
High-Resolution Rainfall Maps from Commercial Microwave Links for

a Data-Scarce Region in West Africa

MOUMOUNI DJIBO,a,b,c CHRISTIAN CHWALA,a,c MAXIMILIAN GRAF,a,c JULIUS POLZ,c HARALD KUNSTMANN,a,c

AND FRANÇOIS ZOUGMORÉ
b

a Institute of Geography, University of Augsburg, Augsburg, Germany
b Laboratoire de Matériaux et Environnement, Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso

c Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

(Manuscript received 1 February 2023, in final form 21 July 2023, accepted 26 July 2023)

ABSTRACT: We present high-resolution rainfall maps from commercial microwave link (CML) data in the city of
Ouagadougou, Burkina Faso. Rainfall was quantified based on data from 100 CMLs along unique paths and interpolated
to achieve rainfall maps with a 5-min temporal and 0.55-km spatial resolution for the monsoon season of 2020. Established
processing methods were combined with newly developed filtering methods, minimizing the loss of data availability. The
rainfall maps were analyzed qualitatively both at a 5-min and aggregated daily scales. We observed high spatiotemporal
variability on the 5-min scale that cannot be captured with any existing measurement infrastructure in West Africa. For the
quantitative evaluation, only one rain gauge with a daily resolution was available. Comparing the gauge data with the cor-
responding CML rainfall map pixel showed a high agreement, with a Pearson correlation coefficient . 0.95 and an under-
estimation of the CML rainfall maps of ;10%. Because the CMLs closest to the gauge have the largest influence on the
map pixel at the gauge location, we thinned out the CML network around the rain gauge synthetically in several steps and
repeated the interpolation. The performance of these rainfall maps dropped only when a radius of 5 km was reached and
approximately one-half of all CMLs were removed. We further compared ERA5 and GPM IMERG data with the rain
gauge and found that they had much lower correlation than data from the CML rainfall maps. This clearly highlights the
large benefit that CML data can provide in the data-scarce but densely populated African cities.

SIGNIFICANCE STATEMENT: In this study, we investigate the possibility of deriving accurate high-resolution
rainfall maps from commercial microwave link (CML) data in West Africa. The main challenges are the lack of refer-
ence data in this area and the adoption of existing processing tools without reference data. We show CML rainfall
maps for Ouagadougou, Burkina Faso, with a resolution of 5 min and 0.55 km, which is unprecedented in this region.
The comparison with the only available rain gauge, which provides data only at a daily resolution, yields a Pearson cor-
relation of .0.95. An analysis of synthetically thinned-out networks shows that this accuracy is valid for the whole do-
main. Comparing reanalysis and satellite data with the rain gauge and CML data showed a poor performance of these
gridded reference datasets. Also, a high coincidence of temporal dynamics between CML rainfall maps and satellite
products was observed. Overall, these findings support the potential of CMLs for future hydrometeorological applica-
tions in West Africa.
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1. Introduction

Extreme weather and climate events, such as heat waves,
heavy rainfall, and floods, are becoming progressively more
severe as global warming increases (Fischer and Knutti 2015).
Burkina Faso, like most African countries, is subject to these
negative effects of climate change and hydrometeorological
extremes, which are a severe threat to the country because it
heavily depends on agriculture (Tomalka et al. 2021). There-
fore, the management of water resources and natural disasters
is vital for Burkina Faso. However, 60% of Africa does not

have access to early warning systems and climate information
services, due to a lack of systematic observations (UNFCCC
2022). Especially, missing rainfall information hampers water
management and, in consequence, also the adaptation and re-
silience against climate change impacts.

To date, two sources of rainfall information are available in
Burkina Faso: rain gauges and satellite observations. Bliefernicht
et al. (2021) collected rainfall data from West Africa and found
that the Agence Nationale de la Météorologie (ANAM) oper-
ated up to 130 rainfall stations during the 1980s. Today, only
nine rainfall stations that deliver data to WMO standards were
reported by their study, which results in a coverage of one rain
gauge per 30000 km2. Additional stations are installed, but
their data are not freely available and data quality might be
heterogeneous.

The number of satellite products covering West Africa in-
creased at the same time. Examples are products from the Global
Precipitation Mission (GPM) or Meteosat Second Generation
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(MSG) SEVIRI. However, the quality of satellite rainfall esti-
mates suffers due to several reasons. Low-Earth-orbiting (LEO)
satellites have a relatively high spatial resolution and sometimes
even employ active microwave sensors. But these LEO satellites
have long revisit times. Even when using data from a group of
LEO satellites, like the GPM constellation (consisting of LEO
satellites with passive microwave sensors and one with a dual-
frequency radar), the revisit time in the tropics is still approxi-
mately 3–4 h (Kidd et al. 2021). Geostationary (GEO) satellites,
on the other hand, can provide a subhourly resolution but have
to employ highly parameterized retrieval algorithms using only
cloud-top observations in the visible and infrared spectra (Rios
Gaona et al. 2017; Maggioni et al. 2016; van het Schip et al. 2017).
To combine the advantages of LEO and GEO satellite observa-
tions, products like IMERG (Huffman et al. 2018) provide a fu-
sion of both types of satellite data. However, IMERG still has
shortcomings involving biases (Maranan et al. 2020), and its near-
real-time products have a latency of several hours. The lack of
ground-based observations for the calibration or validation of sat-
ellite products in West Africa is a further issue. Rainfall data
from reanalyses improved in the past decade (e.g., from ERA-
Interim to ERA5), but large biases persist (Gleixner et al. 2020).
Not a single operational weather radar system is deployed
in West Africa.

The issue of poor coverage of rainfall can be addressed by
the use of opportunistic rainfall information derived from
commercial microwave links (CMLs). For more than a de-
cade, rainfall estimation from attenuation of CMLs has been
investigated as an alternative to conventional rainfall observa-
tions. Early work on CMLs was done in Israel (Messer et al.
2006) and the Netherlands (Leijnse et al. 2007). This was fol-
lowed by many case studies and method developments, for ex-
ample, in the Czech Republic (e.g., Fencl et al. 2014), Germany
(e.g., Chwala et al. 2012), Sweden (e.g., van de Beek et al.
2020), Israel (e.g., Ostrometzky and Messer 2018), and Italy
(e.g., Cazzaniga et al. 2022). Countrywide rainfall estimation
was done in the Netherlands (Overeem et al. 2016b), Germany
(Blettner et al. 2022; Graf et al. 2020), and Sri Lanka (Overeem
et al. 2021).

In Africa, the first results of CML rainfall estimation were
successfully obtained in Burkina Faso (Doumounia et al.
2014). The study was conducted in the north-central region of
Burkina Faso using a 29-km-long CML with a frequency of
7 GHz. A correlation of 0.8 was achieved with daily rain
gauge data. Another study analyzed the pluvial flooding in
the city of Ouagadougou in September 2009, using a 7.5-km-
long CML with a frequency of 13 GHz (Doumounia et al.
2019). The correlation between hourly data of the CML and a
rain gauge was 0.63. More recently, Kumah et al. (2021) used
MSG data to derive wet and dry periods along one CML in
Kenya. In a follow-up study, they merged data from several
CMLs with cloud-top properties measured by MSG satellite
data to improve the MSG rainfall estimates with a resolution
of 30 min and 3 km 3 3 km (Kumah et al. 2022). Preliminary
results for CML-based rainfall estimation in Nigeria including
rainfall maps for several hours over the city of Lagos were re-
cently shown in a report by the Groupe Speciale Mobile Associa-
tion (GSMA) (Pribe and Panos 2023). Other African countries

such as Zambia, Kenya, Niger, and Cameroon are in the
proof-of-concept phase for CML data acquisition and rainfall
estimation.

CML rainfall data in Europe are on the pathway to being
used in operational rainfall products, and many studies discuss
the potential of CMLs for African countries. Nevertheless, in
Africa, no rainfall maps derived solely from CMLs have been
generated and evaluated quantitatively over a longer period,
so far. Therefore, the objectives of this study are 1) to derive
rainfall maps with high temporal and spatial resolution from a
CML network in Ouagadougou, Burkina Faso, for the mon-
soon season 2020, and 2) to analyze the quality of these rain-
fall maps in a part of the world where ground-based reference
data are sparse.

2. Study region and data

The study region is the city of Ouagadougou, the capital of
Burkina Faso. The analyzed period is from 14 June to 10 October
2020, which covers almost the complete monsoon season.

a. Rainfall regime and observational data in
Burkina Faso

Located in the heart of West Africa, Burkina Faso has a cli-
mate characterized by the succession of two main seasons: the
dry season (mid-October to April) and the monsoon season
(May to mid-October). The average annual rainfall ranges
from 1300 mm in the south (Sudanian zone) to less than
400 mm in the north (Sahelian zone). Rainfall is characterized
by strong space–time variability and intermittency (Vischel
et al. 2011). Most rain events are short and intense and stem
from convective storms. This study focuses on a dense CML
network in the city of Ouagadougou located in the center of the
country (Sudano–Sahelian zone). The rainfall here is at an inter-
mediate level within Burkina Faso, totaling nearly 800 mm yr21

and almost exclusively accumulating during the monsoon season.

b. CML data

CML data in Burkina Faso were acquired in cooperation
with Telecel Faso, a cellular telephone operator in Burkina
Faso. A real-time data acquisition (DAQ) system collecting
CML data, based on the pySNMPdaq software (Chwala et al.
2016), was set up at the Laboratoire de Matériaux et d’Envir-
onnement (LA.ME) of Joseph KI-ZERBOUniversity of Bur-
kina Faso. This real-time DAQ system, described by Djibo
et al. (2023b), started as a pilot project covering only eight
CMLs and has been progressively expanded. For the 2020
monsoon season, data from more than 1000 CMLs in Burkina
Faso with a temporal resolution of 1 min were collected. Often,
the CMLs are configured with dual polarization and multifre-
quencies such that up to eight CMLs are deployed along the
same path. Instantaneous measurements of the transmitted
signal level (TSL) and received signal level (RSL) were re-
quested every minute from both ends of each CML.

We use data from a dense network of 300 CMLs in the area
of Ouagadougou. We chose this area for two reasons. First,
only for Ouagadougou, both a dense CML network that can
be used to derive rainfall maps and a rain gauge to validate
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those rainfall maps are currently available for research pur-
poses. Second, most of the CMLs outside of Ouagadougou
are long-distance CMLs with a frequency of 7 GHz. Their
processing is more challenging due to their lower sensitivity
to rainfall and the higher sensitivity to changes in drop-size
distribution (see Fig. 3). In addition, interpolated rainfall
maps from the currently available CML data cannot produce
reasonable results, due to the sparsity of the network [see
Fig. 3a in Djibo et al. (2023b)].

The CML data and metadata were transformed from raw
CSV files into the netCDF format following the naming con-
ventions and structure of the examples given in the CML
processing software package pycomlink (Chwala et al. 2022).
The data are stored with equally spaced 1-min time stamps.

The 300 CMLs (mostly consisting of two sublinks) available
in Ouagadougou are situated along 119 individual paths, with
up to eight CMLs being located on the same path. We ex-
cluded 7 CMLs with 7 GHz from the analysis as well as

17 CMLs with less than 50% data availability during the ana-
lyzed period and 17 CMLs that derive more than 2 times the
amount of rainfall than the average CML (CML rainfall esti-
mation is described in section 3). The latter 17 CMLs did not
show distinct similarities in length or frequencies when com-
pared with the rest of the CMLs.

Because the removed CMLs sometimes share a path with
one or more other CMLs, 259 CMLs along 100 individual
paths remained for the analysis. The CMLs paths are between
0.2 and 7.6 km long with frequencies ranging from 10 to 13 GHz.
Figure 1 shows the 100 CML paths used to derive rainfall maps
after the filtering and processing of the CMLs, as described in
section 3.

c. Rain gauge data

To validate the rain rates derived from CMLs, we could use
only one rain gauge. This gauge was in the city of Ouagadou-
gou, and only data from this single rain gauge, operated by

FIG. 1. The topology of the CML network in the region of the city of Ouagadougou showing the sensors used in this work. The red dot
indicates the position of the reference rain gauge, and the blue symbol in the inset map indicates the location of the study region in West
Africa.
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ANAM, are available for the 2020 monsoon period. This
shows, again, the extreme data scarcity of traditional rainfall
observations in the region and West Africa in general. The
gauge is located at the international airport of Ouagadougou
(Fig. 1). The resolution is a daily accumulation from 0600 to
0600 LT, which is manually collected by ANAM agents. Thus,
for all quantitative comparisons with rain gauge data, we ag-
gregate the CML-derived rainfall information to daily rainfall
sums from 0600 to 0600 of the following day.

d. Gridded reference data

In addition to the one rain gauge, we use three gridded pre-
cipitation products as references: ERA5, GPM IMERG early
run, and GPM IMERG late run. ERA5 is a reanalysis product
from ECMWF providing multiple atmospheric variables, in-
cluding precipitation with a spatial resolution of 0.258 and a
temporal resolution of 1 h (Hersbach et al. 2020). IMERG is
a multisatellite product available with different latencies.
Here, we used the early run with a minimum latency of 4 h
and the late run with a minimum latency of 10 h. Both prod-
ucts are from version 06B and have a spatial resolution of 0.18
and a temporal resolution of 0.5 h (Huffman et al. 2018). We
derived all three datasets for the whole monsoon period. For
validation, we used the pixel closest to the rain gauge from
each of the three datasets for a validation against the rain
gauge and the CML rainfall map pixel at the same location.

e. Disdrometer data

No disdrometer data are available for Ouagadougou. The
closest location with available disdrometer observations is Na-
zinga, Burkina Faso, located 120 km south of Ouagadougou.
The data were collected by an OTT Parsivel disdrometer from
1 October 2016 to 26 September 2017 with a temporal resolution
of 1 min. We used these observations to validate the Inter-
national Telecommunication Union (ITU)-recommended
attenuation–rainfall rate (k–R) relation for 7 and 13 GHz
with horizontal and vertical polarization. The calculation
of k from DSD data was carried out using the T-matrix
(Mishchenko et al. 1996) method with the software package
pytmatrix (Leinonen 2014) for a temperature of 308C.

3. CML data processing

The conversion of CML attenuation data to rainfall rates is
challenging since CMLs are an opportunistic data source in
the sense that they are not intended for rainfall observation
(Uijlenhoet et al. 2018). Thus, the processing of CML data
has a large impact on the quality of the generated rainfall in-
formation and must be done carefully. Most CML research
groups have developed their own methods tailored to their
needs and datasets. An overview of these methods is given by
Chwala and Kunstmann (2019). For our analysis, we use the
methods available in the Python package for CML processing,
pycomlink. We follow the processing chain developed for the
countrywide CML rainfall estimation in Germany (Graf et al.
2020), adapt it to our dataset, and extend it with new filtering
of CML data anomalies. In the following sections, we describe

the resulting processing chain. The lettering of the sections
follows the order of the processing steps.

a. Data preparation

The CML data contain invalid records from missing time
steps due to data acquisition failures, missing values [i.e., not
a number (NaN)], and default fill values (e.g., 299.9 in RSL
or 250.0 in TSL), which we set to NaN. To increase data avail-
ability, we linearly interpolated gaps of up to 10 min in the
raw total loss (TL; difference between TSL and RSL). For ex-
ample, such gaps can be a result of short outages of the data
acquisition system. For each CML, we neglected data from
additional sublinks and used the first sublink that was listed in
the database to derive rainfall estimates with the following
processing steps.

b. Filtering CML data

Besides invalid records, the CML data can include anoma-
lies such as steps (sudden change in the baseline of a CML)
and spikes (strong positive outlier at individual time steps)
that are within the dynamic range of signal levels but have to
be filtered because they can create considerable amounts of
false-positive rainfall. The reasons for such erratic behavior
are not understood but are known to include multipath propa-
gation, for example, above-water bodies, which are shown in
Fig. 1; swinging masts; or the influence of radiation and tem-
perature on the CML equipment, as well as moving objects in
the line of sight of CMLs. To account for such issues, we de-
veloped three filters for the specific needs of the CML data in
Burkina Faso, which are replacing the filtering of Graf et al.
(2020). We applied a filter to detect and remove steps, a filter
to detect and remove spikes, and a filter to detect and remove
periods with too many short NaN gaps.

To detect steps, we first applied a centered 3-day rolling
median of TL. If TL jumps to a new baseline (see section 3d),
this rolling median changes. To quantify this change, we cal-
culated the absolute difference between the centered 4-h roll-
ing maximum and minimum of this 3-day rolling median and
removed time steps as steps when this difference was larger
than 1 dB. This filter removed 0.035% of all data points.

To detect spikes, we compared each TL value with both its
immediately preceding and subsequent time steps. If both the
preceding and the subsequent time steps were 5 dB smaller
than the current time step, we classified it as a spike and re-
moved the value. This filter removed 0.042% of all data points.

Periods with too many NaN values occurring frequently as
short gaps might be problematic due to the interpolation of
gaps up to a length of 10 min that we apply (see section 3a).
For a time series with many short gaps, this potentially results
in a large number of interpolated data points. Therefore, we
removed all periods where at least 50% of the data are miss-
ing completely. Within the dataset, these gaps were often
short (,1 h) but frequent. This filter removed 0.100% of the
data.

By only excluding time steps and periods that are affected
by steps, spikes, or periods with many missing data points, we
were able to preserve data in comparison with the previous
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filtering methods of Graf et al. (2020), which excluded suspi-
cious CMLs on a monthly basis. To improve data availability,
we repeated the interpolation of TL gaps of up to 10 min to
close gaps caused by the step and spike filter. After filtering
and interpolating TL, a total of 0.132% of data were removed
from the analysis. Figure 2 shows data from two types of
CML that illustrate the filtering: the first CML has a TL that
is not affected by steps or spikes, while the TL of the second
one is affected. The affected CML was corrected by the filters
as described above and showed good results after filtering.

c. Rain event detection

The separation of wet and dry periods is crucial as errors
made in this step will impact the performance of the rainfall
estimates: missed rain events will lead to an underestimation
of precipitation, and the false detection of rain events will
lead to an overestimation (Polz et al. 2020). The task of de-
tecting rain events in the TL time series is straightforward for
strong rain events. The detection becomes more and more dif-
ficult when the rain-induced attenuation approaches the same
order of magnitude as the signal fluctuations during dry condi-
tions. Two different concepts for wet–dry classification have
been proposed: one compares the TL of a certain CML with

that of neighboring CMLs (Overeem et al. 2016a), and the
other studies the time series of each CML separately
(Chwala et al. 2012; Ouedraogo et al. 2022; Polz et al. 2020;
Schleiss et al. 2013; Wang et al. 2012). The first method was
developed for 15-min minimum–maximum TL data. The
later methods have been developed for TL data with higher
temporal resolution.

We apply the wet–dry classification method proposed by
Schleiss and Berne (2010), which uses a rolling standard devi-
ation of the TL with an individual threshold for each CML.
We set the threshold to the 85% quantile of the 60-min rolling
standard deviation multiplied by a factor 1.2. The threshold
and factor are slightly higher (5% for the quantile and 0.08
for the factor) than the ones we used from Graf et al. (2020).
The threshold and factor were not optimized with reference
data but were slightly adjusted based on experience and the
rainfall regime in Burkina Faso, which is typically intense and
of short duration as compared with the moderate rainfall in
Germany. Hence, we do not face the challenge of detecting
long-lasting, low-intensity rain events, which are hard to
distinguish from TL fluctuations during dry periods. Using
higher thresholds decreased the chance of producing false-
positive results.

FIG. 2. Comparison of CML rainfall time series with daily rain gauge data. (a) The CML without issues has a frequency of 13.17 GHz
and a length of 1.68 km. (c) The CML with steps and spikes has a frequency of 10.84 GHz and a length of 3.70 km. The TL time series
(dB) in (a) and (c) have a 1-min resolution. (b),(d) The rain rate R (mm h21) has a 1-min time resolution and is complemented by a com-
parison of cumulative rainfall sum (mm) between the reference and CML.
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d. Baseline and wet antenna attenuation

The path-integrated attenuation due to rainfall can be re-
trieved from TL by subtracting the baseline attenuation dur-
ing dry conditions and the additional attenuation due to
antenna wetting (WAA) (Schleiss et al. 2013; Zinevich et al.
2010). The baseline was assumed to be equal to TL at the
time step before a rain event and to remain constant during
the event. WAA is estimated following the time-dependent
approach of Schleiss et al. (2013), which was preferred over
the rain-rate–dependent method of Leijnse et al. (2008),
which we used in previous studies. This is based on two facts:
First, the approach from Schleiss et al. (2013) should not suf-
fer from the issue of underestimation of very small rainfall in-
tensities, which we found in Germany, since rainfall events in
Burkina Faso are intense and short. Second, with such high-
intensity events and no upper limit for WAA in the rain-rate–
dependent approach of Leijnse et al. (2008), there could be an
overestimation of WAA.

The maximum WAA value was set to 2.5 dB, which is
slightly larger than the 2.3 dB proposed by Schleiss et al.
(2013), and t, which controls the speed of approaching the
maximum WAA, was set to 15 min, as proposed by these au-
thors. However, the magnitude of WAA is still a subject of
uncertainty that cannot be completely resolved even with
dense reference data (e.g., Pastorek et al. 2022).

e. Calculation of rain rate from attenuation

The technique for deriving rain rates from attenuation is
based on the close-to-linear relationship between specific at-
tenuation k (dB km21) and rain rate R (mm h21) (Atlas and
Ulbrich 1977), given by

k 5 aRb: (1)

In this equation, a and b are constants that depend on fre-
quency, and polarization (horizontal or vertical). Note that
the k–R relation is fairly insensitive (as compared with the ra-
dar Z–R relation) to DSD variations for frequencies ranging
between 15 and 35 GHz. The rain rates derived from the
CML attenuation data are provided with a temporal resolu-
tion of 1 min. Figure 3 shows the relationship between rain
rates R derived from disdrometer data from Nazinga and the
specific attenuation k derived using values for a and b from
the ITU-Radiocommunication Sector (ITU-R) (ITU-R 2005)
for 7 and 13 GHz. As expected, for 7 GHz, the relation is sub-
ject to larger errors. To derive rain rates from the CML atten-
uation values via the k–R relation, we used a and b values
from ITU-R (2005).

f. Rainfall maps

In case more than one CML along the same path was
available, we selected the one with the rainfall sum closest
to the average rainfall sum to all CMLs. We accounted for
the temporal availability of a CML by aggregating all other
CMLs only over those periods when the compared CML
was available.

We used the same inverse distance weighting (IDW) ap-
proach used in Graf et al. (2020) for hourly CML rainfall esti-
mates in Germany to interpolate the CML data in Burkina
Faso on a 5-min basis. We chose this method over options
like ordinary kriging because Graf et al. (2020) found only
marginal gains when using kriging with fixed or monthly ad-
justed semivariogram parameters relative to IDW. In addi-
tion, the 1-h rainfall maps from the German study can be
assumed to introduce less uncertainty to the variogram esti-
mation step than the 5-min resolution in this study would.
Also, IDW needs comparatively little computational effort.

Each CML rainfall value is represented by a synthetic point
observation at the center of the CML path (e.g., as done by
Overeem et al. 2013). Eshel et al. (2021) only found marginal
improvements when iteratively using several points along the
CML paths for CMLs with an average length of 7.64 km. We
assume that for the CMLs in Ouagadougou with an even
smaller average length of 2.21 km, such improvements are
negligible. For each pixel of the interpolated rainfall field, the
16 closest CML observations at the center point of the CML
are taken into account and the weights decrease with the dis-
tance d2 (km). The average distance to the next closest center
point from each CML’s center point is 0.89 km. The resulting
rainfall maps have a spatial resolution of 0.55 km. The rainfall
maps were published with an example animation (Djibo et al.
2023a).

g. Evaluation metrics

In this section, we describe the performance measures that
are used for validating the CML-derived rainfall information
data against the reference data.

We use the Pearson correlation coefficient (PCC) to mea-
sure the degree of linear correlation between the CML-
derived rainfall and the reference. It is given by

PCC 5
Cov(RCML, Rreference)

SD(RCML)SD(Rreference)
, (2)

where Rreference is the daily rain rate from the rain gauge and
RCML is the daily aggregation of the CML-derived, 5-min
rainfall maps at the location of the reference rain gauge. The
covariance function is denoted by Cov, and SD is the standard
deviation function.

The coefficient of variation (CV) shows the variability of
the error of CML rainfall estimates relative to the reference.
It is given by the ratio of the residual standard deviation
(SD) to the mean rainfall at the reference. The higher the
value of the coefficient of variation is, the greater id the dis-
persion around the mean. The coefficient of variation can
be written as

CV 5
SD(RCML 2 Rreference)

Rreference

: (3)

In addition, we calculated the mean absolute error (MAE;
mm) and root-mean-square error (RMSE; mm) to measure
the accuracy of the CML rainfall estimates. MAE and RMSE
are respectively defined as
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MAE 5 |RCML 2 Rreference| and (4)

RMSE 5

���������������������������
(RCML 2 Rreference)2

√
: (5)

The relative bias measures the average deviation between the
reference and the CML rain rate relative to the average refer-
ence rainfall. It is given by

bias 5
(RCML 2 Rreference)

Rreference

: (6)

4. Results and discussion

The goal of this study is to produce CML rainfall maps with
a high spatial and temporal resolution. To verify their added
information content, we analyze their spatial and temporal

representativeness. Since the reference rain gauge data are
sparse and at a coarse daily resolution, we follow two differ-
ent strategies to evaluate the CML rainfall estimates against
the rain gauge. First, we perform a qualitative analysis of the
CML-derived rainfall maps and check their spatial and tem-
poral consistency in sections 4a–c. Second, we evaluate the in-
terpolated rainfall maps at the location of the rain gauge. In
this approach, we had to compare daily rainfall aggregates
with the reference due to the limited temporal resolution of
the reference. Additionally, we use three gridded datasets
from satellites and reanalyses with a higher temporal resolu-
tion to compare them with the rainfall estimates from the rain
gauge and CML rainfall maps.

a. Qualitative analysis of 5-min rainfall maps

In Sahelian West Africa, rain events are typically short and
intensive, with an average duration of 1 h (Moumouni et al.
2008). Only rainfall maps with high temporal resolution, well

FIG. 3. Comparison of k–R relation obtained with DSD data from an OTT Parsivel disdrometer at Nazinga (blue dots),
and the k–R relation of the ITU (black dashed line) for 7 and 13 GHz with horizontal and vertical polarization.
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below the daily scale, can reveal the spatiotemporal dynamics
of these events. Because of the limited reference data, we per-
formed a qualitative analysis of the rainfall maps interpolated
from 5-min CML rainfall sums. For visual inspection, we chose

a rain event on 21 August 2020. It started at 1905 UTC and
ended at 2045 UTC. As displayed in Fig. 4, the CML-derived
rainfall maps show a reasonable spatiotemporal evolution of
the rainfall field. An animation of the shown 5-min rainfall

FIG. 4. Example of CML-derived, 5-min rainfall maps for the city of Ouagadougou. The black lines indicate the CML paths. An animation
of these rainfall maps is available in Djibo et al. (2023a).
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maps was published together with the actual data of the rain-
fall maps for the monsoon season 2020 (Djibo et al. 2023a).
Within the event, one can see two distinct rain cells moving
over the city of Ouagadougou from east to west. Even though,
at the center points of individual CMLs, considerable higher
or lower values are visible in the rainfall maps as a result of
the IDW interpolation, the high density of CML observations
in the domain reveals local structures and the limited spatial
extent of the rainfall event. Hydrological applications like
flood forecasting can profit from such rainfall maps as rain
gauges are usually far apart in this region of the world.

b. Visual validation of 5-min rainfall maps at location of
daily rain gauge

A comparison between the cumulative rainfall sums de-
rived from individual CMLs and the reference rain gauge
over the entire 2020 monsoon period shows good agreement
(see Fig. 2). To illustrate the performance of the interpolated
rainfall maps, we show a validation of the 5-min precipitation
maps at the pixel of the daily rain gauge. Figure 5 shows five
distinct rainfall events in 1 week from the daily rain gauge
(mm day21) and the 5-min precipitation maps (mm h21) and
their daily aggregation (mm). For the first three events, the
CMLs match the reference well while also providing a high-
resolution timing of the rain events. The last two rain events
show an overestimation of the CMLs with respect to the ref-
erence. This can potentially be explained by a spatial gradient
of rainfall close to the rain gauge or by unknown factors
influencing the CML rainfall estimation (e.g., slow drying of
wet antenna due to clouds or low wind; different DSD).

c. Qualitative analysis of daily rainfall maps

For a qualitative comparison with the reference, we aggre-
gate the 5-min CML-derived rainfall maps over the aggrega-
tion interval of the rain gauge data, that is, daily from 0600 to
0600 the day after. This allows us to see the spatial distribu-
tion of the rainfall events and to check how good the rainfall
fields fit to the point observation of the gauge in the center of
our domain. Figure 6 shows the daily aggregations of the
5-min rainfall maps from 29 June 2020 to 10 October 2020 and
depicts the position of the reference rain gauge (red circle)

and its rainfall sum (color within the red circle). The period of
14–28 June 2020 was a very dry period and, therefore, omitted.
In general, the CML rainfall maps are in very good agreement
with the reference, with a PCC of 0.97 and an RMSE of 4.06
(see performance metrics for 0-km radius in Fig. 8, described
in more detail below).

While some CMLs may show an under- or overestimation
of rainfall relative to the reference data, the CML network
provides unique rainfall information in this area. The two
main achievements are the spatial representativeness of the
rainfall maps for the whole city and the high temporal resolu-
tion of 5 min.

d. Validation of daily rainfall maps generated from
synthetically thinned-out CML networks

Since the values of the interpolated rainfall maps at the
gauge location are dominated by the CMLs close to the rain
gauge, we conducted an additional validation of the CML-
derived rainfall maps whereby we removed the CML paths
that have their center point within a circle around the gauge
with three different radii (1, 3, and 5 km). For each syntheti-
cally thinned-out CML network we generated a new set of
5-min rainfall maps that were then aggregated to daily maps.
Figure 7 shows the original and thinned-out CML networks.

e. Quantitative analysis of daily rainfall sums

We calculated all performance metrics between daily aggre-
gates of the interpolated 5-min rainfall maps at the reference
location and the reference rain gauge using the full study pe-
riod. Each metric is calculated for each of the CML networks
discussed in the previous section and depicted in Fig. 8. All
metrics (except for the relative bias) show little difference for
the 0-, 1-, and 3-km radii, whereas the 5-km radius results in
worse metrics. Only the bias shows differences, with the low-
est bias achieved at a 1-km radius. Overall, the metrics show a
high agreement between the reference and the different sub-
set of CMLs even for the 5-km radius. These results suggest
not only that the CMLs close to the reference rain gauge but
also the ones at greater distances deliver trustworthy rainfall
estimates. This emphasizes the spatial representativeness of
individual CMLs and, in turn, the robustness of the derived

FIG. 5. Time series of rain gauge data and of the rainfall map pixel at the rain gauge location. The daily rainfall amount from CMLs and
the daily rainfall amount of the rain gauge are given in millimeters per day, and the 5-min rainfall intensity from CMLs is given in milli-
meters per hour.
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FIG. 6. Daily CML-derived rainfall maps aggregated from the 5-min maps. Daily rain gauge data are shown with the same color
scale for comparison. The red open circle indicates the position of the rain gauge.
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daily rainfall maps even in areas of lower CML network den-
sity. By collecting more CML data from several monsoon sea-
sons, this evaluation could be used to quantify the spatial
decorrelation length of rainfall in Ouagadougou using a simi-
lar approach as presented by Eshel et al. (2022).

f. Comparison with the performance of other gridded
precipitation products

Since the validation with the rain gauge is limited to a daily
resolution and a single location, we used three gridded precip-
itation products with a temporal resolution of 0.5 and 1 h.
First, we compared the daily aggregations from these three
products and the CML maps with the reference rain gauge in
Fig. 9. ERA5, which is the product with the coarsest spatial
resolution, showed the worst performance, especially for me-
dium to high daily rainfall sums. The early and late run of
GPM IMERG compared better to the reference, albeit high
daily rainfall sums underestimated by the early run and the
late run showed a large scatter for high daily rainfall sums.
The CML rainfall map showed the least error at the location
of the rain gauge from all products. Therefore, we conclude
that the daily rainfall sum of all three gridded reference prod-
ucts cannot be used directly for a quantitative evaluation of
the CML rainfall maps. However, the spatial precision of the
CML rainfall maps can be assumed to be higher than the pre-
cision of the gridded reference products when compared with
the point observation of the rain gauge.

When looking at the temporal coincidence of rain events
between the CML rainfall maps aggregated to a 30-min reso-
lution and the IMERG early run, we found a high agreement.
It is reasonable to assume that the temporal localization
of rain events in IMERG early run is precise. However, the
rainfall amount differs quite strongly between CMLs and
IMERG, with higher and shorter peaks in the CML rainfall
map. This was expected from the daily comparison of rainfall
sums, and the broader peaks can be a result of the larger inte-
gration volume from IMERG than from the CML rainfall
estimates. We chose the IMERG early run for the in-depth
comparison because it has the lowest latency and had results
similar to the late run when compared with the reference rain
gauge. We also did not consider ERA5, as it had the worst
performance of all three gridded reference products. In sum-
mary, the comparison of daily rainfall sums from the CML
rainfall maps and three reference products showed that CML
estimates can observe rainfall with a higher precision than re-
analysis and satellite products, which had large biases. Also,
the high temporal coincidence of the rain events between
CML rainfall maps and the IMERG early run supports the
correctness of CML rainfall estimates on a subhourly time
scale.

5. Conclusions

The objective of this study was to produce high-resolution
rainfall maps from CML data in Ouagadougou, Burkina Faso,
West Africa. We processed 300 CMLs situated along 119 unique

FIG. 8. The results of the rainfall performance metrics for the full and the synthetically thinned-out CML network. Metrics were calculated
based on daily values for the whole analysis period.

FIG. 7. (left) Maps of the original and the synthetically thinned-out CML network. The red dot indicates the position of the rain gauge.
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paths in Ouagadougou, using existing processing routines and
newly developed filters. After selecting and processing suitable
CMLs, we were able to derive rainfall maps based on rainfall
information along 100 unique paths. The rainfall maps from
CMLs showed promising results for the 2020 monsoon season
when compared with the one available reference rain gauge
in Ouagadougou.

During processing, spikes and steps, even if not occurring
frequently in the TL time series, proved to be an issue causing
overestimation of rainfall. Therefore, we developed new fil-
ters that remove individual time steps from spikes and steps
in order to keep as many of the individual CMLs time series
as possible. This increased the data availability relative
to methods that removed CMLs with certain anomalies
completely. In addition, periods with many short NaN gaps
were removed. Another crucial, but well known, step in the
processing was the detection of rainfall events in the TL
time series. We used the approach proposed by Graf et al.
(2020) but set the threshold to a more conservative value
because, in comparison with Germany, rain events in Oua-
gadougou tend to be short and strong, which makes them
easier to detect in the TL time series. To compensate for
WAA, we used the method of Schleiss et al. (2013), with a

maximum WAA value of 2.5 dB. This, of course, might have
an impact on the bias of the rainfall estimates relative to the
reference.

The validation of the rainfall maps derived with a simple
IDW interpolation scheme against ground-based rainfall data
was not straightforward, because only one rain gauge oper-
ated by ANAMwas available in the whole area of Ouagadou-
gou. Such a situation of sparse reference data is common in
West Africa. The rain gauge is, by far, not representative for
the whole area of Ouagadougou; therefore, we used various
qualitative and quantitative approaches to evaluate the accu-
racy and show the benefit of CML rainfall estimates.

Visual qualitative analysis of 5-min rainfall maps showed
plausible spatial and temporal patterns of rainfall. The com-
parisons of daily, aggregated, 5-min rainfall maps with the
daily reference rain gauge showed good agreement for the
temporal distribution of rainfall during the monsoon season
as well as a good agreement of daily rainfall sums.

When quantitatively assessing the accuracy of the CML
rainfall maps, this agreement was further supported. Even
with no CML directly above the rain gauge, the PCC of the
reference rain gauge and the corresponding rainfall map pixel
was very high. Other metrics proved to be similarly good. We

FIG. 9. Comparison of rainfall estimates from CML-derived rainfall maps, GPM IMERG early and late runs, and ERA5 against the
daily reference rain gauge from 1 Jul to 10 Oct 2020: (top) Individual scatterplots of all four products at the reference against rain gauge
values. (middle) The time series of the CML rainfall maps and the IMERG early run against the reference rain gauge in a daily resolution.
(bottom) CML rainfall maps and the IMERG early run on a 30-min resolution; the inset is a zoom over 6.75 days from 0600 UTC 31 Aug
to 0000 UTC 6 Sep.
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further investigated whether these metrics were only good
due to the good performance of a few CMLs close to the ref-
erence rain gauge. We did this by removing CMLs around the
rain gauge for several radii before doing the interpolation of
the 5-min rainfall maps. When removing CMLs up to a dis-
tance of 3 km, no decrease in performance of the rainfall
maps relative to the rain gauge was observed. This proved
that the performance of the CML rainfall maps on the daily
scale was not based on the good performance of one or a few
CMLs close to the rain gauge but that the performance is due
to the similar high quality of CML rainfall estimates through-
out Ouagadougou.

To complement the validation against the daily rain gauge
with a higher temporal resolution, we also analyzed three
gridded rainfall products (ERA5, IMERG early and late
runs). The three products could not match the rainfall amount
reference rain gauge as well as the CML rainfall map and,
therefore, were not suitable for a validation of CML rainfall
estimates. But a surprisingly high temporal coincidence of
rainfall events was found between IMERG early (and late)
and the CML rainfall maps. This temporal match on a 30-min
basis increased the confidence in the CML rainfall maps.

In summary, we provided the first rainfall maps with a
5-min resolution in West Africa based on CML data. Such
rainfall maps give an unprecedented option to study spatio-
temporal rainfall characteristics and can serve as input for a
variety of hydrometeorological applications from flood warn-
ing systems to water distribution tasks. The validation of rain-
fall estimates was and will be challenging in this data-scarce
region of the world. One potential way of solving this issue
could be the indirect validation of rainfall estimates via hydro-
logical modeling, for example, by building on the hydrological
simulations from Turko et al. (2021), who used synthetic sim-
ulated CML observations for the region of Ouagadougou.
Another major challenge is the processing of 7-GHz CMLs,
which are common for the longer connections outside of the
cities in West Africa. One way to improve the quality of these
CMLs could be the use of satellite data, for example, from
MSG SEVIRI. Such a combination could also further im-
prove the high-resolution rainfall maps presented for the city
of Ouagadougou.
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