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ABSTRACT

Scene understanding – a process of parsing visual perception of surrounding environ-

ment into human-readable information – can be processed via pixel-wise image se-

mantic segmentation, supporting intelligent systems to make correct decisions when

interacting with the environment. This versatile approach finds extensive applications,

such as autonomous vehicles and assistive technology. As estimated in 2020, there are

approximately 596million people worldwide suffering from distance vision impairment, of

whom 43 million were blind. Thus, it is meaningful to extend the benefit of scene under-

standing techniques to include People with Visual Impairments (PVI). In this thesis, we

mainly investigate scene understanding in two distinct yet correlated research fields:

Intelligent Transportation Systems (ITS) and Mobility Assistance Systems (MAS).

In the domain of ITS, our research focuses on two aspects. (1) Panoramic semantic

segmentation, which entails pixel-level parsing of 360° driving scenes, yields a omnidi-

rectional scene understanding. For the first time, we establish a new dataset (DenseP-

ASS) with 360° semantic annotations for benchmarking pinhole-to-panoramic domain

adaptation. Besides, our unsupervised Trans4PASS model maintains comparable per-

formance to fully-supervised state-of-the-arts. (2) Multimodal semantic segmentation

is able to improve robustness by incorporating complementary modalities. As another

contribution, we create a new benchmark (DeLiVER) for enabling arbitrary-modal se-

mantic segmentation. Moreover, we introduce unified models CMX and CMNeXt for

conducting RGB-X semantic segmentation, yielding a flexible and seamless fusion of

RGB with Depth, Event, LiDAR, Thermal, Polarization, and Light-field images.

In the field ofMAS, our research focus lies in developing scene understanding and as-

sistance systems for both drivers and pedestrians, while also considering PVI. Our con-

tributions are two-fold. (3) Vision localization and semantic mapping are thoroughly

explored to empower navigational scene understanding. A novel feature matching

modelMatchFormer is implemented to perform robust pose estimation indoors and out-

doors. To enhance map accessibility for pre-exploring destinations, two frameworks

Trans4Map and 360BEV are proposed for indoor semantic mapping using sequences

or single images. (4) To develop practical applications of MAS, we explore generaliz-

able scene understanding for transparent object segmentation and adverse scene seg-

mentation. Glass-like objects present architectural obstacles that impede the mobility

of PVI. To handle the safety-critical cases, we leverage our Trans4Trans model to de-

sign a wearable Vision4Blind system and iteratively improve it based on user feedback.

Furthermore, a proof-of-concept prototype, i.e., “flying guide dog”, is implemented to

assess new possibilities in scene understanding and assistance systems.

By exploring two interconnected research fields, this thesis has unfolded significant

insights into scene understanding – including new datasets created to facilitate the

community, advanced models to enhance perception, and wearable systems designed

to assist PVI – contributing to the advancement and realization of intelligent mobility.
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ZUSAMMENFAS SUNG

Szenenverständnis – ein Prozess der Analyse der visuellen Wahrnehmung der Umge-

bung in menschenlesbare Informationen – kann durch pixelweise Bildsemantikseg-

mentierung verarbeitet werden und intelligente Systeme unterstützen, um bei der In-

teraktionmit der Umgebung richtige Entscheidungen zu treffen. Diese vielseitigeMeth-

ode findet vielfältige Anwendungen, wie z. B. autonome Fahrzeuge und Assistenztech-

nologie. Nach Schätzungen aus dem Jahr 2020 leiden weltweit rund 596 Millionen Men-

schen an Sehbehinderungen, von denen 43 Millionen blind waren. Daher ist es sinnvoll,

die Vorteile des Szenenverständnisses auch für Menschen mit Sehbehinderung zu er-

weitern. In dieser Dissertation untersuchen wir das Szenenverständnis in zwei unter-

schiedlichen, aber miteinander verbundenen Forschungsbereichen: Intelligente Trans-

portsysteme und Mobilitätsassistenzsysteme.

Im Kontext der intelligenten Transportsysteme konzentriert sich unsere Forschung

auf zwei Schlüsselaspekte. (1) Panoramische semantische Segmentierung, das die pix-

elgenaue Analyse von 360°-Fahrszenen beinhaltet, ergibt ein holistisches Szenenver-

ständnis. Erstmals erstellen wir ein neues Dataset (DensePASS) mit 360°-semantischen

Annotationen für die Benchmarking von pinhole-to-panoramic Domain Adaptation.

Darüber hinaus verfügt unser unüberwachtes Trans4PASS-Modell über eine vergleich-

bare Leistung zu vollüberwachten modernsten Modellen. (2)Multimodale semantische

Segmentierung kann die Robustheit verbessern, indem komplementäre Modalitäten in-

tegriert werden. Als weiteren Beitrag erstellen wir einen neuen Benchmark (DeLiVER)

für beliebig modale semantische Segmentierung. Darüber hinaus stellen wir die ein-

heitlichen Modelle CMX und CMNeXt für RGB-X-semantische Segmentierung vor, die

eine flexible und nahtlose Fusion von RGB mit Depth, Event, LiDAR, Thermal, Polar-

ization und Light-field-Bildern ermöglichen.

Im Bereich Mobilitätsassistenzsysteme liegt unser Forschungsschwerpunkt auf der

Entwicklung von Szenenverständnis- und Assistenzsystemen für Fahrer, Fußgänger

und Menschen mit Sehbehinderung. Unsere Beiträge sind zweifach. (3) Vision-

slokalisierung und semantische Kartierung werden umfassend erforscht, um das navi-

gationale Szenenverständnis zu unterstützen. Ein neuartiges Feature-Matching-Modell

MatchFormer wird implementiert, um robuste Pose-Estimation in Innen- und Außen-

bereichen durchzuführen. Um die Map-Barrierefreiheit für die Vorerkundung des

Zielorts zu verbessern, werden zwei Frameworks Trans4Map und 360BEV für in-

door semantische Kartierung mit Sequenzen oder Einzelbildern vorgeschlagen. (4) Um

praktische Anwendungen von Mobilitätsassistenzsystemen zu entwickeln, erforschen

wir das generalisierbare Szenenverständnis durch transparente Objektsegmentierung

und adverse Szenensegmentierung. Glasähnliche Objekte stellen architektonische Hin-

dernisse dar, die die Mobilität von Menschen mit Sehbehinderung behindern. Um

sicherheitskritische Fälle zu bewältigen, nutzen wir unser Trans4Trans-Modell, um ein

tragbares Vision4Blind-System zu entwerfen und es durch Benutzerfeedback iterativ

zu verbessern. Darüber hinaus wird ein Proof-of-Concept-Prototyp, d. h. ein „flying
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guide dog“, implementiert, um neue Möglichkeiten im Bereich Szenenverständnis und

Assistenzsysteme zu bewerten.

Durch die Erforschung von zwei miteinander verbundenen Forschungsbereichen

hat diese Dissertation wichtige Erkenntnisse zum Szenenverständnis gewonnen – ein-

schließlich neuer Datensätze zur Erleichterung der Community, fortschrittlicher Mod-

elle zur Verbesserung der Wahrnehmung und tragbarer Systeme zur Unterstützung

von Menschen mit Sehbehinderungen – und so zur Weiterentwicklung und Verwirk-

lichung intelligenter Mobilität beigetragen.
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BACKGROUND





1
I N TRODUCT ION

Scene understanding is a process of interpreting visual data from the environ-

ment to identify objects, perceive spatial relationships, and comprehend con-

textual information. As illustrated in Figure 1, this dissertation is driven by a

dual-pronged exploration of two distinct yet interrelated research domains, i.e.,

Intelligent Transportation Systems (ITS) and Mobility Assistance Systems (MAS).

This synergistic development is dedicated to shaping an intelligent mobility sys-

tem that benefits all traffic participants, from drivers and pedestrians to People

with Visual Impairments (PVI).

1.1 scene understanding

Imagine a smart city in the future, where autonomous vehicles weave seamlessly

through the urban environment, effortlessly recognizing pedestrians and traffic lights,

and easily navigate complex intersections. All the while, pedestrians can move

smoothly between destinations, and even people with disabilities can move safely and

independently. Such a remarkable intelligent mobility utopia – that is more efficient,

accessible and livable for everyone – is being progressively realized through the devel-

opment of advanced technologies, showing the next-generation transportation – one

that depends on the capabilities of scene understanding techniques.

Recently, scene understanding has emerged as a pivotal research area in the com-

puter vision community, given its role in translating visual perceptions from the sur-

rounding into meaningful and human-readable insights. This process is facilitated

through pixel-wise image semantic segmentation, whereby every pixel in an image is

analyzed and identified to provide intelligent systemswith the crucial information. The

versatility of scene understanding is impacting a wide range of downstream applica-

tions, such as autonomous vehicles and intelligent transportation systems. Moreover,

extending the benefits of scene understanding to include People with Visual Impair-

ments (PVI), who often encounter challenges in using transportation infrastructures,

is meaningful and essential, because it addresses the impediments to their mobility in-

dependence. As estimated in 2020, there are approximately 596 million people worldwide

suffering from distance vision impairment, of whom 43 million were blind [15]. Given

their status as the most important and vulnerable road users, incorporating the per-

spectives of PVI is crucial in the development of intelligent mobility systems.

Therefore, in pursuit of the intelligent mobility utopia for all traffic participants, this

thesis mainly delves into image semantic segmentation, aiming to provide advanced

scene understanding approaches for both Intelligent Transportation Systems (ITS) and

Mobility Assistance Systems (MAS), as shown in Figure 1.
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How to achieve OMNI-RANGE perception?
Panoramic Semantic Segmentation 

How to empower NAVIGATIONAL perception?
Visual-Localization and Semantic Mapping

How to maintain ROBUST perception?
Multimodal Semantic Segmentation

How to achieve GENERALIZABLE perception?
Transparent and Adverse Scene Segmentation 

1 3

2 4

1 2 Scene Understanding 3 4

(a) Intelligent Transportation Systems (b) Mobility Assistance Systems

Figure 1: The summary of the research questions and contributions in both domains.

1.1.1 In the Domain of Intelligent Transportation Systems

The evolution of transportation systems has witnessed a remarkable change towards

intelligent and autonomous solutions. As depicted in Figure 1a, through scene under-

standing, Intelligent Transportation Systems (ITS) utilizes the power of advanced image

segmentation techniques to decode the visual complexities of the traffic environment.

This enables vehicles to perceive and respond intelligently to their environment, such

as understanding the intricate dynamics of driving scenes, recognizing the state of

traffic control devices, and predicting the category of other entities.

However, the driving scene in the real world is more complex and highly dynamic.

One of the most significant challenges for ITS is the recognition and understanding

of all objects in the driving scene. There are many different objects and entities that

can be present within the traffic scene, including vehicles, pedestrians, cyclists, traffic

signs, and lights [44]. These objects vary in terms of sizes, shapes, and colors, and

they can be moving in different directions and interacting with one another. Another

challenge for ITS is the dynamic behavior of road users. Pedestrians, cyclists, and even

drivers can make sudden and unexpected movements. For instance, a pedestrian might

dash across an intersection within the blind spot of a vehicle [285]. This complexity

compounds the difficulty of accurately recognizing and understanding all objects.

Omnidirectional scene understanding of the entire driving scene is a key

technique that can help to address the aforementioned challenges. To achieve this,

panoramic semantic segmentation (in Figure 1a - 1 ), powered by a single panoramic

camera with 360-degree field of view (FoV), is an applicable approach. This stream-

lined setup in autonomous vehicles minimizes hardware complexity, installation, and

calibration efforts, while still providing an omni-range view of the driving scenario.

In essence, the combination of 360-degree cameras and image semantic segmentation

yields a omni-range and seamless perception solution, enabling ITS to make more in-

formed decisions about the safe and efficient operation of autonomous vehicles.
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Apart from the impact of FoV, other various influencing factors may also be en-

countered during the practical driving. For example, the driving scene is frequently

obscured by adverse weather conditions, such as fog, rain, or snow, which can signifi-

cantly degrade the quality of images and sensor data, making it difficult for ITS systems

to accurately perceive the road environment [171]. Besides, even in ideal weather condi-

tions, sensor failures can also pose a challenge to ITS systems. For instance, if a camera

or LiDAR sensor fails, the systemwill lose one of its main sources of information about

the traffic surroundings. This can lead to a large drop in perception performance, as

the system will have to rely on less data to make decisions.

Robust scene understanding stands as a vital point in addressing these challenges,

which not only enhances ITS systems against the vulnerabilities posed by sensor fail-

ures but also augments their capacity to navigate through adverse traffic conditions.

To attain this goal, multimodal semantic segmentation (in Figure 1a - 2 ) emerges as

a novel and promising solution, which can fuse distinct data modalities and excavate

complementary information. For instance, depth measurements serve to help identify

the boundary of objects and offer geometric information of dense scene elements [36,

82, 278]. Moreover, the integration and cooperation of multiple sensors holds the po-

tential to effectively combat individual sensor failures [279].

Together, panoramic semantic segmentation andmultimodal semantic segmentation

can be jointly explored to improve the performance of ITS. Panoramic semantic seg-

mentation enhances scene understanding through omnidirectional perception of the

driving environment, while multimodal semantic segmentation improves robust scene

understanding by fusing diverse sensory data sources.

1.1.2 In the Field of Mobility Assistance Systems

Beyond the transportation perspective, another vital factor of the intelligent mobility

utopia is Mobility Assistance Systems (MAS), which enhance pedestrian experiences

and ensure accessible mobility for people with diverse needs, including those with

visual impairments. As shown in Figure 1b, the combination of scene understanding

and assistive technology becomes a potent support to achieve this feature. Solving

mobility barriers encountered by pedestrians and the visually impaired contributes

significantly to improve accessibility and intelligence.

Navigating independently is one of the challenges for individuals with visual im-

pairments, underscoring the important role of MAS in improving their mobility. Be

it walking around familiar or unfamiliar terrain, indoors or outdoors, the ability to

move confidently between destinations remains a fundamental aspiration, since they

may have difficulty in locating their positions in unfamiliar environments, finding their

way around, avoiding obstacles ahead, and understanding their surroundings.

Navigational scene understanding is a crucial component to empower the navi-

gational perception feature in MAS (in Figure 1b - 3 ). On the one hand, visual localiza-

tion allows MAS to determine its current position in the environment based on visual

inputs [40]. This information is essential for theMAS to know the orientation and direc-

tion of the user. On the other hand, semantic mapping applied to MAS can understand

the environment by assigning semantic labels to different objects in the given visual
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inputs. This information can be used to plan and execute navigation routes, as well as

to provide users with holistic understanding about their surroundings in advance, so

as to improve their accessibility.

In addition to navigation, many mobility obstacles must be addressed in the prac-

tical usage of assistance perception systems. One notable example is the recognition

of glazed facades and transparent objects, which is seldom addressed by existing per-

ception systems. Understanding the intricacies of glass architecture [16] and glass

doors [138, 141] is particularly importance for both sighted and blind people. Transpar-

ent objects frequently present architectural obstacles that impede the mobility of those

with low vision or blindness. For instance, imagine a scenario where an assistive sys-

tem inaccurately perceives a path behind a closed glass door as accessible, potentially

leading to missteps and endangering the user.

Generalizable scene understanding enables image segmentation models to han-

dle adverse and corner cases when using in the real-world scenarios. For example,

transparent object segmentation can be used to adaptively identify glass-like objects

when walking indoors or outdoors (in Figure 1b - 4 ). With this feature, MAS can cor-

rectly identify safety-critical transparent objects, such as glass doors and windows.

This information is important because transparent objects can be difficult to be aware

of by people with visual impairments and sighted people. By accurately recognizing

corner cases, MAS can help to keep users safe by avoiding collisions and ensuring that

they understand their surroundings and how to interact with them correctly.

Therefore, by exploring both navigational scene understanding and generalizable

scene understanding, mobility assistance systems (MAS) can be empowered to over-

come the real-world challenges faced by pedestrians and those with visual impair-

ments, contributing to a more inclusive and accessible mobility.

1.2 motivation and goals

The main motivation of this thesis is to explore the empowerment of scene understand-

ing in constructing an intelligent mobility utopia where autonomous vehicles glide

effortlessly through intricate thoroughfares, pedestrians traverse with ease, and indi-

viduals with disabilities navigate safely and independently. Specially, the scene under-

standing methods will be mainly investigated in two fields of intelligent transportation

systems and mobility assistance systems, which can assist both drivers and pedestrians,

as well as people with visual impairments.

The goal of this thesis is to propose novel and effective solutions for scene un-

derstanding that can improve the perception ability of intelligent vehicles and assist

people with visual impairments to navigate around safely and independently. Specifi-

cally, in the field of ITS, omnidirectional and robust perception ability can be achieved

through promising panoramic andmultimodal semantic segmentation. This will allow

intelligent vehicles to better and stably understand their surroundings. In the domain

of MAS, navigational and generalizable scene understanding are mainly explored to

empower the independent navigation and safety-critical object recognition. Besides,

human-friendly wearable systems and applications are implemented through image

semantic segmentation and evaluated with the target group.
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1.3 research qestions

Themain research objective of this thesis is to explore scene understanding to achieve

intelligent mobility for all traffic participants, encompassing not only the perspective

of drivers but also that of pedestrians, particularly those with visual impairments. As

illustrated in Figure 1, scene understanding is investigated in two distinct yet inter-

related domains, i.e., Intelligent Transportation Systems (ITS) (Figure 1a) andMobility

Assistance Systems (MAS) (Figure 1b).

In the context of ITS, there are two key research questions.

RQ 1. How to achieve consistent perception in all directions at once? Omnidirec-

tional perception can consistently understand the entire scene, including the

layout of roads, the perception of other vehicles, pedestrians, cyclists, and traffic

control devices. The challenges include that the environment around an intel-

ligent vehicle is constantly changing and the interaction behaviors from other

entities are less predictable. 360° cameras offer an omni-range view via a single

sensor. Based on that, panoramic semantic segmentation is a potential solution

to address the challenges. However, the scarcity of annotated panoramic images

presents another difficulty in learning panoramic segmentation.

RQ 2. How to stabilize scene perception in a unified manner? Robust perception

is to understand the environment even in the presence of noise and uncertainty.

The challenges of system robustness encompass diverse influential factors, such

as adverse weather conditions and sensor failure cases. To stabilize perception,

fusing different sensors is a potential solution to provide more data to manage

adverse scenarios, as well as to counter sensor failures. However, implementing

a unified multimodal fusion method is crucial yet challenging to combine and

extract the complementary information from various sensory modalities.

In the field of MAS, the two main research questions are listed.

RQ 3. How to advance on-site navigational perception and beforehand map ac-
cessibility? Visual localization and semantic mapping are two fundamental

components that can be used to empower independent mobility for people with

visual impairments. Visual localization is crucial for estimating location in on-

site navigation, while semantic mapping can provide users with an accessible

map to understand their destination in advance. However, due to the texture-

less indoor scenes, the indoor visual localization and semantic mapping is still

a challenge in the field of navigational scene understanding.

RQ 4. How to handle corner cases and adverse situations in real-world appli-
cations? In practical scenarios, safety-critical cases are situations that pose a

risk to the safety of users. For instance, glass doors and windows, which often

lack distinct texture yet are commonplace both indoors and outdoors, can be

particularly challenging to detect. To address these hazards, generalizable scene

understanding is a way to enable general models to handle uncommon cases,

such as transparent object segmentation to address glass-like scenes. By con-

sidering the synergy of walking and driving views, methods tailored for corner

cases can be adapted to address adverse driving scenes as well.



8 introduction
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Figure 2: The outline of the dissertation and the relationship between chapters.

The thesis outline is presented in Figure 2. There are 4 parts and 9 chapters. PART I

presents the background of scene understanding with introduction (Chapter 1) and re-

lated work (Chapter 2). PART II focuses on panoramic semantic segmentation (Chap-

ter 3) and multimodal semantic segmentation (Chapter 4). PART III involves naviga-

tional (Chapter 5) and generalizable (Chapter 6) scene understanding, and additional

proof-of-concept prototypes (Chapter 7). PART IV includes contributions (Chapter 8)

of this research and outlook (Chapter 9) about future work.

Besides, Figure 2 shows the relationship between chapters. While methods in

PART II are proposed for Intelligent Transportation Systems (ITS marked as �), ap-

proaches in PART III aremainly forMobility Assistance Systems (MASmarked asT).We

found that some methods are mutually applicable in both domains, which are marked

as light-gray T and �. Chapter 3, 4, 6, and 7 are related to semantic segmentation.

Chapter 3 and 5 are aiming at holistic perception. Chapter 4 and 6 are relevant to ro-

bustness. Two new datasets are presented in Chapter 3 and 4, while new systems (e.g.,

the Vision4Blind system) are evaluated with user studies in Chapter 6 and 7.
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PART I: BACKGROUND

Chapter 2: Related Work. This chapter provides a review of the existing literature

and previous research works related to the field of scene understanding. The most rel-

evant settings of image semantic segmentation are studies and presented, including

the state-of-the-art methods and ideas. Besides, a detailed list of benchmarks for se-

mantic segmentation is divided in to four different perspectives. Moreover, the recent

and novel vision-based assistance systems are investigated and presented to provide

preliminary knowledge and insights about assistive technology.

PART II: INTELLIGENT TRANSPORTATION SYSTEMS (ITS)

Chapter 3: Towards Omnidirectional Scene Understanding. This chapter delves

into panoramic semantic segmentation techniques for achieving omnidirectional scene

understanding. To learn from the label-rich pinhole image domain, we for the first

time, propose a new setting of unsupervised domain adaptation (UDA) for panoramic

semantic segmentation. A new dataset is created for benchmarking panoramic seman-

tic segmentation. Based on this UDA setting, a novel domain adaptation framework

is first proposed to address the transfer learning for panoramic images. Furthermore,

a distortion-aware transformer model is designed to improve the segmentation per-

formance before and after domain adaptation. These methodologies are employed to

achieve comprehensive scene interpretation within the context of ITS.

Chapter 4: Towards Robust SceneUnderstanding. Focusing onmultimodal seman-

tic segmentation, this chapter explores the fusion methods of various sensory data

sources, contributing to robust scene understanding for intelligent mobility. A uni-

fied transformer model is proposed to handle fusion of diverse modalities for semantic

segmentation. A new benchmark is constructed for RGB-Event semantic segmenta-

tion. Apart from bi-modal fusion, an advanced unified model is proposed to deal with

arbitrary-modal semantic segmentation, which can combine up to 80 modalities with

RGB. Besides, a new dataset for arbitrary-modal semantic segmentation is presented.

These approaches are investigated to maintain robust scene understanding for ITS.

PART III: MOBILITY ASSISTANCE SYSTEMS (MAS)

Chapter 5: Towards Navigational Scene Understanding. This chapter is dedicated

to advancing the capabilities of Mobility Assistance Systems (MAS) through two do-

mains, each aimed at empowering visual localization and fostering semantic mapping

for enhanced accessibility. In the pursuit of robust visual localization, the first research

theme introduces a novel transformer model with interleaving attention for feature

matching. This innovative approach is tailored to both indoor and outdoor visual local-

ization scenarios, mitigating the challenges posed by texture-less scenes and enabling

robust and precise visual localization. The second research theme delves into the field

of semantic mapping, a critical component in enabling autonomous navigation for in-

dividuals with diverse mobility needs. A cutting-edgemodel, Trans4Map, is introduced

to facilitate end-to-end training for semantic mapping, and amplify the potential for

independent and safe navigation. The third research theme is to achieve holistic se-

mantic mapping via a single panoramic image. This new task is named as 360BEV. Two

datasets are extended to enable the end-to-end training for panoramic semantic map-



10 introduction

ping. Through these research contributions, this chapter establishes a comprehensive

framework for navigational perception of Mobility Assistance Systems.

Chapter 6: Towards Generalizable Scene Understanding. This chapter addresses

the practical concern in ITS and MAS. For example, the challenge posed by transpar-

ent objects in real-world scenarios, can be particularly daunting for people with visual

impairments. Here, we present a novel solution to transparent object segmentation.

This pioneering approach seeks to enhance the safety and accessibility of navigation

for both blind and sighted pedestrians. Particularly, this approach serves as the founda-

tion of our wearable MAS, called Vision4Blind. Furthermore, we extend the dual-head

vision transformer model to encompass the adverse driving perspective. Moreover, a

novel Multi-source Meta-learning UDA (MMUDA) framework is proposed to trans-

form models from normal to abnormal (accident) scene segmentation.

Chapter 7: Assistive Systems and Applications. This chapter introduces our it-

erative development on the Vision4Blind system. It combines smart glasses equipped

with cameras and a portable GPU processor. The efficacy of this system is assessed

through a series of field tests and user studies. Besides, we conduct a proof-of-concept

exploration of novel Mobility Assistance Systems (MAS). For example, we explore the

utilization of drones as aides for the navigation of People with Visual Impairments

(PVI), i.e., as a “flying guide dog”. The application not only empowers the drone to

semantic segmentation but also paves the way for the recognition of pedestrian and

vehicle traffic lights. This pioneering concept is validated through a comprehensive

user study involving blindfolded participants, providing empirical evidence of the sys-

tem’s potential to enhance navigation.

PART IV: INSIGHTS OF SCENE UNDERSTANDING

Chapter 8: Contributions. This chapter concludes the contributions made in ITS and

MAS. The contribution of dataset lies in the creation of two new datasets. The first one,

tailored for panoramic semantic segmentation, enables evaluation of models for om-

nidirectional scene understanding. The second dataset, centered on arbitrary-modal

semantic segmentation, extends the frontiers of knowledge by facilitating the fusion

of diverse sensory inputs for enhanced understanding. Besides, novel methodologies

have been forged to empower both ITS and MAS. The novel methods include omni-

directional and multimodal segmentation, transparent object segmentation, visual lo-

calization, semantic mapping, and more. Besides, three new systems are implemented

to assist the people with visual impairments. These human-friendly systems are itera-

tively implemented and enhanced by considering feedback from target users.

Chapter 9: Outlook. This chapter engages in a discussion about the next-generation

assistance systems and also the future work of scene understanding. Some promising

research directions related to the scene understanding for ITS and MAS are presented

in this chapter. One important research topic is the vision-language navigation for

helping people with visual impairments. Besides, using one unified model to address

all vision-based even vision-language tasks is another future work to implement the

next-generation assistance system. The Artificial General Intelligence (AGI) also has

the potential to foster development of assistive technology even further.



2
RELATED WORK

The central objective of this thesis is to explore the empowerment of scene un-

derstanding to create a smart mobility utopia. We focus on the image segmen-

tation task and delve into two fields: (1) intelligent transportation systems and

(2) mobility assistance systems. This chapter presents an overview of the most

relevant literature according to scene understanding, covering tasks from tra-

ditional to novel semantic segmentation tasks, a detailed study of benchmarks

according to different focuses, and various practical assistance systems.

2.1 scene understanding through image segmentation

Scene understanding stands as a complex challenge within the field of computer vision,

with its primary objective being the extraction of meaningful insights from images.

This crucial information is derived through diverse segmentation settings.

2.1.1 Image Semantic Segmentation

The task of image semantic segmentation entails the partitioning of images into dis-

tinct regions, each associated with semantically meaningful categories, such as car and

road from outdoor scenes, table and chair from indoor scenes, etc. This finer granular-

ity allows for the discernment of object boundaries and the creation of detailed scene

interpretations. Dense image semantic segmentation has garnered significant atten-

tion and witnessed remarkable advancements since the inception of Fully Convolu-

tional Networks (FCN) [127], which introduced it as an end-to-end per-pixel classifica-

tion task. Building on the foundation laid by FCN, subsequent endeavors have pushed

the boundaries of segmentation performance by embracing encoder-decoder architec-

tures [29, 208], amplifying the potential of high-resolution representations [116, 217],

expanding receptive fields [28, 76, 293], and collecting contextual priors [90, 274].

Drawing inspiration from non-local blocks [223], the integration of self-attention

mechanisms [213] has proven instrumental in establishing long-range dependen-

cies [61, 85, 110, 124, 263] within the framework of FCNs. Modern architectural in-

novations have even led to the substitution of conventional convolutional backbones

with transformer architectures [52, 207], ushering in a perspective where image under-

standing can be envisaged as a form of sequence-to-sequence learning. This paradigm

shift is evident through the rise of dense prediction transformers [51, 108, 125, 222,

229] and semantic segmentation transformers [39, 69, 191, 238, 296], encapsulating the

essence of image interpretation within a transformer-based framework. Adding to this

evolution, recent explorations have introduced architectures akin to Multilayer Per-

11
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(a) Semantic segmentation in narrow FoV (b) Semantic segmentation in omni FoV

Figure 3: Comparison of pinhole and panoramic semantic segmentation in driving scenarios

with different field of view (FoV).

ceptrons (MLPs) [34, 75, 112, 206], which ingeniously alternate between spatial- and

channel-based mixing. This novel approach has sparked substantial interest, offering

a promising avenue for tackling a wide spectrum of visual recognition tasks.

However, most of these methods are tailored to narrow Field-of-View (FoV) pinhole

images and often tend to exhibit notable accuracy degradation when extended to the

360° domain for holistic scene understanding. As shown in Figure 3, the ultra-wide FoV

from 360° cameras might bring image distortion and object deformation.

2.1.2 Panoramic Semantic Segmentation

In the pursuit of holistic scene understanding, panoramic semantic segmentation

emerges as a vital consideration. This task involves semantically segmenting 360° im-

ages, providing an omnidirectional view that is especially valuable in applications like

autonomous driving. On the one hand, outdoor omnidirectional semantic segmenta-

tion systems rely on fisheye cameras [49, 152, 257] or panoramic images [81, 145,

244].On the other hand, indoor methods focus on either distortion-mitigated repre-

sentations [86, 99, 177, 203, 297] or multi-tasks schemes [122, 192, 270]. A common

underlying assumption in these methods is the availability of labeled images, either

fully or partially, in the panorama domain for training segmentation models.

However, obtaining dense pixel-wise labels is an exceedingly labor-intensive and

time-consuming endeavor, especially for panoramas featuring higher complexities and

an abundance of small objects present in wide-FoV observations. In order to alleviate

the need for labeled target data and mitigate the prohibitively expensive annotation

process required for determining pixel-level semantics within unstructured real-world

environments, we propose an innovative approach. Specially, we look into panoramic

semantic segmentation via the lens of unsupervised transfer learning. We explore the

Pinhole-to-Panoramic (Pin2Pan) adaptation strategy, capitalizing on the potential of

rich and readily available datasets, e.g., annotated pinhole datasets.
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(a) RGB-Depth (b) RGB-Thermal (c) RGB-Polarization (d) RGB-Event (e) RGB-LiDAR

Figure 4: Different multimodal semantic segmentation. From top to bottom are the RGB image,

the X modality, and the ground-truth segmentation.

2.1.3 Multimodal Semantic Segmentation

Addressing the growing complexity of real-world scenes, multimodal semantic seg-

mentation tackles the fusion of diverse information. Approaches like RGB-Depth, -

Thermal, -Polarization, -Event, -LiDAR fusion (Figure 4) augment the capabilities of

segmentation models, resulting in more accurate and robust scene understanding.

Approaches such as RGB-Depth [158, 301] and RGB-Thermal [196, 198, 305] seman-

tic segmentation have garnered significant attention. Moreover, the utilization of po-

larimetric optical cues [95] and event-driven priors [286] has been explored to ensure

reliable perception under adverse conditions. In the context of automated driving, the

inclusion of LiDAR data [309] has enhanced semantic understanding of the road scene.

Nevertheless, most of these studies focus on a single modality combination.

In multimodal semantic segmentation, two predominant strategies have emerged.

The first approach involves incorporating cross-modal complementary information

into layer- or operator-based designs [20, 31, 220, 233, 241]. While these studies demon-

strate the acquisition of multimodal features within a shared network, their designs are

often tailored for specific modalities, such as RGB-D semantic segmentation, which

limits their adaptability to other modalities. Furthermore, certain multi-task frame-

works [7, 291] facilitate inter-task feature propagation for RGB-D scene understand-

ing, but they depend on supervision from other tasks for joint learning. The second

paradigm focuses on devising fusion schemes to bridge parallel modality streams. For

instance, ACNet [82] introduces attention modules to exploit features for RGB-D se-

mantic segmentation, while ABMDRNet [287] aims to reduce modality differences in

features before extracting discriminative cues for RGB-T fusion. In RGB-P segmen-

tation, Xiang et al. [235] connected RGB and polarization branches through channel

attention. For RGB-E parsing, Zhang et al. [285] explored sparse-to-dense and dense-

to-sparse fusion flows to extract dynamic context for accident scene segmentation.

Towards robust scene understanding, we tackle RGB-X semantic segmentation

within a unified framework, enabling diverse modality combinations.
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Figure 5: Examples of transparent object segmentation on Trans10K-v2 test set.

2.1.4 Transparent Semantic Segmentation

Transparent objects present distinct challenges in navigational scene understanding,

particularly in hazard and edge cases. Transparent semantic segmentation, a new re-

search direction, aims to identify and delineate glass-like objects, contributing to navi-

gational perception andmobility, especially for pedestrians and individuals with visual

impairments. Some examples are presented in Figure 5.

Traditional visual assistance systems [8, 84] have employed multi-sensor fusion

to tackle challenges associated with transparent obstacles, such as glass objects,

French windows, and French doors. These systems often combined ultrasonic sen-

sors with RGB-D cameras to effectively address such scenarios. Furthermore, they

frequently harnessed multimodal and multispectral information for enhanced percep-

tion. Okazawa et al. [144] achieved simultaneous recognition of both conventional non-

transparent objects and transparent objects by leveraging the differences in transmis-

sion characteristics within multispectral scenes. Additionally, polarization cues [95]

and reflection priors [117] have been extensively investigated for transparency per-

ception. Notably, Xiang et al. [235] developed a polarization-driven semantic segmen-

tation architecture that dynamically bridges RGB and polarization dimensions using

efficient attention connections. This approach leverages the optical features of polari-

metric information to robustly represent diverse materials, enhancing the segmenta-

tion performance of classes with polarization-specific properties, such as glass.

2.2 benchmarks for semantic segmentation

This section dives into the existing benchmarks that facilitate rigorous evaluation of

semantic segmentation algorithms, including the perspective of driving scenes, general

scenes, corner cases, and multimodal fusion.

2.2.1 Focusing on Driving Scenes

Semantic segmentation datasets dedicated to driving scenes offer a valuable testbed for

models developed for transportation applications. These datasets encompass a wide

array of driving scenarios, reflecting the challenges faced by intelligent transportation

systems. While numerous semantic segmentation datasets offer valuable training and

testing data, we only highlight a few of the most relevant ones in the following.
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Cityscapes. The Cityscapes [44] dataset is one of the most widely used benchmarks

for semantic segmentation in driving scenarios. It has 5,000 high-resolution images

captured from 50 different cities in Europe, and includes 19 classes.

KITTI-360. The KITTI-360 [114] is a suburban driving dataset, having 49,004/12,276

images at the size of 1408×376 for training/validation with 19 classes.

BDD100K. The BDD100K [260] dataset provides a large-scale collection of images

captured from diverse driving scenarios. A keyframe at the 10th second from each

sequence has dense annotation with 19 semantic classes.

IDD. The IDD [211] dataset is captured from 182 drive sequences in Indian cities. It

consists of 10,000 images annotated with 34 classes.

Mapillary Vistas. TheMapillary Vistas [142] dataset focuses on capturing street-level

imagery from different parts of the world, providing 25,000 high-resolution images an-

notated into 66 object categories with additional, instance-specific labels for 37 classes.

ApolloScape. The ApolloScape [83] dataset is tailored for autonomous driving re-

search. It includes 143,906 video frames and corresponding pixel-level annotations. The

images are labeled with 25 semantic classes.

Compared to these datasets, in the pursuit of holistic scene understanding, we pro-

pose a new dataset with 360° images, namely DensePASS, which covers 100 labelled

data with 19 classes and 2,000 unlabelled data.

2.2.2 Focusing on General Scenes

Beyond specific driving contexts, benchmarks focusing on general scenes provide

a broader perspective on the capabilities of semantic segmentation models. These

datasets encompass a diverse range of scenes and scenarios as well.

ADE20K [299] is a large-scale dataset for semantic segmentation of indoor and out-

door scenes. It contains 20,288 images with 150 semantic classes, including both com-

mon and rare objects. The images are of high quality and diversity.

COCO-stuff [17] is a subset of the COCO dataset that is specifically designed for se-

mantic segmentation of stuff classes. Stuff classes are classes that are not considered to

be objects, such as sky, ground, and vegetation. COCO-stuff contains 171 stuff classes.

2.2.3 Focusing on Corner Cases

Addressing challenging and adverse scenarios, benchmarks centered around corner

cases test the limits of semantic segmentation models. This includes transparent object

segmentation, adverse driving scenes, and accidental semantic segmentation, helping

to push the boundaries of what these models can accurately interpret.

WildDash. TheWildDash [266] is a dataset of challenging driving scenarios for testing

the robustness of semantic segmentation. WildDashv2 [267] is an extended version,

which contains 5,032 images with 26 classes in evaluation version.

ACDC. The ACDC [171] dataset has adverse driving conditions for semantic segmen-

tation. It contains 4,006 images with 19 semantic classes. The images are collected in

a variety of adverse conditions, such as rain, snow, and fog. The dataset is designed to

test the robustness of semantic segmentation models to adverse weather conditions.
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DADA-seg. The DADA-seg [285] is a dataset of accidental semantic segmentation for

autonomous driving. It contains 313 images with 19 semantic classes for testing. The

images are collected in a variety of scenarios where accidental semantic segmentation

can occur, such as when a vehicle is partially obscured by another vehicle or object.

Trans10K-v2. The Trans10K-v2 [240] is a dataset for RGB-based transparent object

segmentation. There are 11 categories marked as shelf, jar or tank, freezer, window,

glass door, eyeglass, cup, wall, glass bow, water bottle, and storage box.

2.2.4 Focusing on Multimodal Fusion

Various multimodal semantic segmentation benchmarks contribute to the advance-

ment of multimodal fusion techniques, which leverage the synergistic capabilities of

different sensors. In this following, we list the most relevant multimodal datasets.

KITTI-360 [114] dataset can also be used for RGB-Depth-Event-LiDAR fusion, after

the depth images and event data are generated. There are 19 semantic classes.

MFNet [71] is an urban street dataset with 1,569 RGB-Thermal pairs at the size of

640×480 with 8 classes. 820 pairs are captured from day-time scenes and 749 are cap-

tured from night-time scenes.

NYU Depth V2 [185] is an indoor understanding dataset with 1,449 RGB-Depth pairs

at the size of 640×480, splitting into 795/654 for training/testing with 40 classes.

SUN-RGBD [188] dataset has 10,335 RGB-Depth imageswith 37 classes, and 5285/5050

for training/testing, respectively.

Stanford2D3D [4] dataset has 70,496 RGB-Depth images with 13 object categories.

Areas of {1, 2, 3, 4, 6} are used for training and area 5 is for testing.

ScanNetV2 [45] dataset provides 19,466/5,436/2,135 RGB-Depth samples for training/-

validation/testing. There are 20 classes.

RGB-P ZJU [235] is an RGB-Polarization dataset collected by a multimodal vision sen-

sor designed for automated driving on complex campus street scenes. It is composed

of 344 images for training and 50 images for evaluation, both labeled with 8 semantic

classes. The input image is resized to 612×512.
UrbanLF [180] is a light field dataset with real and synthetic sets annotated in 14

classes, respectively splitting into 580/80/164 and 172/28/50 samples for training/vali-

dation/testing. Each sample is composed of 81 sub-aperture images.

MCubeS [113] is a dataset with pairs of RGB, Near-Infrared (NIR), Degree of Linear Po-

larization (DoLP), and Angle of Linear Polarization (AoLP), to study semantic material

segmentation of 20 classes. It has 302/96/102 image pairs for training/validation/testing

at the size of 1224×1024.
To provide a diverse multimodal semantic segmentation benchmark, we spent the

effort to create a large-scale dataset DeLiVER with Depth, LiDAR, Views, Event, RGB

data, based on the CARLA simulator [53]. DeLiVER provides six mutually orthogonal

views (i.e., front, rear, left, right, up, down) of the same spatial viewpoint, i.e., a complete

frame of data is encoded in the format of a panoramic cubemap. Besides, it features

severe weather conditions and five sensor failure modes to exploit complementary

modalities and resolve partial sensor outages in realistic driving scenarios.
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2.3 visual assistance systems

As technology advances, vision-based assistance systems play a pivotal role in enhanc-

ing accessibility and independence for individuals with visual disabilities. Visual as-

sistance systems are used to provide essential environmental information to achieve

the navigation of the visually impaired through wearable sensors [38, 102, 120] and

environment perceiving sensors [54, 121, 205, 281].

2.3.1 Scene Segmentation

Applying advanced semantic segmentation methods in assistive technology can em-

power users by providing human-friendly information about their surroundings,

aiding in navigation and scene understanding. Semantic segmentation is a well-

established technique used to assist the visually impaired. It involves assigning a se-

mantic label to each pixel in an image, such as road, sidewalk, or bicycle. This informa-

tion can be used to help visually impaired people navigate their surroundings safely

and independently.

Previous works [54, 105, 106, 121, 205, 247, 295, 310] explore semantic segmenta-

tion to create assistance systems for visually impaired people by providing a deep

understanding of the scenario to achieve better assistance. Yang et al. [247] unified

intersection-centered perception tasks by utilizing real-time semantic segmentation.

In [121], a lightweight system with a solid-state LiDAR sensor is proposed for holis-

tic indoor detection and obstacle avoidance using 3D point cloud instance segmen-

tation. The system implements obstacle avoidance and object finding together with

voice guidance, so that the user can scan new point clouds from a changing indoor en-

vironment. Tian et al. [205] and Li et al. [106] concentrated on handling the crosswalk

situation, which involves the segmentation of objects and prediction of the traffic light

status, while Zou et al. [310] focused on real-time passable area segmentation. Most of

the above works rely on Convolutional Neural Networks (CNN) as feature extractors.

Ma et al. [135] proposed a robot system to achieve a wayfinding function for the blind.

Zheng et al. [295] focused on material recognition in wearable robotics.

2.3.2 Obstacle Avoidance

Obstacle avoidance systems have been explored and implemented to assist the safe

navigation through complex environments in indoor and outdoor spaces. Rodriguez et

al. [163] segmented the image into background and obstacles based on dense disparity

maps and ground plane estimation algorithms. Sonar-based obstacle avoidance sys-

tems [159] use sonar sensors to detect obstacles in the environment, which is rela-

tively inexpensive and easy to implement but can be less accurate. In [186], an indoor

navigation wearable system based on visual markers recognition and ultrasonic obsta-

cles perception is proposed and utilized as an audio assistance for people with visual

impairments. Vision-based obstacle avoidance systems [9] use cameras to detect ob-

stacles in the environment. The camera captures images of the environment and then

uses computer vision algorithms to identify and track obstacles.



18 related work

2.3.3 Orientation and Navigation

Vision-based approaches contribute to various components of orientation and navi-

gation, from accurate visual localization [259, 268, 276] to the creation of semantic

maps [19, 22, 57, 67, 111, 149, 169] that assist users in understanding and navigating

their surroundings effectively.

A visual positioning system [276] uses an RGB-D camera and an inertial measure-

ment unit to estimate the pose and utilizes depth-enhanced visual-inertial odometry for

indoor navigation. DS-SLAM [259] combines semantic segmentation network with a

moving consistency checkmethod to reduce the impact of dynamic objects, thus signif-

icantly improving localization accuracy in dynamic environments. A frame-to-frame

VO algorithm [268] combines deep learning with epipolar geometry and Perspective-

n-Point method by training two convolutional networks.

In recent times, a multitude of approaches have arisen in the field of semantic map-

ping. Semantic SLAM pipelines [68, 160] are instrumental in constructing such maps.

These pipelines involve forwarding images into segmentation networks and subse-

quently projecting predicted labels onto top-view maps. The project-then-segment

pipeline [187] can lead to significant loss of visual information during projection, par-

ticularly hampering small object segmentation. SMNet [22] follows an offline project-

then-segment methodology, training encoder and decoder networks through two

stages. Lu et al. [129] introduced an end-to-end network that encodes front-view in-

formation of the driving scene, subsequently decoding it into a 2D top-down view.

Pan et al. [149] presented a cross-view network incorporating a view parsing network

to parse semantics across diverse views. Moreover, there are many Bird’s-Eye-view

(BEV) semantic segmentation approaches for driving scene perception [19, 57, 67, 111,

169] emerging in the field. BEVFormer [111] aggregates spatio-temporal cues from

surround-view cameras, whereas ViT-BEVSeg [56] uses a spatial transformer decoder

for generating semantic occupancy grid maps.

Apart from these mapping methods, a wearable navigation system for visually im-

paired and blind people in unknown indoor and outdoor environments was proposed

in [93]. The system canmap and track the position of the pedestrian during exploration

of the new environment. Lin et al. [120] proposed a learning-based wearable system to

achieve the navigation for visually impaired. V-Eye [54] made use of a global localiza-

tion method to pursue a better scene understanding, while the outdoor walking guide

system [77] leverages depth information. Cao et al. [21] developed a light-weight net-

work for fast detection of blind road and sidewalk. To address the challenges posed

by the COVID-19 pandemic, an object-finding algorithm is introduced in [1] to build

an end-to-end perception robotic cane system, which can enable socially-preferred

autonomous goal selection and navigation in indoor spaces. The work of “I am the fol-

lower, also the boss” [289] uses machine forms of a guiding robot and anatomy from

different stages to achieve visually impaired assistance.

As one of the two major research fields in this thesis, we delve deep into developing

Mobility Assistance Systems (MAS) for assisting pedestrians as well as helping peo-

ple with visual impairments. The research theme of MAS includes navigational scene

understanding, realistic scene understanding and more novel concepts and prototypes.
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This chapter presents the first research theme in the field of ITS, i.e., omnidirec-

tional scene understanding through panoramic semantic segmentation. The chal-

lenges include the limited availability of annotated panoramic data and the dis-

tortion of panoramic images. To address that, our contributions are two-fold: (1)

We pioneer a novel approach, Pinhole-to-Panoramic Domain Adaptation (P2PDA),

which constitutes a new Unsupervised Domain Adaptation (UDA) setting to

bridge the gap between pinhole and panoramic image domains. This P2PDA

framework is presented in Section 3.1, based on our work published in Transac-

tions on ITS 2022 [280]. (2) To address image distortions, we propose distortion-

aware vision transformer models for panoramic segmentation, i.e., Trans4PASS,

which is detailed in Section 3.2, based on our CVPR 2022 publication [283].

3.1 pinhole-to-panoramic domain adaptation

This section is based on our work published in Transactions on ITS 2022 [280].

3.1.1 Motivation of P2PDA

Semantic segmentation accuracy has increased at a rapid pace thanks to the resilience

of advanced neural networks. However, most of the previous frameworks were devel-

oped with the assumption that the driving scene images are captured with a pinhole

camera [44, 65, 114], which has a comparably narrow Field of View (FoV). This lim-

its the capabilities of scene perception systems. While mounting multiple sensors can

mitigate this issue, it requires additional data fusion and sensor calibration [11, 49].

Recently, a novel approach for expanding FoV [248, 249] has emerged: using a single

panoramic camera to perform 360° scene understanding, as shown in Figure 6b.

However, the lack of pixel-wise annotations for panoramic images is a major obsta-

cle to the advancement of semantic segmentation research for this type of data. How-

ever, recent progress in the field of domain adaptation (DA) has led to the development

of highly effective techniques that can be used to complement the limitation of training

data in driving scenarios, such as nighttime driving [165] and accident scenes [285]. In

this work, we address the challenge of label-scarce panoramic segmentation by adopt-

ing DA, transferring knowledge from considerably larger datasets of the pinhole im-

21
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Segmentation
Network

Segmentation
Network

Domain
Adaptation

Training

Training Adapting

Before Adaptation

After Adaptation

Input Panoramic Image

Pinhole domain Panoramic domain

(a) Pinhole→Panoramic Domain Adaptation (b) Narrow and 360° FoVs
(a) Pinhole-to-Panoramic Domain Adaptation (b) Narrow and 360° Field of View (FoV)

Figure 6: An overview of the formalized task of domain adaptation for panoramic semantic

segmentation. The source domain (green) contains pinhole images with annotations, while the

target domain (blue) contains panoramic images without annotations. (b) FoV comparison be-

tween pinhole forward-view and 360° panoramic surround-view imaging of self-driving scenes.

age domain. The problem statement is structured as: Unsupervised Domain Adaptation

(UDA) in panoramic semantic segmentation, which involves the adaptation from the

label-rich pinhole (source) domain to the label-scarce panoramic (target) domain. The

overview of the formalized task is shown in Figure 6a.

To promote research on panoramic semantic segmentation under cross-domain con-

ditions, we introduce a new dataset –Dense PAnoramic Semantic Segmentation (DenseP-

ASS) – covering 360° images captured from all over the world to ensure diversity. Our

benchmark provides (1) an unlabelled panoramic training set for optimizing the do-

main adaptation model and (2) a panoramic test set manually labelled with 19 classes

following Cityscapes [44], a dataset of pinhole images that we use as the label-rich

training data from the source domain.

According to our observations, directly transferring models trained on pinhole im-

ages to panoramic data often results in a significant drop in accuracy. This is because

panoramic images have a different layout than pinhole images, due to the equirectan-

gular projection. As shown in Figure 6b, panoramic images have a longer horizontal

distribution and geometric distortion on both sides of the viewing direction. This re-

sults in a considerable domain shift, which can significantly degrade the performance

of the model. To address the challenge of label-scarce panoramic segmentation, we

implement P2PDA, a generic framework for Pinhole to Panoramic Domain Adaptation.

3.1.2 The new DensePASS Dataset

There is a lack of established segmentation benchmarks that address the challenging

task of Pinhole→Panoramic recognition. Additionally, previous panoramic testbeds

only cover a very limited number of classes [249, 252]. To address these limitations,

we collect DensePASS – a novel densely annotated dataset for panoramic segmenta-

tion of driving scenes. DensePASS is created with the Pinhole-to-Panoramic transfer

in mind, and the test data is annotated with 19 categories that are also present in the

pinhole camera dataset Cityscapes [44] and other prominent semantic segmentation

benchmarks [260, 266]. To facilitate the unsupervised domain adaptation task, DenseP-

ASS covers both, labelled data (100 panoramic images used for testing) and unlabelled

training data (2000 panoramic images used for the domain transfer optimization). A

FoV of 70°×360° is covered in the captured panoramic images with a 400×2048 resolu-
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Figure 7: Distribution of the DensePASS dataset in terms of class-wise pixel counts per image.

tion. The data is collected using Google Street View and includes images from different

continents (25 different cities for testing and 40 for training).

In Figure 7, we compare label distributions of DensePASS with Cityscapes [44] and

WildDash [266] datasets in terms of pixel counts by averaging the number of images

used in our domain adaptation study. Our histogram analysis indicates, that DenseP-

ASS and the mentioned pinhole camera datasets follow a relatively close distribution

of categories. This observation indicates, that distribution alignment not only in the

feature-space but also in the semantic output-space might be beneficial and is there-

fore integrated in our framework. Overall, DensePASS is a valuable new resource for

the task of panoramic segmentation of driving scenes. It provides a large and diverse

dataset of labelled and unlabelled images, and it is carefully designed to address the

challenges of Pinhole-to-Panoramic UDA. We believe that DensePASS will be a valu-

able tool for researchers and developers working on this important problem.

3.1.3 P2PDA Framework

3.1.3.1 Framework Overview

Attention-augmented adversarial adaptation.Compared to AdaptSegNet architec-

ture [208], our framework has multiple variants of region- or attention-augmented DA

modules plugged in at different network depths with an overview provided in Figure 8.

The main components of our framework are a weight-shared segmentation network

G with attention modules and multiple DA modules equipped with the corresponding

discriminators D. For unsupervised domain adaptation methods, only the source do-

main dataset Ds = {(xs,ys)|xs ∈ RHs×Ws×3,ys ∈ RHs×Ws×1} and the unlabelled

target domain dataset Dt = {(xt)|xt ∈ RHt×Wt×3} are given, where xs and xt denote

the input images from source and target domains, and ys are the ground truth labels

in source domain. We note that (Hs,Ws) and (Ht,Wt) are the height and width of the

source and target images, respectively.

For ease of understanding, we only list the formulas for a single classifier on G

and single D. For multiple G or D, they will be combined through specific hyper-

parameters. First, the source domain images xs are fed into the segmentation network

G (also referred to as the generator) to create prediction results ỹs=G(xs) and the

source ground-truth labels ys are used to compute the segmentation loss Lseg:

Lseg(G) = E [ℓ(G(xs),ys)] , (1)

where E[·] is the statistical expectation and ℓ(·, ·) is the standard cross entropy loss.
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Figure 8: Diagram of the P2PDA framework. The shared backbone is an encoder-decoder seg-

mentation network (e.g., DANet). The SDAMmodule is applied on the high-level feature-space

or output-space and the FCDAM on the feature confidence space, while ADAM is performed

on the dual attended feature-space and RCDAM on the output-space after the region atten-

tion module. In the second stage of pseudo-label self-supervised learning, the uncertainty map

is calculated based on C1 and C2 predictions and used for element-wise multiplication with

pseudo-labels as an online selection of pseudo-labels.

Next, the discriminatorD is trainedwith the binary objective to distinguish between

the source and target domains of the input, so the discriminator loss is formulated as:

Ld(D) = E [ℓ(D(G(xs)), 0)] + E [ℓ(D(G(xt)), 1)] , (2)

where ℓ(·, ·) is the binary cross entropy, with 0 and 1 being the two-class labels (pinhole
and panoramic).

Then, to enforce the generator G to align the distribution of ỹt closer to ỹs, the

prediction results ỹt = G(xt) for the target domain is directly used to estimate the

adversarial loss, which is updated alongside with Lseg and is formulated as:

Ladv(G) = E [ℓ(D(G(xt)), 0)] . (3)

The adversarial loss is high if the discriminator prediction is correct. This means that

the adversarial loss encourages the segmentation network to generate segmentation

masks in the target domain that are indistinguishable from the masks in the source do-

main. In other words, the discriminators are trained to distinguish between the source

and target domains with Ld(D), while the segmentation network G is trained to (1)

correctly segment the images from the source domain with Lseg, and (2) make the tar-

get domain data indistinguishable from the source data by fooling the discriminator.

The join loss from Eq. (1) and Eq. (3) used to train the generator G becomes:

L(G) = λsegLseg(G) + λadvLadv(G), (4)
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where λadv and λseg are weights used to balance the domain adaptation and semantic

segmentation losses. To perform end-to-end training for multiple classifiers of G and

multiple D, our final loss function is denoted as:

L(G,D) =
∑
i

λisegL
i
seg(G) +

∑
i

λiadvL
i
adv(G) +

∑
i

λidL
i
d(D).

(5)

Attention-regulated self-learning adaptation. Our network can readily gener-

ate highly qualified segmentation masks on panoramic images, after the main stage

of multi-level alignment through the domain adaptation modules described in Sec-

tion 3.1.3.2. Our next goal is to advance the training procedure by using the inherent

knowledge in the pixel-wise predictions from the first training stage, i.e., panoramic

pseudo-labels. To achieve this, P2PDA uses an uncertainty-aware domain adaptation

stage to improve the prediction in an iterative fashion. In this stage, the source images

are replaced by the self-supervised panoramic images, i.e., the predictions are used to

refine the model itself. The key idea of this training stage is to employ multiple clas-

sifiers with attention heads naturally encouraged to produce discrepant predictions in

order to assess the uncertainty of the pseudo-labels. First, we estimate the uncertainty

map by using the variance operation on predictions produced with two different clas-

sifiers with disparate attention modules as in [61, 178]. Then, we apply element-wise

multiplication of the pseudo-labels with the resulting uncertainty map and, finally, we

threshold the resulting value to obtain the certain pseudo-labels. An overview of the

uncertainty-driven self-training is shown in the bottom part of Figure 8.

3.1.3.2 Domain Adaptation Modules

Segmentation domain adaptation module. As illustrated in Figure 9, our initial

module SDAM is derived from AdaptSegNet and attempts to match the source and

target segmentation outputs. After a segmentation network forward pass with images

from both domains (xs and xt), feature maps of both representations are used as input

to the discriminatorD which learns to distinguish the domain with Ld(D), while the

segmentation networkG learns to segment the pinhole images withLseg(G) and align

the domains with Ladv(G). SDAM learns a Pinhole-to-Panoramic domain adaptation

model at multiple levels jointly within our P2PDA framework, as shown in Figure 8.

Attentional domain adaptationmodule. Next, we design ADAM, an attentional do-

main adaptation module, aimed at detecting and magnifying the significant amount of

pinhole-panoramic correspondences at both, local and global levels (overview in Fig-

ure 10). ADAM differs from SDAM as it leverages the attention mechanism to learn an
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Figure 11: The regional context domain adap-

tation module (RCDAM).
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Figure 12: Diagram of Region Construction

and Interaction Blocks.

optimal weighting scheme for the discriminator input. As in the Dual Attention Mod-

ule (DAM) [61] shown in Figure 8, the feature map extracted by the backbone model

is denoted as F ∈ Rh×w×c
, where the h, w, and c are the height, width, and chan-

nel of the feature map. After this representation is reshaped as F ′ ∈ R(h×w)×c
, the

position-wise attended feature is calculated as: S = σ(F ′T , F ′ ⊗ F ′T ),S ∈ Rc×(h×w)
,

where σ is the Softmax function. Similarly, the channel-wise attended feature is de-

noted as R = σ(F ′, F ′T ⊗ F ′),R ∈ R(h×w)×c
. Then, the final dual attended feature is

concatenated with the the reshaped S ′ ∈ Rh×w×c
and the reshaped R ′ ∈ Rh×w×c

. By

doing this, ADAM enables direct context information exchange among all pixels, miti-

gating the influence of discrepancy in positional priors and local distortions. Relevant

portions of the feature maps of both, xs and xt inputs are enhanced through the atten-

tion and the re-weighted source and target representations are both used to optimize

the corresponding discriminator D.

Regional domain adaptation module. Next, we focus on region relationship of the

panoramic images. Inspired by RANet, we design the RCDAM module based on the

Regional Attention Module (RAM) [178] to configure the information flow between

different regions and within the same region, as illustrated in Figure 11. RCDAM fol-

lows a hierarchical adversarial learning scheme with two-stage discriminators, where

the first stage is identical to the previously described SDAM. The second stage is con-

ducted by the RAM module, which includes two blocks: a Region Construction Block

(RCB) and a Region Interaction Block (RIB) first introduced in RANet. The inputs to

this stage are the feature maps of Fs and Ft after a segmentation network forward pass.

Figure 12 gives a detailed overview of the RCB and RIB building blocks.

Feature confidence domain adaptation module. Compared to the aforementioned

domain adaptation model, our next module FCDAM mainly operates in the feature

confidence space. After the model undergoes the alignment operation in feature- and

output-space, FCDAM is used to further improve the confidence of domain-specific

features given by the backbone architecture. Different from [214], the entropy map

E ∈ [0, 1]h×w is calculated by the given feature map. Thus, the loss of entropy map is:

Lent(F) = −
∑
h,w

(ϕ(F(h,w))log(ϕ(F(h,w)))),
(6)

where ϕ is Sigmoid function applied at each pixel of feature map F ∈ Rh×w
. During

training G with the feature map Fs=G(xs) and Ft=G(xt) from source- and target
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FANet - - 26.90 62.98 10.64 72.41 7.80 20.74 11.77 6.85 3.75 68.11 21.56 87.00 23.73 5.33 49.61 10.65 0.54 16.76 24.15 6.62

FANet S S 32.17 62.16 16.85 78.78 13.67 24.07 19.72 11.42 9.68 71.42 18.22 85.72 32.66 11.75 54.34 17.61 0.00 41.52 29.30 12.30

FANet A S 32.67 62.28 16.86 79.99 17.64 23.96 19.78 12.33 9.58 72.01 19.29 85.91 32.85 11.03 55.75 15.38 0.38 43.53 29.19 12.95

FANet S+A S 33.05 61.74 17.70 80.07 16.38 24.64 19.61 12.04 9.79 72.27 17.94 86.31 33.17 11.47 55.18 15.61 0.04 52.55 28.68 12.82

FANet S+A R 33.02 62.58 19.25 80.07 15.68 24.87 19.27 11.54 9.01 71.95 19.65 86.89 32.18 12.03 55.12 17.37 0.21 44.98 29.93 14.87

FANet S+A+F R 33.52 57.16 25.66 78.43 16.02 26.88 12.76 2.30 7.34 68.73 26.92 87.45 36.51 1.20 62.83 20.16 0.00 68.46 17.86 20.19

FANet-SSL S+A R 34.26 57.92 24.22 78.84 14.94 25.42 13.39 4.82 7.14 69.47 25.77 87.92 36.12 4.27 62.83 22.90 0.00 78.73 16.15 20.02

FANet-SSL S+A+F R 35.67 58.08 28.75 78.19 16.47 26.86 13.78 4.76 7.62 69.01 34.58 87.51 36.12 0.90 64.06 27.50 0.00 84.99 18.13 20.35

Table 1: Per-class results on DensePASS based on FANet [79] with different DA modules on

our P2PDA framework. The size of input is 2048×400. S, A, R, and F represent SDAM, ADAM,

RCDAM, and FCDAM respectively. Feature- and output-space are named as FS andOS for short.

SSL represents the self-supervised learning with pseudo-labels. The first row is source-only.
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DANet - - 28.50 70.68 8.30 75.80 9.49 21.64 15.91 5.85 9.26 71.08 31.50 85.13 6.55 1.68 55.48 24.91 30.22 0.52 0.53 17.00

DANet S S 38.51 61.78 21.11 74.59 22.59 29.93 14.79 15.00 10.17 66.94 19.03 82.57 31.03 21.24 53.26 54.67 37.77 39.40 43.84 31.95

DANet A S 39.16 61.34 20.71 76.52 20.53 30.03 14.19 15.69 10.09 68.60 18.84 82.08 33.16 21.75 57.68 53.88 40.33 41.47 46.11 31.00

DANet S+A S 39.28 62.43 21.89 76.22 21.42 30.54 14.85 14.10 9.76 69.07 19.94 82.84 34.56 19.30 56.51 53.04 42.51 39.47 45.71 32.09

DANet S R 39.46 62.75 23.17 76.65 23.90 30.82 14.84 18.44 10.09 69.10 17.60 82.78 33.51 21.53 55.97 51.78 41.77 36.90 46.11 32.12

DANet S+A R 39.76 63.11 24.63 76.17 25.03 30.56 13.68 15.68 10.53 67.31 22.41 80.15 32.95 21.11 54.39 53.51 43.64 42.20 46.71 31.66

DANet S+A+F R 40.52 62.90 25.58 76.62 24.45 30.37 14.45 16.75 9.96 67.87 19.70 82.04 34.18 22.95 56.99 54.27 44.15 47.75 46.98 31.86

DANet-SSL S+A R 41.39 67.24 27.98 77.18 25.11 25.80 15.33 10.59 6.58 69.24 33.89 80.96 32.18 5.29 69.86 59.70 36.20 65.99 47.47 29.87

DANet-SSL S+A+F R 41.99 70.21 30.24 78.44 26.72 28.44 14.02 11.67 5.79 68.54 38.20 85.97 28.14 0.00 70.36 60.49 38.90 77.80 39.85 24.02

DANet* S R 41.35 68.38 37.26 75.51 26.28 31.81 15.62 8.99 10.33 66.22 31.74 80.68 33.69 16.81 64.81 47.67 28.05 61.81 44.92 34.98

DANet* S+A R 42.47 67.47 30.16 75.27 30.26 37.50 16.19 9.35 9.78 63.14 30.44 77.07 34.82 15.24 64.33 53.70 43.33 71.57 46.80 30.47

DANet* S+A+F R 42.87 66.92 29.97 77.34 30.87 37.85 15.04 11.12 9.60 62.80 31.03 78.08 36.27 18.01 63.66 54.83 42.86 74.22 45.96 28.13

DANet-SSL* S+A R 44.27 70.63 35.30 78.52 25.27 33.51 14.43 13.80 7.31 63.52 34.94 84.31 34.54 19.08 70.05 49.14 48.80 75.11 47.53 35.36

DANet-SSL* S+A+F R 44.66 75.85 34.21 82.58 28.75 35.58 18.51 12.65 12.49 71.33 37.51 89.80 38.68 15.99 76.59 62.81 12.25 61.56 48.18 33.26

Table 2: Per-class results on DensePASS based on DANet [61]. * means adding WildDash.

domain, FCDAM can improve the feature confidence by minimizing the loss of feature

entropy maps. Ladv(G) for FCDAM in Eq. (5) is replaced by:

Lent(G(F)) = λsentLent(G(Fs)) + λtentLent(G(Ft)), (7)

where both λent are same as λadv. Note that, as shown in Figure 8, this FCDAM mod-

ule eases the process of adding feature confidence learning to the original backbone

without modification to the architecture of the whole domain adaptation framework.

3.1.4 Experiments and Analysis

3.1.4.1 Ablation Studies for Segmentation Network

As shown in Table 1, before adaptation, FANet [79] yields a mIoU of 26.90% indicating

large room for improvement in cross-domain generalization. Our framework improves

the result to 32.17% by using the SDAM module in both feature- and output-space

(+5.27% gain). Integrating the attentional ADAM module also leads to a considerable

boost (32.67% in mIoU, a +5.77% gain over the source-only baseline). A combination

of our four modules yields the recognition result of 33.52% in mIoU. Furthermore, the

pseudo-label self-supervised learning boosts our S+A+R and S+A+F+R adaptation re-

sults to 34.26% and 35.67% in mIoU, respectively.
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Apart from using FANet, we conduct experiments with the accuracy-oriented seg-

mentation network DANet [61] (in Table 2). The native source-trained DANet achieves

a mIoU of only 28.50%, highlighting the sensitivity of modern segmentation networks

to the Pinhole-to-Panoramic domain shift. The performance is strongly improved

(+10.01% boost) through SDAMmodules placed in feature- and output-space, achieving

38.51% in mIoU. Similarly, using the ADAMmodule yields a result of 39.16% (a +10.66%

improvement over the source-only baseline). Combining both the SDAM and ADAM

modules again slightly improves the performance (39.28% inmIoU).We further explore

the use of the RCDAM module in output-space, yielding 39.46% mIoU (+10.96% boost

over the baseline). The performance of 39.76% (+11.26% boost with respect to the orig-

inal segmentation network) is achieved by combining three modules: SDAM, ADAM,

and RCDAM. Integrating FCDAM leads 40.52% in mIoU (a +12.02% increase).

3.1.4.2 Comparison with the State-of-the-Art

Before delving into more comparisons, we introduce category definitions of Apol-

loScape [83], IDD [211], and Mapillary Vistas [142] datasets, in which the identical 19

categories following Cityscapes [44] can be obtained by class mapping. Models trained

on ApolloScape [83] perform segmentation with 16 overlapping categories, where the

terrain, sky, and train classes are discarded. The train class in IDD [211] and Mapillary

Vistas [142] is excluded, thus other 18 classes are remained.

Next, we compare our approach with previous panoramic segmentation methods,

including PASS [249] and ECANet [252]. Our P2PDA-driven DANet trained with

Cityscapes andWildDash sources (detailed in Section 3.1.4.3) outperforms these works,

achieving 44.66% by using pinhole data annotations only and successfully transferring

beyond the FoV. Performing another run of the self-supervised learning stage elevates

the mIoU to 48.52%, leading to the best segmentation result.

We now compare P2PDAwith two state-of-the-art approaches for UDA: onemethod

based on adversarial learning (CLAN [130]) and one built on self-training (CRST [311]),

both adapting from Cityscapes to DensePASS. Our proposed framework clearly stands

out in front of other domain adaptation pipelines, improving the performance by ∼10%,

showing the effectiveness of the attention-based design.

To broaden our comparison, we consider multi-supervision methods which benefit

from multi-source data. Seamless-Scene-Segmentation [153] uses instance segmenta-

tion labels for auxiliary supervision, whereas USSS [94] performs multi-source semi-

supervised learning. The outputs of these models are mapped to the 19 classes in

DensePASS to be comparable with other models. ISSAFE [285] merges multiple train-

ing datasets including Cityscapes, KITTI-360 [114], and BDD [260] for safety-critical

accident scene segmentation. Our experiments indicate that all these multi-source

frameworks are sub-optimal in contrast to P2PDA which consistently leads to the best

recognition rates. At the same time, P2PDA is trained on far less trainig data as the

above approaches leverage larger databases, such as BDD/IDD and Mapillay, for train-

ing [252, 285]. Especially for the classes building, truck, train, and bicycle, our frame-

work is a front-runner by a large margin, as seen in Table 3.

To grasp the key prediction differences before and after the domain adaptation with

P2PDA, we compare the Pixel Accuracy (Acc) and IoU in different directions of the
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ERFNet [164] 16.65 63.59 18.22 47.01 9.45 12.79 17.00 8.12 6.41 34.24 10.15 18.43 4.96 2.31 46.03 3.19 0.59 0.00 8.30 5.55

PASS [249] (ERFNet) 23.66 67.84 28.75 59.69 19.96 29.41 8.26 4.54 8.07 64.96 13.75 33.50 12.87 3.17 48.26 2.17 0.82 0.29 23.76 19.46

ECANet (Omni-supervised) [252] 43.02 81.60 19.46 81.00 32.02 39.47 25.54 3.85 17.38 79.01 39.75 94.60 46.39 12.98 81.96 49.25 28.29 0.00 55.36 29.47

CLAN (Adversarial training) [130] 31.46 65.39 21.14 69.10 17.29 25.49 11.17 3.14 7.61 71.03 28.19 55.55 18.86 2.76 71.60 26.42 17.99 59.53 9.44 15.91

CRST-LRENT (Self-training) [311] 31.67 68.18 15.72 76.78 14.06 26.11 9.90 0.82 2.66 69.36 21.95 80.06 9.71 1.25 65.12 38.76 27.22 48.85 7.10 18.08

Seamless (Mapillary) [153] 34.14 59.26 24.48 77.35 12.82 30.91 12.63 15.89 17.73 75.61 33.30 87.30 19.69 4.59 63.94 25.81 57.16 0.00 11.59 19.04

USSS (IDD) [94] 26.98 68.85 5.41 67.39 15.10 21.79 13.18 0.12 7.73 70.27 8.84 85.53 22.05 1.71 58.69 16.41 12.01 0.00 23.58 13.90

SwiftNet (ApolloScape) 14.08 61.21 34.93 57.92 7.85 23.37 13.33 9.04 6.44 50.39 0.00 0.00 0.44 0.00 0.09 0.36 1.83 0.00 0.04 0.24

SwiftNet (Cityscapes) [146] 25.67 50.73 32.76 70.24 12.63 24.02 18.79 7.18 4.01 64.93 23.70 84.29 14.91 0.97 43.46 8.92 0.04 4.45 12.77 8.77

SwiftNet (KITTI-360) 25.00 69.03 27.71 68.07 15.70 16.26 15.29 0.00 4.43 64.71 31.01 84.86 23.02 0.00 45.08 9.72 0.00 0.00 0.00 0.00

SwiftNet (BDD) 24.69 4.26 25.11 74.16 15.53 22.74 11.70 0.00 10.58 70.86 26.55 92.26 25.12 0.00 58.78 31.35 0.00 0.00 0.00 0.00

SwiftNet (Merge3) [285] 32.04 68.31 38.59 81.48 15.65 23.91 20.74 5.95 0.00 70.64 25.09 90.93 32.66 0.00 66.91 42.30 5.97 0.07 6.85 12.66

Ours (Cityscapes) 41.99 70.21 30.24 78.44 26.72 28.44 14.02 11.67 5.79 68.54 38.20 85.97 28.14 0.00 70.36 60.49 38.90 77.80 39.85 24.02

Ours (Cityscapes+WildDash) 44.66 75.85 34.21 82.58 28.75 35.58 18.51 12.65 12.49 71.33 37.51 89.80 38.68 15.99 76.59 62.81 12.25 61.56 48.18 33.26

Ours* (Cityscapes+WildDash) 48.52 76.87 35.70 85.16 33.93 38.86 18.18 10.52 13.71 73.98 41.89 92.08 42.38 8.26 78.62 60.12 42.17 81.21 53.82 34.49

Table 3: Per-class results on DensePASS. Comparison with panoramic semantic segmentation,

unsupervised domain adaptation, and multi-supervision methods. * denotes two rounds of SSL.
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Figure 13: Class-wise Pixel Accuracy (Acc) and IoU comparison in different directions of the

panoramic image, before and after adaptation.

panoramic image in Figure 13, where the blue-tinted regions indicate the section visi-

ble to a forward-facing narrow-FoV pinhole camera. We partition the 360° into 8 direc-

tions and compute the class-wise accuracy of navigation-critical categories separately

for each direction. Our model leads to a considerable performance increase in all di-

rections and for all the classes. While the same panoramic view can be achieved from

multiple cameras surrounding a vehicle, our system enables reliable deployment using

a single camera together with good performances in certain safety-critical directions.

In particular, the recognition quality of sidewalk, person, and motorcycle is improved

by an especially large margin through the domain adaptation paradigm. For the criti-

cal road and car segmentation relevant to autonomous driving, we have reached pixel

accuracy at the level of 90% around the 360°.
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Input Before adaptation Ours Uncertainty map Ground truth

Figure 14: Qualitative examples of semantic segmentation on panoramic images. From left to

right are input images, DANet predictions before adaptation, our results, uncertainty maps

(brighter areas indicate higher uncertainty), and the ground truth. Zoom in for a better view.

3.1.4.3 Comparison on Diverse Source Domains

To further complement the image feature from these perspectives, we consider exploit-

ing a more diverse dataset in the P2PDA framework. To achieve this, we leverage the

WildDash dataset [266] with 4256 pinhole images, pixel-level annotations and more

unstructured surroundings. For the training, we aggregate Cityscapes and WildDash

sources without any complex joint training methodologies. As shown in the last rows

of Table 2, we obtain better mIoU with the expanded training set, achieving 42.87% and

44.66% with different P2PDA variants.

3.1.4.4 Qualitative Analysis

We further demonstrate predictions of our adapted DANet in Figure 14, showing a clear

performance decline of the source-only DANet when applied on panoramic images. In

some of the top examples, the baseline often confuses the segmentation of some fore-

ground categories, such as cars. Even in the last three lines, it cannot distinguish other

categories from the building category in complex scenarios which is clearly better with

the adapted DANet version. Despite lacking sharp boundaries, the adapted model is su-

perior at distinguishing the categories, which is particularly important for autonomous

vehicles. Strategies to augment the details include leveraging disentangled attention to

handle detailed dependencies [252] or directly using detail-sensitive networks [97, 250]

for adaptation. We want to mention that while the uncertainty maps are mainly used

to select high-confident pseudo-labels for the self-supervised learning, they could also

be utilized as an attention cue for the assistance system during driving.
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3.2 distortion-aware transformers for panoramas

This section is based on our work published in CVPR 2022 [283].

3.2.1 Vision Transformer in Panoramas

Panoramic semantic segmentation has received an increasing amount of attention in

fields of Intelligent Transportation, facilitating a holistic and pixel-wise understand-

ing of surrounding environments [134, 250, 280]. Due to the equirectangular projec-

tion [192, 252], panoramic camera data exhibit image distortions and object deforma-

tions (see Figure 15). Further, in the 360° image domain, labeled data is scarce which

necessitates model training to be carried out on semantically matching narrow-FoV

pinhole datasets. These two circumstances culminate in a significantly degraded perfor-

mance on panoramic segmentation as compared to the pinhole counterpart [249]. Con-

sidering the intricacies of panoramas, convolution variants [43, 177, 203] and attention-

augmented models [252] were proposed to mitigate image distortions and enlarge re-

ceptive fields of Convolutional Neural Networks (CNNs). However, they remain sub-

optimal in handling the severe deformations from pinhole- to panoramic data, and

fail in establishing long-range contextual dependencies in the ultra-wide 360° images,

which prove essential for accurate semantic segmentation [61, 296].

To address these challenges, we put forward a Transformer for PAnoramic Semantic

Segmentation (Trans4PASS) architecture, and overcome image distortions and object

deformations through two novel design choices: (1) Our Deformable Patch Embedding

(DPE) is located at the early image sequentialization- and intermediate feature inter-

pretation stages empowering the model to learn characteristic panoramic image distor-

tions and preserve semantics. (2) Within the feature parsing stage, we introduce De-

formable MLP (DMLP) module. This module is capable of mixing patches with learned

spatial offsets, enhancing the ability for global context modeling.

(c) Raw PE

(a) Pinhole image (b) Panoramic image

(d) Deformable PE

Figure 15: Comparison of semantic segmentation with (a) narrow-angle pinhole image and (b)

360° panoramic image. Compared to (c) standard Patch Embeddings, our (d) Deformable Patch

Embedding partitions 360° images while considering distortions, e.g. in sidewalks.
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Figure 16: Comparison of segmentation transformers. Transformers (a) borrow a FPN-like de-

coder [296] from CNN counterparts or (b) adopt a vanilla-MLP decoder [238] for feature fusion,

which lacks patch mixing. (c) Trans4PASS integrates Deformable Patch Embeddings (DPE) and

Deformable MLP (DMLP) to handle distortions (see warped terrain) and mix patches.

3.2.2 Trans4PASS Model

To investigate the transformer model on panoramic semantic segmentation, we create

two versions of Trans4PASS models (T: Tiny and S: Small). We build both with four

stages, where for the tiny model, each stage encompasses 2 layers, for the small ver-

sion the stages have {3, 4, 6, 3} layers. As shown in Figure 16, the pyramidal stages are

inspired by recent transformers [222, 238], which reduce the feature scales in deeper

layers. Given an input image with H×W×3, Trans4PASS makes use of a Patch Em-

bedding (PE) module [238] to split the image into patches. To deal with the severe

distortions in panoramas, a special Deformable Patch Embedding (DPE) module is pro-

posed and applied in the encoder and decoder (Figure 16c). In the encoder, each feature

map fl∈{f1,f2,f3,f4} in the lth stage is down-sampled by the lth stride∈{4, 8, 16, 32}.
The channel dimensions Cl∈{64, 128, 320, 512} grow successively. Different from the

FPN-like decoder [296] and vanilla-MLP based decoder [238] in Figure 16, we propose

the Deformable MLP (DMLP) decoder structure, which mixes feature patches extracted

via DPE. Given the extracted feature hierarchy in multiple scales from the encoder,

four deformable decoder layers process the feature hierarchy into a consistent shape of

H
4×

W
4 ×Cemb, where we set the number of resulting embedding channels Cemb=128.

An ensuing linear layer transforms the 128-channel output to contain the number of

semantic classes of the respective task.

3.2.3 Deformable Patch Embedding

Spherical topological images captured by 360° cameras occupy a polar coordinate sys-

tem with θ∈[0, 2π) and ϕ∈[0,π]. To represent it in 2D space, the spherical data is usu-

ally converted into a panoramic format in euclidean-like space through the equirect-

angular projection. This process leads to severe shape distortions in the projected

panoramic image, as seen in Figure 15. Therefore, a common PE module with fixed

sampling positions does not respect these shape distortions of objects and the overall

scene. Inspired by deformable convolution [47] and overlapping PE [238], we propose

Deformable Patch Embeddings (DPE) and employ them on the input to the encoder and

the decoder, splitting panoramic images and features. Given an input image or feature

map f∈RH×W×Cin , a standard PE module [52, 238] splits it into a flattened 2D patch
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sequence z∈R
(HW

s2
)×(s2·Cin)

, where
HW
s2

is the number of patches and s is the width

and height of each patch. Each element in this sequence is passed through a linear

projection layer transforming it into Cout dimensional embeddings.

Consider a single patch in z representing a rectangle of size s×s with s2 positions.

We can define a position offset relative to a location (i, j)|i, j∈[1, s] in the patch as

∆(i,j)∈N2
. In standard PE, these offsets are fixed and lie in∆(i,j)∈[⌊− s

2⌋, ⌊+
s
2⌋]

2
. Take

e.g. a 3×3 patch, offsets ∆(i,j) relative to the center will lie in [−1, 1]×[−1, 1].
As we want to process panoramic images, which inherit distortions from the

equirectangular projection, we can directly address this degradation in the PE. To this

end, in our Deformable Patch Embedding (DPE), we enable the model to learn a data-

dependent offset∆DPE∈NH×W×2
that can better cope with the spatial connections of

objects, as present in distorted patches. DPE is learnable and predicts relative offsets

based on the original input f . The offset∆DPE
(i,j) is calculated as depicted in Eq. (8).

∆DPE
(i,j) =

[
min(max(−H

r ,g(f)(i,j)), Hr )

min(max(−W
r ,g(f)(i,j)), Wr )

]
, (8)

where g(·) is the offset prediction function, which we implement via the deformable

convolution operation [47]. The hyperparameter r puts a constraint onto the offsets

and is set as 4 in our experiments. The learned offsets make DPE adaptive and as a

result distortion-aware.

3.2.4 Deformable MLP

Apart from the specific design of the encoder, the decoderwith an adaptive feature pars-

ing capacity is crucial in segmentation transformers [238, 281]. As shown in Figure 16a,

some transformers [296] borrow a FPN-like decoder from the CNN counterpart [119],

whose receptive field is limited to the feature resolution in its final stage [222]. Seg-

Former [238] takes inspiration from Multilayer Perceptron-based (MLP) models [206]

and integrates a vanilla MLP to combine features (Figure 16b), but does not consider

potential distortions in the imaging data. Next, we propose a mechanism to associate

self-attention in Transformers and deformation-properties in 360° imagery. Linking

both of these enables profiting from long-range dependencies for dense scene pars-

ing and keeping this improvement when processing panoramic scenes. Achieving this

distortion-aware property at manageable computational complexity, we put forward

the Deformable MLP (DMLP) module. Within each stage of the decoder, DMLP mixes

patches across the channel dimension, but with a particularly large receptive field,

which improves the interpretation of features delivered by the aforementioned DPE.

Figure 17 shows the difference in MLP-based modeling: while the vanilla MLP (see

Figure 17a) performs traditional linear projection without learning any spatial context,

CycleMLP (see Figure 17b) has a limited spatial receptive field by hand-crafted, fixed

offsets in mixing patches and their channels. In Figure 17c, the proposed DMLP gener-

ates a learned spatial offset (top) in a wider range and an adaptive manner. Given the

input feature map f∈RH×W×Cin , the spatial offset∆DMLP
(i,j,c) is predicted channel-wise



34 towards omnidirectional scene understanding

projected

flatten

(a) MLP (b) CycleMLP (c) DMLP

Figure 17: Comparison of MLP blocks. The spatial offsets of DMLP are learned adaptively from

the input feature map.

as in Eq. (8) and is then flattened as∆DMLP
(k,c) , where k∈HW and c∈Cin, for mixing the

flattened patch features z∈RHW×Cin , as:

ẑ(k,c) =

HW∑
k=1

Cin∑
c=1

wT
(k,c) · z(k+∆DMLP

(k,c) ,c), (9)

wherew∈RCin×Cout
is the weight matrix of a fully-connected (FC) layer. As shown in

Figure 16c, the decoder has a similar structure as a MLP-Mixer block [206], consisting

of DPE, DMLP, and MLP modules. The residual connections are kept. Formally, the

four-stage decoder is denoted as:

ẑl = DPE(Cl,Cemb)(zl),∀l∈{1, 2, 3, 4}
ẑl = DMLP(Cemb,Cemb)(ẑl) + ẑl, ∀l
ẑl = MLP(Cemb,Cemb)(ẑl) + ẑl,∀l
ẑl = Up(H/4,W/4)(ẑl),∀l
p = LN(Cemb,CK)(

∑
l=1

ẑl),

(10)

where Up(·) and LN(·) refer to the Upsample- and LayerNorm operations, and p is the

prediction of K classes.

3.2.5 Mutual Prototypical Adaptation

We propose the Mutual Prototypical Adaptation (MPA) method to enable distilling

knowledge via prototypes which we cultivate through source ground truth labels and

target pseudo labels. Pseudo-labels depend on the few remaining mutual properties

from pinhole and panoramic images, e.g., scene distribution at the frontal viewing an-

gle [42, 252]. Specifically, given the source (pinhole) domain with images and annota-

tionsDs={(xs,ys)|xs∈RH×W×3,ys∈{0, 1}H×W×K} and the target (panoramic) domain

Dt={(xt)|xt∈RH×W×3}without annotations, the goal of domain adaptation is to learn
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Figure 18: Diagram of mutual prototypical adaptation.

semantics from the source domain and transfer it to the target domain with K shared

classes. The network is trained in Ds
based on the segmentation loss:

Ls
SEG = −

H,W,K∑
i,j,k=1

ys
(i,j,k)log(p

s
(i,j,k)), (11)

whereps(i,j,k) indicates the probability of pixel x
s
(i,j) predicted as k-th class on the source

domain. To generalize the source pre-trained model to the target data, a typical Self-

Supervised Learning (SSL) scheme optimizes the model based on the pseudo labels

ŷt
(i,j,k) of pixels x

t
(i,j) in the target domain:

Lt
SSL = −

H,W,K∑
i,j,k=1

ŷt
(i,j,k)log(p

t
(i,j,k)), (12)

where the pseudo label is given by the most probable class in the model predictions:

ŷt
(i,j,k) = 1k

.
=argmaxpt

(i,j,:)
. However, training with hard pseudo-labels leaves the model

sensitive and fragile against errors in its own prediction and has only a limited posi-

tive effect on performance. Therefore, we advocate prototype-based alignment in the

feature space, which brings two benefits: (1) it softens the hard pseudo-labels by using

them in feature space instead of as direct targets and (2) it performs complementary

alignment of semantic similarities in feature space.

Specifically, given a set with all ns source feature maps and nt target feature

maps F={f s
1 , . . . ,f s

ns
}
⋃
{f t

1 , . . . ,f t
nt
}, with feature maps f fused from four-stage

multi-scale features f=
∑4

l=1 fl. Each feature map is associated either with its re-

spective source ground-truth label or a target pseudo-label. To compute the mutual

prototype memory M={P1, ...,PK} with prototypes Pk we take the mean of all fea-

ture vectors (pixel-embeddings) from all feature maps in F that share the class la-

bel k. We initialize M by computing the class-wise mean embeddings through the

whole dataset and while training we update the prototype Pk at timestep t online by
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Pt+1
k ←mPt−1

k +(1−m)Pt
k with a momentum m=0.999, where Pt

k is the mean pixel-

embedding among embeddings that share the class-label k in the current mini-batch.

An overview of this procedure is displayed in Figure 18. The mutual prototypical adap-

tation loss is inspired by the knowledge distillation loss [35], which drives the feature

embedding f to be aligned with the prototypical feature map f̂ which is set up, by

stacking the prototypes Pk∈M according to the pixel-wise class distribution in either

the source label or the pseudo-label. The resulting target f̂ has the same shape as f .

For brevity, only the source domain is displayed in Eq. (13), which is similar to the

target domain.

Ls
MPA =− λT2

KL(ϕ(f̂ s/T)||ϕ(f s/T)) − (1− λ)CE(ys,ϕ(f s)), (13)

where KL(·), CE(·), and ϕ(·) are Kullback–Leibler divergence, Cross-Entropy, and

Softmax function, respectively. The temperature T and hyper-parameter λ are 20 and

0.9 in our experiments.

The final loss is combined with a weight of α=0.001 as:

L=Ls
SEG+Lt

SSL+α(Ls
MPA+Lt

MPA). (14)

3.2.6 Experiments and Analysis

3.2.6.1 Pin2Pan Gaps

Domain gap in outdoor scenarios. To quantify the Pin2Pan domain gap in out-

door scenarios, we evaluate over 15 off-the-shelf segmentation models trained on

Cityscapes.
1
Table 4 summarizes the results tested on Cityscapes and DensePASS vali-

dation sets. Although previous transformers [238, 296] reduce the mIoU gap from ∼50%

of CNN-based counterparts to ∼40%, the Pin2Pan gap remains large. The proposed

Trans4PASS architecture has a high performance on pinhole image segmentation and

also outperforms other methods on panoramic segmentation with 44.8% mIoU with-

out any adaptation strategy. It indicates that distortion-aware features and long-range

cues maintained in both low and high levels of Transformers as opposed to the context

learned in higher-levels of CNNs, are important for wide-FoV panoramic segmentation.

Domain gap in indoor scenarios. Table 5 shows Pin2Pan domain gaps in indoor

scenarios. As pinhole and panoramic images from Stanford2D3D are captured under

the same setting, the Pin2Pan gap is smaller compared to the outdoor scenario. Still,

in light of other CNN- and transformer-based methods, the small Trans4PASS ver-

sion achieves 50.20% and 48.34% mIoU in pinhole- and panoramic image segmentation,

yielding the smallest performance drop.

3.2.6.2 Trans4PASS Structural Analysis

Effect of DPE. We compare DPE against DePatch from DPT [37]. While the object-

aware offsets and scales in DPT make patches shift around the object, our DPE is flex-

ible to split image patches and is decoupled from object proposals. As shown in the

1 MMSegmentation: https://github.com/open-mmlab/mmsegmentation.

https://github.com/open-mmlab/mmsegmentation
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Network Backbone CS DP Gaps

SwiftNet [146] ResNet-18 75.4 25.7 -49.7

Fast-SCNN [155] Fast-SCNN 69.1 24.6 -44.5

ERFNet [164] ERFNet 72.1 16.7 -55.4

FANet [79] ResNet-34 71.3 26.9 -44.4

PSPNet [293] ResNet-50 78.6 29.5 -49.1

OCRNet [262] HRNetV2p-W18 78.6 30.8 -47.8

DeepLabV3+ [29] ResNet-101 80.9 32.5 -48.4

DANet [61] ResNet-101 80.4 28.5 -51.9

DNL [256] ResNet-101 80.4 32.1 -48.3

Semantic-FPN [97] ResNet-101 75.8 28.8 -47.0

ResNeSt [275] ResNeSt-101 79.6 28.8 -50.8

OCRNet [262] HRNetV2p-W48 80.7 32.8 -47.9

SETR-Naive [296] Transformer-L 77.9 36.1 -41.8

SETR-MLA [296] Transformer-L 77.2 35.6 -41.6

SETR-PUP [296] Transformer-L 79.3 35.7 -43.6

SegFormer-B1 [238] SegFormer-B1 78.5 38.5 -40.0

SegFormer-B2 [238] SegFormer-B2 81.0 42.4 -38.6

Trans4PASS-T Trans4PASS-T 79.1 41.5 -37.6

Trans4PASS-S Trans4PASS-S 81.1 44.8 -36.3

Table 4: Performance gaps of CNN- and

transformer-based models from Cityscapes

(CS) @ 1024×512 to DensePASS (DP).

Network Backbone SPin SPan Gaps

Fast-SCNN [155] Fast-SCNN 41.71 26.86 -14.85

SwiftNet [146] ResNet-18 42.28 34.95 -7.87

DANet [61] ResNet-50 43.33 37.76 -5.57

DANet [61] ResNet-101 40.09 31.81 -8.28

Trans4Trans-T [281] PVT-T 41.28 24.45 -16.83

Trans4Trans-S [281] PVT-S 44.47 23.11 -21.36

Trans4PASS-T Trans4PASS-T 49.05 46.08 -2.97

Trans4PASS-S Trans4PASS-S 50.20 48.34 -1.86

Table 5: Performance gaps from Stanford2D3D-Pinhole

(SPin) dataset to Stanford2D3D-Panoramic (SPan)

dataset on fold-1.

Network Encoder Decoder GFLOPs #P CS DP

(1) Compare PEs and MLPs:
Trans4PASS MiT-B1* DMLP 13.11 13.10 69.48 36.50

Trans4PASS MiT-B1† CycleMLP 9.83 13.60 73.49 40.16

Trans4PASS MiT-B1† ASMLP 13.40 14.19 73.65 42.05

Trans4PASS MiT-B1† DMLP 12.02 13.93 72.49 45.89 (+9.39)

(2) Compare encoders and decoders:
PVT [222] PVT-T FPN 11.17 12.76 71.46 31.20

PVT [222] PVT-T Vanilla MLP 14.56 12.84 70.60 32.85

PVT [222] PVT-T DMLP 13.11 13.10 71.75 35.18 (+3.98)

Trans4PASS PVT-T† DMLP 13.18 13.10 69.62 36.50 (+5.30)

SegFormer [238] MiT-B1 Vanilla MLP 13.27 13.66 74.93 39.02

SegFormer [238] MiT-B1 FPN 9.88 13.58 73.96 41.14

SegFormer [238] MiT-B1 DMLP 11.82 13.92 73.10 45.14 (+6.12)

Trans4PASS MiT-B1† DMLP 12.02 13.93 72.49 45.89 (+6.87)

Table 6: Trans4PASS structural analysis. * and † denote
DPT [37] and our DPE. #P: #Parameters in millions.

Models are fromCityscapes (CS)@ 512×512 to DenseP-
ASS (DP) @ 2048×400.

first group of Table 6, compared with DPT, our DPE-based Trans4PASS adds +3.01%

and +9.39% mIoU on Cityscapes and DensePASS, respectively.

Effect of DMLP. To ablate the effect of different MLP-like modules embedded in the

decoder of Trans4PASS, we substitute DMLP by CycleMLP [34] and ASMLP [112] mod-

ules. DMLP is lighter than ASMLP with fewer GFLOPs, parameters and it is more adap-

tive as opposed to the fixed offsets in CycleMLP. The first group of Table 6 shows that

DMLP outperforms both modules with 3% to 5% in mIoU.

Effect of encoders and decoders. With the same encoder as PVT, a DMLP-based

decoder brings a +3.98% improvement compared to the FPN- and MLP-based decoders,

as shown in the second group of Table 6. When our DPE is applied in the early stage of

the PVT encoder, further improvements of +5.30% can be made. Similar improvement

results (+6.12% and +6.87%) are evident in experimentswith a SegFormer encoder. Over-

all, these results show that DPE and DMLP can be integrated into diverse backbones,

significantly improving distortion-adaptability for panoramic segmentation.

3.2.6.3 Pin2Pan Adaptation

Ablations in outdoor scenarios. To verify the generalization ability of applying

Trans4PASS in adaptation methods, FANet and DANet used in P2PDA [134] are re-

placed by Trans4PASS-T/-S, as visible in Table 7b. Trans4PASS brings >10% perfor-

mance gains due to the captured long-range contexts and distortion-aware features.

Without the advantage of a superior network architecture, MPA achieves 51.93% and

54.77%with Trans4PASS-T and -Smodels, surpassing 51.05% and 52.91% of P2PDA. The

second and third ablation groups of Table 7b show how Trans4PASS-T and -S match

up against each other. Individually, MPA is on par with the SSL-based method. When

combining both, MPA and SSL, Trans4Pass-S obtains new state-of-the-art performance
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ERFNet [164] 16.65 63.59 18.22 47.01 9.45 12.79 17.00 8.12 6.41 34.24 10.15 18.43 4.96 2.31 46.03 3.19 0.59 0.00 8.30 5.55

PASS (ERFNet) [249] 23.66 67.84 28.75 59.69 19.96 29.41 8.26 4.54 8.07 64.96 13.75 33.50 12.87 3.17 48.26 2.17 0.82 0.29 23.76 19.46

ECANet (Omni-supervised) [252] 43.02 81.60 19.46 81.00 32.02 39.47 25.54 3.85 17.38 79.01 39.75 94.60 46.39 12.98 81.96 49.25 28.29 0.00 55.36 29.47

CLAN (Adversarial) [130] 31.46 65.39 21.14 69.10 17.29 25.49 11.17 3.14 7.61 71.03 28.19 55.55 18.86 2.76 71.60 26.42 17.99 59.53 9.44 15.91

CRST (Self-training) [311] 31.67 68.18 15.72 76.78 14.06 26.11 9.90 0.82 2.66 69.36 21.95 80.06 9.71 1.25 65.12 38.76 27.22 48.85 7.10 18.08

P2PDA (Adversarial) [280] 41.99 70.21 30.24 78.44 26.72 28.44 14.02 11.67 5.79 68.54 38.20 85.97 28.14 0.00 70.36 60.49 38.90 77.80 39.85 24.02

SIM (Self-training) [227] 44.58 68.16 32.59 80.58 25.68 31.38 23.60 19.39 14.09 72.65 26.41 87.88 41.74 16.09 73.56 47.08 42.81 56.35 47.72 39.30

PCS (Self-training) [264] 53.83 78.10 46.24 86.24 30.33 45.78 34.04 22.74 13.00 79.98 33.07 93.44 47.69 22.53 79.20 61.59 67.09 83.26 58.68 39.80

USSS (IDD) [94] 26.98 68.85 5.41 67.39 15.10 21.79 13.18 0.12 7.73 70.27 8.84 85.53 22.05 1.71 58.69 16.41 12.01 0.00 23.58 13.90

USSS (Mapillary) [94] 30.87 71.01 31.85 76.79 12.13 23.61 11.93 3.23 10.15 73.11 31.24 89.59 16.05 3.86 65.27 24.46 18.72 0.00 9.08 14.48

Seamless (Mapillary) [153] 34.14 59.26 24.48 77.35 12.82 30.91 12.63 15.89 17.73 75.61 33.30 87.30 19.69 4.59 63.94 25.81 57.16 0.00 11.59 19.04

SwiftNet (Cityscapes) [146] 25.67 50.73 32.76 70.24 12.63 24.02 18.79 7.18 4.01 64.93 23.70 84.29 14.91 0.97 43.46 8.92 0.04 4.45 12.77 8.77

SwiftNet (Merge3) [285] 32.04 68.31 38.59 81.48 15.65 23.91 20.74 5.95 0.00 70.64 25.09 90.93 32.66 0.00 66.91 42.30 5.97 0.07 6.85 12.66

Trans4PASS-S (ours) 55.25 78.39 41.62 86.47 31.56 45.47 34.02 22.98 18.33 79.63 41.35 93.80 49.02 22.99 81.05 67.43 69.64 86.04 60.85 39.20

Trans4PASS-S (ours)* 56.38 79.91 42.68 86.26 30.68 42.32 36.61 24.81 19.64 78.80 44.73 93.84 50.71 24.39 81.72 68.86 66.18 88.62 63.87 46.62

(a) Per-class results on DensePASS. Comparison with state-of-the-art panoramic segmentation, domain

adaptation, and multi-supervision methods. * means multi-scale (MS) evaluation.

Network Method mIoU(%)

FANet P2PDA 35.67

DANet P2PDA 41.99

Trans4PASS-T P2PDA 51.05

Trans4PASS-S P2PDA 52.91

Trans4PASS-T - 45.89

Trans4PASS-T Warm-up 50.56

Trans4PASS-T SSL 51.86

Trans4PASS-T MPA 51.93

Trans4PASS-T MPA + SSL 53.26

Trans4PASS-T MPA + SSL + MS 54.72

Trans4PASS-S - 48.73

Trans4PASS-S Warm-up 52.59

Trans4PASS-S SSL 54.67

Trans4PASS-S MPA 54.77

Trans4PASS-S MPA + SSL 55.25

Trans4PASS-S MPA + SSL + MS 56.38

(b) Results on DensePASS.

Network Method mIoU(%)

DANet - 40.28

DANet P2PDA 42.26

PVT-Tiny - 24.45

PVT-Tiny P2PDA 39.66

PVT-Small - 23.11

PVT-Small P2PDA 43.10

Trans4PASS-T - 46.08

Trans4PASS-T MPA 47.48

Trans4PASS-S - 48.34

Trans4PASS-S MPA 52.15

DANet Supervised 44.15

Trans4PASS-S Supervised 53.31

(c) Results on SPan @ fold-1.

Method Input mIoU(%)

S
u
p
e
r
v
i
s
e
d

StdConv [203] RGB 32.6

CubeMap [203] RGB 33.8

DistConv [203] RGB 34.6

UNet [166] RGB-D 35.9

GaugeNet [43] RGB-D 39.4

UGSCNN [86] RGB-D 38.3

HexRUNet [269] RGB-D 43.3

Tangent [58] (ResNet-101) RGB 45.6

HoHoNet [192] (ResNet-101) RGB 52.0

Trans4PASS (Small) RGB 52.1

Trans4PASS (Small+MS) RGB 53.0

U
D
A

Trans4PASS (Source only) RGB 48.1

Trans4PASS (MPA) RGB 50.8

Trans4PASS (MPA+MS) RGB 51.2

(d) Results on SPan @ 3 folds.

Table 7: Results and studies of Pin2Pan domain adaptation in indoor and outdoor scenarios.

on DensePASS, reaching 55.25% in mIoU and 56.38% with multi-scale evaluation. This

verifies that MPAworks collaboratively with pseudo labels and provides a complemen-

tary feature alignment incentive.

Omnidirectional segmentation. To showcase the effectiveness of MPA on omnidi-

rectional segmentation, the panoramic image is divided into 8 directions and evaluated

individually. The polar diagram in Figure 19 demonstrates that MPA brings uniform

improvement to omnidirectional segmentation. Apart from benefiting the stuff classes

(road, sidewalk, and terrain), MPA improves the segmentation of object classes, such as

person and truck. Due to the panorama boundary at 180°, IoUs ofmotorcycle and bicycle

are impacted, still consistent and large accuracy boosts with MPA in all directions for

different classes are observed.

Comparison with outdoor methods. In Table 7a, we compare our solution with re-

cent panoramic segmentation [249, 252] and domain adaptation [130, 227, 264, 280, 311]

methods. Following [280], we also involve multi-supervision methods [94, 153, 285]

which require much more data, to broaden the comparison. MPA-Trans4PASS arrives

at the highest mIoU of 56.38%, outperforming the previous best P2PDA-SSL on DenseP-

ASS by 14.39% and the prototypical method [264] adapted by Trans4PASS. Trans4PASS

obtains top scores on 10 of 19 classes. Notably, our solution shows improvements on

challenging categories, e.g., truck, train, motorcycle, and bicycle.

Adaptation results in indoor scenarios. The experiments in Table 7c are conducted

according to the fold-1 data splitting [5] on the Stanford-Panoramic dataset. Our MPA

surpasses the previous state-of-the-art P2PDA with DANet and it is even better than
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Figure 19: Comparison of omnidirectional segmentation before and after our MPA.

the one adapted by a PVT-Small backbone. Overall, our Trans4PASS-S with MPA

achieves the highest mIoU (52.15%), even reaching the level of the fully-supervised

Trans4PASS-S (53.31%) which does have access to panoramic image annotations.

Comparison with indoor methods. Before and after adaptation in Table 7d, our

Trans4PASS-S model (∼14M parameters) obtains a high mIoU score (51.2%), even com-

parable to existing fully-supervised and transfer-learning methods, which are based

on ResNet-101 backbones (∼44M parameters and 52.0% mIoU).

3.2.6.4 Qualitative Analysis

Panoramic segmentation visualizations. Figure 20a and Figure 20c demonstrate

that Trans4PASS handles the distortion of panoramic images very well as compared to

indoor [222] and outdoor [238] baseline models. Especially, the segmentation results

for sidewalks and pedestrians from Trans4PASS have more accurate classifications and

boundary distinctions, while the baseline model is confused by the distorted shape and

space, due to the lacking capacity to learn long-range contexts and distortion-aware

features. In the indoor case of Figure 20c, the door and chair categories are barely

detected by the baseline model, but our Trans4PASS can output precise segmentation

masks on both objects.

DPE and DMLP visualizations. Figure 20b and Figure 20d visualize effects of De-

formable PE from four stages of Trans4PASS. The red dots denote the centers of a

selected patch (size of s×s) sequence. Given learned offsets from DPE, s2 yellow sam-

pling dots are shifted to semantic-relevant areas in a flexible way, where each pixel is

adaptive to distorted objects and space, like the deformed building and sidewalk (see

Stage-4DPE in Figure 20b). Besides, to verify the effect of DeformableMLP, two feature

map pairs from the 75th channel before and after DMLP are displayed in Figure 20e

and 20f. The feature maps (indoors/outdoors) after DMLP present semantically recog-

nizable responses, e.g. on regions of distorted sidewalks or doors, as compared to those

before the DMLP module.
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Figure 20: Qualitative comparisons, DPE and DMLP visualizations. (a) and (c) are predictions,

where the baseline has neither DPE/DMLP nor MPA. The • dots in (b) and (d) are sampling

points shifted by learned offsets w.r.t. the • patch center of DPE (from decoder). (e) and (f)

show the #75 channel maps of stage-3 before and after DMLP. Zoom in for better view.

3.3 chapter conclusion

Omnidirectional scene understanding through panoramic semantic segmentation

is a challenging task due to the large field-of-view and the presence of distortions in

panoramic images. In this chapter, we propose two novel techniques for panoramic

semantic segmentation, as the first research theme in the field of ITS:

• Pinhole-to-Panoramic DomainAdaptation (P2PDA): A new setting of unsuper-

vised domain adaptation (UDA) is investigated, with the aim of transferring model

from the label-rich pinhole image domain to the label-scare panoramic image do-

main, and benchmarking panoramic semantic segmentation.

• Distortion-aware Transformers for Panoramas (Trans4PASS): This research

mainly investigates the potential of the long-range modeling ability of vision trans-

formers to address the challenges of high distortion and deformation in panoramic

images, and study a unified solution to address indoor and outdoor scenes.

Here is a more detailed overview of the contributions of each section in this chapter:

Contribution 1: We construct a new dataset, DensePASS, for benchmarking

panoramic semantic segmentation. The dataset provides unlabelled panoramas for

domain adaptation, along with a test set containing pixel-wise manual labels.

Contribution 2: We propose a novel unsupervised domain adaptation framework,

P2PDA, to transfer models from pinhole to panoramic image domain by effectively

addressing the domain shift between pinhole and panoramic images.

Contribution 3: We create a novel distortion-aware vision transformer for

panoramic semantic segmentation, Trans4PASS, to handle the distortions in

panoramic images and achieve state-of-the-art results on both the indoor and out-

door 360° datasets.



4
TOWARDS ROBUST SCENE

UNDERSTAND ING

In this chapter, we present the second research theme in ITS, i.e., robust scene

understanding through multimodal semantic segmentation. The challenge lies

in establishing a unified fusion mechanism for diverse sensory data, such as

commonly-used RGB, Depth, LiDAR, Event, Thermal, Polarization, and more.

To achieve this, our contributions are two-fold: (1) We pioneer a unified cross-

modal fusion model for RGB-X semantic segmentation, i.e., CMX. It is presented

in Section 4.1, based on our work published in Transactions on ITS 2023 [278]. (2)

To further enhance robustness, an advanced version, i.e., CMNeXt, is designed

for arbitrary-modal semantic segmentation, capable of fusing up to 80 modal-

ities. Besides, we create a novel dataset DeLiVER that involves 4 modalities, 5

weather conditions, and 4 different sensor failure cases. This dataset is presented

in Section 4.2, based on our CVPR 2023 publication [279].

4.1 cross-modal fusion for rgb-x semantic segmentation

This section is based on our work published in Transactions on ITS 2023 [278].

4.1.1 RGB-X Fusion Paradigms

Robust scene understanding is essential for safe autonomous driving in Intelligent

Transportation Systems (ITS) [285]. Thanks to the development of sensor technolo-

gies, there is a growing variety of modular sensors which are highly applicable for ITS

applications. Different types of sensors can supply RGB images with rich complemen-

tary information (see Figure 21). For example, depth measurement can help identify

the boundaries of objects and offer geometric information of dense scene elements [36,

82]. Thermal images facilitate to discern different objects through their specific infrared

imaging [71, 287]. Besides, polarimetric- and event information are advantageous for

perception in specular- and dynamic real-world scenes [235, 285]. LiDAR data can pro-

vide spatial information in driving scenarios [309]. Thereby, a research question arises:

How to construct a unified model to incorporate the fusion of RGB with various modalities,

i.e., RGB-X semantic segmentation as illustrated in Figure 21?

Existing multimodal semantic segmentation methods can be divided into two cate-

gories: (1) The first category [20, 31] employs a single network to extract features from

RGB and another modality, which are fused in the input stage (see Figure 22a). (2) The

second type of approaches [36, 48, 287] deploys two backbones to perform feature

41
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Feature Feature

CM-FRM

FFM

Semantic Segmentation

RGB + Depth RGB + Thermal RGB + Polarization RGB + Event RGB + LiDAR

Figure 21: RGB-X semantic segmentation unifies diverse sensing modality combinations: RGB-

Depth, -Thermal, -Polarization, -Event, and -LiDAR segmentation. CMX is established with

Cross-Modal Feature Rectification Module (CM-FRM) to calibrate the features of RGB- and X-

modality and Feature Fusion Module (FFM) to perform the exchange of long-range context and

combine features for RGB-X semantic segmentation.

extraction from RGB- and another modality separately then fuses the extracted two

features into one feature for semantic prediction (see Figure 22b). However, both types

are usually well-tailored for a single specific modality pair (e.g., RGB-D or RGB-T), yet

hard to be extended to operate with other modality combinations. For example, regard-

ing our observation in Figure 23, ACNet [82] and SA-Gate [36], designed for RGB-D

data, perform less satisfactorily in RGB-T tasks. To flexibly cover various sensor com-

binations for ITS applications, a unified RGB-X semantic segmentation, is desirable and

advantageous. Its benefits are two-fold: (1) It can save research and engineering efforts,

with no need to adapt architectures for a specific modality combination scenario. (2) It

enables that a system equipped with multimodal sensors can readily leverage new sen-

sors when they become available [66, 193], which is conducive to robust scene percep-

tion. For this purpose, in this work, we spend efforts to construct a modality-agnostic

framework for unified RGB-X semantic segmentation.

Compared to existing multimodal fusion modules [48, 82, 235] based on ConvNets,

it remains unclear whether potential improvements on RGB-X semantic segmentation

can be materialized via vision transformers [52, 125, 207, 212]. Crucially, while some
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(a) Input fusion (b) Feature fusion (c) Interactive fusion

Figure 22: Comparison of different fusion methods. (a) Input fusion merges inputs with

modality-specific operations [20, 31]. (b) Feature fusion applies channel attention to fuse fea-

tures in a unidirectional manner [36, 82]. (c) Our interactive fusion incorporates bidirectional

cross-modal feature rectification, and sequence-to-sequence cross-attention, yielding compre-

hensive cross-modal interactions.

previous works [36, 82] use a simple global multimodal interaction strategy, it does

not generalize well across different sensing data combinations [287]. We hypothesize

that for RGB-X semantic segmentation with various supplements and uncertainties,

comprehensive cross-modal interactions should be provided, to fully exploit the poten-

tial of cross-modal complementary features. To tackle the aforementioned challenges,

we propose CMX, a universal cross-modal fusion framework for RGB-X semantic seg-

mentation in an interactive fusion manner (Figure 22c). Specifically, CMX is built as a

two-stream architecture, i.e., RGB- and X-modal streams.
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Figure 23: Performance comparison on different RGB-X semantic segmentation benchmarks.

SA-Gate [36] designed for RGB-D data (e.g., on NYUDepth V2 dataset [185]), is less effective on

RGB-T or RGB-E tasks. Our modality-agnostic CMX, for the first time, outperforms modality-

specific methods on five segmentation tasks.
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Figure 24: a) Overview of CMX for RGB-X semantic segmentation. The inputs are RGB and

another modality (e.g., Depth, Thermal, Polarization, Event, or LiDAR). b) Cross-Modal Feature

RectificationModule (CM-FRM) with colored arrows as information flows of the twomodalities.

c) Feature Fusion Module (FFM) with two stages of information exchange and fusion.

4.1.2 CMX Framework

The overview of CMX is shown in Figure 24a. We use two parallel branches to ex-

tract features from RGB- and X-modal inputs, which can be RGB-Depth, -Thermal,

-Polarization, -Event, -LiDAR data, etc. Specifically, our proposed framework for RGB-

X semantic segmentation adopts a two-branch design to effectively extract features

from both RGB- and X-modal inputs. The two branches involve the simultaneous pro-

cessing of RGB- and X-modal data in a parallel but interactive manner, each of which

is designed to capture the unique characteristics of the respective input modality.

4.1.2.1 Cross-Modal Feature Rectification

To perform feature rectification between parallel streams at each stage in feature

extraction, we propose a novel Cross-Modal Feature Rectification Module (CM-FRM),

as shown in Figure 24b. CM-FRM processes features in two dimensions, including

channel-wise and spatial-wise feature rectifications, which together offer a holistic cal-

ibration, enabling better multimodal feature extraction and interaction.

Channel-wise feature rectification.We embed bi-modal featuresRGBin∈RH×W×C

and Xin∈RH×W×C
along the spatial axis into two attention vectors WC

RGB∈RC
and

WC
X∈RC

. Different from previous channel-wise attention methods [33, 36, 48], we ap-

ply both global max pooling and global average pooling to RGBin and Xin along the
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channel dimension to retain more information. We concatenate the four resulted vec-

tors, having Y∈R4C
. Then, anMLP is applied, followed by a sigmoid function to obtain

WC∈R2C
from Y, which will be split intoWC

RGB and WC
X :

WC
RGB,WC

X = Fsplit(σ(Fmlp(Y))), (15)

where σ(·) denotes the sigmoid function. The channel-wise rectification is formed as:

RGBC
rec = WC

X ⊛Xin,

XC
rec = WC

RGB ⊛ RGBin,
(16)

where ⊛ denotes channel-wise multiplication.

Spatial-wise feature rectification. The bi-modal inputs RGBin and Xin will be

concatenated and embedded into two spatial weight maps: WS
RGB∈RH×W

and

WS
X∈RH×W

. The embedding operation has two 1×1 convolution layers assembled

with a RELU function. Afterward, a Sigmoid function is applied to obtain the embed-

ded feature map F∈RH×W×2
, which is further split into two weight maps. The process

to obtain the spatial weight maps is formulated as:

F = Conv1×1(RELU(Conv1×1(RGBin ∥ Xin))), (17)

WS
RGB,WS

X = Fsplit(σ(F)). (18)

Similar to channel-wise rectification, spatial-wise rectification is formulated as:

RGBS
rec = WS

X ∗Xin,

XS
rec = WS

RGB ∗ RGBin,
(19)

where ∗ denotes spatial-wise multiplication. The whole rectified feature for both

modalities RGBout and Xout is organized as:

RGBout = RGBin + λCRGBC
rec + λSRGBS

rec,

Xout = Xin + λCX
C
rec + λSX

S
rec.

(20)

λC and λS are two hyperparameters. We set them both as 0.5 as default. RGBout and

Xout are the rectified features after the comprehensive calibration, which will be sent

into the next stage for feature fusion.

4.1.2.2 Feature Fusion

After obtaining multiple feature maps, we build a two-stage Feature Fusion Module

(FFM) to enhance the information interaction and combination. As shown in Fig-

ure 24(c), in the information exchange stage (Stage 1), the two branches are still main-

tained, and a cross-attention mechanism is designed to globally exchange information

between the two branches. In the fusion stage (Stage 2), the concatenated feature is

transformed into the original size via a mixed channel embedding.

Information exchange stage.At this stage, the bi-modal features will exchange their

information via a symmetric dual-path structure. For brevity, we take the X-modal path

for illustration. We first flatten the input feature with size RH×W×C
to RN×C

, where
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Dataset Image Event Train/Val Label Resolution Class

DDD17 [3] Gray-scale 50Hz 15950/3890 pseudo 346 × 260 6

DSEC-Semantic [199] Gray-scale 20Hz 8082/2809 pseudo 640 × 440 11

EventScape [64] RGB 500Hz 122329/22493 synthetic 512 × 256 12

Table 8: Comparison of event-based semantic segmentation datasets.

N=H×W. Afterward, a linear embedding is used to generate the residual vector Xres

and interactive vector Xinter
with the size RN×Ci . We further put forward an efficient

cross-attentionmechanism [179] applied to these two interactive vectors from different

modal paths, which will carry out sufficient information exchange across modalities.

Specifically, the interactive vectors will be embedded into K and V for each head, and

both sizes of them areRN×Chead . The output is obtained bymultiplying the interactive

vector and the context vector from the other modality path, namely a cross-attention

process, and it is depicted in the following equations:

GRGB = KT
RGBVRGB, GX = KT

XVX, (21)

URGB = Xinter
RGB SoftMax(GX), UX = Xinter

X SoftMax(GRGB). (22)

Note that G denotes the global context vector, while U indicates the attended result.

To realize the attention from different representation subspaces, we remain the multi-

headmechanism, where the number of headsmatches the transformer backbone. Then,

the attended result vectorU and the residual vector Xres
are concatenated. Finally, we

apply a second linear embedding and resize the feature to RH×W×C
.

Fusion stage. In the second stage of FFM, i.e., the fusion stage, we use a channel

embedding to merge features from two paths, which is realized via 1×1 convolution

layers. Further, inspired byMix-FFN [238] and ConvMLP [104], we add onemore depth-

wise convolution layerDWConv3×3 to realize a skip-connected structure. In this way,
the merged features with the size RH×W×2C

are fused into the final output with the

size of RH×W×C
for feature decoding.

4.1.3 RGB-Event Semantic Segmentation Benchmark

A large-scale multimodal RGB-Event semantic segmentation benchmark is not avail-

able. To fill this gap, we create an RGB-Event multimodal semantic segmentation

benchmark
1
based on the EventScape dataset [64], which is originally designed for

depth estimation. The comparison between three event-based semantic segmentation

datasets is presented in Table 8. Unlike previous datasets using gray-scale images and

pseudo labels, the RGB and the synthetic labels are available in our benchmark, which

can provide more sufficient information and more precise annotations. To maintain

data diversity from the original sequences generated by CARLA simulator [53], we

select one frame from every 30 frames, obtaining 4077/749 images from 122329/22493

for training/evaluation. The images have a 512×256 resolution and are annotated with

12 semantic classes, including Vehicle, Building,Wall, Vegetation, Road, Pole, RoadLines,

Fences, Pedestrian, TrafficSign, Sidewalk, and TrafficLight.

1 RGB-Event: https://paperswithcode.com/sota/semantic-segmentation-on-eventscape.

https://paperswithcode.com/sota/semantic-segmentation-on-eventscape
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(a) Results on NYU Depth V2 [185].

Method mIoU (%) Acc (%)

3DGNN [157] 43.1 -

Kong et al. [98] 44.5 72.1

LS-DeconvNet [41] 45.9 71.9

CFN [115] 47.7 -

ACNet [82] 48.3 -

RDF-101 [150] 49.1 75.6

SGNet [31] 51.1 76.8

ShapeConv [20] 51.3 76.4

NANet [272] 52.3 77.9

SA-Gate [36] 52.4 77.9

CMX (MiT-B2) 54.1 78.7

CMX (MiT-B2)
∗

54.4 79.9

CMX (MiT-B4) 56.0 79.6

CMX (MiT-B4)
∗

56.3 79.9

CMX (MiT-B5) 56.8 79.9

CMX (MiT-B5)
∗

56.9 80.1

(b) Results on Stanford2D3D [4].

Method mIoU (%) Acc (%)

Depth-aware CNN [220] 39.5 65.4

MMAF-Net-152 [59] 52.9 76.5

ShapeConv-101 [20] 60.6 82.7

CMX (MiT-B2) 61.2 82.3

CMX (MiT-B4) 62.1 82.6

(c) Results on SUN-RGBD [188].

Method mIoU (%) Acc (%)

3DGNN [157] 45.9 -

RDF-152 [150] 47.7 81.5

CFN [115] 48.1 -

D-CNN [220] 42.0 -

ACNet [82] 48.1 -

TCD [265] 49.5 83.1

SGNet [31] 48.6 82.0

SA-Gate [36] 49.4 82.5

NANet [272] 48.8 82.3

ShapeConv [20] 48.6 82.2

CMX (MiT-B2)
∗

49.7 82.8

CMX (MiT-B4)
∗

52.1 83.5

CMX (MiT-B5)
∗

52.4 83.8

(d) Results on ScanNetV2 test set [45].

Method Modal mIoU (%)

PSPNet [294] RGB 47.5

AdapNet++ [209] RGB 50.3

3DMV (2d-proj) [46] RGB-D 49.8

FuseNet [73] RGB-D 53.5

SSMA [209] RGB-D 57.7

GRBNet [158] RGB-D 59.2

MCA-Net [181] RGB-D 59.5

DMMF [182] RGB-D 59.7

CMX (MiT-B2) RGB-D 61.3

(e) Results on Cityscapes val set [44].

Method Modal Backbone mIoU (%)

SwiftNet [147] RGB ResNet-18 70.4

ESANet [176] RGB ResNet-50 79.2

GSCNN [200] RGB WideResNet-38 80.8

CCNet [85] RGB ResNet-101 81.3

DANet [61] RGB ResNet-101 81.5

ACFNet [271] RGB ResNet-101 81.5

SegFormer [238] RGB MiT-B2 81.0

SegFormer [238] RGB MiT-B4 82.3

RFNet [195] RGB-D ResNet-18 72.5

PADNet [242] RGB-D ResNet-50 76.1

Kong et al. [98] RGB-D ResNet-101 79.1

ESANet [176] RGB-D ResNet-50 80.0

SA-Gate [36] RGB-D ResNet-50 80.7

SA-Gate [36] RGB-D ResNet-101 81.7

AsymFusion [225] RGB-D Xception65 82.1

SSMA [209] RGB-D ResNet-50 82.2

CMX RGB-D MiT-B2 81.6

CMX RGB-D MiT-B4 82.6

Table 9: Results on five RGB-Depth datasets.
∗
denotes multi-scale test.

4.1.4 Experiments and Analysis

4.1.4.1 Results on RGB-Depth Datasets

We first conduct experiments on RGB-D semantic segmentation datasets. The results

are grouped in Table 9.

NYU Depth V2. The results on the NYU Depth V2 dataset are in Table 9a. It can

be easily seen that our approach achieves leading scores. The proposed method with

MiT-B2 already exceeds previous methods, attaining 54.4% in mIoU. Our CMX models

based on MiT-B4 and -B5 further dramatically improve the mIoU to 56.3% and 56.9%,

clearly standing out in front of all state-of-the-art approaches. The best CMX model

even reaches superior results than recent strong pretraining-based methods [7, 66] like

Omnivore [66] that uses images, videos, and single-view 3D data for supervision.

Stanford2D3D. In Table 9b, our CMX achieves state-of-the-art mIoU. B2-based CMX

surpasses the previous best ShapeConv [20] based on ResNet-101 [74] and our model

based on MiT-B4 further reaches mIoU to 62.1%. The results demonstrate the effective-

ness and learning capacity of our approach on such a large RGB-D dataset.

SUN-RGBD. As presented in Table 9c, our method achieves leading performances on

the SUN-RGBD dataset. Our interactive cross-modal fusion approach (Figure 22c) ex-

ceeds previous input fusion methods (Figure 22a), e.g., SGNet [31] and ShapeConv [20],

as well as feature fusion methods (Figure 22b), e.g., ACNet [82] and SA-Gate [36]. In

particular, with MiT-B4 and -B5, CMX elevates the mIoU to >52.0%. CMX is also better

than multi-task methods like PAP [291] and TET [288].

ScanNetV2. We test our CMX model with MiT-B2 on the ScanNetV2 benchmark. As

shown in Table 9d, it can be clearly seen that CMX outperforms RGB-only methods

and achieves the top mIoU of 61.3% among the RGB-D methods. On the ScanNetV2

leaderboard, methods like BPNet [80] reach higher scores by using 3D supervision
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Method Modal Unlabeled Car Person Bike Curve Car Stop Guardrail Color Cone Bump mIoU

ERFNet [164] RGB 96.7 67.1 56.2 34.3 30.6 9.4 0.0 0.1 30.5 36.1

DANet [61] RGB 96.3 71.3 48.1 51.8 30.2 18.2 0.7 30.3 18.8 41.3

PSPNet [294] RGB 96.8 74.8 61.3 50.2 38.4 15.8 0.0 33.2 44.4 46.1

HRNet [218] RGB 98.0 86.9 67.3 59.2 35.3 23.1 1.7 46.6 47.3 51.7

SegFormer-B2 [238] RGB 97.9 87.4 62.8 63.2 31.7 25.6 9.8 50.9 49.6 53.2

SegFormer-B4 [238] RGB 98.0 88.9 64.0 62.8 38.1 25.9 6.9 50.8 57.7 54.8

MFNet [71] RGB-T 96.9 65.9 58.9 42.9 29.9 9.9 0.0 25.2 27.7 39.7

SA-Gate [36] RGB-T 96.8 73.8 59.2 51.3 38.4 19.3 0.0 24.5 48.8 45.8

Depth-aware CNN [220] RGB-T 96.9 77.0 53.4 56.5 30.9 29.3 8.5 30.1 32.3 46.1

ACNet [82] RGB-T 96.7 79.4 64.7 52.7 32.9 28.4 0.8 16.9 44.4 46.3

PSTNet [184] RGB-T 97.0 76.8 52.6 55.3 29.6 25.1 15.1 39.4 45.0 48.4

RTFNet [196] RGB-T 98.5 87.4 70.3 62.7 45.3 29.8 0.0 29.1 55.7 53.2

FuseSeg [198] RGB-T 97.6 87.9 71.7 64.6 44.8 22.7 6.4 46.9 47.9 54.5

AFNet [243] RGB-T 98.0 86.0 67.4 62.0 43.0 28.9 4.6 44.9 56.6 54.6

ABMDRNet [287] RGB-T 98.6 84.8 69.6 60.3 45.1 33.1 5.1 47.4 50.0 54.8

FEANet [48] RGB-T 98.3 87.8 71.1 61.1 46.5 22.1 6.6 55.3 48.9 55.3

DHFNet [18] RGB-T 97.7 87.6 71.7 61.1 39.5 42.4 9.5 49.3 56.0 57.2

GMNet [305] RGB-T 97.5 86.5 73.1 61.7 44.0 42.3 14.5 48.7 47.4 57.3

CMX (MiT-B2) RGB-T 98.3 89.4 74.8 64.7 47.3 30.1 8.1 52.4 59.4 58.2

CMX (MiT-B4) RGB-T 98.3 90.1 75.2 64.5 50.2 35.3 8.5 54.2 60.6 59.7

Table 10: Per-class results on MFNet dataset [71] for RGB-Thermal segmentation.

from point clouds to perform joint 2D- and 3D reasoning. In contrast, our method

attains a competitively accurate performance by using purely 2D data and effectively

leveraging the complementary information inside RGB-D modalities.

Cityscapes. Besides indoor RGB-D datasets, to study the generalizability to outdoor

scenes, we assess the effectiveness of CMX on Cityscapes. As shown in Table 9e, we

note that the improvement on the Cityscapes dataset is not as obvious as other datasets,

because the performance of RGB-only models on this dataset shows a saturation trend.

Compared with MiT-B2 (RGB), our RGB-D approach elevates the mIoU by 0.6%. Our

approach based on MiT-B4 achieves a state-of-the-art score of 82.6%, outstripping all

existing RGB-D methods by more than 0.4% in absolute mIoU values, verifying that

CMX generalizes well to street scene understanding.

4.1.4.2 Results on RGB-Thermal Dataset

Comparison with the state-of-the-art. In Table 10, we compare our method against

RGB-only models and multimodal methods using RGB-T inputs of MFNet dataset [71].

As unfolded, ACNet [82] and SA-Gate [36], carefully designed for RGB-Depth segmen-

tation, perform less satisfactorily on RGB-T data, as they focus on feature extraction

without sufficient feature interaction before fusion and thereby fail to generalize to

other modalities. Depth-aware CNN [220], an input fusion method with modality-

specific operator design, also does not yield high performance. In contrast, the pro-

posed CMX strategy, enabling comprehensive interactions from various perspectives,

generalizes smoothly in RGB-T semantic segmentation. It can be seen that our method

based onMiT-B2 achieves mIoU of 58.2%, clearly outperforming the previous best RGB-

T methods ABMDRNet [287], FEANet [48], and GMNet [305]. Our CMX with MiT-B4

further elevates state-of-the-art mIoU to 59.7%, widening the accuracy gap in contrast

to existing methods. Moreover, it is worth pointing out that the improvements brought

by our RGB-X approach compared with the RGB-only baselines are compelling, i.e.,

+5.0% and +4.9% in mIoU for MiT-B2 and -B4 backbones, respectively. Our approach
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Method Modal Building Glass Car Road Vegetation Sky Pedestrian Bicycle mIoU

SwiftNet [147] RGB 83.0 73.4 91.6 96.7 94.5 84.7 36.1 82.5 80.3

SegFormer-B2 [238] RGB 90.6 79.0 92.8 96.6 96.2 89.6 82.9 89.3 89.6

NLFNet [245] RGB-P 85.4 77.1 93.5 97.7 93.2 85.9 56.9 85.5 84.4

EAFNet [235] RGB-P 87.0 79.3 93.6 97.4 95.3 87.1 60.4 85.6 85.7

CMX (SegFormer-B2) RGB-AoLP (Monochromatic) 91.9 87.0 95.6 98.2 96.7 89.0 84.9 92.0 91.8

CMX (SegFormer-B2) RGB-AoLP (Trichromatic) 91.5 87.3 95.8 98.2 96.6 89.3 85.6 91.9 92.0

CMX (SegFormer-B4) RGB-AoLP (Monochromatic) 91.8 88.8 96.3 98.3 96.7 89.1 86.3 92.3 92.4

CMX (SegFormer-B4) RGB-AoLP (Trichromatic) 91.6 88.8 96.3 98.3 96.8 89.7 86.2 92.8 92.6

CMX (SegFormer-B2) RGB-DoLP (Monochromatic) 91.4 87.6 96.0 98.2 96.6 89.1 87.1 92.3 92.1

CMX (SegFormer-B2) RGB-DoLP (Trichromatic) 91.8 87.8 96.1 98.2 96.7 89.4 86.1 91.8 92.2

CMX (SegFormer-B4) RGB-DoLP (Monochromatic) 91.8 88.6 96.3 98.3 96.7 89.4 86.0 92.1 92.4

CMX (SegFormer-B4) RGB-DoLP (Trichromatic) 91.6 88.6 96.3 98.3 96.7 89.5 86.4 92.2 92.5

Table 11: Results on ZJU-RGB-P dataset [235] for RGB-Polarization segmentation.

overall achieves top scores on car, person, bike, curve, car stop, and bump. For person

with infrared properties, our approach enjoys more than +11.0% gain in IoU, confirm-

ing the effectiveness of CMX in harvesting complementary cross-modal information.

4.1.4.3 Results on RGB-Polarization Dataset

Comparison with the state-of-the-art. Table 11 shows per-class accuracy of our ap-

proach compared to RGB-only [147, 238] and RGB-Polarization fusion methods [235,

245] on ZJU-RGB-P dataset [235]. Our unified CMX outperforms the previous best

RGB-P method [235] by >6.0% in mIoU. We observe that the improvement on pedes-

trian is significant thanks to the capacity of the transformer backbone and our cross-

modal fusionmechanisms. Compared to the RGB-only baseline withMiT-B2 [238]), the

IoU improvements on classes with polarimetric characteristics are clear, such as glass

(>8.0%) and car (>2.5%), further evidencing the generalizability of our cross-modal fu-

sion solution in bridging RGB-P streams.

Analysis of polarization data representations. We study polarimetric data repre-

sentations and the results displayed in Table 11 indicate that the Angle of Linear Polar-

ization (AoLP) and the Degree of Linear Polarization (DoLP) representations both carry

effective polarization information beneficial for semantic scene understanding, which

is consistent with the finding in [235]. Besides, trichromatic representations are con-

sistently better than monochromatic representations used in previous RGB-P segmen-

tation works [235, 245]. This is expected as the trichromatic representation provides

more detailed information, which should be leveraged to fully unlock the potential of

trichromatic polarization cameras.

4.1.4.4 Results on RGB-Event Dataset

Comparison with the state-of-the-art. In Table 12, we benchmark more than 10

semantic segmentation methods, including RGB-only methods, CNN-based [30, 147,

155, 231] and transformer-based [125, 238, 281] methods, as well as multimodal meth-

ods [36, 195, 285]. In contrast, our models improve performance by mixing RGB-Event

features, as seen in Table 12 and Figure 25. Our model using MiT-B4 reaches 64.28%

in mIoU, towering over all other methods and setting the state-of-the-art on the RGB-
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Method Modal Backbone mIoU (%) Pixel Acc. (%)

SwiftNet [147] RGB ResNet-18 36.67 83.46

Fast-SCNN [155] RGB Fast-SCNN 44.27 87.10

CGNet [231] RGB M3N21 44.75 87.13

Trans4Trans [281] RGB PVT-B2 51.86 89.03

Swin-s [125] RGB Swin-s 52.49 88.78

Swin-b [125] RGB Swin-b 53.31 89.21

DeepLabV3+ [30] RGB ResNet-101 53.65 89.92

SegFormer-B2 [238] RGB MiT-B2 58.69 91.21

SegFormer-B4 [238] RGB MiT-B4 59.86 91.61

RFNet [195] RGB-E ResNet-18 41.34 86.25

ISSAFE [285] RGB-E ResNet-18 43.61 86.83

SA-Gate [36] RGB-E ResNet-101 53.94 90.03

CMX (DeepLabV3+) RGB-E ResNet-101 54.91 89.67

CMX (Swin-s) RGB-E Swin-s 60.86 91.25

CMX (Swin-b) RGB-E Swin-b 61.21 91.61

CMX (SegFormer-B2) RGB-E MiT-B2 61.90 91.88

CMX (SegFormer-B4) RGB-E MiT-B4 64.28 92.60

Table 12: Results for RGB-Event segmentation.
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E benchmark. This further verifies the versatility of our solution for different multi-

modal combinations. Figure 25 depicts a per-class accuracy comparison between the

RGB baseline and our RGB-Event model with MiT-B2. With event data, the foreground

objects are more accurately parsed by our RGB-Emodel, e.g., vehicle (+2.1%), pedestrian

(+11.7%), and traffic light (+7.0%).

Analysis of using different backbones.To verify that our unifiedmethod is effective

with using different backbones, we compare CNN- and transformer-based backbones

in the CMX framework. Specifically, in addition to MiT backbones, we experiment

with DeepLabV3+ [30] and Swin transformer [125] backbones with UperNet [236] to

construct CMX. Compared to the RGB-only DeepLabV3+, Swin-s, and Swin-bmethods,

CMX models achieve respective +1.26%, +8.37%, +7.90% gains in mIoU. The results

show that our RGB-X solution consistently improves the segmentation performance,

confirming that our unified framework is not strictly tied to a concrete backbone type,

but can be flexibly deployed with CNN or transformer models, which helps to yield

effective unified architecture for RGB-X semantic segmentation.

Analysis of event data representations. We study with different settings of event

time binB={1,3,5,10,15,20,30} based on our CMX fusionmodel withMiT-B2. Compared

with the original event representation [64], our representation achieves consistent im-
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Method Backbone mIoU (%)

HRFuser [14] HRFormer-T 48.74

PMF [309] SalsaNext 54.48

TokenFusion [224] MiT-B2 54.55

TransFuser [156] RegNetY-3.2GF 56.57

CMX MiT-B2 64.31

Table 13: Results for RGB-LiDAR segmentation.

provements (in Figure 26) on different settings of event time bins, such as +1.63% of

mIoU when B=30. In particular, it helps our CMX to obtain the highest mIoU of 61.90%

in the setting of B=3. In B=1, embedding all events in a single time bin leads to drag-

ging behind images of moving objects and being sub-optimal for feature fusion. In

higher time bins, events produced in a short interval are dispersed to more bins, re-

sulting in insufficient events in a single bin. These corroborate observations in [285,

286] and that the event representation B=3 is an effective time bin setting for RGB-E

semantic segmentation with CMX.

4.1.4.5 Results on RGB-LiDAR Dataset

In Table 13, we compare CMX with other models dedicated to RGB-LiDAR data fu-

sion, including PMF [309] and TransFuser [156]. These two methods achieve respec-

tive 54.48% and 56.57% in mIoU. Besides, other general multimodal fusion methods,

e.g., HRFuser [14] and TokenFusion [224], are included for comparison. In contrast, our

CMX obtains the best performance with 64.31% in mIoU, having a +9.76% gain com-

pared with TokenFusion which is also based on MiT-B2. The sufficient improvement

proves the advantage of using a symmetric dual-stream architecture in modal fusion

and the effectiveness of our proposed cross-modal rectification and fusion methods.
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4.2 arbitrary-modal semantic segmentation

This section is based on our work published in CVPR 2023 [279].

4.2.1 Arbitrary-Modal Data Fusion

With the explosion of modular sensors, multimodal fusion for semantic segmentation

has progressed rapidly recently [20, 36, 278] and in turn has stirred growing interest

to assemble more and more sensors to reach higher and higher segmentation accuracy

aside from more robust scene understanding. However, most works [82, 233, 309] and

multimodal benchmarks [71, 185, 285] focus on specific sensor pairs, which lack behind

the current trend of fusingmore andmoremodalities [14, 224], i.e., progressing towards

Arbitrary-Modal Semantic Segmentation (AMSS).

When examining AMSS, two observations become evident: (1) An increasing amount

of modalities should provide more diverse complementary information, monotonically in-

creasing segmentation accuracy. This is directly supported by our results when incre-

mentally adding and fusing modalities as illustrated in Figure 27a (RGB-Depth-Event-

LiDAR), Figure 27b (RGB-AoLP-DoLP-NIR), and Figure 27c when adding up to 80 sub-

aperture light-field modalities (RGB-LF8/-LF33/-LF80). Unfortunately, this great poten-

tial cannot be uncovered by previous cross-modal fusion methods [32, 235, 305], which

follow designs for pre-defined modality combinations. (2) The cooperation of multiple

sensors is expected to effectively combat individual sensor failures. Most of the existing

works [210, 225, 232] are built on the assumption that each modality is always accurate.

Under partial sensor faults, which are common in real-life robotic systems, e.g. LiDAR

Jitter, fusing misaligned sensing data might even degrade the segmentation perfor-

mance, as depicted with CMX [278] and HRFuser [14] in Figure 28. These two critical

observations remain to a large extent neglected.
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Figure 27: Arbitrary-modal segmentation results

of CMNeXt on three datasets.
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Figure 28: Comparison in sensor failure (i.e., Li-

DAR Jitter) on the DeLiVER dataset.

4.2.2 The new DeLiVER Dataset

To address these challenges, we create a benchmark based on the CARLA simula-

tor [53], with Depth, LiDAR, Views, Events, and RGB images: the DeLiVER mul-

timodal dataset. It features severe weather conditions and five sensor failure modes to

exploit complementary modalities and resolve partial sensor outages.
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DeLiVER

Cloudy
Foggy

Rainy
Night

Sunny

MB UE

OE

LJEL

(a) Structure and samples of four adverse conditions

and five failure cases.

Split Cloudy Foggy Night Rainy Sunny Normal Corner Total

Train 794 795 797 799 798 2585 1398 3983

Val 398 400 410 398 399 1298 707 2005

Test 379 379 379 380 380 1198 699 1897

Front-view 1571 1574 1586 1577 1577 5081 2804 7885

All six views 9426 9444 9516 9462 9462 30486 16824 47310

(b) Statistic of different data splits and views.

1E+5

1E+6

1E+7

1E+8
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(c) Distribution of 25 semantic classes in logarith-

mic scaling.

Figure 29: DeLiVER multimodal dataset including (a) four adverse conditions out of five con-

ditions (i.e., cloudy, foggy, night-time, rainy and sunny). Apart from normal cases, each condi-

tion has five corner cases (i.e.,MB: Motion Blur; OE: Over-Exposure; UE: Under-Exposure; LJ:

LiDAR-Jitter; and EL: Event Low-resolution). Each sample has six views. Each view has four

modalities and two labels (i.e., semantic and instance). (b) is the data statistics. (c) is the data

distribution of 25 semantic classes.

Sensor settings andmodalities.As presented in Figure 29, we spent the effort to cre-

ate a large-scale multimodal segmentation dataset DeLiVER, which provides six mutu-

ally orthogonal views (i.e., front, rear, left, right, up, down) of the same spatial viewpoint,

i.e., a complete frame of data is encoded in the format of a panoramic cubemap. The

Field-of-View (FoV) of each view is 91°×91° and the image resolution is 1042×1042.
All Depth, Views, and Event sensors use the same camera settings when the sensor is

working properly. According to the characteristics of recent LiDAR sensors [63], we

further customize a 64 vertical channels virtual semantic LiDAR sensor to generate a

point cloud of 1,728,000 points per second with a FoV of 360°× (-30°∼10°) and a range

of 100 meters, so as to collect relatively dense LiDAR data.

Adverse conditions and corner cases. In addition to themultimodal setup,DeLiVER

provides cases in two-fold, including four environmental conditions and five partial

sensor failure cases (Figure 29a). For environmental conditions, we consider cloudy,

foggy, night, and rainy weather conditions other than only sunny days. The environ-

mental conditions will cause variations in the position and illumination of the sun,

atmospheric diffuse reflections, precipitation, and shading of the scene, introducing

challenges for robust perception. For sensor failure cases, we consider Motion Blur

(MB), Over-Exposure (OE), and Under-Exposure (UE) common for RGB cameras. Li-

DAR failures usually manifest as along-axis LiDAR-Jitter (LJ) due to fixation issues or

rotational axis eccentricity, thus we add random angular jitters in the range of [-1°, 1°]

and position jitters of [-1cm, 1cm] to the three axial directions of the LiDAR sensor. Due

to the circuit design, the resolution of the currently-used event sensors is limited [62].

Thus, we customize an Event Low-resolution (EL) scenario with 0.25× resolution for

the event camera to simulate actual devices.

Statistics and annotations. Including six views, DeLiVER has totally 47,310 frames

(Figure 29b) with the size of 1042×1042. The 7,885 front-view samples are divided into

3,983/2,005/1,897 for training/validation/testing, respectively, each of which contains
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Figure 30: Comparison of fusion paradigms, such as (a) merging with separate branches [14],

(b) distributing with a joint branch [224], and (c) our hub2fuse with asymmetric branches.

two types of annotations (i.e., semantic and instance labels). Note that, we mainly dis-

cuss the front view and the semantic segmentation task in this work, while other views

and instance segmentation will be future works. To improve the class diversity of an-

notations (25 classes as in Figure 29c), we modify and remap the semantic labels in the

source code. Specifically, the Vehicles class is subdivided into four fine-grained cate-

gories: Cars, TwoWheeler, Bus, and Truck for both the semantic camera and the seman-

tic LiDAR, making DeLiVER compatible with popular segmentation datasets. More

details of the dataset are presented in Appendix A.1.

4.2.3 CMNeXt Model

We present the arbitrary-modal segmentation model CMNeXt. Without increasing the

computation overhead substantially when adding more modalities, CMNeXt incorpo-

rates a novelHub2Fuse paradigm (Figure 30c). Unlike relying on separate branches (Fig-

ure 30a) which tend to be computationally costly or using a single joint branch (Fig-

ure 30b) which often discards valuable information, CMNeXt is asymmetric with two

branches, one for RGB and another for diverse supplementary modalities.

The key challenge lies in designing the two branches to pick up multimodal cues.

Specifically, at the hub step of Hub2Fuse, to gather useful complementary information

from auxiliary modalities, we design a Self-Query Hub (SQ-Hub), which dynamically

selects informative features from all modality-sources before fusion with the RGB

branch. Another great benefit of SQ-Hub is the ease of extending it to an arbitrary

number of modalities, at negligible parameters increase (∼0.01M per modality). At the

fusion step, fusing sparse modalities such as LiDAR or Event data can be difficult to

handle for joint branch architectures without explicit fusion such as TokenFusion [224].

To circumvent this issue and make best use of both dense and sparse modalities, we

leverage cross-fusion modules [278] and couple them with our proposed Parallel Pool-

ing Mixer (PPX) which efficiently and flexibly harvests the most discriminative cues

from any auxiliary modality. These design choices come together in our CMNeXt ar-

chitecture, which paves the way for AMSS (Figure 27). By carefully putting together

alternative modalities, CMNeXt can overcome individual sensor failures and enhances

segmentation robustness (Figure 28).
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Figure 31: CMNeXt architecture in Hub2Fuse paradigm and asymmetric branches, having e.g.

Multi-Head Self-Attention (MHSA) [238] blocks in the RGB branch and our Parallel Pooling

Mixer (PPX) blocks in the accompanying branch. At the hub step, the Self-Query Hub selects

informative features from the supplementarymodalities. At the fusion step, the feature rectifica-

tion module (FRM) and feature fusion module (FFM) [278] are used for feature fusion. Between

stages, features of each modality are restored via adding the fused feature. The four-stage fused

features are forwarded to the segmentation head for the final prediction.

In Figure 31, our CMNeXt has an encoder-decoder architecture. Built on the as-

sumption that the RGB representation is essential for semantic segmentation, the two

branches correspond to the primary branch for RGB and the secondary branch for

other modalities, respectively. The four-stage structure follows most of previous CN-

N/Transformer models [61, 222, 238, 294] to extract pyramidal features. Note that,

Figure 31 details only the first of the four stages for brevity. For the consistency

of modal representations, we preprocess LiDAR and Event data as image-like rep-

resentations following [285, 309]. The RGB image IRGB∈H×W×3 is gradually pro-

cessed by Multi-Head Self-Attention (MHSA) blocks [238], whereas the images of the

other M modalities IM∈H×W×3×M by Parallel Pooling Mixer (PPX) blocks. After

four stages, there are M+1 sets of four-stage feature maps fm
l ∈{fm

1 ,fm
2 ,fm

3 ,fm
4 },

m∈[1,M+1]. In the lth stage, the block number of each branch is bl∈{4, 8, 16, 32}, the
stride is sl∈{4, 8, 16, 32}, and the channel dimension is Cl∈{64, 128, 320, 512}. Inside
each stage, M+1 features are processed in the Hub2Fuse paradigm: At the hub step,

M feature maps will be merged into one feature fq
via the proposed Self-Query Hub.

At the fusion step, the merged feature fq
will be further fused with RGB feature by

the cross-modal Feature Rectification Module (FRM) [278] and Feature Fusion Mod-

ule (FFM) [278], termed as f . These two modules enable better multimodal feature

fusion and interaction, and are crucial when fusing RGB with sparse features, which

will be shown in our experiments. Between stages,M+1 feature maps will be restored

via adding the fused feature f , respectively. After the encoder, the four-stage features

fl∈{f1,f2,f3,f4} will be forwarded to the decoder for the segmentation prediction.

We use the MLP decoder [238] as the segmentation head.

4.2.4 Self-Query Hub

To perform arbitrary-modal fusion, the Self-Query Hub (SQ-Hub) is a crucial design

to select the informative features of supplementary modalities before fusing with

the RGB feature. As shown in Figure 31, given a set of M supplementary features
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{fm|m∈[1,M],fm∈H×W×C}, a Self-Query module is applied to calculate the infor-

mative score mask Qm∈H×W of each feature fm
, as in Eq. (23) and (24).

f̂m = DW-Conv3×3(C,C)(fm), (23)

Qm = Sigmoid(Conv(C, 1)(f̂m)), (24)

where the DW-Conv3×3(Cin,Cout)(·) means a Depth-Wise convolution layer with a

kernel size of 3×3. After obtaining M score masks through M respective self-query

modules, a cross-modal comparison is conducted betweenM features {fm|m∈[1,M]}.

That is, each patch pq of the merged feature map fq
will be filled by the patch pm of

{fm|m∈[1,M]} with the highest score, i.e., the most effective patch among M modal-

ities. It can be formalized as:

fq = {pq|pq∈H×W}

= ϕ({fm+Qm·f̂m|m∈[1,M]})

= ϕ({pm|pm∈H×W,m∈[1,M]}),

(25)

where ϕ(·) is an operation to select the maximum pm from {fm+Qm·f̂m|m∈[1,M]}.

Then, the merged feature fq
is forwarded to the Parallel Pooling Mixer (PPX).

4.2.5 Parallel Pooling Mixer

Another crucial design in CMNeXt is the Parallel Pooling Mixer (Figure 31), which

is proposed to efficiently and flexibly harvest discriminative cues from arbitrary-

modal complements in the aforementioned SQ-Hub. Given the merged feature map

fq∈H×W×C from SQ-Hub, a 7×7DW-Conv layer is applied to aggregate local infor-

mation. The three parallel pooling layers are for capturing multi-scale modal features,

which will be summed with the residual one and mixed by a 1×1 convolution. Then,

a Sigmoid function is used to calculate the attention for weighting. The first part of

PPX can be written as:

f̂q = DW-Conv7×7(C,C)(fq), (26)

f̂q :=
∑

k∈{3,7,11}

Poolk×k(f̂q) + f̂q,
(27)

w = Sigmoid(Conv1×1(C,C)(f̂q)), (28)

fw = w·fq + fq. (29)

Previous methods [36, 82] show that channel information is crucial. Inspired by this,

we apply a Squeeze-and-Excitation (SE) module [78] in the mixing part of PPX. This

structure is crucial since some channels of certain modalities do capture more signifi-

cant information than others. It can further engage more spatially-holistic knowledge

in the channels of the cross-modal complements in SQ-Hub. Thus, theweighted feature

fw
is passed to a Feed-Forward Network (FFN) and a SE module [78] for enhancing

the channel information. The second part of PPX can be written as:

ˆfw = FFN(C,C)(fw) + SE(fw). (30)



4.2 arbitrary-modal semantic segmentation 57

(a) Results on KITTI-360 and DeLiVER datasets.

Method Modal Backbone KITTI-360DeLiVER

HRFuser [14] RGB HRFormer-T 53.20 47.95

SegFormer [238] RGB MiT-B2 67.04 57.20

HRFuser [14] RGB-Depth HRFormer-T 49.32 51.88

TokenFusion [224] RGB-Depth MiT-B2 57.44 60.25

CMX [278] RGB-Depth MiT-B2 64.43 62.67

CMNeXt RGB-Depth MiT-B2 65.09 63.58

HRFuser [14] RGB-Event HRFormer-T 44.85 42.22

TokenFusion [224] RGB-Event MiT-B2 55.97 45.63

CMX [278] RGB-Event MiT-B2 64.03 56.52

CMNeXt RGB-Event MiT-B2 66.13 57.48

HRFuser [14] RGB-LiDAR HRFormer-T 48.74 43.13

TokenFusion [224] RGB-LiDAR MiT-B2 54.55 53.01

CMX [278] RGB-LiDAR MiT-B2 64.31 56.37

CMNeXt RGB-LiDAR MiT-B2 65.26 58.04

HRFuser [14] RGB-D-Event HRFormer-T 50.21 51.83

CMNeXt RGB-D-Event MiT-B2 67.73 64.44

HRFuser [14] RGB-D-LiDARHRFormer-T 52.61 52.72

CMNeXt RGB-D-LiDAR MiT-B2 66.55 65.50

HRFuser [14] RGB-D-E-Li HRFormer-T 52.76 52.97

CMNeXt RGB-D-E-Li MiT-B2 67.84 66.30

(b) Results on MFNet.

Method Modal mIoU

SwinT [125] RGB 49.0

SegFormer [238] RGB 52.0

ACNet [82] RGB-T 46.3

FuseSeg [197] RGB-T 54.5

ABMDRNet [287] RGB-T 54.8

LASNet [101] RGB-T 54.9

FEANet [48] RGB-T 55.3

MFTNet [302] RGB-T 57.3

GMNet [305] RGB-T 57.3

DooDLeNet [60] RGB-T 57.3

CMX (MiT-B2) [278] RGB-T 58.2

CMX (MiT-B4) [278] RGB-T 59.7

CMNeXt (MiT-B4) RGB-T 59.9

(c) Results on NYU Depth V2.

Method mIoU

ACNet [82] 48.3

SGNet [32] 51.1

ShapeConv [20] 51.3

NANet [273] 52.3

SA-Gate [36] 52.4

PGDENet [306] 53.7

TokenFusion [224] 54.2

TransD-Fusion [232] 55.5

MultiMAE [7] 56.0

Omnivore [66] 56.8

CMX (MiT-B4) [278] 56.3

CMX (MiT-B5) [278] 56.9

CMNeXt (MiT-B4) 56.9

(d) Results on UrbanLF-Real and -Syn.

Method Modal Real Syn

PSPNet [294] RGB 76.34 75.78

OCR [262] RGB 78.60 79.36

SegFormer [238] (B4) RGB 82.20 78.53

DAVSS [308] Video 75.91 74.27

TMANet [215] Video 77.14 76.41

ESANet [176] RGB-D n.a. 79.43

SA-Gate [36] RGB-D n.a. 79.53

PSPNet-LF [180] RGB-LF33 78.10 77.88

OCR-LF [180] RGB-LF33 79.32 80.43

CMNeXt (MiT-B4) RGB-LF8 83.22 80.74

CMNeXt (MiT-B4) RGB-LF33 82.62 80.98

CMNeXt (MiT-B4) RGB-LF80 83.11 81.02

(e) Results on MCubeS.

Method Modal mIoU

DRConv [27] RGB-A-D-N 34.63

DDF [303] RGB-A-D-N 36.16

TransFuser [156] RGB-A-D-N 37.66

MMTM [92] RGB-A-D-N 39.71

FuseNet [73] RGB-A-D-N 40.58

MCubeSNet [113] RGB 33.70

CMNeXt (MiT-B2) RGB 48.16

MCubeSNet [113] RGB-A 39.10

CMNeXt (MiT-B2) RGB-A 48.42

MCubeSNet [113] RGB-A-D 42.00

CMNeXt (MiT-B2) RGB-A-D 49.48

MCubeSNet [113] RGB-A-D-N 42.86

CMNeXt (MiT-B2) RGB-A-D-N 51.54

Table 14: Results on six multimodal semantic segmentation datasets. The KITTI-360 [114] and

DeLiVER have four modalities. The MFNet [71] and NYU Depth V2 [185] are dual-modal with

respective RGB-Thermal and RGB-Depth modalities. The UrbanLF [180] has 81 sub-aperture

light-filed images. The MCubeS dataset [113] is quad-modal.

After the PPX block, ˆfw
is fused with RGB feature to form the final fused feature

fl∈{f1,f2,f3,f4} by using FRM&FFM modules [278], as shown in Figure 31.

Compared with convolution-based MSCA [70], pooling-based MetaFormer [261],

fully-attentional FAN [300], our PPX includes two advances: (1) parallel pooling lay-

ers for efficient weighting in the attention part; (2) channel-wise enhancement in the

feature mixing part. Both characteristics of the PPX block help in highlighting the

cross-modal fused feature spatial- and channel-wise, respectively.

4.2.6 Experiments and Analysis

To verify the efficacy of our proposedCMNeXt framework, we conduct extensive exper-

iments on six multimodal segmentation datasets. The results and comparisons against

the state-of-the-art are shown in Table 14.

Results on DeLiVER. Table 14a summarizes the extensive comparisons between

our CMNeXt and other recent methods on DeLiVER dataset. Overall, CMNeXt sets

the state of the art on the fusion of two to four modalities. While fusing RGB with

Depth, Event, and LiDAR, the bi-modal CMNeXt yields sufficient improvements, com-

pared to HRFuser [14] and TokenFusion [224]. This demonstrates the superiority of

our Hub2Fuse paradigm over the seperate and joint branch paradigm (Figure 30a and

30b), especially when fusing sparse modalities, i.e., Event and LiDAR. From RGB-

only to gradually fusing Depth, Events, and LiDAR, the mIoU scores of CMNeXt

are gradually increased (57.20%→63.58%→64.44%→66.30%), showing the advance of

arbitrary-modal fusion for segmentation. Thanks to the complementary features from
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other modalities, our quad-modal CMNeXt outperforms the RGB-only baseline Seg-

Former [238] by a significant margin of +9.10%.

Results on KITTI-360. In Table 14a, we found that most of the multimodal fusion

methods on KITTI-360 [114] did not bring the expected high improvement. There are

two conjectures: The samples are collected in suburbs and are composed of video se-

quences, resulting in insufficient scene diversity; The depth- and event data are gener-

ated from RGB sequences, resulting in limited modal differences. Thus, the segmenta-

tion output relies on the RGB segmentation, and addingmodalities might be redundant.

Nonetheless, our quad-modal CMNeXt achieves a +0.80% gain compared to the RGB-

only baseline [238]. Besides, our bi-modal CMNeXt performs superior to CMX [278]

by +1.56% to +2.85%. When fusing three to four modalities, CMNeXt has respective

+17.52%, +13.94%, and +15.08% gains compared to HRFuser [14].

RGB-T and RGB-D segmentation. As shown in Table 14b and 14c, we further con-

duct experiments on bi-modal datasets, MFNet [71] and NYU Depth V2 [185], which

comprise dense thermal and depth data as supplementary information. Our CMNeXt

achieves the state of the art on both datasets. Using MiT-B4 [238], CMNeXt outper-

forms CMX with +0.2% on MFNet. Besides, on the NYU Depth V2 dataset, it is compa-

rable to CMX with MiT-B5. It proves the benefits of our PPX block in CMNeXt over

the Multi-Head Self-Attention (MHSA) block used by CMX.

Light field semantic segmentation. Towards arbitrary-modal fusion for semantic

segmentation, we apply CMNeXt on the UrbanLF dataset [180], in which each sample

is composed of 81 sub-aperture light field modalities. As shown in Table 14d, CMNeXt

surpasses the previous state of the art, OCR-LF [180], in both real-world and synthetic

scenes, even with fewer modalities (33→8). Due to the similarity betweenmodalities in

this dataset, it is challenging to extract diverse complementary features. Nonetheless,

by fusing up to 80 light field images, CMNeXt reaches respective 83.11% and 81.02% in

mIoU on real and synthetic sets.

Multimodal material segmentation. To verify multimodal fusion in material recog-

nition, we conduct experiments on the quad-modal MCubeS dataset [113]. As shown in

Table 14e, our quad-modal CMNeXt exceeds other quad-modal models and attains the

top performance of 51.54%, with a significant increase 8.68% over MCubeSNet [113]. In

addition, CMNeXt has incremental improvements when gradually adding AoLP, DoLP,

Model-modality #Params(M) GFLOPs Cloudy Foggy Night Rainy Sunny MB OE UE LJ EL Mean

HRFuser-RGB 29.89 217.5 49.26 48.64 42.57 50.61 50.47 48.33 35.13 26.86 49.06 49.88 47.95

SegFormer-RGB 25.79 38.93 59.99 57.30 50.45 58.69 60.21 57.28 56.64 37.44 57.17 59.12 57.20

TokenFusion-RGB-D 26.01 54.96 50.92 52.02 43.37 50.70 52.21 49.22 46.22 36.39 49.58 49.17 49.86

CMX-RGB-D 66.57 65.68 63.70 62.77 60.74 62.37 63.14 59.50 60.14 55.84 62.65 63.26 62.66

HRFuser-RGB-D 30.46 223.0 54.80 51.48 49.51 51.55 52.12 50.92 41.51 44.00 54.10 52.52 51.88

HRFuser-RGB-D-E 31.04 (+0.57) 229.0 (+6.00) 54.04 50.83 50.88 51.13 52.61 49.32 41.75 47.89 54.65 52.33 51.83

HRFuser-RGB-D-E-L 31.61 (+0.57) 235.0 (+6.00) 56.20 52.39 49.85 52.53 54.02 49.44 46.31 46.92 53.94 52.72 52.97

CMNeXt-RGB-D 58.69 62.94 67.21 62.79 61.64 62.95 65.26 61.00 64.64 58.71 64.32 63.35 63.58

CMNeXt-RGB-D-E 58.72 (+0.03) 64.19 (+1.25) 68.28 63.28 62.64 63.01 66.06 62.58 64.44 58.73 65.37 65.80 64.44

CMNeXt-RGB-D-E-L 58.73 (+0.01) 65.42 (+1.23) 68.70 65.67 62.46 67.50 66.57 62.91 64.59 60.00 65.92 65.48 66.30

w.r.t. SegFormer-RGB (+8.71) (+8.37) (+12.01) (+8.81) (+6.36) (+5.63) (+7.95) (+22.56) (+8.75) (+6.36) (+9.10)

Table 15: Results on adverse conditions of DeLiVER. Sensor failure cases areMB: Motion Blur;

OE: Over-Exposure;UE: Under-Exposure; LJ: LiDAR-Jitter; and EL: Event Low-resolution. The

number of parameters (#Params) and GFLOPs are counted in 512×512.
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and NIR modalities. The results on multimodal material segmentation are consistent

with the ones of arbitrary-modal segmentation on our DeLiVER dataset.

Analysis in adverse weather conditions. In Table 15, we compare CMNeXt against

mainstream fusion paradigms in different conditions including adverse weather situ-

ations and partial sensor failure scenarios. It can be seen that despite being efficient,

TokenFusion [224] suffers in these conditions as effective information is discarded in

their token replacement. Due to the proposed SQ-Hub for selecting effective features,

CMNeXt significantly improves the performance compared to the previous CMX [278]

and HRFuser [14]. When fusing more modalities, HRFuser tends to induce much more

overhead (+6.00 GFLOPs when adding a branch), whereas CMNeXt brings great mIoU

gains at only slight computation increase (<1.30 GFLOPs). Compared to the RGB base-

line, the RGB-D-E-L CMNeXt improves the accuracy by 9.10% on average, in particular

for the nighttime (+12.01%) and the rainy (+8.81%) scenarios.

Analysis in sensor failure cases. In the Event Low-resolution (EL) case of Table 15,

from the fusion of RGB-D to RGB-D-E, the accuracy of HRFuser [14] is degraded, how-

ever, the one of CMNeXt is improved (63.35%→66.11%). This is also observed in the case

of LiDAR Jitter (LJ), where the performance of CMNeXt is increased (65.37%→65.92%)

by fusing from D-E to D-E-L. These results demonstrate the ability of CMNeXt to com-

bat sensor failures, thanks to SQ-Hub for selecting informative features. Compared to

the RGB baseline, CMNeXt obtains a +22.56% gain in the Under-Exposure (UE) case.

Visualization of arbitrary-modal segmentation. In Figure 32, we show semantic

segmentation results of our CMNeXt against the RGB-only SegFormer [238] and the

RGB-X CMX [278]. It can be seen that in the dark night with under-exposure, the

RGB-only SegFormer hardly segments the close vehicle, while the RGB-D CMNeXt

clearly outperforms CMX. Our RGB-D-E-L CMNeXt further enhances the performance

and yields more complete segmentation. In the partial sensor failure scenario with Li-

DAR jitter, CMX produces unsatisfactory rainy scene parsing results. Our RGB-LiDAR

model is barely affected by the sensing data mis-alignment and the quad-modal CM-

NeXt further robustifies the full scene segmentation.

Acc=67.3% Acc=92.2% Acc=94.9% Acc=95.3%

Acc=94.5% Acc=85.2% Acc=93.9% Acc=95.2%
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Figure 32: Visualization of segmentation results generated from DeLiVER dataset.
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4.3 chapter conclusion

Robust scene understanding based on multimodal semantic segmentation repre-

sents a promising task, aiming to stabilize segmentation by fusing diverse modalities,

including RGB images, depth maps, LiDAR point clouds, event-based data, etc. In the

second research theme of ITS, we conduct an extensive study of multimodal semantic

segmentation, concentrating on two primary aspects: cross-modal fusion and arbitrary-

modal fusion. Within this chapter, we introduce two novel settings aimed at achieving

robust scene understanding through panoramic semantic segmentation:

• Cross-Modal Fusion for RGB-X Segmentation (CMX): A unified cross-modal

fusion paradigm is a framework that can be used to extract complementary informa-

tion from multiple data modalities. This framework is flexible enough to be applied

to different combinations of data modalities, such as RGB-X (where X can represent

any other modality, such as depth, thermal, LiDAR, and more).

• Arbitrary-Modal Semantic Segmentation (AMSS): We take a step further inmul-

timodal fusion by exploring arbitrary-modal semantic segmentation (AMSS), which

can combine more data to combat against sensor failures and adverse cases. For ex-

ample, AMSS can fuse a range of 2 to a total of 81 modalities, and it can be robust

against adverse weather conditions such as fog and rain.

Here is a more detailed summary of the contributions of each section in this chapter:

Contribution 1: For the first time, we explore RGB-X semantic segmentation in five

types of data combinations, including RGB-Depth, RGB-Thermal, RGB-Polarization,

RGB-Event, and RGB-LiDAR. We propose a unified model CMX for cross-attention

and it achieves state-of-the-art performances.

Contribution 2: We create a new benchmark DeLiVER for AMSS with four modal-

ities, four adverse weather conditions, and five sensor failure modes. It includes six

views with totally 47,310 frames, each of which contains semantic and instance seg-

mentation labels.

Contribution 3: We present the Hub2Fuse paradigm with an asymmetric architec-

ture to attain AMSS. Based on that, we propose a universal model CMNeXt that in-

cludes a Self-Query Hub (SQ-Hub) for selecting informative features and a Parallel

Pooling Mixer (PPX) for harvesting discriminative cues.
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5
TOWARDS NAV IGAT IONAL

SCENE UNDERSTAND ING

In this chapter, we present the first research theme in MAS, i.e., navigational

scene understanding. MAS can help People with Visual Impairments (PVI) navi-

gate by providing them with visual localization and semantic maps, which are

key and fundamental components of navigation systems. For example, accessi-

ble and informative maps can help PVI to gain a clearer understanding of des-

tinations before visiting, which can be helpful for planning trips and making

informed decisions. However, robust indoor navigation and enhanced map ac-

cessibility for PVI are challenging due to the difficulty of perceiving low-texture

indoor environments and constructing dense semantic maps. To tackle these is-

sues, our contributions are three-fold: (1) We propose an efficient feature match-

ing method (MatchFormer) for robust visual localization. This method is pre-

sented in Section 5.1, based on our work published in ACCV 2022 [228]. (2) We

create an end-to-end framework (Trans4Map) to build indoor Birds-Eye-View

(BEV) semantic maps, which is presented in Section 5.2, based on our work pub-

lished in WACV 2023 [25]. (3) We pioneer a novel semantic mapping task, i.e.,

360° BEV mapping from a panorama, which is presented in Section 5.3, based on

our work published in WACV 2024 [204].

5.1 feature matching for visual localization

This section is based on our work published in ACCV 2022 [228]. The included method-

ological designs and technical contributions are collaborated in the context of a co-

supervised master’s thesis project.

5.1.1 Interleaving Attention for Feature Matching

Image feature matching is a key factor for visual localization and pose estimation,

which is further essential for navigation assistance systems [26, 118, 148, 290] for Peo-

ple with Visual Impairments (PVI). Specifically, visual localization refers to the ability

to determine the relative position of a camera or the user in a known environment,

while pose estimation refers to the ability to determine the related orientation of the

target user. To achieve these goals, image feature matching methods work by finding

corresponding features between two or more images. These features can be points,

lines, or other patterns. Once the corresponding features have been found, they can

be used to estimate the transformation between the two images, which can then be

63
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Figure 33: Feature matching pipelines. While (a) detector-based methods coupled with feature

descriptors, (b) extract-to-match methods fail to make use of the matching capacity of the en-

coder. Self- and cross-attention are interleaved inside each stage of the match-aware trans-

former to perform a novel (c) extract-and-match pipeline.

used to determine the position and orientation of the camera or user. However, robust

image feature matching for texture-less indoor scenarios are still under explored, but

they have the potential to greatly improve the independence of PVI. In this section, we

mainly explore to apply vision transformer [52] to build an efficient feature matching

method for visual localization and pose estimation.

Specifically, for vision-basedmatching, classical detector-basedmethods (Figure 33a),

coupledwith hand-crafted local features [55, 168], are computationally intensive due to

the high dimensionality of local features [173, 307]. Recent works [131, 161, 219] based

on deep learning focus on learning detectors and local descriptors using Convolutional

Neural Networks (CNNs). Some partial transformer-based methods [88, 194] only de-

sign an attention-based decoder and remain the extract-to-match pipeline (Figure 33b).

For instance, while COTR [88] feeds CNN-extracted features into a transformer-based

decoder, SuperGlue [174] and LoFTR [194] only apply attention modules atop the de-

coder. Overburdening the decoder, yet neglecting thematching capacity of the encoder,

makes the whole model computationally inefficient.

Rethinking local feature matching, in reality, one can perform feature extraction

and matching simultaneously by using a pure transformer. We propose an extract-and-

match pipeline shown in Figure 33c. Compared to the detector-based methods and the

extract-to-match pipeline, our new scheme is more in line with human intuition, which

learns more respective features of image pairs while paying attention to their similar-

ities [298]. Based on this, a novel method MatchFormer is proposed, which helps to

achieve multi-wins in precision, efficiency, and robustness of feature matching.

More specifically, for improving computational efficiency and the robustness in

matching low-texture scenes, we put forward interleaving self- and cross-attention

in MatchFormer to build a matching-aware encoder. In this way, the local features

of the image itself and the similarities of its paired images can be learned simultane-

ously, so called extract-and-match, which relieves the overweight decoder and makes

the whole model efficient. The cross-attention arranged in earlier stages of the encoder

robustifies feature matching, particularly, in low-texture indoor scenarios or with less

training samples outdoors, which makes MatchFormer more suitable for real-world

applications where large-scale data collection and annotation are infeasible.
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Figure 34: MatchFormer architecture: (a) The transformer backbone generates high-resolution

coarse features and low-resolution fine features; In (b), each attention block has interleaving-

arranged self-attention (w.r.t.Q,K , V and red arrows) within the input, and cross-attention

(w.r.t. Q, K′
, V ′

and alternative green arrows) cross images (input and input ′). Multi-head

efficient-attention reduces the computation; The positional Patch Embedding (PE) completes

the patch embedding and the position encoding.

5.1.2 MatchFormer Model

As illustrated in Figure 34, MatchFormer employs a hierarchical transformer, which

comprises four stages to generate high-resolution coarse and low-resolution fine fea-

tures for local feature matching. In four stages, the self- and cross-attention modules

are arranged in an interleaving strategy. Each stage consists of two components: one

positional patch embedding (PosPE) module, and a set of efficient attention modules.

Then, the multi-scale features are fused by an FPN-like decoder, which are passed to

perform the coarse-to-fine matching, following [194].

Extract-and-Match Pipeline. Unlike the extract-to-match LoFTR using attention on

a single-scale feature map and only after feature extraction, we combine self- and cross-

attention inside the encoder and apply on multiple feature scales (Figure 33). The com-

bination of two types of attention modules enables the model to extract non-local fea-

tures via self-attention and explore their similarities via cross-attention simultaneously,

so called the extract-and-match scheme.

Interleaving Self-/Cross-Attention. As shown in Figure 34a, the combination of

self- and cross-attention modules are set at each stage in an interleaving strategy. Each

block in Figure 34b containsN attention modules, where each attention module is rep-

resented as self-attention or alternative cross-attention according to the input image

pair. For self-attention,Q and (K ,V ) come from the same input, so the self-attention is

responsible for feature extraction of the image itself. For cross-attention, (K′
, V ′

) are

from another input ′ of the image pair. Thus, the cross-attention learns the similarity

of the image pair, resulting in a match-aware transformer-based encoder.

MatchFormer Variants. MatchFormer is available with its lite and large versions,

as presented in Table 16. We set MatchFormer-lite 4-stage features in the respective

resolution of
1
ri
∈{14 , 18 , 1

16 , 1
32 } of the input. To promote context learning for match-

ing, feature embeddings with higher channel numbers are beneficial, which are set

as Ci∈{128,192,256,512} for four stages. In the MatchFormer-large models, higher res-

olution feature maps facilitate accurate dense matching. Hence, the
1
ri

and Ci are set

as {12 , 14 , 18 , 1
16 } and {128,192,256,512} for the large MatchFormer.
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Stage MatchFormer-lite MatchFormer-large Ni

F1

H/4×W/4 K=7, S=4, P=3, E=4 H/2×W/2 K=7, S=2, P=3, E=4

C1=128 LA: A=8 ; SEA: A=1, R=4 C1=128 LA: A=8 ; SEA: A=1, R=4 ×3

F2

H/8×W/8 K=3, S=2, P=1, E=4 H/4×W/4 K=3, S=2, P=1, E=4

C2=192 LA: A=8 ; SEA: A=2, R=2 C2=192 LA: A=8 ; SEA: A=2, R=2 ×3

F3

H/16×W/16 K=3, S=2, P=1, E=4 H/8×W/8 K=3, S=2, P=1, E=4

C3=256 LA: A=8 ; SEA: A=4, R=2 C3=256 LA: A=8 ; SEA: A=4, R=2 ×3

F4

H/32×W/32 K=3, S=2, P=1, E=4 H/16×W/16 K=3, S=2, P=1, E=4

C4=512 LA: A=8 ; SEA: A=8, R=1 C4=512 LA: A=8 ; SEA: A=8, R=1 ×3

Output
Coarse: H/4×W/4, 128 Coarse: H/2×W/2, 128
Fine: H/8×W/8, 192 Fine: H/8×W/8, 256

Table 16: MatchFormer-lite and -large with Linear Attention (LA) and Spatial Efficient Atten-

tion (SEA). C: the channel number of feature F ; K, S and P: the patch size, stride, and padding

size of PosPE; E: the expansion ratio of MLP in an attention block; A: the head number of at-

tention; R: the down-scale ratio of SEA.

Attention Module Variants. To fully explore the proposed extract-and-match

scheme, each of the two MatchFormer variants has two attention variants. Here, we

mainly investigate Linear Attention (LA) and Spatial Efficient Attention (SEA). Thus,

there are four versions of MatchFormer as presented in Table 16.

5.1.3 Experiments and Analysis

Metrics. Following [174], we provide the area under the cumulative curve (AUC) of the

pose error at three different thresholds (5°, 10°, 20°). The camera pose is recovered by

using RANSAC. We report the matching precision (P), the probability of a true match

if its epipolar is smaller than 5×10-4 in indoor cases and 1×10-4 in outdoor cases [174].

5.1.3.1 Indoor Pose Estimation

Indoor pose estimation is a key components of indoor navigation systems. Match-

Former with interleaved self- and cross-attention modules functions well, delivering a

promising navigational scene understanding approach to mobility assistance systems.

Quantitative Results. As shown in Table 17, MatchFormer demonstrates exceptional

performance on the low-texture indoor pose estimation task. The matching preci-

sion (P) of MatchFormer-large-SEA reaches the state-of-the-art level of 89.5%. Benefit-

ing from the extract-and-match strategy, MatchFormer-large-SEA can bring +5.1% im-

provement over the detector-based SuperGlue, +1.6% over the extract-to-match LoFTR.

Pose estimation area under the curve (AUC) of MatchFormer is superior to detector-

based SuperGlue. Compared to LoFTR,MatchFormer provides amore pronounced pose

estimation AUC by boosting (+2.25%, +3.1%, +3.79%) at three thresholds of (5°, 10°, 20°).

The LoFTR model is recently adapted by a complex decoder with QuadTree Atten-

tion [202]. However, MatchFormer maintains its lead (+0.41%, +0.70%, +1.11%) with

the extract-and-match strategy. Compared to LoFTR, our lightweight MatchFormer-

lite-SEA has only 45% GFLOPs, yet achieves a +1.3% precision gain and a 41% running

speed boost. Comparing SEA and LA, we found that the spatial scaling operation in

SEA has benefits in handling low-texture features in indoor scenes.
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Method
Pose estimation AUC (%)

P

@5° @10° @20°

ORB [168]+GMS [12] CVPR’17 5.21 13.65 25.36 72.0

D2-Net [55]+NN CVPR’19 5.25 14.53 27.96 46.7

ContextDesc [131]+RT [128] CVPR’19 6.64 15.01 25.75 51.2

SP [50]+NN CVPRW’18 9.43 21.53 36.40 50.4

SP [50]+PointCN [254] CVPR’18 11.40 25.47 41.41 71.8

SP [50]+OANet [277] ICCV’19 11.76 26.90 43.85 74.0

SP [50]+SuperGlue [174] CVPR’20 16.16 33.81 51.84 84.4

LoFTR [194] CVPR’21 22.06 40.80 57.62 87.9

LoFTR [194]+QuadTree [202] ICLR’22 23.90 43.20 60.30 89.3

MatchFormer-lite-LA 20.42 39.23 56.82 87.7

MatchFormer-lite-SEA 22.89 42.68 60.66 89.2

MatchFormer-large-LA 24.27 43.48 60.55 89.2

MatchFormer-large-SEA 24.31 43.90 61.41 89.5

Table 17: Indoor pose estimation on ScanNet. The AUC of three different thresholds and the

average matching precision (P) are evaluated.

M
atchForm

er- 
large-SEA

LoFTR

Figure 35: Qualitative visualization of MatchFormer and LoFTR [194]. MatchFormer achieves

higher matching numbers and more correct matches in low-texture scenes.

Qualitative Results. The indoor matching results are in Figure 35. In challenging

feature-sparse indoor scenes, it can reliably capture global information to assure more

matches and high accuracy. Thus, the pose solved by matching prediction has a lower

maximum angle error (∆R) and translation error (∆t). The result confirms that ap-

plying cross-attention modules earlier for learning feature similarity robustifies low-

texture indoor matching, which is in line with our extract-and-match pipeline.

5.1.3.2 Outdoor Pose Estimation

Outdoor pose estimation presents unique challenges compared to indoors. In particular,

outdoor scenes have greater variations in lighting and occlusion. Still, Matchformer

achieves outstanding performance in outdoor scenes.

Quantitative Results. As shown in Table 18, MatchFormer noticeably surpasses the

detector-based SuperGlue and DRC-Net, as well as the extract-to-match LoFTR. Our

MatchFormer-lite-LA model achieves a higher matching precision (P) with 97.55%, de-

spite being much lighter. Note that MatchFormer-large-SEA using the partially opti-

mized SEAwill raise an out-of-memory issue. Here, we recommend to use thememory-

efficient LA in the high-resolution outdoor scenes. Our MatchFormer-large-LA model

achieves consistent state-of-the-art performances on both metrics of AUC and P.

Robustness and Resource-Efficiency. It is important to evaluate the model robust-

ness when less training data and fewer training resources are available in practical

applications. Thus, we train MatchFormer-large-LA and LoFTR (marked with † in Ta-

ble 18) using different percentages of datasets and on fewer resources (8 GPUs). First,
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Method
Data Pose estimation AUC (%)

P
percent @5° @10° @20°

SP [50]+SuperGlue [174] CVPR’20 100% 42.18 61.16 75.95 –

DRC-Net [107] NeurIPS’20 100% 27.01 42.96 58.31 –

LoFTR [194] CVPR’21 100% 52.80 69.19 81.18 94.80

MatchFormer-lite-LA 100% 48.74 65.83 78.81 97.55

MatchFormer-lite-SEA 100% 48.97 66.12 79.07 97.52

MatchFormer-large-LA 100% 52.91 (+0.11) 69.74 (+0.55) 82.00 (+0.82) 97.56 (+2.76)

Robustness with less training data and fewer GPU resources:

LoFTR† 10% 38.81 54.53 67.04 83.64

MatchFormer† 10% 42.92 (+4.11) 58.33 (+3.80) 70.34 (+3.30) 85.08 (+1.44)

LoFTR† 30% 47.38 64.77 77.68 91.94

MatchFormer† 30% 49.53 (+2.15) 66.74 (+1.97) 79.43 (+1.75) 94.28 (+2.34)

LoFTR† 50% 48.68 65.49 77.62 92.54

MatchFormer† 50% 50.13 (+1.45) 66.71 (+1.22) 79.01 (+1.39) 94.89 (+2.35)

LoFTR† 70% 49.08 66.03 78.72 93.86

MatchFormer† 70% 51.22 (+2.14) 67.44 (+1.41) 79.73 (+1.01) 95.75 (+1.89)

LoFTR† 100% 50.85 67.56 79.96 95.18

MatchFormer† 100% 53.28 (+2.43) 69.74 (+2.18) 81.83 (+1.87) 96.59 (+1.41)

Table 18: Outdoor pose estimation on MegaDepth. † represents training on different percent-

ages of datasets, which requires 8 GPUs for training.

compared to LoFTR†, MatchFormer† obtains consistent improvements on different

scales, i.e., the first {10,30,50,70,100} percentages of the original dataset. It proves that

MatchFormer has more promise in data-hungry real-world applications. Second, train-

ing with the same 100% data on different GPU resources, LoFTR† has (-1.95%, -1.63%,
-1.22%) performance drops at three AUC thresholds of (5°, 10°, 20°) when using 8 GPUs

instead of 64 GPUs. In contrast, MatchFormer maintains the stable and surprising accu-

racy, which shows that our method is more resource-friendly and easier to reproduce.

5.1.3.3 Visual Localization on InLoc

As shown in Table 19, on the InLoc benchmark for visual localization, MatchFormer

reaches a level comparable to the current state of art methods SuperGlue and LoFTR. In-

terleaving attention in the MatchFormer backbone enables robust local feature match-

ing in indoor scenes with large low-texture areas and repetitive structures.

Method
Localized Queries (%, 0.25m/0.5m/1.0m, 10

◦
)

DUC1 DUC2

SP [50] + NN CVPRW’18 40.4 / 58.1 / 69.7 42.0 / 58.8 / 69.5

D2Net [55] + NN CVPR’19 38.4 / 56.1 / 71.2 37.4 / 55.0 / 64.9

R2D2 [161] + NN NeurIPS’19 36.4 / 57.6 / 74.2 45.0 / 60.3 / 67.9

SP [50] + SuperGlue [174] CVPR’20 49.0 / 68.7 / 80.8 53.4 / 77.1 / 82.4

SP [50] + CAPS [219] + NN ECCV’20 40.9 / 60.6 / 72.7 43.5 / 58.8 / 68.7

SP [50] + ClusterGNN [183] CVPR’22 47.5 / 69.7 / 79.8 53.4 / 77.1 / 84.7

ASLFeat [132] + SuperGlue [174] CVPR’20 51.5 / 66.7 / 75.8 53.4 / 76.3 / 84.0

ASLFeat [132] + ClusterGNN [183] CVPR’22 52.5 / 68.7 / 76.8 55.0 / 76.0 / 82.4

SIFT + CAPS [219] + NN ECCV’20 38.4 / 56.6 / 70.7 35.1 / 48.9 / 58.8

SparseNCNet [162] ECCV’20 41.9 / 62.1 / 72.7 35.1 / 48.1 / 55.0

Patch2Pix [304] CVPR’21 44.4 / 66.7 / 78.3 49.6 / 64.9 / 72.5

LoFTR-OT [194] CVPR’21 47.5 / 72.2 / 84.8 54.2 / 74.8 / 85.5

MatchFormer 46.5 / 73.2 / 85.9 55.7 / 71.8 / 81.7

Table 19: Visual localization on InLoc. We report the percentage of correctly localized queries

under specific error thresholds, following the HLoc [173] pipeline.
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5.2 bird’s-eye-view semantic mapping

This section is based on our work published inWACV 2023 [25]. The included method-

ological designs and technical contributions are collaborated in the context of a co-

supervised master’s thesis project.

5.2.1 Top-down Semantic Mapping Pipelines

Semantic mapping is still difficult for an artificial intelligent mobile agent, particu-

larly when exploring an unfamiliar environment. Besides, semantic mapping can gen-

erate accessible maps to help PVI to better understand their destination before visiting.

Through beforehand information and planning obtained in advance, independent on-

site navigation of PVI can be further improved. In this work, we focus on image-based

semantic mapping task, by predicting allocentric semantic segmentation from given

egocentric images. As shown in Figure 36, given a trajectory in the scene, which is

composed of a batch of first-view RGB images and the corresponding known camera

pose, the mobile agent performs three steps: (1) extracting rich and compact contextual

features; (2) projecting and updating the egocentric features in the allocentric memory

as spatial-semantic representation; (3) decoding final top-view semantic mapping. The

image-based egocentric-to-allocentric mapping pipeline is more in line with human

intuition, and is able to perform mapping in an efficient way, avoiding the need for a

time-consuming reconstruction phase [68].

Image-based semantic mapping methods can be divided into 4 pipelines, as summa-

rized in Figure 37. The project-then-segment pipeline (Figure 37a) projects N obser-

vations into Bird’s Eye View (BEV), that hinders the small object segmentation due

to the lack of fine visual information. The segment-then-project pipeline (Figure 37b)

depends heavily on the front-view segmentation performance and may accumulate

errors. The offline project-then-segment pipeline (Figure 37c) requires large-scale lo-

1

1

2

2 3 4 

3
4 

Egocentric Images

N Trans4Map

Allocentric Semantics

Figure 36: The egocentric-to-allocentric semantic mapping. Given a front-view image sequence

of length N observed along a trajectory (the red dash line), Trans4Map performs the online

extract-project-segment pipeline, yielding an allocentric semantic map in bird’s eye view.
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Figure 37: Semantic mapping pipelines. The two-stage pipelines in (a)(b)(c) differ from the pro-

jection locations, i.e., early, late, and intermediate offline projection. The one-stage pipeline in

(d) reduces 2.5TB (100%) of storage to 0TB by using online projection and has a higher mIoU.

cal storage to save the feature map given by the pre-trained encoder of the first stage.

It further demands huge GPU memory to reload offline features for the second stage

training. Unlike two-stage pipelines above, our proposed online project-then-segment

pipeline (Figure 37d) performs online implicit projection and enables end-to-end and

resource-friendly BEV semantic mapping. The one-stage pipeline is crucial, because

it fits resource-limited platforms, e.g., robots and assistive systems. Further, it helps

mobile agents to quickly construct maps and get familiar with the unknown space.

However, a lightweight but effective backbone that requires few resources is the de-

cisive factor to achieve successful one-stage semantic mapping. The vision transformer

architecture [212] is able to capture long-distance contextual dependencies, forming a

non-local representation. This mechanism naturally fits the semantic mapping task,

since the mapping process demands a holistic understanding of scenes. This assump-

tion leads us to revisit the top-down semanticmappingwith a transformer-basedmodel

and put forward a novel end-to-end one-stage Trans4Map framework. It delivers two

primary benefits: (1) the long-range feature modeling ability is advantageous to ob-

tain a more comprehensive spatial representation during the egocentric observation

process; (2) the efficient and lightweight model structure enables the one-stage end-to-

end mapping pipeline. Besides, unlike the previous method [22] using a single GRU

cell to reload the offline features, we propose a novel Bidirectional Allocentric Memory

(BAM) to combine features from both directions, which can avoid the occluded objects

to be classified as other category, e.g., chairs under tables. Further, our BAM implic-

itly performs the efficient online projection, as another key point in implementing the

one-stage mapping pipeline (Figure 37d).

5.2.2 Trans4Map Model

As shown in Figure 38, our end-to-end Trans4Map framework includes three steps:

(1) the incoming N egocentric images are fed into the transformer-based backbone

(in Section 5.2.2.2), which extracts contextual feature and long-range dependency; (2)

the Bidirectional Allocentric Memory (BAM) module (in Section 5.2.2.3) projects the
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Figure 38: The overview of the end-to-end Trans4Map framework. There are a transformer-

based encoder for extracting the egocentric features from the RGB images, a Bidirectional

Allocentric Memory (BAM) to project and accumulate the extracted feature sequence to the

allocentric feature map via the known depth and pose information, and a CNN-based decoder

for parsing the accumulated feature and predicting the allocentric semantics.

extracted feature via the depth-based transformation index; (3) the lightweight CNN-

based decoder parses the projected feature and predicts the allocentric semantics.

5.2.2.1 One-stage Pipeline

Unlike multi-stage methods [22], our framework operates in an one-stage end-to-end

manner, benefiting from three designs: (1) a transformer-based backbone is leveraged

to capture holistic features and long-range dependencies, instead of narrow-receptive-

field CNN-based backbones; (2) a single branch structure for extracting RGB features

makes the whole model more lightweight than the dual-branch one; (3) an online train-

ing pipeline from egocentric images to allocentric semantics is constructed, avoiding

using the time-consuming two-stage process and feature maps storage.

5.2.2.2 Transformer Backbone

To fully investigate the proposed Trans4Map framework, we explore different model

architectures and learning modalities, as shown in Figure 39. The architectures are

constructed by four stages, and each stage includes a series of convolutional blocks

(Figure 39c) or self-attention blocks (Figure 39a). Considering that cross-modality com-

plementary features are informative for predicting semantics [82, 87, 278], we leverage

RGB-Depth inputs and a multimodal architecture (Figure 39b) is reformed by using ef-

ficient self-attention blocks.

For brevity, we describe the operation of the single-modal process, while the bimodal

process involves an additive fusion at each stage, in which the fusion block obtains the

extracted contextual features and geometry features and then fuses them per pixel with

the same dimension. Given a batch of RGB images of size N×H×W×3, the divided

patches are passed through the four-stage transformer blocks, to obtain the hierarchi-

cal feature representation with downsampling rates of { 1
r1

, 1
r2

, 1
r3

, 1
r4
} and increasing

channels of {C1,C2,C3,C4}. Then, the multi-scale features are concatenated by an
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Figure 39: Semantic mapping architectures.
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Figure 40: Bidirectional Allocentric Memory.

MLP layer and followed by a convolution layer with 64 channels. So the hierarchical

features are fused into an egocentric feature of sizeN×H
r1
×W

r1
×64. To study different

semantic mapping architectures, the multi-scale features in this work are extracted

with {14 , 18 , 1
16 , 1

32 } downsampling rates and {64, 128, 320, 512} channels.
To compare CNN- and transformer-based models, the RedNet backbone [87] used in

SMNet and the ConvNeXt backbone are selected to form CNN-based mapping models,

while transformer-based models include FAN [300], Swin [125], and SegFormer [239]

backbones. Based on our experiments, we adopt SegFormer [239] as the default back-

bone of our visual encoder, as its simple and lightweight design can generate features

ranging from high-resolution fine features to low-resolution coarse features.

5.2.2.3 Bidirectional Allocentric Memory

After acquiring the egocentric features through the aforementioned transformer back-

bone, the projective index is needed to project representative contextual features into

an allocentric memory map. In the Habitat simulator [175], we can directly obtain the

state of the moving agent and then calculate the camera pose using relative orienta-

tion and position. In order to perform the online projection, we need to derive the 3D

position of each pixel in the egocentric image, as presented as: x

y

z


c

= K−1

 u

v

du,v


i

,

 X

Y

Z


w

= R−1

 x

y

z


c

−
−→
t . (31)

K is the camera intrinsic parameter, [R|
−→
t ] are the rotation matrix and the translation

matrix, respectively. First, in Eq. (31), using the camera model and the depth of each

pixel du,v, the pixel coordinate (u, v) in the image coordinate system can be converted

into the camera coordinate system. Then, the camera coordinates denoted as (x,y, z) of
each point are converted to world coordinates denoted as (X, Y,Z) using the rotation

matrix and translation matrix. Each pixel in the allocentric memory map represents

a 2cm×2cm cell in the scene of Matterport3D dataset [23], so the projective index

(i, j)m can be calculated by dividing X and Z. Finally, we project egocentric features of

N batch size onto the allocentric memory map using the calculated projective index.

To enhance the long-range content dependency and aggregate the incoming infor-

mation completely, we propose Bidirectional Allocentric Memory (BAM), in which we
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use Bi-directional GRU (BiGRU) to update incoming observations from two directions.

As shown in Figure 40, the upper GRU processes the allocentric memory tensor in a for-

ward direction (Mt−1→Mt
) and the lower GRU in a backward direction (Mt→Mt−1

).

A simple yet effective convolutional layer is applied to fuse two projected features. The

computation of updated spatial memory tensor is formulated as:

Mt
i,j = GRU(Fti,j,M

t−1
i,j ); (32)

Mt−1
i,j = GRU(Ft−1

i,j ,Mt
i,j); (33)

T = Conv(Mt
i,j,M

t−1
i,j ). (34)

Mt
i,j and Mt−1

i,j are the current time step spatial memory and previous time step spa-

tial memory, respectively. The fused spatial memory tensors T are accessible to the

decoding step for the final semantic top-down map prediction. Thanks to the bidirec-

tional parsing process, BAM is able to accumulate the observations per each time step

in both direction in parallel, thus, it can better avoid occluded objects being wrongly-

classified. With BAM, Trans4Map can produce a more meaningful allocentric repre-

sentation which combines bidirectional projected features.

5.2.3 Experiments and Analysis

Matterport3D. The results on Matterport3D are in Table 20. Following the segment-

project paradigm, the result obtained by using the label data is the upper bound per-

formance. As in Table 20, the segment-project baseline performs much better than the

project-segment one, since part of information will be lost in the process of convert-

ing an egocentric image into a top-down view. The semantic SLAM in [68] also uses

the segment-project method but achieves worse performance than the image-based

segment-project baseline. SMNet [22] follows the offline project-segment paradigm

and adds a spatial memory update module. Here, we reproduce the experiment using

the released code under the same condition and obtain the results with a mIoU score

of 36.16% and a mBF1 value of 35.95%. Compared to SMNet, our Trans4Map model

achieves significant improvements in terms of mIoU (40.02%) and mBF1 (41.11%) on

the Matterport3D dataset, which proves the effectiveness of our framework.

In Figure 41, we present a comparison with advanced architectures [125, 126, 238,

300]. We found that simply applying transformer-based backbones does not guaran-

tee improvement. Thanks to the proposed method, our Trans4Map models have much

Method Acc mRecallmPrecisionmIoUmBF1

Seg. GT→ Proj. 89.49 73.73 74.58 59.73 54.05

Two-stage Proj.→ Seg. 83.18 27.32 35.30 19.96 17.33

Two-stage Seg.→ Proj. 88.06 40.53 58.92 32.76 33.21

Two-stage Semantic SLAM 85.17 37.51 51.54 28.11 31.05

Two-stage SMNet 88.14 47.49 58.27 36.77 37.02

Two-stage SMNet † 89.14 46.34 56.98 36.16 35.95

One-stage Trans4Map 89.02 54.50 56.20 40.02 41.11

Table 20: Allocentric semantic mapping results

on Matterport3D. † is our reproduction.

Method Acc mRecallmPrecisionmIoUmBF1

Seg. GT→ Proj. 96.83 83.84 94.05 79.76 86.89

Two-stage Seg.→ Proj. 88.61 48.11 65.20 40.77 45.86

Two-stage Semantic SLAM 88.30 45.80 62.41 37.99 46.71

Two-stage SMNet 89.26 53.37 64.81 43.12 45.18

Two-stage SMNet † 87.69 58.88 34.85 27.68 42.67

One-stage Trans4Map 86.19 65.27 34.91 29.15 48.66

Table 21: Allocentric semantic mapping results

on Replica. † is our reproduction.
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Figure 41: Semantic mapping scores (mIoU) using CNN and transformer backbones with differ-

ent #parameters (M). Trans4Map models achieve better results yet with fewer parameters.
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Figure 42: Allocentric semantic mapping visualizations. There are two indoor scenes from the

Matterport3D test set. From left to right are the predicted results of SMNet, the results of our

Trans4Map and the ground truth. Zoom in for better view.

fewer parameters, yet achieve better scores. The B2 version reduces 67.2% parameters

over SMNet [22] and achieves >40% mIoU on Matterport3D [23].

Replica. The results on Replica are in Table 21. Note that the last two rows are eval-

uated on the partially available Replica [190] dataset, while the others have all data

as [22]. All models are trained on the Matterport3D dataset and tested on the Replica

dataset. The trajectories and labels of the Replica dataset are partially available at the

moment, thus, the results are tested on the constrained data of the Replica dataset.

Nonetheless, under the same condition with the same label data, our Trans4Map out-

performs the baseline SMNet with a 1.47% mIoU and a 5.99% mBF1 improvements,

respectively. The results indicate that our Trans4Map framework achieves consistent

improvements across different datasets.

Semantic map visualizations. In Figure 42, we visualize the semantic map results

from the test set of the Matterport3D dataset. Thanks to the extracted non-local fea-

tures and long-distance dependencies, Trans4Map has better segmentation results.

In the first scene in Figure 42, Trans4Map is better at segmenting the bed. Further,

Trans4Map is able to successfully classify the fireplace, while the baseline model fails

and predicts it as a cabinet. In the second scene in Figure 42, Trans4Map delivers se-

mantic mapping accurately, such as on cabinet and chair categories, while SMNet mis-

classifies them as tables. Besides, SMNet yields incomplete chair segmentation results.
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5.3 panoramic semantic mapping

This section is based on our work published inWACV 2024 [204]. The included method-

ological designs and technical contributions are collaborated in the context of a co-

supervised master’s thesis project.

5.3.1 Semantic Mapping Using a Single Image

For semantically mapping front-view indoor scenes, sequence-based methods [22, 25]

were proposed, which have to process whole videos and entail a moving camera. As

shown in Figure 43a, (1) these methods rely on computationally expensive processing

of entire sequences of video-frames due to the narrow field of view of the pinhole

camera, and (2) they are constrained to explore indoor mapping on synthetic simu-

lators [175, 234], due to the lack of real indoor datasets. These drawbacks limit their

applicability to real-world indoor semantic mapping.

To solve these limitations, we introduce 360BEV to achieve 360° semantic mapping

for indoor BEV, which is illustrated in Figure 43b. Our considerations are two-fold: (1)

To unleash the potential of indoor semantic mapping in real-world scenarios, real in-

door databases with BEV semantic labels are crucial; (2) To reduce the computational

complexity of narrow-FoV sequence methods [22] (⩾20 video-frames to process) or

the complexity of multi-camera setups [111] (⩾6 camera views needed), we leverage a

single-frame 360° image with depth information and thus bypass multi-sensor calibra-

tion, synchronization, and data fusion procedures. By decoupling the computationally

expensive processing of sequences or multiple views, our direct 360BEV semantic map-

ping is more streamlined for generating indoor semantic maps.

360Mapper


(a) Narrow BEV (b) 360BEV

Figure 43: Semantic mapping from egocentric images to allocentric BEV semantics. While (a)

the narrow-BEV method has limited perception and map range, (b) 360BEV has an omnidirec-

tional field of view, yielding a more complete BEV map by using our 360Mapper model.
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Figure 44: Paradigms of semantic mapping. While the narrow-FoV (a) multi-view and (b)

sequence-based methods rely on V⩾6 and N⩾20 views, the 360°-BEV (c) Early-, (d) Late-, and

(e) Intermediate-projection methods use a single panorama.

5.3.2 Benchmarking Panorama Semantic Mapping

To investigate the 360BEV task, we analyze potential panoramic projection paradigms

in Section 5.3.2.1. The data generation is detailed in Section 5.3.2.2.

5.3.2.1 The 360 Projection Paradigms

As shown in Figure 44, unlike multi-view methods (V⩾6 in Figure 44a) and sequence-

based methods (N⩾20 in Figure 44b), 360BEV uses a single image with depth.We inves-

tigate three projection paradigms, i.e., how to process data from front-view panoramas

to bird’s-eye-view semantics, which are:

(1) Early projection: Project→Encode→Segment in Figure 44c, i.e., view projection

is first done in RGB images. This way of processing might harm the original

visual information and the spatial relationship of indoor objects, leading to lower

performance of semantic mapping.

(2) Late projection: Encode→Segment→Project in Figure 44d, i.e., feature extraction

and segmentation are first done and view projection is executed at the end. The

front-view segmentation errors caused by distortion and deformation of panora-

mas accumulate and affect the completeness of object masks in the BEV map.

(3) Intermediate projection: Encode→Project→Segment in Figure 44e, i.e., feature ex-

traction and view projection are first done in order and segmentation is executed

at the end. In this manner, the encoded feature maintains dense and represen-

tative information, which is crucial for view projection. Besides, the projected

features are further parsed by the subsequent BEV decoder.

Based on these properties, we mainly explore 360BEV with intermediate projections,

in which we identify the following challenges: In the feature extraction stage, spa-

tial distortions and object deformations severely hinder the encoder from extracting

representative features from the front-view panoramic image. For the intermediate fea-

ture projection, only depth information is utilized to consistent view transformation of

high-dimensional features. In addition, many large objects in the front view (e.g.,walls)

are projected to thin objects in the top-down view, which greatly impedes capturing

wide-range features during projection.
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Figure 45: 360FV semantics generation from

18 narrow views to a panoramic view on the

360FV-Matterport dataset. H, M, L represent high,

medium, and low positions, respectively.
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Figure 46: 360BEV semantics generation by ortho-

graphic projection, from (a) the front-view seman-

tic image and (b) the global XYZ image, to (c) the

360BEV semantic map.

5.3.2.2 Data Generation

360FV-Matterport. The original Matterport3D [23] was collected via narrow-FoV

cameras. As shown in Figure 45, we convert the 18 narrow-view images and anno-

tations into the 360° format by using rotation-translation matrices.

360BEV-Stanford. The Stanford2D3D dataset [5] has front-view labels but not BEV

labels. As presented in Figure 46, we utilize the global XYZ image to generate the

corresponding BEV semantic map by applying orthographic projection.

360BEV-Matterport. ForMatterport dataset, we generate global XYZ images by using

the depth ground truth. First, a panoramic image can be processed as a sphere with rays

shooting from the center of the sphere, where the camera is located.

Θi,j =
iπ

H
+

π

2H
, i = {0, . . . ,H−1}, j = {0, . . . ,W−1},

Φi,j = −
2πj

W
+ π−

π

W
, i = {0, . . . ,H−1}, j = {0, . . . ,W−1}.

(35)

Here, Θ and Φ are angle matrices of panoramic images with size H×W, which con-

sist of two dimensional Euler angular equivariant series. Given the representation in

spherical coordinate systems, each 3D point (Xi,j, Yi,j,Zi,j) in the camera coordinate

system will be obtained through the calculation in Eq. (36).

Xi,j = Di,j · sin(Θi,j) · sin(Φi,j),
Yi,j = Di,j · cos(Θi,j),
Zi,j = Di,j · sin(Θi,j) · cos(Φi,j),

(36)

whereD is the depth information. After obtaining 3D points, the orthographic projec-

tion matrix Pv is applied to transform 3D coordinates to 2D panoramic BEV indices

(u, v), as in Eq. (37), where [R|t] is the transformation matrix.

 x

y

z

 = R−1

 Xi,j

Yi,j

Zi,j

− t,


u

v

0

1

 = Pv


x

y

z

1


︸ ︷︷ ︸
Orthographic projection

.
(37)
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Dataset #Scene #Room #Frame #Category

train 5 215 1,040 13

val 1 55 373 13

360BEV-Stanford 6 270 1,413 13

train 61 – 7,829 20

val 7 – 772 20

test 18 – 2,014 20

360BEV-Matterport 86 2,030 10,615 20

Table 22: The statistics of the 360BEV-Matterport

and 360BEV-Stanford datasets.
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Figure 47: Per-class pixel number (logarithmic)

and frequency (%) distribution.

5.3.2.3 Dataset Statistics

As a result, two BEV datasets for panoramic semantic mapping are obtained. The

data statistics of 360BEV-Stanford and 360BEV-Matterport datasets are shown in Ta-

ble 22. While the 360BEV-Stanford dataset has 13 classes and 1,413 images, the 360BEV-

Matterport dataset includes 20 classes and 10,615 samples. Besides, we further present

the per-class pixel number and per-class frequency in Figure 47. Note that the floor

class has a much higher frequency on both datasets. This category is important for

tasks that rely on complete maps, such as indoor navigation, and is therefore retained.

5.3.3 360Mapper Model

Overall Architecture. As shown in Figure 48, our end-to-end 360Mapper framework

includes four steps: (1) The transformer-based backbone extracts feature from the

panoramic image. (2) The Inverse Radial Projection (IRP) module obtains a 2D index

by projecting reference points generated by depth. (3) The 360Attention module en-

hances the front-view feature by 2D index and generates offsets from BEV queries to

eliminate the effects of distortion. (4) The lightweight decoder parses the projected

feature map and predicts the semantic BEV map.

Inverse Radial Projection. We propose Inverse Radial Projection (IRP), which the

input of panoramic depth is included. We can obtain a top-view mask map by using

depth information. This mask map is used to generate 3D reference points with the

corresponding map height. The 3D reference points are projected onto the sphere to

generate 2D reference indexes, as shown in Eq. (38), where IDh and IDw represent the

index values of 2D reference for the height and width of the feature map, respectively.

The 2D indexes are used to locate the corresponding points of front-view feature.

Φ = tan−1 y

x
, Θ = tan−1

(
x

z
· 1

cos(Φ)

)
,

IDh =

⌈
HΘ

π

⌉
, IDw =

⌈(
Φ

π
−

1

W

)
·W
2

⌉
.

(38)

360Attention. In Figure 48b, the proposed 360Attention generates sampling offsets

through the linear layer in an adaptive manner. Given the BEV query q ∈ RN×CEmb

as input, where N=h×w is the length of query, a mask(·) operation is applied on q



5.3 panoramic semantic mapping 79

360Attention
Module

IRP
2D Index

Linear

Sampling
Locations

Offsets 
 

360Attention

Encoder

Decoder

Extended 2D index 
 

Feature map 

Query 

 

 

(a) 360Mapper model (b) 360Attention module

Figure 48: Architecture of 360Mapper and the 360Attention module. The 360Mapper model includes

the encoder for extracting features from the front-view panoramic image, the 360Attention module for

feature projection, and the decoder for parsing the projected feature to the BEV semantic map. The

offsets are obtained by a linear layer and added with the 2D index that is obtained by Inverse Radial

Projection (IRP), yielding the sampling locations for 360BEV feature projection.

and p to mask out irrelevant points and 2D indexes according to the mask mapMmap

from IRP, which is crucial to keep q and p efficient and reducing computation of 360At-

tention (

∑
Mmap<N). The sampling offset ∆pq,ij and attention weightAij∈[0, 1] are

predicted through BEV query by linear layers. The adaptive sampling offsets are then

added to the extended 2D index p to obtain distortion-aware sampling locations. The

360Attention module can be denoted as:

360Attn(q,p,f360) =
N

head∑
i=1

Wi

Npoint∑
j=1

Aij·f360
(
mask (p) +∆pq,ij

)
, (39)

where q, p, and f360 indicate the query, the extended 2D index, and panoramic feature

map, respectively. The linear layerWi∈RC×(C/Nhead) is specific to each attention head

i, where C is the feature dimension and Nhead is the number of heads. The attention

weight Aij represents the importance of the sampled points j, where
∑

Aij=1. The

panoramic features f360 and the adaptive sampling locations (mask(p)+∆pq,ij) are

aggregated using attention weights Aij. Then, the mask map Mmap is applied to as-

semble the BEV output as q ′∈RN×CEmb . After being added with a residual term of q,

the BEV result from q+q ′ is forwarded to the next 360Attention module.

5.3.4 Experiments and Analysis

5.3.4.1 Panorama Semantic Mapping (360BEV)

Results on 360BEV-Stanford. In Table 24, SegFormer [239] and SegNeXt [70] are

in Early projection mode, which reach unsatisfactory results, which indicate that the

pre-projected RGB maintains less rich spatial and visual information of front-view im-

ages. Using Late projection, SegFormer with MiT-B2 achieves 18.65% mIoU and sur-

passes the Early projection, still yielding sub-optimal semantic mapping results. In-

terestingly, all methods using Intermediate projection obtain >30% mIoU. While using

the sameMiT-B2 backbone and our 360Mapper achieves 45.78%with +9.70% gains over
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Method Backbone Acc mRecall mPrecision mIoU

(1) Early projection: Proj.→Enc.→Seg.

SegFormer [239] MiT-B2 71.69 20.82 26.34 14.15

SegNeXt [70] MSCA-B 79.77 34.13 47.39 25.85

(2) Late projection: Enc.→Seg.→Proj.

HoHoNet [192] ResNet101 70.01 31.62 30.46 18.49

Trans4PASS [283] MiT-B2 65.73 31.08 33.15 17.86

Trans4PASS+ [284] MiT-B2 66.11 38.06 34.14 20.44

SegFormer [239] MiT-B2 70.50 30.97 30.65 18.65

(3) Intermediate projection: Enc.→Proj.→Seg.

BEVFormer [111] MiT-B2 85.50 40.22 51.71 31.69

Trans4Map [25] MiT-B0 86.41 40.45 57.47 32.26

Trans4Map [25] MiT-B2 86.53 45.28 62.61 36.08

Trans4Map [25] MiT-B4 86.99 46.18 58.19 36.69

Ours MiT-B0 92.07 50.14 65.37 42.42

Ours MiT-B2 92.80 53.56 67.72 45.78

Ours MSCA-B 92.67 55.02 68.02 46.44

Table 24: Panoramic semantic mapping

(360BEV) on the 360BEV-Stanford dataset.

Method Backbone Acc mRecall mPrecision mIoU

(1) Early projection: Proj.→Enc.→Seg.

SegFormer [239] MiT-B2 68.12 41.33 45.25 29.22

SegNeXt [70] MSCA-B 68.53 42.13 46.12 30.01

(2) Late projection: Enc.→Seg.→Proj.

HoHoNet [192] ResNet101 62.84 38.99 44.22 26.21

Trans4PASS [283] MiT-B2 55.99 29.59 40.91 20.07

Trans4PASS+ [284] MiT-B2 57.89 32.75 40.93 21.58

SegFormer [239] MiT-B2 62.98 41.84 45.30 27.78

(3) Intermediate projection: Enc.→Proj.→Seg.

BEVFormer [111] MiT-B2 72.99 43.61 51.70 32.51

Trans4Map [25] MiT-B0 70.19 44.31 50.39 31.92

Trans4Map [25] MiT-B2 73.28 51.60 53.02 36.72

Trans4Map [25] MiT-B4 73.51 50.78 56.67 38.04

Ours MiT-B0 75.44 48.80 56.01 36.98

Ours MiT-B2 78.80 59.54 59.97 44.32

Ours MSCA-B 78.93 60.51 62.83 46.31

Table 25: Panoramic semantic mapping

(360BEV) on 360BEV-Matterport val set.

Trans4Map [25]. Further, our model (MiT-B0) outperforms Trans4Map (MiT-B4) with

+05.73%. With MSCA-B from SegNeXt [70], our method reaches 46.44% in mIoU, which

indicates 360Mapper is flexible to CNN- and Transformer-based backbones.

Results on 360BEV-Matterport. In Table 25, SegFormer [239] and SegNeXt [70]

adopt Early projection and show better performance than the Late projection. Using

Intermediate projection, our 360Mapper models based on MiT-B0 and MiT-B2, obtain

36.98% and 44.32% in mIoU, respectively. Compared to Trans4Map [25] (MiT-B2), our

approach with MiT-B2 has improvements by +5.52% in accuracy, +7.94% in mRecall,

+6.95% in mPrecision, and +7.60% in mIoU. Surprisingly, our 360Mapper with MiT-B2

outperforms Trans4Map with MiT-B4 with +6.28% in mIoU. Besides, to compare multi-

view methods, we reproduce BEVFormer [111] by using a single panorama instead of

six pinhole views. Our 360Mapper has +11.81% gains. Furthermore, we verify 360Map-

per by using a CNN-based MSCA-B backbone [70], which obtains 46.31% in mIoU. All

results are in line with our observation that Intermediate projection can preserve dense

visual cues and long-range information from front-view panoramas.

Per-class Results. We present the comparison of per-class results in Figure 49. Both

the baseline Trans4Map and our 360Mapper model are based on the same backbone,

i.e., MiT-B2. On the 360BEV-Stanford dataset (Figure 49a), our 360Mapper model has

significant gains on most of categories, such as board (>14%), wall (>16%), door (>28%),

etc. On the 360BEV-Matterport dataset (Figure 49b), it is readily apparent that our

model can better recognize the chairs and tables, yielding >6% IoU gains compared

to Trans4Map [25]. On the test set of the 360BEV-Matterport dataset, our 360Mapper

obtains IoU gains with >12% and >15% on the sink and toilet classes, as compared to

Trans4Map. Overall, the consistent improvements on both datasets show the superior-

ity of our 360Mapper on panoramic semantic mapping.

5.3.4.2 Qualitative Analysis

To analyze the predicted semantic maps, we visualize the results from the validation

set of the 360BEV-Matterport dataset. In Figure 50, from left to right are input images,

results of baseline [25], results of our 360Mapper, and ground truth. Thanks to the

IRP projection and 360Attention, the segmentation results of 360Mapper are much bet-
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Figure 49: Distribution of per-class semantic mapping results (per-class IoU in %).

ter. In the first scene in Figure 50, 360Mapper is able to successfully classify chairs,

while the baseline model fails, predicting several tables and misclassifying the distant

ground as another table. In the second scene, the segmentation of the tables derived by

the baseline is incomplete. Furthermore, in the last zoomed-in scene, 360Mapper pro-

vides accurate semantic maps, such as in counter, chair, and wall categories, whereas

the baseline Trans4Map [25] misclassifies them as tables and doors. Based on the qual-

itative analysis, our 360Mapper can effectively handle object deformations and image

distortions, yielding better BEV semantic maps.

wall floor chair door table pictu. furni. objec. windo. sofa

bed sink stairs ceil. toilet mirror show. batht. count. shelv.

Input Baseline 360Mapper Ground Truth

Figure 50: Qualitative analysis on the 360BEV-Matterport dataset. Black regions are void.
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5.4 chapter conclusion

Navigational scene understanding is a crucial component of Mobility Assistance

Systems (MAS), which can empower the ability of MAS to support independent nav-

igation and provide People with Visual Impairments (PVI) accessible maps for scene

exploration prior to visits. As the first research theme in field of MAS, this chapter

presents three novel approaches related to navigational scene understanding:

• Feature matching for visual localization: Feature matching is a fundamental

component of visual localization and navigation systems for PVI. A robust feature

matching model is able to stabilize pose estimation and indoor localization perfor-

mance in low-texture indoor environments.

• Bird’s-eye-view semantic mapping: Semantic mapping can transform front-view

observations into a bird’s-eye-view (BEV) semantic map. The pixel-wise semantic

map can be used to plan paths in MAS, and provide accessible features for blind

people to understand their destination and make plans before visiting.

• Panoramic semantic mapping: 360BEV is a novel mapping task, i.e., creating a

semantic map of a scene by only using a panoramic image. This task can simplify

the mapping process by bypassing the need for complex multi-view perception and

narrow-view sequence generation. Besides, it helps to identify objects and land-

marks that would be obscured from a single viewpoint.

Here is a more detailed overview of the contributions of each section in this chapter:

Contribution 1: We propose a new extract-and-match pipeline that synchronizes

feature extraction and feature matching by interleaving self- and cross-attention

modules. It is implemented in a novel vision transformer model,MatchFormer, which

has a robust hierarchical transformer encoder and a lightweight decoder. Match-

Former achieves state-of-the-art results onmatching low-texture indoor images, and

outperforms previous detector-based and extract-to-match methods.

Contribution 2: We propose an end-to-end Transformer for Mapping (Trans4Map),

to perform egocentric-to-allocentric semantic mapping. Trans4Map achieves a holis-

tic dense understanding for indoor exploration by capturing long-range contextual

dependencies. The novel Bidirectional Allocentric Memory (BAM) is also more effi-

cient than previous methods, improving themapping performance of themodel with

fewer parameters.

Contribution 3: A new task, 360BEV, is established for the first time to address

indoor semantic mapping using a single-frame panoramic image. It reduces the

complex processing of multi-view or sequence inputs. Besides, two indoor BEV

datasets, i.e., 360BEV-Matterport and 360BEV-Stanford, are extendedwith front-view

panoramic images and BEV semantic labels, providing a thorough benchmark for

panoramic semantic mapping. The 360Mapper model is proposed as a dedicated so-

lution for interior panoramic semantic mapping.



6
TOWARDS GENERAL I ZABLE

SCENE UNDERSTAND ING

In this chapter, we present the second research theme in MAS, i.e., generaliz-

able scene understanding. In real-world scenarios, corner cases and adverse situ-

ations are challenging for MAS. For example, transparent objects often present

architectural barriers which hinder the mobility of People with Visual Impair-

ments (PVI), while adverse driving conditions are difficult for autonomous ve-

hicles. Therefore, scene understanding models should be adaptable to different

corner cases. To achieve this, our contributions are two-fold: (1) We propose

an efficient Transformer for Transparency (Trans4Trans) to recognize glass-like

objects, which is presented in Section 6.1, based on our work pulished in ICCV

ACVR workshop 2021 [281]. (2) Considering the synergy between walking and

driving scene understanding, Trans4Trans is further verified on driving scenes.

Besides, accidental cases are explored through unsupervised domain adaptation.

These two methods are presented in Section 6.2, based on our works published

in Transactions on ITS 2022 [282] and CVPR WAD workshop 2022 [133].

6.1 transparent object segmentation

This section is based on our work published in ICCV Workshop on Assistive Computer

Vision and Robotics (ACVR) 2021 [281].

6.1.1 Scene Understanding in the Wild

Knowledge of glass architecture [16] and glass doors [138, 141] are particular important

for People with Visual Impairments (PVI), because transparent objects often present

architectural barriers which hinder their mobility. For example, a path behind a glass

door is not a free way to navigate (Figure 51) unless it is correctly recognized and re-

acted. However, most common vision-based navigation assistance systems [2, 216, 251]

cannot handle transparent obstacles well, as 3D vision-based methods hardly recover

the depth information of texture-less transparent surfaces [2, 251], whereas conven-

tional image segmentation-based methods do not cover the categories of challenging

transparent objects [120, 246]. In addition, guide dogs often get confused leading peo-

ple with blindness to full-pane windows, and differentiation between doors, and large

glass windows is difficult for people with residual sight [170]. A system that supports

the recognition of landmarks such as doors is particularly appreciated by people with

83
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Figure 51: The overview of Vision4Blind assistance system. (a) The system equipped with smart

vision glasses and a portable GPU is tested (b) in front of a glass door. The input image is

segmented asWalkable Path by (c) a single head CNN model, and is corrected as Glass Door
by (d) our Transformer for Transparency (Trans4Trans) model. The user interface consists of

vibration and speech feedback, such as “glass door” in this case.

visual impairments, as finding a door before entering a building is difficult due to the

inaccuracy of GPS [10, 170].

To address that, we build a wearable system, i.e., Vision4Blind, which can perform

real-time wayfinding and object segmentation to assist PVI travel safely. Specifically,

we present Transformer for Transparency (Trans4Trans), an efficient semantic segmen-

tation architecture with dual heads, as shown in Figure 51d. As transparent objects

are often texture-less or share similar content as the surroundings, it is essential to

associate long-range visual concepts to robustly infer transparent regions. For this rea-

son, Trans4Trans is established with both transformer-based encoder and decoder to

fully exploit the long-range context modeling capacity of self-attention layers in trans-

formers [212]. In particular, Trans4Trans features a novel Transformer Paring Module

(TPM) to fuse multi-scale feature maps generated from embeddings of dense partitions,

and the symmetric transformer-based decoder can consistently parse the feature maps

from transformer-based encoder. Together with predicting general things and stuff

classes like walkable areas, the dual-head design can segment transparent objects ac-

curately, which are safety-critical for navigation.

Trans4Trans is integrated in our Vision4Blind wearable system which comprises a

pair of smart vision glasses and a mobile GPU processor, which delivers a generalizable

scene understanding swiftly and accurately thanks to the high efficiency of our model.

With the complete semantic information, the user interface consists of vibration and

acoustic feedback of detected objects, walkable directions and warnings of the obsta-

cles, which yields intuitive suggestions and no prior knowledge is needed. The system

will be described in Section 7.1. Besides, a comprehensive set of experiments has been

conducted on multiple semantic segmentation datasets [5, 237]. In particular, the pro-

posedmodel outperforms state-of-the-art methods on the test sets of Stanford2D3D [5]

and Trans10K-v2 [237] datasets. Finally, a user studywith visually impaired people and

a variety of field tests demonstrate the usability and reliability of our assistive system

for navigational perception in the wild. To the best of our knowledge, we are the first

to use vision transformers for assisting people with visual impairment.
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Figure 52: The architecture of (a) Trans4Trans model consists of shared encoder and dual de-

coders, while (b) and (c) are the general transformer-based encoder block and our proposed

Transformer Parsing Module (TPM) for decoder, respectively.

6.1.2 Trans4Trans Model

Inspired by the benefit of ViT [52] transformer model in acquiring long-range depen-

dencies, our dual-head Trans4Trans model is entirely composed of transformers, as

shown in Figure 52a, while the single-head has only one decoder. The four-stage en-

coder is borrowed from PVT [222]. Different to PVT-based Trans2Seg [237] adopt-

ing CNN-decoder, both encoder and decoder of Trans4Trans are symmetrically con-

structed by transformers for maintaining consistency in both feature extraction and

feature parsing stages. Furthermore, different from CNN-based models [140, 155, 258,

263] learning the inductive bias, the transformer-based decoder is supposed to be more

robust to parse unseen data captured in the wild. Yet, training a transformer model

requires a large-scale dataset [52]. In order to solve the data-hunger problem and cor-

rect the misidentified walkable area through transparent objects segmentation, we de-

signed a double-head model. Through the joint training of multiple datasets, it brings

greater data diversity for learning a robust transformer-based model.

To construct a lightweight decoder, we propose a Transformer Parsing Module (TPM)

as shown in Figure 52c. Each TPM contains one single transformer-based layer, thus it

is flexible to be deployed on our portable hardware system. Precisely, each stage has a

TPM module and contains similar structure. As shown in Figure 52a, the pyramid fea-

tures {F1, F2, F3, F4} from encoder are parsed consistently by the specific TPM module.

Between two stages, resize and element-wise addition are used for pyramid feature

fusion. For balancing capacity and computational demands, the feature resolution of

each TPM is set as
H
4 ×

W
4 ×C, for which the default channel is 64.

Thanks to TPM, the amount of GFLOPs and parameters of this dual-head structure

is largely reduced compared to two separate models. Besides, diverse features can be

learned from various datasets. Thereby, the dual-head model maintains lightweight

and is robust in terms of preventing overfitting when testing in real-world scenarios.

The decoder composed of our TPM module can be flexibly applied with various CNN-

or transformer-based encoder structures as well. For multi-task learning, mounting

decoder heads robustifies the feature learned via the shared encoder, and the entire

model will not be computationally overburdened.
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Method GFLOPs↓ ACC↑ mIoU↑
Category IoU ↑

Backg. Shelf Jar/Tank Freezer Window Door Eyeglass Cup Wall Bowl Bottle Box

FPENet [123] 0.76 70.31 10.14 74.97 0.01 0.00 0.02 2.11 2.83 0.00 16.84 24.81 0.00 0.04 0.00

ESPNetv2 [140] 0.83 73.03 12.27 78.98 0.00 0.00 0.00 0.00 6.17 0.00 30.65 37.03 0.00 0.00 0.00

ContextNet [154] 0.87 86.75 46.69 89.86 23.22 34.88 32.34 44.24 42.25 50.36 65.23 60.00 43.88 53.81 20.17

FastSCNN [155] 1.01 88.05 51.93 90.64 32.76 41.12 47.28 47.47 44.64 48.99 67.88 63.80 55.08 58.86 24.65

DFANet [103] 1.02 85.15 42.54 88.49 26.65 27.84 28.94 46.27 39.47 33.06 58.87 59.45 43.22 44.87 13.37

ENet [151] 2.09 71.67 8.50 79.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 22.25 0.00 0.00 0.00

HRNet_w18 [217] 4.20 89.58 54.25 92.47 27.66 45.08 40.53 45.66 45.00 68.05 73.24 64.86 52.85 62.52 33.02

HarDNet [24] 4.42 90.19 56.19 92.87 34.62 47.50 42.40 49.78 49.19 62.33 72.93 68.32 58.14 65.33 30.90

DABNet [100] 5.18 77.43 15.27 81.19 0.00 0.09 0.00 4.10 10.49 0.00 36.18 42.83 0.00 8.30 0.00

LEDNet [226] 6.23 86.07 46.40 88.59 28.13 36.72 32.45 43.77 38.55 41.51 64.19 60.05 42.40 53.12 27.29

Trans4Trans-T 10.45 93.23 68.63 94.44 48.39 61.89 61.86 61.14 54.83 73.60 83.03 75.20 74.69 75.26 59.19

ICNet [292] 10.64 78.23 23.39 83.29 2.96 4.91 9.33 19.24 15.35 24.11 44.54 41.49 7.58 27.47 3.80

BiSeNet [258] 19.91 89.13 58.40 90.12 39.54 53.71 50.90 46.95 44.68 64.32 72.86 63.57 61.38 67.88 44.85

Trans4Trans-S 19.92 94.57 74.15 95.60 57.05 71.18 70.21 63.95 61.25 81.67 87.34 78.52 77.13 81.00 64.88

DenseASPP [253] 36.20 90.86 63.01 91.39 42.41 60.93 64.75 48.97 51.40 65.72 75.64 67.93 67.03 70.26 49.64

DeepLabv3+ [29] 37.98 92.75 68.87 93.82 51.29 64.65 65.71 55.26 57.19 77.06 81.89 72.64 70.81 77.44 58.63

FCN [127] 42.23 91.65 62.75 93.62 38.84 56.05 58.76 46.91 50.74 82.56 78.71 68.78 57.87 73.66 46.54

OCNet [263] 43.31 92.03 66.31 93.12 41.47 63.54 60.05 54.10 51.01 79.57 81.95 69.40 68.44 78.41 54.65

RefineNet [116] 44.56 87.99 58.18 90.63 30.62 53.17 55.95 42.72 46.59 70.85 76.01 62.91 57.05 70.34 41.32

Trans2Seg [237] 49.03 94.14 72.15 95.35 53.43 67.82 64.20 59.64 60.56 88.52 86.67 75.99 73.98 82.43 57.17

TransLab [240] 61.31 92.67 69.00 93.90 54.36 64.48 65.14 54.58 57.72 79.85 81.61 72.82 69.63 77.50 56.43

DUNet [89] 123.69 90.67 59.01 93.07 34.20 50.95 54.96 43.19 45.05 79.80 76.07 65.29 54.33 68.57 42.64

U-Net [166] 124.55 81.90 29.23 86.34 8.76 15.18 19.02 27.13 24.73 17.26 53.40 47.36 11.97 37.79 1.77

DANet [61] 198.00 92.70 68.81 93.69 47.69 66.05 70.18 53.01 56.15 77.73 82.89 72.24 72.18 77.87 56.06

PSPNet [293] 187.03 92.47 68.23 93.62 50.33 64.24 70.19 51.51 55.27 79.27 81.93 71.95 68.91 77.13 54.43

Trans4Trans-M 34.38 95.01 75.14 96.08 55.81 71.46 69.25 65.16 63.96 83.84 88.21 80.29 76.33 83.09 68.09

Table 26: Computation complexity in GFLOPs and category-wise accuracy evaluation and com-

parison with semantic segmentation methods on the Trans10K-v2 dataset [237].

6.1.3 Experiments and Analysis

6.1.3.1 Comparison to Advanced Models.

Following [237], we compare accuracy- and efficiency-oriented models as shown

in Table 26. Compared with both CNNs and transformer-based methods like

Trans2Seg [237], the superiority of Trans4Trans is further confirmed. Our Trans4Trans-

M model outperforms the advanced method Trans2Seg by 2.99% in mIoU and 0.87% in

ACC, while requiringmuch less GFLOPs. For category-wise accuracy, our Trans4Trans

model achieves the advanced IoU on the classes background, jar or tank, window, door,

cup, wall, bottle and box. These experimental results show the efficacy of transparent

object segmentation of the proposed Trans4Trans architecture.

6.1.3.2 Real-time Performance

To calculate the inference speed of our different versions of dual-head Trans4Trans

model, 300 samples from the Trans10K-v2 test set with a batch size of 1 and a resolu-

tion of 512×512 are tested on three different GPUs, i.e., a mobile NVIDIA AGX Xavier

in the MAXN mode, an NVIDIA GeForce MX350 from a lightweight laptop and an

RTX 2070 from a workstation. As shown in Table 27, the computation costs of our

tiny Trans4Trans model on three GPUs are considerably lower than the other two,

meanwhile the performances of the three models on both datasets are suitable for our

system. In real applications, the more timely response of the navigation system is ben-

eficial for assisting users with a similar prediction accuracy on each frame. Hence, the

tiny version is selected in the user study.
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Network NVIDIA Xavier (ms) ↓ MX350 (ms) ↓ RTX 2070 (ms) ↓

Trans4Trans-M 115.9 (±1.1) / 202.8 (±1.1) 186.1 (±0.3) / 243.2 (±0.3) 22.9 (±0.3) / 36.6 (±0.8)

Trans4Trans-S 95.3 (±0.6) / 158.6 (±1.8) 140.6 (±0.3) / 188.4 (±0.4) 17.1 (±0.3) / 27.7 (±0.5)

Trans4Trans-T 75.8 (±0.7) / 122.7 (±0.7) 101.5 (±0.3) / 141.7 (±1.6) 12.8 (±0.5) / 20.3 (±0.5)

Table 27: Inference time (ms/frame) of dual-head Trans4Trans is tested in half-/single-precision

on various GPUs at 512×512.

6.1.3.3 Transparent Feature

To investigate the impact of context information (such as door frames and walls) or

reflection features on transparency perception, we visualize the segmentation results

from six scales (from 100% to 20%) of the original images in Figure 53. In Figure 53a,

among all six scales, even in the 20% case with less context, two overlapping doors

are accurately segmented. In Figure 53b, the sneeze guard is recognized as the glass

wall, since it has the glass-like reflection. Another reason is the sneeze guard has no

frame and overlaps with the background wall. Therefore, the background of transpar-

ent objects affects the object classification if they lack contextual information. In the

40% ratio in Figure 53c, with only a one-side outer frame and part of the reflection, it

can still segment the area of the glass wall. However, in the 20% ratio, it is confused

due to the tiny frame and absence of any reflections. The errors in the latter two ratios

of Figure 53d are caused by the lack of texture information and reflections. Based on

the analysis of visualizations, three insights are provided: (1) The contextual informa-

tion, e.g., the outer frame, is a vital factor for the transparency segmentation; (2) The

reflection characteristic of glass or transparent objects is crucial; (3) The background

texture of transparent objects also interferes with the segmentation results when they

lack contextual information. Thanks to the symmetrical encoder-decoder structure,

Trans4Trans can robustly segment transparent objects even with diminishing context

cues in most of the complex real-life scenes.

100% 85% 70% 55% 40%

(a) Overlapping transparent doors

20% 100% 85% 70% 55% 40% 20%

(b) Transparent sneeze guards

(d) Frosted doors(c) Glass walls

Figure 53: Visualization of segmentation results from different cropped regions based on image

center. Images of six scales from 100% to 20% are cropped from its original images and are

separately segmented, in order to ablate the effect of image context. All results are generated

by the tiny version of both networks.
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6.2 adverse scene segmentation

This section is based on our work published in Transactions on ITS 2022 [282], and par-

tially from a collaborative work of a master’s thesis project published in CVPR Work-

shop on Autonomous Driving (WAD) 2022 [133].

6.2.1 Synergy of Walking and Driving Scene Understanding

Assisted navigation of pedestrians and automated driving of intelligent vehicles are

inextricably intertwined in the Intelligent Transportation Systems (ITS) field [21, 136,

189, 246], both with the aim to improve traffic flow towards the utopia of all road

participants. In addition to vehicles from the driving perspective, humans and their

mobilities from the walking perspective are involved. However, people with disabili-

ties may have difficulties in using transportation infrastructures, and the bottleneck of

inclusiveness should be broken in ITS. To this end, it is necessary to expand the cov-

erage of assistance systems from drivers to pedestrians, especially those with visual

impairments, who are one of the most vulnerable road users [137].

To assist People with Visual Impairments (PVI) to navigate, it is essential to attain

adaptable scene understanding in the walking perspective which is verified via the Vi-

sion4Blind system [281]. However, it shares similar challenges with the ITS research

line on driving surrounding segmentation [164, 249], when considering the synergy

towards traffic safety and the shared challenges between walking and driving scene

understanding (Figure 54). Apart from walking scenes, Trans4Trans is further adapted

to and verified on driving benchmarks including Cityscapes [44], ACDC [171], and

DADA-seg [285]. In the following, we mainly advocate addressing semantic segmen-

tation of driving scenes from an adaptable perspective that jointly considers normal,

adverse, and accidental scenarios.
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Figure 54: The overview of Vision4Blind assistance system in both walking and driving perspec-

tives. (a) The system equipped with the smart vision glasses and a portable processor is tested

(b) in front of a glass door. The input image is segmented as walkable path and glass door by
(c) our Trans4Trans model. The user interface has vibration and voice feedback. After training

on normal and adverse data from street scenes, (d) Trans4Trans reaches high robustness in

various real-world driving cases, e.g., normal, adverse, and accidental scenes.
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Network Encoder Decoder GFLOPs #P(M) Cityscapes ACDC

PVT-T PVT-T

MiT [237]

10.30 13.11 58.09 53.65

PVT-S PVT-S 19.77 24.35 59.68 57.13

PVT-M PVT-M 36.87 51.83 60.38 58.60

Ours-T PVT-T

TPM / Single-head

10.45 12.71 60.41(+2.32) 54.37(+0.72)

Ours-S PVT-S 21.98 25.00 63.08(+3.40) 60.70(+3,57)

Ours-M PVT-M 44.38 48.77 65.63(+5,25) 61.91(+3,31)

Ours-T PVT-T

TPM / Dual-head

11.23 13.10 57.42(-0.67) 56.36(+2.71)

Ours-S PVT-S 24.82 26.45 62.39(+2.71) 62.14(+5.01)

Ours-M PVT-M 55.16 54.28 63.00(+2.62) 63.88(+5.28)

Ours-T PVTv2-B1

TPM / Single-head

9.18 13.53 63.25(+5.16) 59.25(+5.60)

Ours-S PVTv2-B2 19.27 25.62 67.28(+7.60) 64.61(+7.48)

Ours-M PVTv2-B3 41.89 49.55 69.34(+8.96) 65.92(+7.32)

Ours-T PVTv2-B1

TPM / Dual-head

10.00 13.93 62.31(+4.22) 61.86(+8.21)

Ours-S PVTv2-B2 22.17 27.08 65.98(+6.30) 64.83(+7.70)

Ours-M PVTv2-B3 52.77 55.09 69.05(+8.67) 66.65(+8.05)

Table 28: Ablation on Cityscapes and ACDC. GFLOPs

at 512×512. The dimension of model-T/-S/-M de-

coder is {64, 128, 256}.

Methods Encoder GFLOPs #P(M) mIoU

FastSCNN [155] Fast-SCNN 2.07 1.46 72.65

CGNet [230] CGNet-M3N21 7.72 0.50 64.80

Trans4Trans-T PVTv2-B1 [221] 20.66 13.53 78.23

HRNet [217] HRNetV2p-W18s 21.70 3.94 77.48

SegFormer-B1 [238] MiT-B1 29.85 13.66 78.43

ERFNet [164] ERFNet 30.22 2.07 72.10

Trans4Trans-S PVTv2-B2 [221] 43.37 25.62 80.02

PSPNet [293] MobileNetV2 119.09 13.72 70.20

PSPNet [293] ResNet-18 119.27 12.77 76.90

SegFormer-B2 [238] MiT-B2 127.86 27.33 80.46

SegFormer-B3 [238] MiT-B3 160.78 47.18 81.50

DeepLabv3+ [29] MobileNetv2 169.53 18.70 75.20

HRNet [217] HRNetV2p-W48 210.57 65.86 80.72

PSPNet [293] ResNet-50 401.51 48.98 79.96

PSPNet [255] ResNet-101 573.48 67.95 80.04

SETR-Naive [296] ViT-L [52] 698.52 306.58 77.90

SETR-MLA [296] ViT-L [52] 712.76 310.81 77.24

SETR-PUP [296] ViT-L [52] 818.26 319.11 79.34

Trans4Trans-M PVTv2-B3 [221] 94.25 49.55 81.54

Table 29: Comparison on Cityscapes

with multi-scale testing. GFLOPs at

768×768.

6.2.2 Evaluation on Normal and Abnormal Driving Scenes

6.2.2.1 Ablation of Trans4Trans

We first conduct ablation study of Trans4Trans on driving scene datasets. Five groups

of results are shown in Table 28. Our TPM-based Trans4Trans illustrates better perfor-

mance compared to PVT on both driving scene datasets. On Cityscapes, Trans4Trans-

M leveraging PVT encoder outperforms PVT-M by 5.25% and Trans4Trans-M lever-

aging PVTv2 as the encoder surpasses by 8.96%. On ACDC, our Trans4Trans-M with

PVT outperforms PVT-M by 5.28% and the one with PVTv2-M exceeds by 8.05% while

utilizing TPM/Dual-head in the decoder architecture. Since ACDC has adverse condi-

tions, these results evidence that TPM/Dual-head has the better robustness under en-

vironment changes in driving scene segmentation, as it incorporates more generalized

knowledge learned from diverse images in both datasets.

6.2.2.2 Segmentation in Normal Conditions

In Table 29, results of Trans4Trans trained with the input size of 768×768 are com-

pared with more than 15 state-of-the-art methods
1
. All Trans4Trans are constructed

with the best single-head Trans4Trans. Our Trans4Trans-M approach with PVTv2-

B3 as encoder achieves the best performance with an mIoU of 81.54% on Cityscapes,

whose images are collected under normal weather and favorable illumination condi-

tions. Compared with the advanced methods such as SETR [296] and PSPNet [293],

our Trans4Trans approach shows smaller GFLOPs (94.25) and less parameters (49.55M),

which are relevant for fast inference in automated vehicles. Trans4Trans-T and -S mod-

els with lighter encoder architectures also show high scores of 78.23% and 80.02% in

1 For a fair comparison, model weights are obtained by the same framework MMSegmentation: https:
//github.com/open-mmlab/mmsegmentation.

https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation
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Method Trained on GFLOPs ↓ Fog Night Rain Snow All-ACDC All-DADA

DeepLabv3+ [29] CS 178.1 45.7 25.0 50.0 42.0 41.6 10.4

HRNet [217] CS 210.5 38.4 20.6 44.8 35.1 35.3 15.5

Trans4Trans-M CS 41.8 74.1 31.1 63.4 57.9 55.7 27.7

DeepLabv3+ [29] ACDC 178.1 69.1 60.9 74.1 69.6 70.5 26.8

HRNet [217] ACDC 210.5 74.7 65.3 77.7 76.3 75.0 27.5

Trans4Trans-M ACDC 41.8 79.8 55.3 77.4 78.6 75.2 32.4

Trans4Trans-M ACDC+CS 41.8 81.4 56.0 77.0 78.8 76.3 39.2

Table 30: Comparison on adverse (Fog, Night, Rain, Snow, and All-ACDC [171]) and acciden-

tal (All-DADA [285]) conditions. CS: Cityscapes [44]. GFLOPs are calculated at 768×768.

mIoU. The lightest Trans4Trans outperforms FastSCNN [155] andCGNet [230] by large

margins, and it achieves a similar score as SegFormer [238] while being more efficient.

6.2.2.3 Segmentation in Adverse Conditions

In Table 30, we adapt and test Trans4Trans-M on both ACDC [171] and DADA-

seg [285] datasets, which have adverse- and accidental scenes, respectively. The results

of Trans4Trans are obtained via MMSegmentation with a resolution of 768×768. In the
first group, Trans4Trans-M obtains 55.7% and 27.7% in mIoU when compared with HR-

Net [217] and DeepLabV3+ [29]. Trans4Trans outperforms them in all four adverse

conditions and accidental scenes, which demonstrates its high adaptation capacity to

unseen domains. This is because with both transformer-based encoder and decoder,

Trans4Trans can associate long-range visual concepts for robustly inferring seman-

tics, despite local texture- and illumination changes in different scenarios like night-

time and accident scenes. Thanks to our efficient backbone, Trans4Trans surpasses

HRNet by >20% and >12% on All-ACDC and All-DADA with only its 20% GFLOPs. In

the second group of Table 30, Trans4Trans again indicates better overall performances

on two datasets. Finally, the model trained on ACDC and Cityscapes shows the best

overall scores on All-ACDC and All-DADA with 76.3% and 39.2% in mIoU, illustrating

that co-training on normal and adverse data can improve the performance of the model

under both adverse and extreme accident conditions.

6.2.2.4 Visualization of Driving Scene

In Figure 55, we visualize the predictions of Trans4Trans* trained on Cityscapes and

ACDC, in comparison to DeepLabv3+ [29], HRNet [217], and our Trans4Trans mod-

els only trained on ACDC. DeepLabv3+ and HRNet produce noisy results in complex

conditions, like the cars in shadow (the first row). In adverse weather and week illumi-

nation conditions, previous methods yield less precise and even fragmented semantics,

like the trucks in foggy and rainy scenes (the second and fourth rows) and the side-

walks in night and snowy scenes (the third and fifth rows). In accident scenes, which

are safety-critical for automated vehicles, existing models cannot generate reliable pre-

dictions to be propagated to upper-level applications, as the close pedestrian is even

completely recognized as road. In contrast, Trans4Trans, which learns to gather long-

range dependency from the very first layers, delivers more robust segmentation in var-

ious scenes, as it is less affected by local texture and illumination changes. Trans4Trans
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Figure 55: Qualitative analysis on Cityscapes [44] (Normal), ACDC [171] (Fog, Night, Rain, and

Snow), and DADA-seg [285] (Accidental). The Trans4Trans* is trained on ACDC+Cityscapes,
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Figure 56: Failure analysis of driving scene segmentation. From left to right are RGB images,

segmentation results, and the ground truth.

trained on both adverse and normal datasets further improves the performance, result-

ing sharp and fine-grained semantic segmentation.

Apart from comparing positive predictions, Figure 56 shows some erroneous seman-

tic segmentation results of the Trans4Trans* model on all three driving datasets. In the

first row, the model accurately segments the pedestrian on the right side, but the seg-

mentation of the fence is less complete because the fence is thin and has a similar color

to the background. In the second row, the model struggles with the extreme motion

blur caused by the dynamic driving of the ego car under very weak illuminations. In

the third row, the model fails to segment the abnormal behavior of themotorcyclist be-

fore the accident. These bad driving cases are very common in real-world autonomous

driving, but it is still difficult to identify and deal with them very accurately. One po-

tential solution is to fuse complementary information from different modalities, such

as depth, thermal, and event-based sensors [278, 279, 285].
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Figure 57: Overview of the Multi-source Meta-learning UDA (MMUDA) framework. It includes

Multi-domain Mixed Sampling (MDMS) and meta-learning with segmentation transformers.

Given multiple source (normal) domains, the model fine-tuned by meta-training and meta-

testing across various source domains, can generalize well in the target (abnormal) domain.

6.2.3 Multi-source Meta-learning Adaptation

To achieve generalizable scene understanding on adverse scenarios, we delve deeper

into corner cases within traffic scenes. Our focus lies in the segmentation of accidental

scenes, as unexpected objects or traffic scenarios constitute a common cause of dan-

gerous situations. A significant portion of real-life accidents features unusual scenes,

such as those with object deformations, overturns, and unexpected traffic behaviors.

To enhance the robustness of model in accident scenarios, we introduce a novel

approach, i.e., Multi-source Meta-learning UDA (MMUDA) framework (Figure 57). To

effectively learn from the entirety of the unlabelled target domain dataset, we propose

a Multi-Domain Mixed Sampling (MDMS) strategy. A source domain is a set of image

and label pairs {(Xi
S, Yi

S)}
NS∈DS, where Xi

S∈RH×W×3
is the image, Yi

S∈RH×W×C
is

the C-class label, andNS is the number of samples in the source domainDS. From the

target domain DT with a number of NT=NL+NU samples, the NU unlabelled image

and pseudo label pairs {(Xi
T , Ŷi

T )}
NU∈DT are selected for the mixing approach, where

ŶT is generated by the segmentation transformer fseg in Figure 57. The labelledNL im-

ages in the target domain are only used in the testing stage. In the augmented setDM

with the same NU samples, an augmented image XM is generated by mixing a source

image XS and a target image XT , and the pseudo label ŶM by combining the corre-

sponding ground-truth label YS and the pseudo label ŶT . However, in our case, there

areK source domains, thus the augmented set is created as {(Xi
Mk

, Ŷi
Mk

)}NU∈DM. The

cross-entropy is the loss function L for our task. First, the domain-specific loss Lds is

computed from the meta-training data though fseg. The gradient ∇Lds is used to up-

date a new network f
′
seg, i.e., the green block in Figure 57, which shares with the blue

one. To perform generalizable scene understanding in the unseen target domain, the

adaptation lossLda is calculated from f
′
segwith the updated parameters using themeta-

test data. Finally, we employ the total loss Ltotal=Lda+αLds to update the original

fseg, optimizing to both source and target domains.
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MobileNetV2 [172] 16.05 31.87 8.50 26.55 3.60 5.38 13.96 19.51 10.87 44.99 11.09 67.05 8.11 5.23 28.58 11.77 2.17 - 1.90 3.86

PSPNet [293] 17.07 31.62 11.42 32.48 4.16 8.52 12.38 17.93 13.39 50.82 13.85 67.19 9.86 3.13 31.54 6.97 3.15 - 2.97 2.89

ResNet50 [74] 18.96 34.19 8.24 31.05 4.56 7.39 19.04 27.05 15.35 33.30 12.40 61.52 10.04 3.95 42.59 14.15 27.02 - 3.72 4.72

SemFPN [97] 19.59 37.90 10.12 23.80 3.74 9.64 22.06 28.64 15.55 40.95 12.13 51.93 9.24 5.93 52.08 13.89 26.54 - 3.66 4.36

DNLNet [256] 19.72 41.68 13.26 30.45 6.17 11.04 21.91 28.03 17.99 40.05 14.13 56.06 10.75 5.41 34.78 8.01 28.01 - 3.55 3.39

ResNeSt [275] 19.99 39.63 11.38 33.68 2.81 9.73 22.76 27.35 18.09 45.24 14.22 71.23 13.34 5.03 36.45 6.91 13.08 - 3.94 4.87

DANet [61] 22.24 46.49 10.17 42.20 3.81 10.65 13.46 18.69 22.59 55.76 22.22 83.84 6.68 11.75 39.59 7.96 12.64 - 7.98 6.12

ResNet101 [74] 23.60 57.96 11.16 39.94 6.43 9.46 23.67 27.37 17.32 45.65 16.47 69.21 13.19 4.51 47.29 13.75 30.44 - 6.64 8.01

OCRNet [262] 24.85 42.13 11.54 34.49 6.63 12.70 22.76 29.03 22.28 42.41 15.15 85.43 14.31 6.65 53.94 20.65 34.86 - 9.30 7.87

FastSCNN [155] 26.32 69.91 16.30 52.53 6.09 9.63 19.98 19.30 22.58 57.04 22.95 90.81 11.19 13.95 46.16 22.65 9.74 - 4.49 4.75

C
r
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s
-
s
o
u
r
c
e

CLAN [130] 28.76 79.80 18.61 51.56 8.32 13.60 15.51 17.15 21.51 63.20 21.99 80.53 8.37 6.32 63.47 33.43 33.12 - 3.69 6.21

BDL [109] 29.66 81.44 19.18 57.18 8.61 16.26 14.65 8.78 16.77 66.60 26.83 85.87 10.51 7.16 65.45 35.18 34.78 - 2.71 5.57

ISSAFE [285] 29.97 80.23 19.51 52.02 6.43 14.68 16.19 17.03 19.50 65.39 21.69 79.84 9.95 8.82 65.60 39.51 39.73 - 6.09 7.03

EDCNet [286] 32.04 73.03 19.47 57.31 11.60 14.30 20.70 12.27 27.22 70.54 18.98 88.64 10.69 8.70 68.14 49.80 50.86 - 9.02 4.12

Trans4Trans-M [281] 39.20 71.10 15.57 70.39 10.34 16.53 31.63 37.16 37.38 71.88 19.61 93.04 21.27 14.97 64.04 53.76 81.53 - 24.63 10.07

Our Baseline 40.73 84.93 23.66 68.34 16.27 20.58 25.96 31.25 28.20 71.89 22.39 93.16 17.92 26.84 73.89 55.09 69.26 - 34.77 9.49

+Meta 45.03 86.20 25.44 70.63 14.21 19.75 26.56 28.01 29.23 74.45 25.29 93.18 20.40 31.53 75.02 64.73 76.84 - 38.05 10.95

+Meta+MDMS 46.11 87.10 27.71 71.11 22.94 20.64 32.25 29.49 34.34 75.48 24.02 92.18 20.65 33.33 74.64 63.35 71.14 - 39.08 12.04

Our MMUDA 46.97 87.51 27.97 74.76 16.16 21.93 29.94 29.43 31.62 75.67 26.69 93.57 24.40 29.57 77.35 68.24 84.02 - 36.96 10.44

Table 31: Comparison of state-of-art methods on DADA-seg dataset. The source-only models

are trained on the Cityscapes dataset, while the other models are domain-transferred using a

single source [109, 130], multiple sources [281, 286] or a different modality [285].

6.2.3.1 Results of Accident Scenes Segmentation

Table 31 presents a comparison of mIoU and per-class IoU scores achieved on the

DADA-seg dataset [285]. Notably, models trained solely on the Cityscapes dataset

experience significant performance degradation and exhibit relatively low accuracy

when applied to abnormal accident scenes. For instance, the source-only ResNet101

method achieves only 23.60% in mIoU on the accidental scene segmentation. The prior

state-of-the-art Trans4Trans model [281], employing a vision transformer and multi-

source training, achieves 39.20% in mIoU. In contrast, our proposed MMUDA model

surpasses all previous methods, achieving a higher mIoU of 46.97%, which is >7.50%

higher than the previous state-of-the-art method. Our approach also outperforms in

per-class IoU, obtaining the highest scores in 16 out of 19 categories. The improve-

ments over Trans4Trans are particularly pronounced (>10.00% performance gain) for

categories crucial to accident scene understanding, including road, sidewalk, rider, car,

truck, andmotorcycle. The significant improvement shows the effectiveness of the pro-

posed MMUDA method on the DADA-seg dataset, yielding a promising solution for

generalizable scene understanding.

The ablation results of the proposed modules are shown in Table 31. All experiments

are based on all five multi-origin source datasets. Our baseline model with ResNet101

uses only normal source-supervised learning by aggregating multiple source domains

and achieves a mIoU of 40.76%. The model with meta-learning (+Meta) further im-

proves the mIoU by 4.26%. In addition, our proposed MDMS and transformer model

with HybridASPP further improve the mIoU to 46.11% and 46.97%, respectively. These

results further show the effectiveness of the proposed module in MMUDA.
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6.3 chapter conclusion

Generalizable scene understanding aims to adapt segmentation models to real-

world applications and improve their ability to handle corner cases. As the second

research theme in the field of Mobility Assistance Systems (MAS), we explore novel

methods to perform segmentation of transparent objects and adverse driving scenes.

Transparent objects, such as glass doors and windows, are widely found in modern

buildings, which are corner cases of scene recognition in practical applications. The

segmentationmodel should be able to generalize to these unusual butmobility-relevant

situations. Additionally, considering the potential synergy of helping both pedestrians

and drivers, we adapt segmentation models from the perspective of walking scenes to

driving scenes, including adverse and accidental cases. In this chapter, we focus on two

corner-case yet safety-critical tasks:

• Transparent object segmentation: Segmenting partially or fully transparent ob-

jects, such as glass doors and windows, is a challenging task in the field of mobility

assistance systems. These objects can blend in with the background, making them

difficult to distinguish for sighted and blind people. This can pose a safety hazard,

as people may not be aware of these objects and could collide with them.

• Adverse scene segmentation: A task of segmenting adverse driving cases, such

as scenes with extreme lighting conditions, motion blur, and even traffic accident

cases. These real-world conditions can make it difficult for a pre-trained model to

accurately segment objects, and the dynamic and changing nature of driving scenes

can further complicate the scene understanding task.

Here is a detailed overview of the contributions of each section in this chapter:

Contribution 1: We propose an efficient semantic segmentation architecture called

Transformer for Transparency (Trans4Trans), which uses a transformer-based encoder

and decoder to unify general object and challenging transparent object segmenta-

tion in a dual-head manner. A Transformer Parsing Module (TPM) is proposed to

fuse multi-scale representations. The proposed Trans4Trans methods achieve state-

of-the-art performance on the transparent object segmentation benchmark.

Contribution 2: We advocate addressing driving scene segmentation from an

adaptive perspective that jointly considers normal, adverse, and accidental scenar-

ios. Trans4Trans is verified on driving scene segmentation benchmarks including

Cityscapes, ACDC, and DADA-seg. Besides, we propose a novel Multi-source Meta-

learning UDA (MMUDA) framework to perform better adaptation from multi-source

domains of normal driving scenes to the target domain of abnormal accident scenes.



7
ASS I S T I VE SY STEMS AND

APPL ICAT IONS

In this chapter, we focus on iteratively developing mobility assistance systems

and further exploring proof-of-concept applications. We also present respective

evaluations, including quantitative results, user studies, and field tests. As the

third research theme in the field of MAS, one system and one proof-of-concept

prototype are included: (1) We construct a human-friendly wearable system

called Vision4Blind using semantic segmentation models. The system aims to

help People with Visual Impairments (PVI) better understand their surround-

ings. Three versions of the system have been iteratively developed and enhanced

based on feedback from the target group. The Vision4Blind system is detailed in

Section 7.1, based on our work published in ICCV Workshop on Assistive Com-

puter Vision and Robotics (ACVR) 2021 [281] and in Transactions on ITS 2022 [282].

(2) A prototype of “flying guide dog” is created by using a drone to assist PVI

navigate outdoor scenes, which is presented in Section 7.2, based on our work

published in IEEE ROBIO 2021 [201].

7.1 vision4blind system

We develop the Vision4Blind system, a wearable assistive tool aimed at empowering

People with Visual Impairments (PVI) to better understand their environment and nav-

igate with enhanced safety and independence. According to suggestions from experts

and the target group, the development of system has involved a series of iterative ad-

vancements, resulting in the creation of three versions, each surpassing its predecessor

in various aspects such as functionality, portability, and usability.

As shown in Figure 58a, the first version of the Vision4Blind system was a heavy and

bulky laptop computer that must be worn in a backpack. The laptopwas powered by an

embedded battery that had a very short lifespan, and the system was not very portable

for the user. The laptop-based system has one advantage is to reduce the deployment

effort for developers when upgrading to new models. Nonetheless, this lack of porta-

bility significantly reduces the motivation and frequency with which the target users

are inclined to incorporate it into their daily lives. To enhance portability, significant

efforts were invested in the exploration of suitable platforms and processors. As de-

picted in Figure 58b, the second iteration of the system integrated a portable processor,

the NVIDIA Jetson AGX Xavier, requiring housing in a backpack due to its weight ex-

ceeding 1.5kg. While this version exhibited improved power and extended battery life,

95
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(a) Version 1 (b) Version 2 (c) Version 3

Figure 58: Three different versions and iterative development of the Vision4Blind system. The

versions from left to right are: (a) using a heavy laptop in a backpack, (b) using an NVIDIA

Xavier Jetson AGX Xavier processor in a backpack, and (c) using a lightweight NVIDIA Jetson

Nano processor in a portable belt bag with an on-device user interface.

its level of portability remained less than ideal. Figure 58c
1
illustrates the latest ver-

sion of the Vision4Blind system, featuring a lightweight Nvidia Jetson Nano processor

weighing only 0.25kg, comfortably accommodated within a convenient belt bag. This

design significantly enhances the portability, ensuring ease of use. Additionally, the

system introduces a new on-device user interface, designed for enhanced accessibility

for PVI. This remarkable upgrade in portability represents a significant improvement

over the previous two versions, which relied on bulky laptop computers orweighty pro-

cessors. Consequently, the newest system is more user-friendly, allowing for greater

convenience in both transport and use.

7.1.1 Portable Hardware Components

Our entire portable system consists of two hardware components: a pair of smart vision

glasses and a portable GPU, e.g., NVIDIA Jetson Nano.

The vision glasses (Figure 59) have been integrated with a RealSense R200 [96] RGB-

D sensor to enable real-time acquisition of RGB and depth images at the resolution

of 640×480, and a pair of bone-conduction earphones for delivering acoustic feedback

to people with visual impairments. This is crucial as visually impaired people often

rely on the sounds from the surroundings for determining the orientation and bone-

conduction headphones will not block their ears when using the assistive system. The

1 Two photographs @ Andrea Fabry are from the lookKIT magazine 2022/1: Nachhaltig digital.

https://www.sts.kit.edu/downloads/lookkit-202201.pdf#page=48
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R200 camera

Bone-conduction
headphone

Figure 59: Detailed illustration of the glasses in our Vision4Blind system. The main components

include RealSense R200 camera and bone-conduction headphones.

acoustic feedback primarily consists of speech, providing the name of the detected

object or suggesting the orientation, such as “glass door” or “left”. In texture-less in-

door scenes, the projected infrared speckles (Figure 59) will augment the environments,

which are beneficial for stereo matching algorithms (e.g., R200 leverages a straightfor-

ward correlation engine [96]) to yield dense depth estimation. In our assistive system,

depth information is mainly used to assist the obstacle avoidance function, e.g., to pri-

oritize near-range objects over mid- and long-range objects.

7.1.2 Mobility Assistance Algorithm

Our software components are the Trans4Trans model and a user interface as described

in Algorithm 1. Starting from the input data and to guarantee the timely capture of the

facing environment, the frame rate of RGB-D stream is set to 60. Once the system starts,

it repeats image segmentation everyn seconds. According to our experiments, the time

interval setting as 2 seconds can effectively prevent cognitive overload, especially in

cases of complex scenes containing many objects. Still, it is adjustable depending on

the need of users, e.g., a short interval for more feedback to explore unknown space.

Obstacle avoidance. When moving in a relatively restricted indoor space, the build-

ing materials or densely-arranged objects will impede the flexibility of merely using

white cane as the aid tool for avoiding obstacles. In order to tackle the collision is-

sue and balance indoor and outdoor scenarios, our system presets the highest priority

for obstacle avoidance. In other words, if the average value of the depth information

is smaller than the preset distance threshold θobstacle, the user will be immediately

notified in the form of vibration. To minimize the uncertainty of vibrations and the

cognitive load, only one single default threshold is set to 1 meter, instead of setting var-

ious vibration frequencies for different distances. Another purpose is to preclude the

chaotic and low-confidence segmentation from the less-textured images when users

walk too close and face to the object surface, such as images from white wall or doors.

(Transparent) object segmentation. After receiving the RGB image X∈RH×W×3
,

our efficient Trans4Trans model outputs two segmentation predictions, which are

general object segmentation G∈RH×W×13
and transparent object segmentation

T∈RH×W×11
, respectively. The general object segmentation is divided into Gpath for

walkable path and Gobject for other object classes. For example, the system can out-
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Algorithm 1 : Assistive system

Data : RGB-D as X ∈ RH×W×3
and Y ∈ RH×W

.

Result : General segmentation G ∈ RH×W×13
; Transparency T ∈ RH×W×11

;

1 initialize walkable rate: Rl,Rf,Rr, parameters: θobstacle, θtrans, θwalkable ;

2 while system start and each n seconds do

3 RGB-D update and Trans4Trans segmentation:

4 Gpath ∈ RH×W ,Gobject ∈ RH×W×12
;

5 Tstuff ∈ RH×W×3, Tthing ∈ RH×W×8
;

6 partition {Rl,Rf,Rr}← Gpath ;

7 if Y < θobstacle then

8 vibration as obstacle warning;

9 else if max{T i} ∈ Tstuff > θtrans then

10 speech← argmax{T i} ∈ Tstuff ;

11 else if max{Rl,Rf,Rr} > θwalkable then

12 speech← argmax{Rl,Rf,Rr} ∈ {left, forward, right};
13 else

14 speech← nearest{Tthing,Gobject};

15 end

16 end

put a speech of “left” or “glass door”. Afterwards, the walkable mask is further parti-

tioned into three regions as {left, forward, right} directions for orientation. In order

to correct the wrongly-segmented walkable area by the high-confidence transparency

perception, the transparent object segmentation is divided into two disjoint sets as:

Tstuff∈RH×W×3
with {window, glass door, glass wall}, and Tthings∈RH×W×8

with {shelf,

jar/tank, freezer, eyeglass, cup, bowl, bottle, box}.

Walkable path detection. After achieving object segmentation, the local ratio of

walkable area Gpath, e.g., floor category from Stanford2D3D, is further horizontally

divided into three different directions as {Rl,Rf,Rr} ← Gpath. Then, an intuitive and

effective strategy is to prompt the direction that has the largest walkable area, only

when its local ratio is greater than the preset threshold θwalkable for safety. The output

is one speech of {“left”, “forward”, “right”}. According to our test, this orientation ap-

proach guarantees anti-veering in a straight path outdoors and indoors. Furthermore,

it can also accurately predict the best instantaneous turning direction during walking

at an intersection, so as to constantly yield a safer direction suggestion.

7.1.3 User Study and Field Test

Based on our publications in ICCVWorkshop on Assistive Computer Vision and Robotics

(ACVR) 2021 [281] and in Transactions on ITS 2022 [282], we have two rounds of qualita-

tive study with 5 participants and 3 experts to assess the acceptance of our Vision4Blind

prototype and draw design conclusions [143].
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Figure 60: Incidences of participants using the system for navigation outdoors and indoors.

Gender Age Range Hearing loss

Male Female 18-25 26-35 36-45 46-55 No

3 2 1 2 1 1 5

Table 32: Aggregated demographics of participants.

7.1.3.1 Methodology of Study

As mentioned in Algorithm 1, the Vision4Blind system based on the version of

Trans4Trans model has three main functions partitioned into four steps as mutually

exclusive: (1) The obstacle avoidance based on depth information (i.e., <1.0 m) has the

highest priority. (2) Three different types of transparent stuff (wall, door, and window)

will be alerted via speeches. (3) Walkable path will be indicated in three different direc-

tions (left, forward, and right). (4) Other general objects and transparent things will be

fed back. Participants tried the system inside 2 buildings, and the blind participant also

on a 700m route outdoors – see Figure 60. The study lasted about 2 hours. As Corona-

protective measures, everyone wore FFP2 or surgery masks throughout the study and

the prototype was disinfected several times. After a short introduction (Figure 61) of

the system and it functionality, all participants agreed to participation and recordings

of the whole study and they signed the data protection statement respectively. First,

the participants put on the Vision4Blind system. They were allowed to seek assistance

while wearing the device. Then, they walked around the rooms, thinking out loud [91].

The study was recorded with an action camera and voice recorder. At the end, demo-

graphics and NASA Raw Task Load Index (RTLX) [72] questionnaires were filled in.

7.1.3.2 Demographic of Participants

In the first user study, we evaluated the system with 5 participants [281], one of whom

was an expert, and another one was expert and blind user at the same time. Age and

gender of five participants are in Table 32. We subsequently repeated the experiment

with 3 further sighted experts, and we only report here the aggregated results from

the 5 experts: E1B (early blind expert), E5-E8 (sighted experts). When asked if they

can see glass objects, E1B said he can sometimes see some light-dark contrasts, which

allows him to perceive closed windows. Windows that open inside the room, however,

are very dangerous, according to E1B, as one can get serious head injuries. All sighted

participants said they can see glass objects, but some of them, like glass doors, glass

walls or windows, can be challenging under particular conditions (E5).
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Figure 61: Introduction and tutorial session on the use of the Vision4Blind system.

7.1.3.3 Cognitive Load

The RTLX, averaged over the five expert participants, was 16.3 with a standard devia-

tion of 8.1. The range is from 0 to 100, the lower the better. This score is enough to keep

the user motivated, while not burdening too much [139]. This score, however, must be

critically interpreted, since it might not be representative for the users wearing the sys-

tem in their daily activities. Instead, this score might reflect the cognitive load of the

experts assessing the system, since this was their task, and not simulating user behav-

ior. Only the score of the blind participant is highly relevant for the cognitive load of

users wearing the system. This score is 13.3, thus very close to the average, but being

alone, it has hardly any statistical relevance. More studies will have to be performed

in the future to assess the cognitive load of the users wearing the system. According

to the individual ratings, effort and physical demand were slightly higher, while frus-

tration was the lowest subscale. This might suggest that users enjoyed the experience

of using our system, but a further reduction of hardware would be welcome.

7.1.3.4 User Comments and Qualitative Analysis

A thematic analysis [13] performed on the comments made by the experts (both

recorded and from the questionnaires) yielded the following insights:

Functionality. All experts found the system useful and were impressed by its func-

tionality, for instance,

“For the first time, I had the feeling that artificial intelligence can be useful [...]. [I

liked] howmuch it recognized correctly. [...] Systems react much better [than 10 years

ago...]. I think it’s just cool!” — (E1B)
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“I’m very excited about how it works, it says a lot of things [...] It’s yeah, I’m really

really impressed [...] and works really smoothly. [I like] that the 3 functions are so

smoothly integrated.” — (E5)

“But great system, yes, great the information [that one gets].” — (E6)

“It was a surprise for me to detect also laptop and this kind of stuff. The CV detection

is wonderful. [...] List of objects relatively broad, [it was] a surprise. Very interesting,

exactly what [a blind person is] interested in: person, chair - the first thing I would

look for in a new room during a meeting.” — (E7)

“I think it’s cool, for blind [people] it’s cool.” — (E8)

We found that most positive comments are on the amount and type of objects rec-

ognized by the Vision4Blind system (E1B, E5, E7, E8).

When asked “what did you think about the system?”, E8 mentioned the object recog-

nition. Two experts mentioned further objects that they consider very important and

should be included in future implementations, namely: trash cans outdoors and city

scooters (E1B) and construction site fences (E5). Expert E6 thought that low obstacles,

within 1 meter from the user, and which are not covered by the camera glasses range,

should also be detected: “These low obstacles are dangerous” (E6). E6 proposed to have

a second camera mounted on the abdomen area. E5 and E8 suggested to have a camera

mounted on a white cane. This can reduce the amount of hardware that a user carries.

The experts gave some important suggestions on subsequent system development,

such as identifying more objects (E1B, E5), mounting a second camera to detect low-

lying obstacles (E6), and hinting the directions of detected objects (E1B, E5-E7). Two

experts (E5, E7) commented positively upon the free path detection, and mentioned

that the obstacle detection should be improved. Most issues with the obstacle detec-

tion came from the 2 seconds cycles (frame aggregation), which often caused a delay

and delay inconsistencies (E1B, E5, E6, E7). To tackle this problem, it is desirable to

further decrease the system response time. Regarding the suggestions from E5 and E8,

adaptive feedback cycles for different functions can be implemented. For example, the

feedback of obstacle detection should be given generally faster than for the other two

functions. The default in this case could be for instance 1 second instead of 2. Besides,

the distances of detected objects are helpful for keeping social distances in COVID-19

pandemic times (E6, E8). The comments on the obstacle detection were divided.

“For me, if it should be my assistive technology, I could buy it if the obstacle would

be improved a little bit. Because the detection is nice and I would like to have this

device, but the distance of object needs a little improving.” — (E7)

Expert E5, on the other hand, thought that the obstacle detection could also be useful

for keeping the distance in COVID-19 pandemic times:

“I think you can also use it for social distancing, because it says when someone is in

front of you, so you know ok, there’s a person.” — (E5)
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Three experts (E5-E7) considered that this system is a nice complement to the white

cane, but should not be used as alternative or hard to replace the white cane with it.

“Below you have the white cane, at the distance that is not covered by the [system’s]

camera. They complement each other well.” — (E5)

“When the accident ofme, was [...] that was in the upper area, that’s why this [system]

is good, because it already covers the upper area, and below is secured by the white

cane so to speak.” — (E6)

“One must have a white cane; because only with the system, a blind person wouldn’t

feel so safe.” — (E7)

Hardware. The hardware was perceived as quite light weight (E5, E6), and in any case

much better than previous prototypes (E1B) tried out by the experts in the past (at least

three out of five had tried similar prototypes in the past). However, two experts (E1B,

E5) considered the hardware still too big for a real-world deployment:

“[use] a belt instead of a backpack [and] Bluetooth instead of cables for the glasses.

[...] The glasses look good.” — (E1B)

“Ideally, it should run on a phone.” — (E5)

“Wearing the camera as a pair of glasses is very comfortable, even though it is thick.”

— (E1B)

Besides, Experts E5 and E6 also commented positively on the system’s battery life,

which can last for an entire day.

Interface. Four out of five experts thought the interface was very intuitive. Only E8

was neutral with respect to this.

“The object announcement. The acoustic signal is easy to follow + easy to understand.”

— (E6)

“The synthetic voice was very helpful, because it differentiates well from background

noise.” — (E1B)

Context of use. Expert E7 thought the system is good for getting an overview of

a new room, but not so good for known rooms. He also suggested implementing ob-

jects searching and counting. Both E5 and E7 thought the system can be used for social

distancing, but referred to two different functions of the system, namely obstacle detec-

tion and free path recognition. E5 suggested to use the system also for sighted people

for warning when walking while looking at the phone.

Control. E7 thought the user should be in full control of the system, like it is the

case with the white cane: “I can mute it when I can’t interact with the system in certain

situations - the white cane does what I want”. Both E5 and E8 thought it is important to

have the option to turn functions on and off, or switch to different modes (E8).
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7.1.3.5 User Study Conclusion

The functionality offered by the Vision4Blind system so far can be of great use to peo-

ple with visual impairments. All experts were positive about the system. Especially

the object recognition was appreciated. Some improvements were suggested, such as

conveying to the user the distance and direction of objects, covering more objects, and

improving the efficiency for obstacle avoidance, etc. Also important, the users should

be able to configure the system as much as possible and turn functions on and off as

they need, or change the way things are conveyed (e.g., speech, sonification, vibration).

Due to the heterogeneity of the user group, the configurability is a very important as-

pect. Based on the comments and the qualitative analysis, all valuable suggestions and

novel ideas will be carefully considered in the development of the next generation of

mobility assistance system.We are committed to developing a system that is both user-

friendly and effective, and we appreciate the feedback from our users and participants.
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7.2 flying guide dog prototype

This section is based on ourwork published in IEEE International Conference on Robotics

and Biomimetics (ROBIO) 2021 [201]. The included methodological and technical con-

tributions result from collaboration with a co-supervised practical course project.

7.2.1 Drone Assistance System

To develop a spatially flexiblemobility assistance system, we build a novel “flying guide

dog” prototype (Figure 62), exploring the combination of drone and scene understand-

ing. According to previous work [6], drone navigation is more accurate and faster as it

gives a continuous and physical feedback in the direction of travel. Performing seman-

tic segmentation on frames captured by the drone camera, a variety of ambient visual

information can be extracted, such as sidewalks, crosswalks, and traffic lights. Based on

its perception of the environment, the drone adjusts itself and leads the user to walk

around safely. To follow the drone, the user holds a soft string attached to the drone.

Besides, the user receives voice prompts via a Bluetooth bone conduction headphone.

Discovering the walkable path is one of the major functions of our prototype. Based

on the segmentation prediction, walkable area (e.g. sidewalks, crosswalks) can be dis-

covered by their corresponding colors. In order to make the drone keep flying along

the walkable path safely, we develop a control algorithm so that the drone can auto-

matically adjust its direction and velocity according to the estimated centroid of the

sidewalk. Another function is assisting the user to pass the pedestrian traffic light, i.e.

street crossing. Our prototype not only distinguishes pedestrian crossing lights from

other types of traffic lights but also recognizes their colors. Since there is currently no

dedicated traffic light dataset containing both pedestrian and vehicle traffic lights, we

introduce a new dataset called Pedestrian and Vehicle Traffic Lights. To verify the effec-

tiveness, we further conduct a user study in real-world scenarios. The result indicates

that our prototype is effective for visually impaired assistance and easy to use.

Walkable path: "slightly left"Semantic SegmentationInput Image
Traffic light:      "pedestrian-red" 

Field Test

Drone

Figure 62: The “flying guide dog” prototype. Images from left to right are: field test in front

of an intersection, input image from the drone’s perspective, semantic segmentation result,

interpreted result with centroid, boundary and bounding boxes for the drone control algorithm.

7.2.2 Hardware Design and Algorithm

The drone is connected to the computer using DJITelloPy
1
library via Wifi. For each

frame captured by the drone’s camera, the segmentationmodel outputs a prediction. To

make the drone fly along the walkable path, the largest walkable area is extracted and

1 DJITelloPy: https://github.com/damiafuentes/DJITelloPy.

https://github.com/damiafuentes/DJITelloPy
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Figure 63: The “flying guide dog” system overview. There are three components: street view

semantic segmentation, traffic light classification, and drone control.

its centroid is then estimated. On the basis of centroid estimation, velocity adjustment

is computed. Meanwhile, if traffic light is detected, we crop them out and input into

the classification model. Fusing the classification prediction and velocity adjustment, a

remote control command is sent to the drone. Additionally, the user gets voice prompts

via a Bluetooth-connected bone conduction headphone. As illustrated in Figure 63, our

system has threemodules: (1) semantic segmentation, (2) traffic light classification, and

(3) drone control. These modules will be detailed below.

7.2.2.1 Semantic Segmentation Model

A vital requirement for the segmentation model is real-time performance. According

to the comparison of real-time semantic segmentation models, SegFormer-B0 [238]

has significant advantages on speed and accuracy. Furthermore, it is more robust to

common corruptions and perturbations. While Cityscapes [44] are recorded in a uni-

fied setting, Mapillary Vistas [142] are globally taken by diverse devices from different

viewpoints. Moreover, comprising 25,000 densely annotated street level images into

66 categories, Mapillary Vistas is 5× larger than Cityscapes in terms of fine-grained

annotations. Therefore, Mapillary Vistas is more diverse and promising for yielding

robust models, thus suitable for our prototype.

7.2.2.2 Traffic Light Classification

After semantic segmentation, a predictionmask regarding traffic lights can be obtained.

This mask can then be used to crop a traffic light patch from its full-resolution image.

Image classification is more computationally efficient in a cropped patch than in a full-

scale image. To simplify and unify the recognition of the color and category of traffic

lights, we train a light CNN. This CNN is expected to be more accurate and efficient,

and it should also eliminate the influence of vehicle traffic lights. However, there is

currently no dataset that is directly suitable for our task. To facilitate traffic light clas-

sification, we introduce a new dataset called Pedestrian and Vehicle Traffic Lights with

the goal of distinguishing pedestrian traffic lights from vehicle traffic lights. We per-

form four steps to collect this dataset. Firstly, we crop the traffic lights from Cityscapes
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Figure 64: Drone control overview. Four types of velocity are updated based on the walkable

path and the traffic light prediction.

Others

Pedestrian-red

Pedestrian-green

Vehicle-red

Vehicle-green

Figure 65: PVTL dataset with 5 categories.

(a) Sidewalk (b) Street crossing

Figure 66: The user study consists of two sce-

narios: sidewalk and street crossing. As a test

for the proof of concept, the sighted partici-

pant wears a blindfold during the user study.

[44], Mapillary Vistas [142], and Pedestrian lights [167] based on their annotations.

Secondly, we clean up those image patches with resolution smaller than 8×8. Then,
we manually annotate the images into 5 categories: pedestrian-red, pedestrian-green,

vehicle-red, vehicle-green, others. Last but not least, a class balancing is performed to

maintain 300 images for each class. We visualize some representative examples in Fig-

ure 65. The category others refers to the side and back of the traffic lights or traffic lights

that are not illuminated. All data and annotations will be made publicly available.

7.2.2.3 Drone Control

After achieving semantic segmentation and traffic light classification, four types of

velocity are calculated to control the drone, as depicted in Figure 64. Among them, the

up/down velocity vud is obtained by the Tello’s vision positioning system to maintain

the flying height htarget, which is preset as 1.2m to ease the user interaction. Finally,

RC commands are sent to the drone using DJITelloPy. A detailed description of the

control strategy is presented in Appendix A.2.

7.2.3 User Study and Discussion

To evaluate the assistance functions of our system, an user study in real world scenarios

is conducted using NASA Task Load Index (NASA-TLX) method [72].
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Aspects Statements

Orientation I can walk in the proper direction.

Position I can walk in the middle of the path.

Traffic Light I can cross the road at the right time according to the pedestrian lights.

Learnability I can get familiar with this system easily.

Mentally easy to use I don’t need much time to think to follow the drone.

Physically easy to use I don’t need to put in a lot of physical effort when using the system.

Table 33: Six aspects are included in the questionnaire. Figure 67: User study evaluation.

7.2.3.1 User Study Setup

During the user study, the laptop is placed in a backpack. Six participants aged be-

tween 24 and 35, including 5 males and 1 female, are sighted but blindfolded during

the test. The drone flies in front of the participants to simulate the real guide dog and

to get an unobstructed view of the environment. The participant follows the drone by

feeling the traction from a string attached to the drone. Our prototype is evaluated in

two open-space scenarios. The first scenario focuses on walking along the sidewalk

(Figure 66a) in 20 meters length. Some obstacles, such as bicycles and pedestrians, were

randomly appeared to test the obstacle avoiding function. The second scenario, an in-

tersection (Figure 66b) including vehicle and pedestrian traffic lights, is selected to test

the street crossing functionality according to the pedestrian light prediction. After test-

ing, participants fill questionnaires as in Table 33. They score each aspect from 1 to 10,

among which 1 and 10 mean strongly disagree and strongly agree, respectively.

7.2.3.2 Evaluation

A radar graph assessing multiple aspects is shown in Figure 67. For features of walking

along the walkable path, Orientation and Position, participants find it reliable for guid-

ing and obstacles avoidance. In terms of Physically easy to use and Learnability, they

make positive comments. After a brief introduction, the participants are able to use the

system alone. However, the Traffic light feature still needs to be improved. It could be

harder to cross the street with multiple pedestrian lights. To tackle this issue, the speed

of drone can be adjusted during crossing via the drone control algorithm. The partic-

ipants also rate the feature Mentally easy to use lower than others, as sometimes it is

insufficient to feel the traction from the connected string. This issue is subsequently

improved with additional voice feedback using a wireless bone conduction headphone,

so as to alert users the walking direction and the color of the pedestrian light. Despite

a limited number of participants, most of them comment that the prototype is helpful,

which provides a hint about the effectiveness of our “flying guide dog” concept.

This proof-of-concept prototype was implemented to assess the potential of using

new techniques to create assistive systems. However, the target group of people with

visual impairments was not included in the user study at the concept proof stage. Addi-

tionally, the prototype is limited by the drone’s battery capacity, which only supports

a maximum flight time of 13 minutes. Another major limitation is that the drone is too

light to resist wind. One reasonable approach to address these issues would be to use

a more powerful drone with a larger battery capacity.
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7.3 chapter conclusion

Assistive systems and applications have being developed to provide scene under-

standing and navigation support for People with Visual Impairments (PVI). However,

the challenge arises as scene understanding models typically demand powerful but

heavy hardware platforms, making the design of a portable and user-friendly system

quite challenging. As the third research theme in Mobility Assistance Systems (MAS),

we spent large effort to an iterative development process for three versions of the Vi-

sion4Blind system. Furthermore, in pursuit of innovative assistance solutions, we look

into the possibility of using Unmanned Aerial Vehicle (UAV) systems, presenting a

conceptual prototype as our initial trial. To verify these systems and applications, our

evaluation includes a series of quantitative results, qualitative insights from user stud-

ies and field tests. This chapter focuses on two different systems.

• Wearable assistance systems: In the process of deploying semantic segmentation

models to real-world scenarios, the development of a portable and user-friendly pro-

totype system is crucial. Combined with scene understanding models and portable

hardware devices, the wearable system can provide mobility-related information to

assist people with visual impairments to navigate more independently and safely.

• Flying guide dog: Utilizing UAVs or drones as tools to assist people with visual

impairments in navigation represents a new concept in assistive technology. UAVs

can have more flexible relative poses than wearable systems, and can provide per-

ception assistance in front, above, below, or even around the user. Besides, it can

provide more intuitive physical interaction through a wired connection or provide

a hybrid communication via a wireless connection.

Here is a more detailed summary of the contributions of each section in this chapter:

Contribution 1: We iteratively develop and test a wearable assistive system with a

pair of smart vision glasses and a portable GPU, based on our proposed vision trans-

former models. This system, called Vision4Blind, has been validated with a diverse

user group. The results of the user study show that it is easy to use and can provide

accurate scene understanding information to assist people with visual impairments.

Furthermore, qualitative analysis results and comments from target users are sum-

marized for the iterative development of the Vision4Blind system.

Contribution 2: We propose a novel “flying guide dog” prototype that uses a drone

and semantic segmentation to help people with visual impairments navigate their

surroundings. The drone is equipped with a camera and a model that can identify

walkable paths and traffic lights. A control algorithm is proposed to enable the drone

to fly along the walkable path automatically and to interact with the user via voice

feedback. To improve the recognition of traffic lights, a new dataset is created to

train a model for fine-grained traffic light classification.
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CON TR I BU T IONS

This thesis delves into the vision of smart mobility through exploration in two

research domains: intelligent transportation systems (ITS) andmobility assistance

systems (MAS). In the field of ITS, the holistic and robust scene understanding

is pursued through panoramic and multimodal semantic segmentation. Mean-

while, considering the synergy of driving and walking scenarios, the naviga-

tional and realistic scene understanding in the field of MAS is propelled by re-

search themes of visual localization, semantic mapping, transparent object seg-

mentation, and adverse scene segmentation. As real-world applications, the Vi-

sion4Blind system has being iteratively designed to facilitate navigation and mo-

bility for people with visual impairment. All contributions of this thesis have

been made publicly available for the research community.

8.1 new datasets

DensePASS dataset for panoramic semantic segmentation [280]. DensePASS is

a new dataset created for advancing panoramic semantic segmentation towards holis-

tic scene understanding for intelligent vehicles. For the first time, the dataset includes

100 labelled images for testing panoramic semantic segmentation and 2000 unlabelled

images for training in the domain adaptation manner. It addresses the lack of estab-

lished benchmarks for the challenging task of Pinhole-to-Panoramic recognition. The

images are captured using Google Street View and include scenes from different con-

tinents. The data is manually annotated with 19 categories that are also present in

the pinhole camera dataset Cityscapes and other prominent semantic segmentation

benchmarks. Overall, DensePASS stands as a significant and valuable addition to the

domain of panoramic segmentation for driving scenes. This dataset not only offers a

substantial collection of labelled and unlabelled images but also embodies a promis-

ing design that directly tackles the intricacies of Pinhole-to-Panoramic Unsupervised

Domain Adaptation (UDA). As such, we believe that DensePASS will emerge as an in-

dispensable asset for researchers and developers actively engaged in addressing this

critical challenge. The dataset has been made publicly accessible at the following URL:

https://github.com/chma1024/DensePASS.

DeLiVER dataset for multimodal semantic segmentation [279]. The DeLiVER

dataset is created specifically for the task of arbitrary-modal semantic segmentation.

Based on the CARLA simulator, the dataset incorporates a diverse range of data sources

including Depth, LiDAR, Views, Events, and RGB images. Besides, the dataset also en-

compasses scenarios involving five distinct sensor failure cases, comprising Motion
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Blur (MB), Over-Exposure (OE), Under-Exposure (UE), LiDAR-Jitter (LJ), and Event

Low-resolution (EL). These cases serve to validate the robustness and stability of

model performance in the face of sensor malfunctions. The sensors are positioned

at various locations on the ego car to provide multiple viewing angles, such as front,

rear, left, right, up, and down. Each individual sample within the dataset is annotated

with both semantic and instance labels. A total of 25 distinct classes are included in

DeLiVER dataset: Building, Fence, Other, Pedestrian, Pole, RoadLine, Road, SideWalk,

Vegetation, Cars, Wall, TrafficSign, Sky, Ground, Bridge, RailTrack, GroundRail, Traffi-

cLight, Static, Dynamic, Water, Terrain, TwoWheeler, Bus, Truck. With its comprehen-

sive viewpoints, diverse scenarios, multiple modalities, and detailed annotations, we

believe that the DeLiVER dataset has the potential to make a significant contribution

to the task of arbitrary-modal semantic segmentation, enhancing the robust scene

understanding. The dataset has been made publicly accessible at the following URL:

https://jamycheung.github.io/DELIVER.html.

8.2 new methods

P2PDA Model [280]. Towards holistic scene understanding via panoramic semantic

segmentation, we propose P2PDA, an innovative framework designed for achieving

360° perception of self-driving scenes. This is accomplished by leveraging the pro-

cess of adapting semantic segmentation networks from a source domain rich in labels,

comprising standard pinhole camera images, to an unlabelled target domain involving

panoramic data. Our P2PDA framework has an encoder-decoder based semantic seg-

mentation network, along with four distinct building blocks for facilitating domain

alignment: the Segmentation Domain Adaptation Module (SDAM), Attentional Do-

main Adaptation Module (ADAM), Regional Context Domain Adaptation Module (RC-

DAM), and Feature Confidence Domain Adaptation Module (FCDAM). These modules

are strategically positioned at two different network stages, both after and before the

decoder of the segmentation network. The code and model weights have been released

at the following URL: https://github.com/chma1024/DensePASS.

Trans4PASS Model [283]. To tackle distortion and deformation of panorama images,

we present a novel architecture named Transformer for Panoramic Semantic Segmen-

tation (Trans4PASS). This architecture effectively addresses image distortions and ob-

ject deformations through two innovative design choices: (1) We integrate the De-

formable Patch Embedding (DPE) at both the initial image sequentialization stage

and the intermediate feature interpretation stage. This empowers the model to cap-

ture characteristic panoramic image distortions while preserving semantic informa-

tion. (2) Within the feature parsing stage, we introduce the Deformable MLP (DMLP)

module. This module enhances global context modeling by incorporating patches with

learned spatial offsets, thereby improving the capacity for comprehensive context un-

derstanding. The code and model weights have been released at the following URL:

https://github.com/jamycheung/Trans4PASS.

https://jamycheung.github.io/DELIVER.html
https://github.com/chma1024/DensePASS
https://github.com/jamycheung/Trans4PASS
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CMXModel [278]. Towards robust scene understanding viamultimodal semantic seg-

mentation, we propose CMX, a universal cross-modal fusion framework for RGB-X

semantic segmentation in a novel interactive fusion manner. The RGB-X modalities

can be RGB-Depth, -Thermal, -Polarization, -Event, -LiDAR data. The CMX frame-

work is structured as a two-stream architecture comprising RGB and X-modal streams.

Furthermore, the model incorporates two specific modules for the purpose of feature

interaction and feature fusion between these streams. (1) The Cross-Modal Feature

Rectification Module (CM-FRM) can recalibrate the bi-modal features by leveraging

their spatial and channel correlations. (2) The Feature Fusion Module (FFM) is con-

structed in two stages and it performs sufficient information exchange before merg-

ing features. The code and model weights have been released at the following URL:

https://github.com/huaaaliu/RGBX_Semantic_Segmentation.

CMNeXt Model [279]. As an advanced version of CMX model, we present the CM-

NeXt model for arbitrary-modal semantic segmentation (AMSS). While adding modali-

ties, CMNeXt effectivelymanages the computational overhead, thanks to theHub2Fuse

paradigm. CMNeXt follows an asymmetric structure, featuring two branches: one for

RGB and another for supplementarymodalities. In particular, the hub step of Hub2Fuse

paradigm entails a Self-Query Hub (SQ-Hub) for gathering complementary insights

from auxiliary modalities. The SQ-Hub dynamically selects informative features be-

fore fusing them with the RGB branch. Another significant advantage of the SQ-Hub

lies in its extensibility to accommodate any number of modalities, with only a negligi-

ble increase in parameters. Additionally, we leverage cross-fusion modules from CMX

and combine them with our newly devised Parallel Pooling Mixer (PPX). These design

decisions coalesce within the CMNeXt architecture, offering a pathway for Arbitrary-

Modal Semantic Segmentation (AMSS). By thoughtfully integrating diverse modalities,

CMNeXt is capable of mitigating individual sensor failures and enhancing the overall

segmentation robustness. The code and model weights have been released at the fol-

lowing URL: https://jamycheung.github.io/DELIVER.html.

MatchFormer Model [228]. Towards navigational scene understanding, a novel

method MatchFormer is proposed, which helps to achieve multi-wins in precision, effi-

ciency, and robustness of feature matching across indoor and outdoor pose estimation

and localization tasks. To improve computational efficiency and foster robust match-

ing in low-texture scenarios, we propose interleaving self- and cross-attention mecha-

nisms within MatchFormer, thereby constructing a matching-aware encoder. This in-

novative approach, referred to as extract-and-match, entails simultaneous learning of

both the local features of an image itself and the similarities between its paired images.

This strategic interplay alleviates the burden on the decoder, resulting in an overall

streamlined model. The strategic positioning of cross-attention in the earlier stages

of the encoder significantly bolsters feature matching, particularly in challenging con-

texts such as low-texture indoor scenarios or when dealing with fewer training sam-

ples in outdoor settings. This design choice renders MatchFormer particularly well-

suited for real-world applications where collecting and annotating large-scale data is

often infeasible. The code and model weights have been released at the following URL:

https://github.com/jamycheung/MatchFormer.

https://github.com/huaaaliu/RGBX_Semantic_Segmentation
https://jamycheung.github.io/DELIVER.html
https://github.com/jamycheung/MatchFormer
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Trans4MapModel [25]. Performing navigation and advanced scene understanding re-

quires an accurate top-down semantic map generated from perspective views. To real-

ize this, we reexamine top-down semantic mapping through transformer-basedmodels

and propose the novel Trans4Map framework. It delivers two primary benefits: (1) The

long-range feature modeling ability is advantageous to obtain a more comprehensive

spatial representation; (2) The efficient and lightweight model structure enables the

one-stage end-to-end mapping pipeline. Our Trans4Map framework includes 3 steps:

(1) The incoming N egocentric images are fed into the transformer backbone; (2) The

Bidirectional Allocentric Memory (BAM) module projects the extracted feature; (3) A

lightweight CNN-based decoder parses the projected feature and predicts the allocen-

tric semantics. The code and model weights have been released at the following URL:

https://github.com/jamycheung/Trans4Map.

360BEV Model [204]. To provide holistic and accessible map for advanced scene un-

derstanding, we introduce a novel 360BEVmodel to generate bird’s-eye-view semantic

mapping, i.e., predicting a complete BEV semantic map from a single-frame 360° image

with depth. By decoupling the computationally expensive processing of sequences or

multiple views, our 360BEV semantic mapping is more streamlined for generating in-

door semantic maps. To enable 360BEV segmentation we present two real indoor BEV

datasets, which are extended from the Matterport3D and Stanford2D3D datasets. First,

the Front-View images captured by pinhole cameras from Matterport3D are extended

to 360° panoramas for benchmarking on 360FV-Matterport. Furthermore, for the first

time, two BEV datasets, 360BEV-Matterport and 360BEV-Stanford are established to

enable 360° bird’s-eye-view semantic mapping. The data and model weights have been

released at the following URL: https://jamycheung.github.io/360BEV.html.

Trans4Trans Model [282]. To resolve the safety-critical object recognition, we

present Transformer for Transparency (Trans4Trans), an efficient semantic segmen-

tation architecture with dual heads. Trans4Trans is established with both transformer-

based encoder and decoder to fully exploit the long-range context modeling capacity

of self-attention layers. In particular, Trans4Trans includes a novel Transformer Paring

Module (TPM) for fusing multi-scale feature maps. The symmetric transformer-based

decoder can consistently parse the feature maps from encoder. By incorporating the

capability to semantically predict common object classes such as walkable areas, our

system becomes adept at accurately and comprehensively segmenting both transpar-

ent objects and general objects. The code and model weights have been released at the

following URL: https://github.com/jamycheung/Trans4Trans.

MMUDA Model [133]. To delve deeper into the abnormal scene segmentation from

the traffic scene, we propose a novel Multi-source Meta-learning UDA framework to

transform models to the unusual target scenes. Our framework learns from the label-

rich datasets of conventional and normal driving scenes (i.e., source domain), and then

automatically adapts to abnormal accident scenes (i.e., target domain) with only un-

labelled training data. To effectively learn from the entire unlabelled target domain

dataset, we put forward a Multi-Domain Mixed Sampling (MDMS) strategy, which can

augment the training samples of multiple source domains. The code andmodel weights

have been released at the following URL: https://github.com/xinyu-laura/MMUDA.

https://github.com/jamycheung/Trans4Map
https://jamycheung.github.io/360BEV.html
https://github.com/jamycheung/Trans4Trans
https://github.com/xinyu-laura/MMUDA
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8.3 new systems

Vision4Blind System [281]. Towards realistic scene understanding, we propose a

wearable assistance system, Vision4Blind, which is capable of performing real-time

wayfinding and object segmentation to assist people with visual impairments travel

safely. To obtain human-friendly design and good use experience, our Vision4Blind

wearable system comprises a pair of smart vision glasses and a portable GPU proces-

sor. Based on the proposed Trans4Trans model, the system can deliver a realistic scene

understanding swiftly and accurately thanks to the high efficiency of our model. With

the complete semantic information, the user interface consists of a customized set of

acoustic feedback via sonification of detected objects, walkable directions and warn-

ings of the obstacles, which yields intuitive suggestions and no prior knowledge is

needed. The system implementation have been made publicly accessible at the follow-

ing URL: https://github.com/jamycheung/Trans4Trans.

Flying Guide Dog Concept [201]. In the pursuit of a mobility assistance system

that offers spatially flexible interaction, we have devised a groundbreaking prototype

known as the “flying guide dog”. This innovative system combines drone technol-

ogy with advanced scene understanding capabilities to provide a novel user experi-

ence. By executing semantic segmentation on the frames captured by the drone’s cam-

era, contextual visual information like sidewalks, crosswalks, and traffic lights is ex-

tracted from the environment. With this environmental perception in hand, the drone

can adeptly adjust its own trajectory, guiding the user to navigate their surround-

ings safely. In practical terms, the user’s interaction with the system involves hold-

ing a soft string that is affixed to the drone. This tethered connection ensures that

the user can easily follow the drone’s movements. Additionally, the user receives per-

tinent voice prompts through a Bluetooth-enabled bone conduction headphone, fur-

ther enhancing their awareness of their environment and the drone’s guidance cues.

The system implementation have been made publicly accessible at the following URL:

https://github.com/EckoTan0804/flying-guide-dog.

https://github.com/jamycheung/Trans4Trans
https://github.com/EckoTan0804/flying-guide-dog
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In this chapter, we post a discussion and look towards the future of intelli-

gent transportation and mobility assistance systems. Starting from the ideas

for improving assistance systems, we outline potential iterative developments

for wearable systems by actively involving users in the refinement process. Fur-

thermore, we introduce the promising prospects of harnessing large language

models and vision-language models to shape the landscape of smart mobility.

9.1 next-generation assistance system

Based on the insightful feedback received from expert participants in our Vision4Blind

system studies, several key discussions emerged regarding the optimal delivery of in-

formation to users. Notably, four out of the five experts have expressed the necessity

for distance information related to recognized objects, while one expert underscored

the significance of clock directions or stereo sound cues to aid object localization. They

highlighted the importance of presenting information about objects directly in front

of the user, as opposed to those positioned to the side, which would significantly ele-

vate both user experience and accuracy. Furthermore, three experts have engaged in

discussions around scenarios where grasping the spatial arrangement of objects is crit-

ical, particularly in distinguishing between items like tables and windows. Their input

advocated for the communication of object positions in a sequence, potentially incorpo-

rating levels or layers to effectively convey the hierarchy of distances. In aggregate, the

expert feedback reinforce the imperative of providing precise, contextually enriched

information about object directions and distances, thereby enhancing the scene under-

standing. Leveraging this invaluable feedback, the next-generation assistance system

can be improved to provide object distancing and orientation enhancements, as well

as a more efficient user interface to convey information.

9.2 vision-language models for interactive navigation

Vision-Language Navigation (VLN) represents a novel research direction that has po-

tential to transform the landscape of navigation systems. At its core, VLN explores the

challenge of enabling a mobile agent to traverse unfamiliar environments by compre-

hending and following textual instructions provided by an oracle. This task is a signif-

icant stride towards empowering machines with the ability to navigate and interact

with the real world. The fundamental essence of VLN lies in its capacity to surmount

the absence of prior knowledge about the environment. Unlike traditional navigation
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systems that rely on predefined maps, VLN forges ahead by relying solely on textual

guidance to maneuver through unfamiliar terrain.

The insights and advancements garnered from VLN research can pave the way for

the development of navigation systems across various domains. For instance, VLN prin-

ciples can be seamlessly integrated into autonomous vehicles, imbuing them with the

capability to navigate complex urban environments. Similarly, drones and robots can

leverage VLN techniques to navigate through cluttered spaces or hazardous terrains.

One of themost transformative applications of VLN is its potential to serve as a bedrock

for interactive navigation systems tailored to assist people with visual impairments. By

combining natural language understanding with visual perception, VLN can enable

real-time communication between the user and the wearable assistive system. Such

systems can provide detailed step-by-step instructions, contextual cues, and real-time

feedback, empowering people with visual impairments to navigate their surroundings

with greater confidence and independence.

9.3 a universal model for multiple tasks

A promising research direction of multiple learning lies in using a unified vision-

language model to address an array of interrelated tasks. It offers several benefits,

including the consolidation of multiple tasks under a single model, streamlining devel-

opment efforts, and improving system efficiency. Traditionally, various vision-relevant

tasks such as traffic light recognition, scene segmentation, object identification, and

zebra-crossing recognition entail the deployment of disparate models. Using a uni-

fied vision-language model enables the seamless integration of these tasks, resulting

in significant reduction of development complexity and computational overhead. Fur-

thermore, the unified model extends its versatility to solve vision-language tasks. For

instance, this model can perform vision-language navigation, tackle open-vocabulary

segmentation, and also handle visual question answering, responding to user queries

about their surroundings. This unified approach holds immense promise for the fu-

ture of intelligent transportation and mobility assistance. By integrating multiple tasks

under one model, development efforts are reduced, computational resources are opti-

mized, and the system efficiency is enhanced.

9.4 large models in assistive technology

Artificial General Intelligence (AGI) holds the potential to drive the advancement of

assistive technology across various domains. This includes the fields of scene percep-

tion and understanding, scene reasoning, adaptive learning tailored to individual user

preferences and needs, as well as high-level decision-making in the fields of mobil-

ity and navigation. These capabilities can be used for developing smarter and more

adaptable assistive technologies. However, the current AGI technology comes with

significant resource demands. As a result, ensuring the accessibility and affordability

of AGI-powered assistance systems to a broad spectrum of users presents a substan-

tial challenge. Therefore, a critical aspect lies in enhancing the efficiency of AGI-based

systems, a factor that directly contributes to enhancing the overall user experience.
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a.1 more information of deliver dataset

a.1.1 Data Collection

Depth2Frames. The depth camera straightforwardly outputs a grayscale depth map

(i.e. 0–255 scales), which will cause discontinuity and quantization errors in distance

measurements. We convert the original depth image to the depth frame using a loga-

rithmic scale, leading to milimetric granularity and better precision at close ranges.

Event2Frames. The positive- and negative event threshold of the event camera are

both set to 0.3. We record raw event point cloud between two adjacent frames and con-

vert the last occurring event among all pixels into an event frame, where blue indicates

positive and red indicates negative.

LiDAR2Frames.We transform the LiDAR point cloud to the image coordinate system,

so as to obtain an image-like representation of LiDAR data. The Field-of-View (FoV)

of the front camera is 91° and the image resolution isH×W=1042×1042. The origin is

(u0, v0)=(H/2,W/2). The focal length (fx, fy) is calculated as:

fx=H/(2×tan(FoV×π/360)), (40)

fy=W/(2×tan(FoV×π/360)). (41)

To project 3D points to 2D image coordinate, we have:

uv
1

 =

fx 0 u0

0 fy v0

0 0 1

[
R t

0T3×1 1

]
X

Y

Z

1

 , (42)

where (X, Y,Z) is the LiDAR point, (u, v) is the 2D image pixel, and the rotation (R)

and the translation (t) matrices are set as the unit matrix in the CARLA simulator [53].

a.1.2 Dataset Structure

DeLiVER contains Depth, LiDAR, Event, and RGB modalities. As shown in Figure 68,

four adverse road scene conditions of rainy, sunny, foggy, and night are included in our

dataset. There are five sensor failure cases includingMotion Blur (MB), Over-Exposure

(OE), Under-Exposure (UE), LiDAR-Jitter (LJ), and Event Low-resolution (EL) to verify

that the performance of model is robust and stable in the presence of sensor failures.

The sensors are mounted at different locations on the ego car to provide multiple views
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DeLiVER

Conditions: Cases: Views: Modalities:

Annotations:

Cloudy

Rainy

Sunny

Foggy

Night

Normal

MB

OE

UE

LF

EL

Front

Rear

Left

Right

Up

Down

RGB

Depth

Lidar

Event

Semantic

Instance

Figure 68: Data structure of the DeLiVER dataset. The columns from left to right are respective

conditions, cases, multiple views, modalities and annotations. MB: Motion Blur; OE: Over-

Exposure; UE: Under-Exposure; LJ: LiDAR-Jitter; and EL: Event Low-resolution.

Split Cloudy Foggy Night Rainny Sunny Total Normal MB OE UE LJ EL Total

Train 794 795 797 799 798 3983 2585 600 200 199 199 200 3983

Val 398 400 410 398 399 2005 1298 299 100 99 100 109 2005

Test 379 379 379 380 380 1897 1198 300 100 100 99 100 1897

Front-view 1571 1574 1586 1577 1577 7885 5081 1199 400 398 398 409 7885

All six views 9426 9444 9516 9462 9462 47310 30486 7194 2400 2388 2388 2454 47310

Table 34: Data statistic of DeLiVER dataset. It includes four adverse conditions (cloudy, foggy,

rainy, and night), and each condition has five failure cases (MB: Motion Blur; OE: Over-

Exposure; UE: Under-Exposure; LJ: LiDAR-Jitter; and EL: Event Low-resolution).

including front, rear, left, right, up, and down. Each sample is annotated with semantic

and instance labels. In this work, we focus on the front-view semantic segmentation.

There are 25 classes inDeLiVER dataset: Building, Fence, Other, Pedestrian, Pole, Road-

Line, Road, SideWalk, Vegetation, Cars, Wall, TrafficSign, Sky, Ground, Bridge, RailTrack,

GroundRail, TrafficLight, Static, Dynamic, Water, Terrain, TwoWheeler, Bus, Truck.

a.1.3 Dataset Statistic

We present statistics of the DeLiVER dataset in Table 34. We discuss data partitioning

in two groups, one according to the conditions and the other according to the sensor

failures. Note that, the two groups are mutually inclusive. The five cases from the sec-

ond group are included in each of five conditions from the first group. For example,

cases of MB, OE, UE, LJ, and EL are included in cloudy, foggy, night, rainy, and sunny

conditions, but with different samples. To investigate the robustness under sensor fail-

ures, we collect 1199, 400, 398, 398, and 409 frames on respective cases.
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a.2 drone control algorithm

The control strategy elaborated in Section 7.2 is detailed in Algorithm 2. This algorithm

shows the intricate steps and decision-making processes of the drone, acting as a flying

guide dog for individuals with visual impairments.

Algorithm 2 : Drone control

input :colorized prediction C ∈ RH×W×3
, pedestrian crossing light

color ∈ {red,green,None},

current altitude h

output :up/down velocity vud, yaw velocity vyaw, left/right velocity vlr,

forward velocity vf

1 Initialize parameters: pixel threshold θconf, target altitude htarget, speed up

speedup, up/down velocity vud, forward velocity vf,0; lists: preset yaw

velocities listyaws, binary control code listcodes;

2 start_crossing← false;

3 while drone is flying and video stream is on do

// Maintain target altitude

4 if h ̸= htarget then

5 vud← (htarget − h)/htarget ∗ vud;
6 end

// Fly along walkable path

7 Extract largest walkable area Lwalkable from C;

8 (xcentroid,ycentroid)← estimate_centroid(Lwalkable) ;

9 vlr ← xcentroid −
W
2 ;

10 (Rl,Rm,Rr)← partition(Lwalkable);

11 for p ∈ (Rl,Rm,Rr) do

12 conf← mean(p);
13 code← binary_conversion(conf, θconf);
14 Append code to listcodes;

15 end

16 vyaw ← get_yaw_vel(listyaws, listcodes);

// Fusion with traffic light classification

17 if color = None then

18 vf← vf,0;

19 else if color = green or start_crossing then

20 vf ← vf,0 + speedup;

21 start_crossing← true;

22 else

23 vf ← 0;

24 end

25 end
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