is obtained from
Equations (100), (101), (105) and (106). This completes the proof of Proposition 3.

9 PROOF OF PROPOSITION 4

9.1 Real 𝜿, complex 𝝎

The proof of Proposition 4 has much in common with the proof of Proposition 3 presented in Section 8. Some details
already elaborated in Section 8 will, therefore, be omitted. The roots of Equations (57) and (107) will first be analysed for
small values of 𝑄 through the derivatives 𝑑𝛾∕𝑑𝑄 and 𝑑𝛾2∕𝑑𝑄 calculated at 𝑄 = 0. In addition, for the present proof, we
will need the derivatives calculated at real roots 𝛾 for 𝑄 > 0. The assumption of Proposition 4 that the acoustic tensor is
symmetric means that the matrix 𝐴 can be diagonalized by an orthogonal matrix, so that in Equations (71) and (72), we
have 𝑠𝑖 = 𝑟𝑖 = 𝑛𝑖 , where 𝑛𝑖 are the components of the vector 𝐧 in a rotated coordinate system in which the matrix 𝐴 is
diagonal. A coordinate system in which the matrix 𝐴 is diagonal will be referred to as the rotated system.
In this subsection, Proposition 4 will be proved for normal mode solutions of the first type with real wave numbers 𝜅

and complex frequencies 𝜔. The same three cases as in Section 8.1 are to be considered.
Case 1: the eigenvalues of the acoustic tensor are different, and all components of the vector 𝐧 in the rotated system

are non-zero.
As is known from the proof of Proposition 3, Equation (57) with 𝑄 = 0 has one zero root and six real roots 𝛾 = ±

√
𝜂𝑖∕𝜚,

𝑖 = 1, 2, 3, where 𝜂𝑖 are the eigenvalues of the acoustic tensor. Equations (76)–(78) with 𝛾 = 0 give

Im
𝑑𝜔

𝑑𝑄
= −𝜅2𝑘 < 0. (121)

Hence, the root 𝛾 = 0 is such that the 𝜔 enters the half-plane Im𝜔 < 0 as𝑄 becomes non-zero. This root does not produce
growing wave solutions for small values of 𝑄. For the roots 𝛾 = ±

√
𝜂𝑖∕𝜚, 𝑖 = 1, 2, 3, Equations (79)–(81) become

Im
𝑑𝜔

𝑑𝑄
=
𝜅2𝑘𝛼𝜚𝑓

2𝜚
𝑛2
1
> 0, (122)

Im
𝑑𝜔

𝑑𝑄
=
𝜅2𝑘𝛼𝜚𝑓

2𝜚
𝑛2
2
> 0, (123)

Im
𝑑𝜔

𝑑𝑄
=
𝜅2𝑘𝛼𝜚𝑓

2𝜚
𝑛2
3
> 0, (124)

where 𝑛1, 𝑛2 and 𝑛3 are the components of the vector 𝐧 in the rotated system. Inequalities (122)–(124) show that all six
roots 𝛾 = ±

√
𝜂𝑖∕𝜚 are such that the 𝜔’s enter the half-plane Im𝜔 > 0 as𝑄 becomes non-zero, so that for sufficiently small

non-zero values of 𝑄, there are six 𝜔’s which correspond to growing wave solutions.
In order for the 𝜔’s to leave the half-plane Im𝜔 > 0 as 𝑄 increases, they must cross the real axis. Equation (57) with

𝑄 > 0 has six real roots 𝛾 = ±
√
𝜁𝑖∕𝜚, 𝑖 = 1, 2, 3, determined by Equation (83), where 𝜁𝑖 are the eigenvalues of the tensor

𝐁. The condition 𝜚 > 𝛼𝜚𝑓 and the assumed symmetry and positive definiteness of the acoustic tensor guarantee that the
eigenvalues 𝜁𝑖 are real and positive.19 Three values of 𝑄 at which Equation (57) has real roots 𝛾 = ±

√
𝜁𝑖∕𝜚 are determined

by Equations (84) and (85).
The next step is to find the sign of Im(𝑑𝜔∕𝑑𝑄) for the roots 𝛾 = ±

√
𝜁𝑖∕𝜚. Differentiating the function (59) and

substituting3 = 0 and 3 = 0 gives

𝜕7
𝜕𝑄

= 𝛾𝜚
𝜕3
𝜕𝑄
,

𝜕7
𝜕𝛾

= 2𝑖𝜅𝑄𝑘𝛾
𝑑3
𝑑(𝛾2)

+ 2𝛾2𝜚
𝜕3
𝜕(𝛾2)

. (125)

Using Equation (76) with 𝛾 = 𝜔∕𝜅 (where 𝜅 is fixed), we see that for real values of 𝛾,

sign

(
Im
𝑑𝜔

𝑑𝑄

)
= sign

(
𝜕3
𝜕𝑄

)
sign

(
𝑑3
𝑑(𝛾2)

)
. (126)
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18 OSINOV

F IGURE 1 Functions 𝛽1𝛽2𝛽3 and3 for a symmetric acoustic tensor in Case 1.

Differentiating Equation (73) with respect to 𝑄 shows that for real 𝛾 and 3 = 0, the sign of the derivative 𝜕3∕𝜕𝑄 is
the same as the sign of the product 𝛽1𝛽2𝛽3. This product is a real third-degree polynomial in 𝛾2, negative for 𝛾2 → +∞,
with the roots 𝜂𝑖∕𝜚, 𝑖 = 1, 2, 3. The product 𝛽1𝛽2𝛽3 as a function of 𝛾2 is shown in Figure 1 with the eigenvalues 𝜂1, 𝜂2, 𝜂3
numbered in decreasing order.
The function3(𝛾2) is a real third-degree polynomial in 𝛾2 with the roots 𝜁𝑖∕𝜚, 𝑖 = 1, 2, 3. Equation (71) with 𝑠𝑖 = 𝑟𝑖 = 𝑛𝑖

and 𝜂1, 𝜂2, 𝜂3 numbered in decreasing order yields

3(𝜂1∕𝜚) = −𝜂1𝛼𝜚𝑓(𝜂2 − 𝜂1)(𝜂3 − 𝜂1)𝑛
2
1
< 0, (127)

3(𝜂2∕𝜚) = −𝜂2𝛼𝜚𝑓(𝜂1 − 𝜂2)(𝜂3 − 𝜂2)𝑛
2
2
> 0, (128)

3(𝜂3∕𝜚) = −𝜂3𝛼𝜚𝑓(𝜂1 − 𝜂3)(𝜂2 − 𝜂3)𝑛
2
3
< 0. (129)

It is seen fromEquation (65) that if 𝜚 > 𝛼𝜚𝑓 , then3 is positive for 𝛾2 → +∞. This fact together with Equations (127)–(129)
means that the eigenvalues 𝜁1, 𝜁2, 𝜁3 numbered in decreasing order satisfy the inequalities

𝜂3 < 𝜁3 < 𝜂2 < 𝜁2 < 𝜂1 < 𝜁1. (130)

The function3(𝛾
2) is shown in Figure 1. The two curves in Figure 1 show that for 𝛾2 = 𝜁𝑖∕𝜚, 𝑖 = 1, 2, 3,

𝛽1𝛽2𝛽3
𝑑3
𝑑(𝛾2)

< 0, (131)

and hence Im(𝑑𝜔∕𝑑𝑄) < 0 for all six roots 𝛾 = ±
√
𝜁𝑖∕𝜚.

Thus, there are six real frequencies 𝜔 at 𝑄 = 0 which enter the half-plane Im𝜔 > 0 as 𝑄 becomes non-zero, and six
transitions from Im𝜔 > 0 to Im𝜔 < 0 on the real axis at 𝑄𝑖 , 𝑖 = 1, 2, 3. There are no other transitions for 𝑄 > 0. This
means that there are no growing wave solutions of the first type if 𝑄 > 𝑄𝑚𝑎𝑥.
Case 2: the functions3 and 3 are of the form (86), (87).
The derivation of inequality (121) for the root 𝛾 = 0 at𝑄 = 0 does not depend on whether Case 1 or Case 2 is considered.

The root 𝛾 = 0 does not produce growing wave solutions for small values of 𝑄. Equations (88)–(91) are valid with the
restriction that the non-zero constants 𝑚1,𝑚2 are now positive, as they are combinations of the non-negative quantities
𝑛2
1
, 𝑛2
2
, 𝑛2
3
. As a consequence, the derivatives (92) and (93) for 𝑄 = 0 are positive as well, leading to the conclusion that

there are four frequencies in the half-plane Im𝜔 > 0 at small non-zero values of 𝑄.
The real roots of the polynomial5 for𝑄 > 0 are 𝛾 = ±

√
𝜁𝑖∕𝜚, 𝑖 = 1, 2. The two values of𝑄 corresponding to these roots

are determined by Equation (85) with 𝑖 = 1, 2. Differentiating the function (91) and substituting2 = 0 and 2 = 0 gives
equations similar to Equations (125) and (126):

𝜕5
𝜕𝑄

= 𝛾𝜚
𝜕2
𝜕𝑄
,

𝜕5
𝜕𝛾

= 2𝑖𝜅𝑄𝑘𝛾
𝑑2
𝑑(𝛾2)

+ 2𝛾2𝜚
𝜕2
𝜕(𝛾2)

, (132)

 10969853, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nag.3645 by K

arlsruher Institution F. T
echnologie, W

iley O
nline L

ibrary on [27/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



OSINOV 19

F IGURE 2 Functions 𝛽1𝛽2 and2 for a symmetric acoustic tensor in Case 2.

sign

(
Im
𝑑𝜔

𝑑𝑄

)
= sign

(
𝜕2
𝜕𝑄

)
sign

(
𝑑2
𝑑(𝛾2)

)
. (133)

As follows from Equation (97), the sign of the derivative 𝜕2∕𝜕𝑄 for real 𝛾 and 2 = 0 is the same as the sign of the
product 𝛽1𝛽2. This product is a real quadratic polynomial in 𝛾2, positive for 𝛾2 → +∞, with the roots 𝜂1∕𝜚 and 𝜂2∕𝜚. The
polynomial 𝛽1𝛽2 is shown in Figure 2, where it is assumed that 𝜂1 > 𝜂2.
The function2 is a real quadratic polynomial in 𝛾2 with the roots 𝜁𝑖∕𝜚 and 𝑖 = 1, 2. Equation (88) with 𝜂1 > 𝜂2 yields

2(𝜂1∕𝜚) = 𝜂1𝛼𝜚𝑓(𝜂1 − 𝜂2)𝑚1 > 0, (134)

2(𝜂2∕𝜚) = 𝜂2𝛼𝜚𝑓(𝜂2 − 𝜂1)𝑚2 < 0. (135)

Taking into account that𝑚1 +𝑚2 = 1, it can be deduced from Equation (88) that the polynomial2 is negative for 𝛾2 →
+∞ if 𝜚 > 𝛼𝜚𝑓 . This fact together with Equations (134) and (135) leads to the inequalities

𝜂2 < 𝜁2 < 𝜂1 < 𝜁1, (136)

where it is assumed that 𝜁1 > 𝜁2. The function 2(𝛾
2) is shown in Figure 2. The two curves in Figure 2 show that for

𝛾2 = 𝜁𝑖∕𝜚, 𝑖 = 1, 2,

𝛽1𝛽2
𝑑2
𝑑(𝛾2)

< 0, (137)

and hence Im(𝑑𝜔∕𝑑𝑄) < 0 for all four roots 𝛾 = ±
√
𝜁𝑖∕𝜚, 𝑖 = 1, 2. There are four frequencies in the half-plane Im𝜔 > 0

for small non-zero values of 𝑄, and four transitions from Im𝜔 > 0 to Im𝜔 < 0 on the real axis at 𝑄1 and 𝑄2. There are no
other transitions for 𝑄 > 0 and therefore no growing wave solutions of the first type for 𝑄 > 𝑄𝑚𝑎𝑥.
Case 3: the functions3 and 3 are of the form (98) and (99).
Inequality (121) for the root 𝛾 = 0 at 𝑄 = 0 is obtained in the same way as in the previous cases. Equations (100)–(106)

and the corresponding results remain valid. There are two frequencies 𝜔 in the half-plane Im𝜔 > 0 for small non-zero
values of 𝑄. What we need is to see that the sign of the derivative Im(𝑑𝜔∕𝑑𝑄) for the roots 𝛾 = ±

√
𝜁1∕𝜚 of the polynomial

3 at 𝑄1 is negative. Differentiating the function (103) and substituting1 = 0 and 1 = 0 gives

𝜕3
𝜕𝑄

= 𝛾𝜚
𝜕1
𝜕𝑄
,

𝜕3
𝜕𝛾

= 2𝑖𝜅𝑄𝑘𝛾
𝑑1
𝑑(𝛾2)

+ 2𝛾2𝜚
𝜕1
𝜕(𝛾2)

, (138)

sign

(
Im
𝑑𝜔

𝑑𝑄

)
= sign

(
𝜕1
𝜕𝑄

)
sign

(
𝑑1
𝑑(𝛾2)

)
. (139)

 10969853, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nag.3645 by K

arlsruher Institution F. T
echnologie, W

iley O
nline L

ibrary on [27/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



20 OSINOV

The required derivatives are obtained immediately from Equations (100) and (101):

𝜕1
𝜕𝑄

= −𝛼2 < 0,
𝑑1
𝑑(𝛾2)

= 𝜚(𝜚 − 𝛼𝜚𝑓) > 0, (140)

whence Im(𝑑𝜔∕𝑑𝑄) < 0. Two frequencies with Im𝜔 > 0 cross the real axis at 𝑄1. There are no frequencies with Im𝜔 > 0
for 𝑄 > 𝑄𝑚𝑎𝑥. This completes the proof for normal mode solutions of the first type.

9.2 Real 𝝎, complex 𝜿

For the analysis of normal mode solutions of the second type, we consider Equation (107) in which 𝜔 is a fixed real
parameter and 𝛾2 = 𝜔2∕𝜅2 is an unknown complex quantity. The same three cases as in Section 8.2 are to be considered.
Case 1: the eigenvalues of the acoustic tensor are different, and all components of the vector 𝐧 in the rotated system

are non-zero.
Equation (107) with𝑄 = 0 has one zero root 𝛾2 = 0 and three real roots 𝛾2 = 𝜂𝑖∕𝜚, 𝑖 = 1, 2, 3. The ratio of the derivatives

(109) and (110) for the root 𝛾2 = 0 gives

𝜔 Im
𝑑𝛾2

𝑑𝑄
= −𝜔2𝑘 < 0. (141)

This root does not produce growing wave solutions for small values of 𝑄. For the roots 𝛾2 = 𝜂𝑖∕𝜚, 𝑖 = 1, 2, 3, Equations
(111)–(113) become, respectively,

𝜔 Im
𝑑𝛾2

𝑑𝑄
=
𝜔2𝑘𝛼𝜚𝑓

𝜚
𝑛2
1
> 0, (142)

𝜔 Im
𝑑𝛾2

𝑑𝑄
=
𝜔2𝑘𝛼𝜚𝑓

𝜚
𝑛2
2
> 0, (143)

𝜔 Im
𝑑𝛾2

𝑑𝑄
=
𝜔2𝑘𝛼𝜚𝑓

𝜚
𝑛2
3
> 0, (144)

and there are three roots that satisfy the inequality (54) for small non-zero values of 𝑄.
To prove that there are no growing wave solutions for 𝑄 > 𝑄𝑚𝑎𝑥, we need to show that the quantity 𝜔 Im(𝑑𝛾2∕𝑑𝑄) is

negative for all three roots 𝛾2 = 𝜁𝑖∕𝜚 at𝑄𝑖 , 𝑖 = 1, 2, 3. Differentiating the function (108) and substituting3 = 0 and 3 = 0
gives

𝜕4
𝜕𝑄

= 𝛾2𝜚
𝜕3
𝜕𝑄
,

𝜕4
𝜕(𝛾2)

= 𝑖𝜔𝑄𝑘
𝑑3
𝑑(𝛾2)

+ 𝛾2𝜚
𝜕3
𝜕(𝛾2)

(145)

and, for real values of 𝛾,

sign

(
𝜔 Im

𝑑𝛾2

𝑑𝑄

)
= sign

(
𝜕3
𝜕𝑄

)
sign

(
𝑑3
𝑑(𝛾2)

)
. (146)

The right-hand side of Equation (146) is the same as in Equation (126). We have seen in Section 9.1 that the right-hand
side of Equation (126) is negative for the roots 𝛾2 = 𝜁𝑖∕𝜚, 𝑖 = 1, 2, 3.
Case 2: the functions3 and 3 are of the form (86) and (87).
The derivation of inequality (141) for the root 𝛾2 = 0 at𝑄 = 0 does not change. For the roots 𝛾2 = 𝜂𝑖∕𝜚, 𝑖 = 1, 2, at𝑄 = 0,

the constants 𝑚1 and 𝑚2 in Equations (116) and (117) are positive as combinations of the non-negative quantities 𝑛21, 𝑛
2
2

and 𝑛2
3
. There are two roots that produce growing wave solutions at small non-zero values of 𝑄. We need to show that the

quantity 𝜔 Im(𝑑𝛾2∕𝑑𝑄) is negative for two roots 𝛾2 = 𝜁𝑖∕𝜚 at 𝑄𝑖 , 𝑖 = 1, 2. Calculating the derivatives gives

𝜕3
𝜕𝑄

= 𝛾2𝜚
𝜕2
𝜕𝑄
,

𝜕3
𝜕(𝛾2)

= 𝑖𝜔𝑄𝑘
𝑑2
𝑑(𝛾2)

+ 𝛾2𝜚
𝜕2
𝜕(𝛾2)

(147)
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OSINOV 21

and, for real values of 𝛾,

sign

(
𝜔 Im

𝑑𝛾2

𝑑𝑄

)
= sign

(
𝜕2
𝜕𝑄

)
sign

(
𝑑2
𝑑(𝛾2)

)
. (148)

The right-hand side of Equation (148) is the same as in Equation (133). We have seen in Section 9.1 that the right-hand side
of Equation (133) is negative for the roots 𝛾2 = 𝜁𝑖∕𝜚, 𝑖 = 1, 2.
Case 3: the functions3 and 3 are of the form (98) and (99).
For 𝑄 = 0, inequality (141) for the root 𝛾2 = 0 and inequality (120) for the root 𝛾2 = 𝜂1∕𝜚 remain unchanged. There is

one root 𝛾2 that produces growing wave solutions at small non-zero values of 𝑄. For the root 𝛾2 = 𝜁1∕𝜚 at 𝑄1, we obtain

𝜕2
𝜕𝑄

= 𝛾2𝜚
𝜕1
𝜕𝑄
,

𝜕2
𝜕(𝛾2)

= 𝑖𝜔𝑄𝑘
𝑑1
𝑑(𝛾2)

+ 𝛾2𝜚
𝜕1
𝜕(𝛾2)

, (149)

sign

(
𝜔 Im

𝑑𝛾2

𝑑𝑄

)
= sign

(
𝜕1
𝜕𝑄

)
sign

(
𝑑1
𝑑(𝛾2)

)
. (150)

Inequalities (140) confirm that 𝜔 Im(𝑑𝛾2∕𝑑𝑄) < 0 and therefore there are no growing wave solutions for 𝑄 > 𝑄1. This
completes the proof of Proposition 4.

10 PROOF OF PROPOSITION 5

Substituting the normal mode solutions (16) into the UP2 system (1), (12), (15) yields Equations (42) and (43) and, instead
of Equation (44), the equation

𝜅𝑄𝛼𝑛𝑘𝑣
0
𝑠𝑘
− (𝜔 + 𝑖𝜅2𝑄𝑘)𝑝0

𝑓
= 0. (151)

Solutionswith𝜔 = 0 are not growingwaves. Equations (42), (43) and (151)with 𝜅 = 0,𝜔 ≠ 0 give 𝑣0
𝑠𝑖
= 0,𝜎0

𝑗𝑖
= 0,𝑝0

𝑓
= 0,

that is, only the trivial solution. For the proof of the proposition, we may, therefore, assume that 𝜔 ≠ 0 and 𝜅 ≠ 0.
Substituting 𝜎0

𝑗𝑖
from Equation (43) into Equation (42) gives

𝜚𝜔2𝑣0
𝑠𝑖
− 𝜅2𝐴𝑖𝑘𝑣

0
𝑠𝑘
− 𝛼𝜅𝜔𝑛𝑖𝑝

0
𝑓
= 0. (152)

Let 𝑣0
𝑠𝑖
, 𝑝̄0
𝑓
denote the complex conjugates of 𝑣0

𝑠𝑖
, 𝑝0
𝑓
. Multiplying the complex conjugate of Equation (151) by 𝜅𝜔𝑝0

𝑓
and

Equation (152) by 𝜅̄𝑄𝑣0
𝑠𝑖
with summation over 𝑖, we obtain two equations

|𝜅|2𝜔𝑄𝛼𝑛𝑘𝑣0𝑠𝑘𝑝0𝑓 − 𝜅𝜔(𝜔̄ − 𝑖𝜅̄2𝑄𝑘)𝑝0𝑓𝑝̄0𝑓 = 0, (153)

𝜅̄𝜔2𝜚𝑄𝑣0
𝑠𝑖
𝑣0
𝑠𝑖
− 𝜅|𝜅|2𝑄𝐴𝑖𝑘𝑣0𝑠𝑘𝑣0𝑠𝑖 − |𝜅|2𝜔𝑄𝛼𝑛𝑖𝑣0𝑠𝑖𝑝0𝑓 = 0. (154)

Adding these two equations gives

𝜅̄𝜔2𝑎1 − 𝜅|𝜅|2𝑎2 − 𝜅𝜔(𝜔̄ − 𝑖𝜅̄2𝑄𝑘)𝑎3 = 0 (155)

with the real quantities

𝑎1 = 𝜚𝑄𝑣
0
𝑠𝑖
𝑣0
𝑠𝑖
> 0, 𝑎2 = 𝑄𝐴𝑖𝑘𝑣

0
𝑠𝑘
𝑣0
𝑠𝑖
> 0, 𝑎3 = 𝑝

0
𝑓
𝑝̄0
𝑓
≥ 0. (156)

As follows from Equation (151), if all 𝑣0
𝑠𝑖
= 0, then 𝑝0

𝑓
= 0 as well, that is why 𝑎1 is non-zero. For the same reason and due

to the fact that the acoustic tensor is assumed to be symmetric and positive definite, 𝑎2 is real and positive.
For normal mode solutions with 𝜅 ∈ ℝ, we multiply Equation (155) by 𝜔̄ to obtain

𝜔|𝜔|2𝑎1 − 𝜔̄𝜅2𝑎2 − |𝜔|2(𝜔̄ − 𝑖𝜅2𝑄𝑘)𝑎3 = 0, (157)
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22 OSINOV

from which

Im𝜔 = −
|𝜔|2𝜅2𝑄𝑘𝑎3|𝜔|2𝑎1 + 𝜅2𝑎2 + |𝜔|2𝑎3 ≤ 0. (158)

This proves the non-existence of growing wave solutions of the first type.
For normal mode solutions with 𝜔 ∈ ℝ, we multiply Equation (155) by 𝜅 to obtain

|𝜅|2𝜔2𝑎1 − 𝜅2|𝜅|2𝑎2 − 𝜅2𝜔2𝑎3 + 𝑖|𝜅|4𝜔𝑄𝑘𝑎3 = 0, (159)

from which it follow that

𝜔 Im𝜅2 =
|𝜅|4𝜔2𝑄𝑘𝑎3|𝜅|2𝑎2 + 𝜔2𝑎3 ≥ 0. (160)

This proves the non-existence of growing wave solutions of the second type.

11 CONCLUSION

The 𝑢-𝑝 equations, as approximations of the exact equations, yield approximate solutions. It is known that the accuracy
of the 𝑢-𝑝 approximations depends mainly on the frequency content of the motion and the permeability of the medium.
Higher frequencies and higher permeability lead to larger deviations from the exact solutions. The accuracy determines
the range of applicability in which the 𝑢-𝑝 formulationsmay be considered acceptable for the solution of a particular class
of physical problems. Another issue related to applicability of the 𝑢-𝑝 formulations is hyperbolicity of the equations as
a necessary condition for well-posedness of the problem.19 The hyperbolicity conditions for the two 𝑢-𝑝 approximations
are different and also differ from the hyperbolicity conditions for the exact formulation. The hyperbolicity conditions
determine the range of applicability of the 𝑢-𝑝 approximations in the sense of well-posedness rather than accuracy. The
hyperbolicity conditions involve neither frequency nor permeability and have no relation to accuracy.
Yet another aspect of applicability of the 𝑢-𝑝 formulations concerns time-harmonic growing wave solutions whose

amplitude increases exponentially in time or space as the wave propagates. In this paper, the non-existence of such solu-
tions is postulated for saturated solids with a linearly hyperelastic skeleton and is considered as an acceptability criterion
for the dynamic equations. It is shown that the exact and UP2 formulations satisfy the acceptability criterion, whereas the
UP1 formulation does not. This fact, however, does not mean that the UP2 approximation is preferable to UP1. The latter
is more accurate. Whether the UP1 equations have growing wave solutions depends on the density of the solid phase and
the compressibility of the pore fluid. The propositions proved in this paper identify the range of applicability in which
the UP1 equations have no growing wave solutions. Similar to the hyperbolicity conditions, the existence of growing wave
solutions of the UP1 equations depends neither on the frequency nor on the permeability and has no explicit relation to
the accuracy of the UP1 approximation.
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