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Vorwort des Herausgebers

Die Fahrzeugtechnik ist kontinuierlich Verdnderungen unterworfen. Klimawan-
del, die Verknappung einiger fiir Fahrzeugbau und -betrieb benétigter Rohstoffe,
globaler Wettbewerb, gesellschaftlicher Wandel und das rapide Wachstum
groBer Stidte erfordern neue Mobilitdtslosungen, die vielfach eine Neudefi-
nition des Fahrzeugs erforderlich machen. Die Forderungen nach Steigerung
der Energieeffizienz, Emissionsreduktion, erhchter Fahr- und Arbeitssicherheit,
Benutzerfreundlichkeit und angemessenen Kosten sowie die Moglichkeiten der
Digitalisierung und Vernetzung finden ihre Antworten nicht aus der singulidren
Verbesserung einzelner technischer Elemente, sondern benotigen Systemver-
stindnis und eine domineniibergreifende Optimierung der Losungen.

Hierzu will die Karlsruher Schriftenreihe fiir Fahrzeugsystemtechnik einen Bei-
trag leisten. Fiir die Fahrzeuggattungen Pkw, Nfz, Mobile Arbeitsmaschinen
und Bahnfahrzeuge werden Forschungsarbeiten vorgestellt, die Fahrzeugsys-
temtechnik auf vier Ebenen beleuchten: das Fahrzeug als komplexes, digi-
talisiertes mechatronisches System, die Mensch-Fahrzeug-Interaktion, das
Fahrzeug in Verkehr und Infrastruktur sowie das Fahrzeug in Gesellschaft
und Umwelt.

Eine automatisierte Fahrzeugldngsfithrung entlastet den Fahrer und erlaubt da-
riiber hinaus eine Steigerung der Energie- und Zeiteffizienz, ohne das Situati-
onsbewusstsein negativ zu beeinflussen. Hiufig wird fiir die vorausschauende
Optimierung der Geschwindigkeitstrajektorie die Methode der dynamischen
Programmierung eingesetzt, die das globale Optimum liefert, jedoch sehr hohe
Anforderungen an Rechenleistung und Speicherplatz stellt.



Vorwort des Herausgebers

Herr Jauch schldgt in seiner Arbeit ein rekursives Verfahren zur Generierung
optimierter Geschwindigkeitstrajektorien unter Nebenbedingungen fiir beliebig
lange Strecken vor, dessen Rechenaufwand klein ist und lediglich linear mit der
Streckenlédnge steigt. Es basiert auf der Anpassung einer B-Spline-Funktion
an kartenbasierte Datenpunkte und ist sowohl fiir lineare als auch fiir nichtlin-
eare Probleme geeignet. Es liefert in der Anwendung auf batterieelektrische
Pkw eine deutliche Erhohung der Energieeffizienz bzw. der Durchschnitts-
geschwindigkeit.

Karlsruhe, im Juli 2023 Frank Gauterin
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Abstract

This work describes a novel method for approximating an unbounded number
of data points using a B-spline function in the linear and nonlinear weighted
least squares sense. The developed method is based on iterative algorithms
for state estimation and its computational effort increases linearly with the
number of data points. The method allows to shift the bounded definition
range of a B-spline function during run-time such that the latest data point can
be considered for approximation regardless of the initially chosen definition
range. Furthermore, the shift operation allows to decrease the sizes of matrices
in the state estimators in order to reduce computational effort in both offline
applications, in which all data points are available at once for processing, and
online applications, in which additional data points are observed in each time
step.

The trajectory optimization problem is formulated such that the approximation
method computes a B-spline function that represents the desired velocity trajec-
tory with respect to time using data points created from map data. The compu-
tational effort of the resulting direct trajectory optimization method increases
only linearly with the unbounded temporal length of the planned trajectory. The
combination with an adaptive model that describes the power train properties
of a battery electric vehicle with fixed gear box transmission ratio allows to
optimize velocity trajectories with respect to travel time, comfort and energy
consumption.

The trajectory optimization method is extended to a driver assistance system for
automated vehicle longitudinal control that is tested in simulations as well as in
real test drives. Simulated drives on a chosen reference route need up to 3.4 %
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Abstract

less energy with the automated longitudinal control than with a human driver
at the same average velocity. For the same energy consumption the automated
longitudinal control achieves a 2.6 % higher average velocity than a human
driver.
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Kurzfassung

Diese Arbeit beschreibt ein neuartiges Verfahren zur linearen und nichtlinearen
gewichteten Kleinste-Quadrate-Approximation einer unbeschrinkten Anzahl
von Datenpunkten mit einer B-Spline-Funktion. Das entwickelte Verfahren
basiert auf iterativen Algorithmen zur Zustandsschitzung und sein Rechen-
aufwand nimmt linear mit der Anzahl der Datenpunkte zu. Das Verfahren
ermoglicht eine Verschiebung des beschrinkten Definitionsbereichs einer B-
Spline-Funktion zur Laufzeit, sodass der aktuell betrachtete Datenpunkt un-
geachtet des anfangs gewdhlten Definitionsbereichs bei der Approximation
beriicksichtigt werden kann. Zudem ermoglicht die Verschiebeoperation die
Reduktion der GroBlen der Matrizen in den Zustandsschitzern zur Senkung des
Rechenaufwands sowohl in Offline-Anwendungen, in denen alle Datenpunkte
gleichzeitig zur Verarbeitung vorliegen, als auch in Online-Anwendungen, in
denen in jedem Zeitschritt weitere Datenpunkte beobachtet werden.

Das Trajektorienoptimierungsproblem wird so formuliert, dass das Approxi-
mationsverfahren mit Datenpunkten aus Kartendaten eine B-Spline-Funktion
berechnet, die die gewiinschte Geschwindigkeitstrajektorie beziiglich der Zeit
reprasentiert. Der Rechenaufwand des resultierenden direkten Trajektorienop-
timierungsverfahrens steigt lediglich linear mit der unbeschriankten zeitlichen
Trajektorienlinge an. Die Kombination mit einem adaptiven Modell des
Antriebsstrangs eines batterie-elektrischen Fahrzeugs mit festem Getriebeiiber-
setzungsverhiltnis ermoglicht die Optimierung von Geschwindigkeitstrajekto-
rien hinsichtlich Fahrzeit, Komfort und Energieverbrauch.

Das Trajektorienoptimierungsverfahren wird zu einem Fahrerassistenzsystem
fiir die automatisierte Fahrzeuglidngsfithrung erweitert, das simulativ und in



Kurzfassung

realen Erprobungsfahrten getestet wird. Simulierte Fahrten auf der gewihl-
ten Referenzstrecke bendtigten bis zu 3,4 % weniger Energie mit der auto-
matisierten Langsfithrung als mit einem menschlichen Fahrer bei derselben
Durchschnittsgeschwindigkeit. Fiir denselben Energieverbrauch erzielt die au-
tomatisierte Langsfithrung eine 2,6 % hohere Durchschnittsgeschwindigkeit
als ein menschlicher Fahrer.
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1 Introduction

1.1 Background

The topic of this work falls into the context of driver assistance systems for
automated vehicle longitudinal control based on map data. Such systems can
increase safety, improve comfort and reduce the energy consumption of the
vehicle by computing an energy-efficient course of velocity for the road section
ahead.

In the recent past, energy savings have mainly been achieved by power train
improvements such as downsizing of the internal combustion engine as well
as hybrid and purely electric power trains. When taking into account the in-
creasing costs for further power train improvements, assistance systems for
energy-efficient longitudinal control offer a more cost-efficient way to obtain
additional energy savings. According to [117, p. 141], efficient driving has the
second largest potential for energy savings (30 %) after electrification of the
power train (75 %).

Driver assistance systems for automated longitudinal control (ALC) compute
the desired course of velocity, also called velocity trajectory, by solving a
trajectory optimization problem. Different optimization approaches are known,
e.g. Dynamic Programming (DP) and direct methods (DM).

The popular DP approach finds the global optimum for a given optimization
problem and its computational effort grows linearly with the temporal length of
the planned trajectory. However, only coarsely discretized problems with few
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state dimensions can be solved in real-time on a series electronic control unit
(ECU) with limited resources.

A possible way is to compute a rough long-term trajectory with DP that serves
as a reference trajectory for a DM. In addition to discretizing the optimization
problem, DM approximate the system state and control between the discretiza-
tion steps by a function with respect to time. DM are, however, only suitable
for short-term trajectories since the effort of DM increases exponentially with
the temporal trajectory length.

This work addresses the need for computationally less demanding trajectory
optimization algorithms for ALC of a battery electric vehicle (BEV).

1.2 Approach

The research problem is approached by developing a novel method for the
generic task of approximating an unbounded number of data points using a B-
spline function in the linear and nonlinear weighted least squares (WLS) sense.
The developed method is based on iterative algorithms for state estimation.

The approximation problem is reformulated as a trajectory optimization prob-
lem such that the approximation method computes a velocity trajectory with
respect to time using data points created from map data. The novel trajectory
optimization method falls into the category of DM and its effort increases only
linearly with the trajectory length instead of exponentially. The combination
with an adaptive model that describes the power train properties of the BEV
allows to plan velocity trajectories whose resulting energy consumption varies
depending on the chosen relative weighting of different target criteria.

The trajectory optimization is extented to a driver assistance system for ALC
that is tested in simulation as well as in real test drives. In simulations on a
chosen reference route the ALC is compared to a recorded and re-simulated real
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Figure 1.1: Structure of this work illustrated by the V model that is used to describe the software
development process.

drive with manual longitudinal control (MLC) regarding energy consumption
and average velocity.

1.3 Outline

Figure 1.1 illustrates the structure of this work, which follows the V model. The
V model describes the software development process and distinguishes different
process levels. On the descending branch of the V model, the development goal
is analysed and iteratively broken down into subgoals. Thereby requirements
are specified for subsystems that ultimately need to be implemented.
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Chapter 2 of the work corresponds to the descending branch of the V model
and will provide literature background as well as identify research gaps. The
development goal on system level is a driver assistance system for energy-
efficient ALC of a BEV (Section 2.1) which is broken down into a trajectory
optimization method on component level (Section 2.2) and B-spline approxima-
tion methods on algorithm level (Section 2.3). Section 2.4 gives an introductive
overview of adaptive filters for Chapter 3 and Chapter 5 without identifying a
research gap.

The ascending branch of the V model includes testing and iterative integration
of subcomponents into larger systems until the main goal is reached. Chapter 3
to Chapter 6 address this phase by presenting contributions for closing the
research gaps on each level of the V model.

Chapter 3 presents novel algorithms for iterative linear and nonlinear WLS
approximation of data with a B-spline function. The algorithms are referred to
as recursive B-spline approximation (RBA) and nonlinear recursive B-spline
approximation (NRBA), respectively.

Chapter 4 provides neccessary foundations for Chapter 5 and Chapter 6. With-
out having a direct counterpart to the left branch, it states models of the vehicle
that are used for determining energy-efficient trajectories and for evaluating
the energy consumption of the research vehicle in simulations on a chosen
reference route.

Chapter 5 applies RBA and NRBA to the trajectory optimization problem and
presents extensions for taking into account trajectory constraints.

Chapter 6 describes the development process of the ALC and its system archi-
tecture including the interaction of its components. Furthermore, Chapter 6
investigates the energy-saving potential with the ALC on the reference route
in comparison to a recorded and re-simulated real drive with MLC as well as
effects of ALC parameters on the energy consumption that results with the
ALC.



1.4 Works, contributions and support by others

Chapter 7 concludes the journey through the V model, summarizes the contri-
butions to research gaps and gives suggestions for future research.

1.4 Works, contributions and support by
others

The research described in this work took place within the research project
e-volution [41] funded by the German Federal Ministry of Education and Re-
search (support code 16EMOO0071). The Dr. Ing. h.c. F. Porsche AG was
among the research partners and supported the project work by providing a
battery electric research vehicle for test drives as well as vehicle data and mea-
surement data. Furthermore, an employee of the Porsche Engineering Services
GmbH integrated the developed ALC system into the prototyping ECU of the
research vehicle and conducted test drives.

The provided research vehicle was developed during the preceding research
project e-generation [22], which was also funded by the German Federal Min-
istry of Education and Research (support code 16N 11865) and realized in
cooperation with the above mentioned companies. The author of this work did
not contribute to e-generation but reused the following results:

Despite differing strongly in detail, the B-spline data approximation algorithms
stated in Chapter 3 adopt the iterative, filter-based characteristics of the previous
method for polynomial data approximation [22, pp. 29-35], which was patented
by F. Bleimund and S. Rhode [21]. A detailed differentiation between the
approaches is given at the end of Chapter 3.

The adaptive traction force model (ATFM) stated in Subsection 4.7.1 stems
from F. Bleimund [22, pp. 24-29] and is applied without modifications. The
idea to model the power train characteristics with a kernel regression model, as
done in Subsection 4.7.2 using the adaptive electrical power model (AEPM),
originates from S. Rhode [146], who also provided a first script in MATLAB
that performs this task. Based on this, both authors continued the investigations
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independently from each other. Problem-specific adaptions for using the model
for trajectory optimization as well as the determination of model hyperparame-
ters were done by the author of this work.

Trajectory optimization within the previous ALC [22, pp. 29-35] developed by
F. Bleimund differs significantly from the one described in this work, although
both are examples of DM. The previous ALC defined trajectories with respect
to position by a cubic polynomial. The few degrees of freedom of this function
only allowed to represent trajectories with simple shape over short distances.
The energy that the vehicle will need for tracking the planned trajectories was
not considered in the optimization process.

Therefore, regarding trajectory optimization this work only adopts the genera-
tion of an upper speed limit (Section 5.1) from e-generation [22, pp. 29, 30].
The adaptions made are limited to parameterization improvements. At an early
stage, with non-final trajectory representation, AEPM and nonlinear filter, tests
for finding suitable target criteria weightings for the trajectory optimization
including the elecrical power (Section 5.4) were done by A. Thorgeirsson [173]
as a student assistant.

Moreover, reused results include agreed interfaces between the ALC system
and the vehicle, the technical architecture of the ALC system as well as a
Hardware-in-the-Loop (HiL) test bench, which simulates the research vehicle
on the reference route and runs the developed ALC on the same ECU type as
in the real research vehicle. The HiL test bench (Section 6.1) was created by B.
Fath [22, pp. 60-73].

The route data module (Subsection 6.2.1) was implemented by D. Dorr [22,
pp- 23, 24]. Within this work, the parameterization was enhanced and logic
for processing roundabout data was added. The parameter adaption module
(Subsection 6.2.2) including ATFM was developed by F. Bleimund [22, pp. 24-
29]. The author of this work added the AEPM.



1.5 Prepublications and their citations

To the controller module the author of this work added the functionality stated
at the beginning of Subsection 6.2.4 and replaced the original proportional-
integral-derivative (PID) control by a model predictive control (MPC). Overall
architecture and control loop including the pilot control (Subsubsection 6.2.4)
were adopted from F. Bleimund [22, pp. 35, 36]. First implementations and
simplified tests of the MPC (Subsubsection 6.2.4) were done by C. Lee [98]
during his time as student assistant after completing his Master’s thesis.

First evaluations of the energy-saving potential (Section 6.3) with non-final
ALC setup were conducted by A. Thorgeirsson [173] while being employed as
a student assistant. For more detailed differentiations regarding the individual
contributions, the reader is referred to the afore-stated parts of this work.

1.5 Prepublications and their citations

The research community benefits from fast publication of new findings. There-
fore, parts of this dissertation have been prepublished. Namely, RBA and
NRBA described in Chapter 3 are the topics of [78, 80] and the contents of
Chapter 4, Chapter 5 and Chapter 6 are mentioned in a very condensed way in
[78, 79].

This work will put the topics of these publications into a broader context and
present them in much more detail. For more flexibility in rearranging content
compared to a cumulative dissertation, only parts of previous publications have
been added. To avoid interruptions of the reading flow because of frequent
changes between paraphrases and direct quotes, all content adopted from pre-
publications, regardless of the extent of adaptions made, i.e. both paraphrases
as well as direct quations, will be indicated as follows:

O ... Prepublished content...  Adopted from [prepublication].
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For reproducibility and convenient further use by other researchers the MATLAB
source code for RBA, NRBA and trajectory planning has been provided along
with the corresponding publication [75, 76, 77]. However, the source code of
the trajectory planning method was published with a generic vehicle model
instead of the parameters of the research vehicle and for the simplest planning
case only. Therefore the results presented in Chapter 4 to Chapter 6 are not
exactly reproducible by others.

1.6 Notation

In this work vectors are printed in bold font and matrices are printed bold in
capital letters. For example, a and A are scalars, a is a vector and A is a matrix.
Unless explicitly stated, the sizes of vectors and matrices are assumed to be
chosen appropriately.

A hat above a variable a such as 4 indicates an estimate of a or the solution of
an optimization problem with respect to the variable a.

This work also adopts the MATLAB-like index notation. The first index of a
matrix A refers to rows, the second to columns. For example, A; ; refers to the
entry in row i/ and column j of matrix A. The colon operator (:) refers to all
rows or columns, or a range. A. ; means all rows of column j. Analogously, A; .
denotes all columns of row i. A; is an abbreviation of A; .. The colon operator
in the index of A .4 ; extracts a column vector of rows one to four in column j
of matrix A. Additionally, a[i] refers to the i-th element of vector a.

| - | denotes the absolute value and ()" the transpose operation.



2 Scientific and technical state of
the art

This chapter provides background information and identifies research gaps
regarding driver assistance systems for ALC in Section 2.1, trajectory opti-
mization in Section 2.2 and types of spline representations as well as B-spline
approximation methods in Section 2.3. Furthermore, Section 2.4 gives an
overview on adaptive filters for Chapter 3 and Section 4.7.

2.1 Assistance systems for automated
longitudinal control

The tasks that the driver performs can be divided into three levels:

* Navigation: Choosing a travel route
* Guidance: Determining a suitable speed from the traffic environment
* Stabilization: Aligning the vehicle motion with the guidance variables

Driver assistance systems can support on each of these levels.

O Regarding the vehicle guidance, assistance functions can be distinguished by
their operating mode as depicted in Table 2.1 [187, pp. 36-40]:

¢ Informing and warning functions
* Continuously automated functions
* Intervening emergency functions
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Table 2.1: Operating modes regarding vehicle guidance [187, p. 38, adapted]

Mode Informing and warning Continuously automated Intervening emergency
name functions functions functions
Mode A B C

character

Vehicle  Only indirect control via » Immediate direct control ~ Immediate direct control

control the driver * Division of driving tasks in near-accident
between human driver and situations or situations
function that cannot handled by an
¢ Control always remains average driver
overridable
Examples ¢ Display of current speed Usually convenience Usually safety functions:
limit based on traffic sign functions: Automatic emergency
recognition ¢ Adaptive cruise control braking (system
¢ Lane departure warning ¢ Lane centering triggered)

This work deals with continuously automated functions for longitudinal control.
Such functions can contribute to increasing safety and comfort as well as to
reducing energy consumption to different extents.

For example, the cruise control (CC) function controls the brake and engine
torque so that the vehicle maintains the speed selected by the driver. Adaptive
cruise control (ACC) is an extension of CC that uses a radar sensor to detect
a vehicle ahead. ACC can reduce the selected vehicle velocity to maintain a
chosen time gap to a vehicle ahead [52, 196]. Studies cited in [187, pp. 1140-
1145] report that with activated ACC drivers mention feeling safer and more
relaxed compared to manual driving. Adopted from [79]. ACC-like systems
increase comfort by reducing the driver workload. However, the effects on
safety are not as clear as the effects on comfort and require more comprehensive
investigations including psychological effects. These are adressed by works that
are mentioned in the above cited literature. Briefly summarized, automation of
tasks favors that the driver diverts the attention to things that are irrelevant for
driving. In assistance systems that still require monitoring by the driver, this
can cause a safety issue if the driver unexpectedly needs to take back control.
For example, in one of the studies, drivers looked away from the traffic ahead
for longer periods when driving with ACC [187, pp. 1140-1145].

10
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Table 2.2: Time and energy savings with automated longitudinal controls that consider map data
compared to benchmark control methods. Dynamic Programming (DP), direct methods
(DM), conventional vehicle (CV), hybrid electric vehicle (HEV), battery electric vehicle
(BEV), urban road (U), country road (C), highway (H), artificial road profile (A).

Source Optimization Vehicle Energy difference Time difference Benchmark Road
[114] DP CvV —10 % 0 % Human U,C
[139] DP CvV -23.8 % 1.5 % Human U,C
[139] DP Ccv -10.2 % -1.3 % Human U,C
[100] DP CvV —12 % -3 % Human U,C
[100] DP CvV —8.28 % 0.01 % Human U,C,H
[100] DP Ccv 1.71 % -3.60 % Human U,CH
[183] DP HEV -18.1 % —1.15 % Heuristic strategy U,C,H
[183] DP HEV 0 % —21.13 % Heuristic strategy U,C,H
[86] DM HEV -4 Y% n/a Constant velocity H
[188] DP BEV -5.83 % n/a PID control A
[188] DM BEV -5.40 % n/a PID control A
[188] DM BEV -1.27 % n/a PID control H
[188] DM BEV -1.14 % n/a PID control H

Driving efficiency oriented extensions of ACC use a corridor of allowed dis-
tances to the vehicle ahead instead of a specific distance value given by the
selected time gap. Within this corridor the vehicle is controlled according to
an optimization that considers the energy consumption of the vehicle, either
explicitly with an energy consumption model [18, 88, 127, 195] or implicitely
using a proxy for the energy consumption, such as acceleration [1, 107, 112].
The effectiveness of both approaches is compared in [81]. Section 4.7 will
address consumption models in more detail.

O One step further go ACC enhancements that additionally determine the ap-
propriate speed depending on map data so that the vehicle automatically slows
down if a curve is ahead. Map information enables such systems to determine
an even more energy-efficient or time-efficient driving strategy as Table 2.2
illustrates. Adopted from [79].

Further developments of assistance systems increase the degree of automation
and finally lead to autonomous vehicles that do not require a driver. The degree

11
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Table 2.3: SAE J3016 levels of driving automation [172, adapted].

Level name No Driving Driver Partial Driving  Conditional ~ High Driving  Full Driving
Automation Assistance  Automation Driving Automation  Automation
Automation
Level number 0 1 2 3 4 5
Type Driver support system Automated driving system
Vehicle Human is driving when the system is Human is not driving when the system is
control engaged, even if pedals and steering wheel engaged, even if sitting in the driver’s seat
are not touched
Monitoring Human must constantly supervise the system  On request by Feature will not require
and fallback and override it as the situation requires the system, human to take over driving
solution human must
take over
driving
Capability Provide Provide Provide Can drive the vehicle under ~ Can drive the
warnings and EITHER longitudinal limited conditions as long as  vehicle under
momentary longitudinal AND all required conditions are met all conditions
assistance OR lateral control
lateral control support
support
Example Display of EITHER Lane centering  Traffic jam Local Same as 4 but
current speed lane centering AND chauffeur driverless taxi  system can
limit based on OR adaptive cruise drive
traffic sign  adaptive cruise  control Installation everywhere
recognition control SIMULTANE- of pedals and in all
OUSLY steering wheel ~ conditions
Lane optional
departure
warning
Automatic
emergency
braking

of automation according to SAE International is depicted in Table 2.3. Both
mode A and mode C functions according to Table 2.1 are SAE level O functions

because they are only capable of warnings and momentary assistance. Most
ACC systems fall into the category SAE level 1, because they can perform
longitudinal control in certain use cases but the driver has to monitor them,

has to override them occasionally and needs to perform the lateral control

by operating the steering wheel. Some system enhancements include lateral
guidance [187, p. 1146]. Systems that offer both longitudinal and lateral control

belong to at least SAE level 2.
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O ALC systems that determine an energy-efficient driving strategy mainly have
been developed for vehicles with internal combustion engine [139] or hybrid
electric vehicles [183]. The degrees of freedom of the power train in a con-
ventional vehicle include motor torque, clutch state and selected gear. The
various operating modes of a hybrid power train translate to additional degrees
of freedom. Therefore an energy-efficient driving strategy is the solution to a
nonlinear and high dimensional problem. To perform the required computa-
tions on a ECU with limited computational power in real-time, the referenced
approaches need to reduce the problem complexity, discretize it coarsely and
partly use parallelizable, iterative and approximative approaches.

Research gap: In contrast to conventional and hybrid vehicles, a BEV usually
has a 1-speed gear box and therefore a constant gear ratio. If the BEV has
multiple motors, as the research vehicle does, they have at least similar char-
acteristics so that the possible benefits from including the torque distribution
in the optimization problem over a rule-based torque distribution strategy that
considers efficiency and driving stability are small. With a rule-based strategy,
as described in Section 4.3 for the research vehicle, the only degree of freedom
that is left in the power train for optimization is the total torque. The power
required by auxilaries can also be significant but will not be considered in the
optimization based on the rationales mentioned in Section 4.4.

The lack of ALC systems that take advantage of this resulting simple structure
by incorporating a trajectory optimization approach that is on the one hand
less suitable for the complexity of the power train of a conventional or hybrid
vehicle but on the other hand oriented towards low computation power demand
by design, such as a local optimization based on adaptive filters, an overview of
which is given in Section 2.4, poses a research gap. The next section will illus-
trate and compare the features of different trajectory optimization approaches
in more detail. Adopted from [78, 79].

13
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2.2 Trajectory optimization

Driver assistance systems that perform continuously automated functions cal-
culate input commands to steering, brakes, engine and power train in order to
achieve a desired vehicle motion, also called trajectory. Trajectory planning is
also known as motion planning in robotics [187, p. 1414] and differs from a
path planning in that it additionally assigns a time law to a geometric path [55].
Reviews of state of the art motion planning methods for automated driving are
provided in [40, 59, 90].

With increasing extent of automation and number of degrees of freedom the
decision making process of driver assistance systems becomes more complex
and the trajectory is found by solving an optimization problem. Trajectory
optimization denotes the process of determining a trajectory of a dynamical
system including the control input to the system. Thereby the trajectory must
meet the system constraints and optimize a performance measure [185, p. 3].
This section gives an overview of trajectory optimization methods.

The trajectory is often optimized with respect to a trade-off between target
criteria such as comfort, safety, energy comsumption and travel time. Trajectory
constraints result from the vehicle dynamics, for example power restrictions,
as well as from the environment, for example lanes and other vehicles [187,
p. 1414].

In static optimization problems the optimal values of a finite set of variables p
need to be determined such that a cost function J(p) is minimized. Trajectory
optimization problems fall into the category of dynamic or infinite dimensional
optimization because the optimization variables are functions x(¢) of an inde-
pendent variable ¢, usually time. Assessing the performance of the trajectory by
a scalar quantity requires a cost functional, which is a function of a function.
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Figure 2.1: Methods for solving the optimal control problem

The trajectory optimization problem can be mathematically formulated as an
optimal control problem (OCP):

u*(t) = argmin J(u(z))

u(t)

J(u()) = ff L(x(@®),u@),)dt+V (x(tf), tf)
0 Q2.1
subject to

x(1) = f (x(@),u(1),1), x(0) = xo,
g (xp)tr) =0, h(x().u(n).0) <0Vt € [0,17].

In an OCP we seek for ¢t € [0, 7] the control input trajectory u(t) € R™ for
a system with state x € R” that leads the system from its initial state x( to
a terminal state x,, while minimizing the cost functional J and meeting the
system dynamics model f, equality constraints g and inequality constraints
h. u*(t) is the optimal input trajectory and x; the resulting state trajectory. J
includes integral costs / and terminal costs V [187, pp. 1415-1416].

O Figure 2.1 illustrates that known solution approaches to the trajectory opti-
mization problem can be categorized into the three principles Dynamic Pro-
gramming (DP), indirect methods (IM) and direct methods (DM). Adopted
from [78, 79]. However, some approaches combine characteristics of several
principles. Therefore the assignment is not necessarily unique [131, p. 27].
Apart from simple problems and special cases, solutions are derived numeri-
cally [185, p. 9]. The following subsections describe the three principles along
with application examples.

15
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Dynamic Programming

For purely continuous systems a solution to the Hamilton-Jacobi-Bellman par-
tial differential equation provides sufficient optimality conditions for an optimal
solution of the control problem. The DP algorithm samples the continuous state
and control spaces in order to achieve a discrete OCP:

kr—1
w (1) = argmin J (u(0), J@®) = Y 1(x(k),uk), k)
u(t) k=0

(2.2)
subject to

x(k+1) = f (x(k),u(k)), x(©0)=x0, k=0,...,k;—1

The optimal control sequence u* (k) that minimizes the sum of cost from the
initial state to the final state is computed iteratively using value iteration. Equal-
ity or inequality constraints are taken into account by setting the costs [ = oo
for cases that violate constraints [187, pp. 1425-1430].

The algorithm takes advantage of the optimality principle of Bellman, which
states that an optimal trajectory is composed of optimal subtrajectories. This
principle allows to split the OCP into many smaller problems.

Since the value function depends on the system state x, the optimal control
is a closed feedback control loop. The closed-loop control is valid within the
bounds of the sampled state space [131, p. 5].

DP is especially beneficial for trajectory planning in driving scenarios with
dynamic environment and constraints resulting from other traffic participants
[87] and for planning parking maneuvers [103]. 0O An ACC based on DP
is proposed in [53]. DP based algorithms for energy-efficient ALC exist for
vehicles with internal combustion engine [100, 139], hybrid electric vehicles
[183], plug-in hybrid electric vehicles [197] and BEVs [188]. Adopted from
[78, 79].
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If the time when a vehicle reaches a location is unimportant, the problem can
be simplified. However, without temporal dependency the decision graph is
cyclic. Therefore the value iteration needs to be replaced with another graph
searching method that draws on the DP paradigm, for example the Dijkstra
algorithm or the faster A* algorithm [187, p. 1430]. In the DARPA urban
challenge 2007 many successful autonomous vehicles applied an A* based path
planning algorithm [34].

Indirect methods

Indirect methods (IM) transform the OCP into the problem of solving a system
of nonlinear equations. First, they determine the neccessary first-order optimal-
ity conditions for an OCP, which leads to a boundary value problem consisting
of a set of differential equations, the so-called Hamilton equations. Then they
solve the boundary value problem numerically, e.g by a Newton method [185,
pp. 10, 11].

For example, variational calculus requires that the first derivative of the func-
tional J(u(¢)) diminishes for the optimal control u*(¢). The Lagrange mul-
tiplier method allows incorporating differential equality constraints resulting
from the system dynamics. Without inequality constraints the Hamilton equa-
tions then read

o . a1l [of]" ol [of]"
x_f(x’u’t)s /l__a_x_[a_x] /l, 0—_a_u_|:a_x] /1 (23)

Herein A denotes the Lagrange multipliers [187, pp. 1417-1418]. The approach
is also known as maximum principle of Pontryagin [131, p. 32] or minimum
principle of Pontryagin [185, p. 10], depending on the formulation of the opti-
mization problem.

IM only state a necessary condition for optimality and considering state con-
straints is often difficult [127]. Furthermore, they require initial conditions
for the Lagrange multipliers. This made them unsuitable for many automotive
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applications [187, p. 1420]. Nevertheless, there are indirect trajectory optimiza-
tion applications in literature, e.g. for conventional vehicles in [126, 160] and
for electric vehicles in [39, 132].

Direct methods

0 DM compute the solution of an OCP for a continuous system by discretizing
it with respect to time. Between the discrete time steps they approximate the
system state and control with a function of time. Thereby DM translate the
infinite dimensional problem into a finite dimensional optimization problem.
Adopted from [79]. System dynamics enter the optimization problem via
constraints for discrete points in time. Therefore constraints are also finite.

For example, the input trajectory can be represented by a polynomial ¢ and its
finite dimensional parameter vector u:

u(t) =yt a) (2.4)
Then the system dynamics are
x(1) = f(x @), ¥, w),1), x(to) = Xo. 2.5

This initial value problem can be solved by a differential equation solver. The
system trajectory is denoted by

x(1) = (. u). (2.6)
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The resulting static problem that approximates the dynamic OCP reads

u*(t) = argmin J (@),
i

73
J(@) = / Vi), W (ti),t)dt+V U
(it) fo (@@, ),y (t,4),1) dt + (¢(tf u)) 2.7)

subject to
gty ii),tr) =0, h(p(t;, @), Y(t;,@)) <0, i=1,...,N.

O The cost functional J is optimized directly using an optimization method
that varies the finite state and control values of the functional representation.
Usually the optimization problem is nonlinear and solved using sequential
quadratic programming methods (e.g. [65, 92]) or interior point methods.

DM often occur in literature as MPC, which solves (2.7) on a receding horizon
[187, pp. 1420-1425,1431-1432]. Adopted from [78]. For example, [56]
applies MPC for generating locally optimal trajectories, [28] proposes a MPC
based lateral control that tracks the lane centerline while avoiding collisions,
[47] calculates the control inputs with MPC so that the vehicle tracks a planned
path and [127] uses MPC for an ACC system that additionally aims to reduce
the energy consumption.

Comparison

A comparison of the stated solution principles is presented in [131, p. 8] and
further summarized in Table 2.4. The generalized statements apply to many
methods found in literature but individual methods might differ.

DP computes a globally optimal control because of the sufficient optimality
conditions of the Hamilton-Jacobi-Bellman equations. The computational effort
grows linearly with increasing time horizon and number of discrete states. DP
offers a closed-loop feedback control that is beneficial for the system stability.
DP algorithms converge globally in the discrete state space. However, the
required discretization leads to an exponential increase of computational effort
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Table 2.4: Comparison of methods for solving an optimal control problem (OCP). The table shows
average values for common algorithms applied to the same OCP. Some methods may
not fulfill all of the generalized statements. Summarized version derived from [131,
p- 8]. *: According to [131, p. 8], an exception that achieves polynomial increase using
a convexification approach is stated in [151].

Dynamic Indirect Direct

Category K

Programming (DP)  methods IM)  methods (DM)
Optimality of solution Global Local Local
Domain of convergence Global Smaller than DM Larger than IM
Ease of initialization Higher than DM Lower than DM Medium
Classes of solvable systems Less than IM Medium More than IM
Control Closed-loop Open-loop Open-loop

Increase of complexity
with increased

- Accuracy Polynomial Linear Polynomial
- Time horizon Linear Polynomial Exponential*
- # of continuous states Exponential Polynomial Polynomial
- # of discrete states Linear Polynomial Polynomial
Required system knowledge High Higher than DP  Lower than DP

with the number of continuous states. Therefore, DP usually can only be applied
to systems with a state and control dimension up to four and requires coarse
discretization. Therefore the solution accuracy is comparatively low. If the
discretization is refined for more accurate solutions, the computational effort
increases polynomially. DP requires a high system knowledge and can solve
less classes of OCP than other principles.

IM are very accurate and the computational effort only grows linearly when the
accuracy is increased. With respect to the time horizon and number of states,
the complexity grows polynomially. IM can solve more OCP classes than DP
but less than DM. IM only compute locally optimal open-loop controls which
means that the control loop is not closed using system feedback information.
IM converge within a smaller domain than DM and in general, applying IM
requires more knowledge than other methods.
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2.2 Trajectory optimization

Table 2.5: Suitability of Dynamic Programming (DP), direct methods (DM), indirect methods (IM)
and combinations for selected problem features. Particularly suitable (++), suitable (+),
less suitable (—). Derived from [187, p. 1430].

Many Continuous Global  Long
Approach . .
states states optimum horizon

DP - -

DM - -
DP + DM

DP + DM + IM

O DM converge within a larger domain than IM. They can deal with numerous
states, require less control knowledge and can solve more OCP classes than
other methods. Like IM, DM provide only locally optimal open-loop control.
The acceptable solution accuracy mainly results from discretization errors. The
computational effort grows polynomially with the solution accuracy and the
number of states. With respect to the time horizon, effort usually grows expo-
nentially because in each time step all controls have to be analyzed. Therefore
the optimization horizon is mostly restricted to few seconds [131, pp. 2-12, 27-
37], [187, pp. 1415-1431].

Due to their complementary properties, different approaches are combined for
solving difficult, farsighted trajectory optimization problems. Then DP provides
a rough long-term plan or reference trajectory for a DM that computes feasible
trajectories within a short time horizon. Adopted from [78, 79]. An example
is the energy-optimal adaptive cruise control in [186]. Closed-form solutions
of calculus of variations can be applied to speed up DP. Table 2.5 shows the
benefits of combining different methods [187, pp. 1430-1431].

Research gap: Both DP and DM are popular for automotive applications on
their own and combining their orthogonal features offers great potential. How-
ever, the exponential growth of computational effort with increasing time hori-
zon limits the application of DM to short time horizons. Hence, the research
gap regarding trajectory optimization consists of available DM with lower com-
plexity.
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2.3 B-spline data approximation

Data approximation can be viewed as a special case of trajectory optimization
using the DM approach and instead of a polynomial, a B-spline function can
represent the input trajectory from (2.4) or the system trajectory from (2.6).
Following an overview of spline representations, this section states methods
for determining a data approximating B-spline function and identifies the cor-
responding research gap.

Spline representations and their features

A function that is used for approximating data points needs to possess a suf-
ficient number of parameters which translates to the number of degrees of
freedom. A complicated relationship in the data usually requires more function
parameters in order to achieve an acceptable representation.

With polynomials the degree is coupled to the number of parameters and as
the degree is increased, the polynomials become computationally expensive to
evaluate [5]. Assume a polynomial p(u) given by

d
pw) =) uc. 2.8)
i=0
With a high degree d the monomial basis functions u¢, u¢"!, ... tend to take

large values and therefore need to be multiplied with small coefficient values
Cd, Cd-1, - - . . This can lead to ill-conditioned matrices, from which numerical
instability issues can arise [35, pp. 272-274]. Increasing the degree of a poly-
nomial approximation function also tends to result in an undesired oscillating
behavior instead of better accuracy [35, pp. 292-294]. This effect is called
Runge’s phenomenon [150].
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2.3 B-spline data approximation

Figure 2.2: Curve segment (left) and surface patch (right) [5, pp. 508-509,adapted].

The explicit form of a curve y = f(x) in two dimensions, x, y, states the value
of one dependent variable, y, in terms of the independent variable, x. Most
curves can also be represented in the implicit form f(x,y) = 0.

However, curves in three dimensions are not as easily defined in implicit form.
Instead, they are usually represented in parametric form in terms of an inde-
pendent variable u, called parameter. An advantage of the parametric form is
that each dimension is defined by an explicit function that is not coupled to the
others:

p@) = [x(u), yw), zw)]" 2.9)

For example, a cubic polynomial parametric curve p (u) reads

3
pu) = Zukck =u'c,u-= [1, u, u’, u3]T,
k=0 (2.10)

T T
Ck = [ka, Cyks Czk] , €= [Co, cy, €2, 03]

c is viewed as a 4 X 1 matrix, whose elements c¢; are 3 X 1 matrices. Each
coefficient vector ¢ has independent components for each dimension, hence
there are three independent functions, each of the form (2.8) with d = 3. With-
out loss of generality, 0 < u < 1 can be assumed. Figure 2.2 illustrates such a
curve segment.

23



2 Scientific and technical state of the art

Defining each explicit function in terms of two parameters u and v, leads to a
parametric surface p(u,v), e.g. for three dimensions:

puv) = [x(u,v), yu,v), zw )]’ (2.11)

A surface patch, as also depicted by Figure 2.2, can be defined by varying u
and v over the rectangle 0 < u, v < 1. A bicubic surface patch is given by

303
pu,v) = ZZuivfcij =u'Cv,
i=0 j=0 (2.12)

2 3 T T
v = [1, v, V5, v ] , Cij = [Cxij’ Cyijs Czij]

C = [c,- j] is a 4x4 matrix with elements ¢;;. A surface patch can be seen as the
limit of a collection of curves that result from keeping one parameter constant
and varying the other [5, pp. 503-515].

Spline functions are piecewise defined, which decouples the number of param-
eters from the degree of the function. Spline functions allow to increase the
number of function parameters while still using polynomials of low degree in
order to avoid numerical stability issues and Runge’s phenomenon. At the join
points, neighboring pieces of a spline function are continuously differentiable
to a certain extent. A function that is continuously differentiable up to its r
derivative is called a C" continuous function [35, p. 26].

The remainder of this subsection reviews the most common cubic spline types.
Figure 2.3 illustrates them and Table 2.6 compares their features.

A straight-forward approach to construct a cubic spline function is to connect
cubic polynomials by specifying continuity requirements at their join points as
explained in [35, pp. 294-299]. In literature this approach is also referred to as
natural polynomial spline [9].

For example, connecting two cubic polynomials p («#) and ¢(x) while demand-
ing continuity up to the second derivative leads to eight degrees of freedom,
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2.3 B-spline data approximation

(¢) Hermite

(e) B-spline

(d) Bézier

p(O0) p(1)=q(0)

q(1)=p3=qz

X

(f) Catmull-Rom spline

Figure 2.3: Cubic curve segments p (1), and g (u) of various representation types depending on
parameter u € [0, 1] with their control points p;, g;,i = 0, ..., 3 indicated by dots.
Dotted lines indicate borders of convex hulls defined by the control points. [5, pp. 510-

534, adapted].

which need to fulfill three equality constraints at the join point. Figure 2.3a

illustrates this case. In order to determine possible spline functions, an un-

determined linear system of equations needs to be solved. Each additional
polynomial segment leads to four additional degrees of freedom and three ad-

ditional continuity constraints. Furthermore, the parameters of all segments

of the same dimension influence each other via the continuity contraints and

therefore changing the spline function at any point can affect the shape of the
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Table 2.6: Cubic representation types for functions, curves and surfaces.

Continuity at Control point Convex hull

Representation type Control . . K
join points  interpolation  property

Natural polynomial Global c? - -
Interpolating polynomial Local co Yes No
Hermite Local c! Yes No
Bézier Local co Yes Yes
B-spline Local C? No Yes
Catmull-Rom spline Local c! Yes No

function at any other point. This feature is called global control and mostly
undesired because it requires that all segments are designed within a single
global calculation.

In contrast, the spline types described below offer local control of shape, mean-
ing that changing a parameter only influences the function locally. Therefore
each segment can be designed individually. Furthermore, they achieve continu-
ity without solving a system of equations during application.

Geometrically interpretable parameters called control points are used to design
the shape of these functions. Assume four control points

pi = [X6 yio 2]’ k=0,1,2,3, (2.13)

which are equally spaced at u = 0,1/3,2/3,1. ¢ is determined such that p(u)
from (2.10) interpolates the control points py. The conditions

po =p(0), p1 =p(/3), po = p(3), p3 = p(1) (2.14)

26



2.3 B-spline data approximation

read in matrix form

Po u(O)7 1 0 0 0
T 2 3
p=Ac. p= D1 A= u(l/3) _ L3 (3= (1/3) @15
P2 u®3)’ 1 23 3% (23)°
P3 u(l)" 1 1 1 1

p and ¢ are 4 X 1 matrices, whose elements are 3 X 1 matrices. The control
points given by ¢ = A~!p = Mp with geometry matrix M = A~! achieve
continuity at join points, but not for the derivatives. Figure 2.3b shows two
curve segments p(u), q(u) with their control points [5, pp. 509-517].

For C? continuity, quintic polynomials would have to be used. Increasing the
degree of a polynomial segment from three on complicates the calculation
process with each increment significantly [11]. In particular, for polynomials
of degree higher than four there is no general closed-form solution [23]. This
makes nonnegativity checks by determining the roots costly.

By substituting M into (2.10), p(u) can be expressed in terms of the blending
polynomials b (x) with

b(u) =u"M = [bo(u), bi(u), ba(u), b3(u)] (2.16)
and the control point vector p:

pw=u'c=u"(Mp)=u'M)p=>bup 2.17)

Interpolating curves can be extended to interpolating surfaces. Assume a 4 x 4
control point matrix P = [ Di j] comprising 16 independent three-dimensional
control points p;;, i =0,...,3, j =0,...,3, which are again equally spaced at
u,v =0,1/3,2/3, 1. The curve for v = 0 must interpolate poo, P10, P20, P30:

)
p,0) = u"M [pgy Py P P3| =uTCIL, 0,007 (218)
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v = 1/3,2/3,1 give the other three interpolating curves. Putting all of them
together leads to uTMP = uTCAT with A~™! = M. Solving for coefficient
matrix C = MPM " and substituting with (2.16) results in

3

3
pu,v) = u"MPM v = b(u)Pb(v)" = Z Z biWb;(Vpi;.  (2.19)
i=0 j=0

Each term b; (u)b; (v) describes a blending patch. The surface is formed from 16
blending patches, each weighted by a control point. Surfaces that are created in
such a way are called tensor product surfaces and are an example of separable
surfaces. They allow to work with functions in # and v independently [5,
pp. 510-517].

The spline types described in the following can also be represented using (2.17)
and (2.19). They differ only in the blending functions b () from (2.16), because
their designs fulfill conditions other than (2.14) and (2.18).

Hermite curves depicted in Figure 2.3c offer C! continuity between different
segments. However, instead of pi, p», the user needs to specify the values at
the join points up to their first derivatives p’(0) and p’(1), so that consecutive
tangents are collinear. This is often undesired because without an analytic
formulation of the data, no derivative information is available.

Bézier curves are approximations to Hermite curves and do not need derivative
information. They result when the derivatives of two segments at their join
point are not required to be exactly equal. Therefore cubic Bézier curves only
have C° continuity. Each segment is within the convex hull given by its control
points, see Figure 2.3d. For spline types with this convex hull feature, only the
discrete control points but not the continuous curve itself need to be evaluated
to ensure that the curve fulfills certain constraints, e.g. nonnegativity.

For higher continuity, an alternative to increasing the polynomial degree is to
not require the curve to interpolate any control point. This leads to B-spline
curves (Figure 2.3e). Each of their segments only spans the distance between
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2.3 B-spline data approximation

its two middle control points. In general they only come close to the control
points but compensate with C> continuity at the join points.

Omitting the requirement that each spline segment must lie within the convex
hull of its control point allows to form other types of splines. One of the most
popular is the C' continuous Catmull-Rom spline (Figure 2.3f) that interpo-
lates its control points. Compared to a Hermite curve it does also not require
derivative information [5, pp. 509-535].

The remainder of this work will use cubic B-spline functions. Compared to
natural splines, they offer numerically stable computations, local control and do
not require solving a system of equations during their application. Compared
to the other cubic spline functions, only B-splines are both C? continuous and
fulfill the convex hull property. C? continuity is an important requirement for
technical applications such as the definition of a jerk-free trajectory [55].

The convex hull property in combination with the geometrically interpretable
control points offers a convenient and computationally efficient way to enforce
constraints on the function because no evaluation of the function is needed.
Enforcing constraints on an approximation function can be beneficial in case of
knowledge about the data, e.g. that it is nonnegative.

O Due to their favorable features, B-spline functions, curves and surfaces are
widely used for data approximation [4, 84, 202] and for defining paths and
trajectories of vehicles [17, 42, 45], robots [26, 45, 108, 162] and industrial
machines [69, 200]. Moreover, the B-spline representation is common in com-
puter graphics [93, 193] as well as in signal processing for filter design [128,
129, 148] and signal representation [120, 142, 143, 176, 177]. Adopted from
[78, 80].

Methods for B-spline data approximation

O According to (2.17), the value of a B-spline function equals the sum of basis
functions (B-splines) or blending functions, weighted with their corresponding
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control points. Each B-spline in (2.16) is only nonzero within a bounded inter-
val so that effects of control point changes are only local. Hence, the definition
range of a B-spline function is also bounded. More extensively these features
will be described in Section 3.1 and by Figure 3.2. Adopted from [80].

O A common application of B-spline functions, curves and surfaces is fitting
of data points. Fitting can either be interpolation or approximation. An inter-
polating B-spline function f must pass through all of the data points (sp, yp),
i.e. f(sp) = yp ¥Yp. In contrast, an approximating B-spline function only mini-
mizes the residuals f(s,) — y, between the function and the data but does not
pass through the data points in general.

In offline applications, in which all data points are available at once, fitting
B-spline functions are often determined by least squares (LS) methods [31,
113, 159]. With the standard formula in batch form, all data points have to be
collected first and then processed simultaneously. Therefore the number of data
points P must be bounded. The computation usually involves a Cholesky or
QR factorization and requires O(P) operations if one takes advantage of the
banded matrix structure [20, pp. 327-331]. Such algorithms are stated in [20,
pp. 117-121] and [58, pp. 152-160]. With the least squares (LS) algorithm each
data point influences the result to the same extent. The weighted least squares
(WLS) estimator, stated in (3.14), allows to weight measurements relative to
each other [113, pp. 119-123].

In online applications data points are observed one after another and an ever-
growing amount of data is common. Two groups of LS algorithms for online
applications can be distinguished: First, growing memory LS algorithms apply
an exponential weighting that forgets old data. Second, sliding window LS
algorithms discard old data completely and need only finite storage [201]. Slid-
ing window LS and sliding window WLS algorithms are proposed in [83, 201]
and [33, 184], respectively. Re-computing the fitting function from scratch with
each new data point is costly. Rank update and rank downdate methods allow to
reuse an already known factorization for an efficient update of a solution after
observations have been added or deleted [66, 124, 125].
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2.3 B-spline data approximation

In online applications data points can be outside the definition range of the
B-spline function if the magnitude of the data points is not exactly known or
changes over time, e.g. because one dimension of the data point refers to its
observation time, that keeps increasing. Data points outside the definition range
cannot be taken into account for approximation. Thereby the problem arises
that the approximation might not reflect the data anymore. When using WLS
the bounded definition range of B-spline functions does not present a problem
because the number and position of B-splines can be changed if the fitting
function is re-computed from scratch. Moreover, rank modification methods
also support adding or deleting matrix columns [66]. This allows to extend,
shrink or shift the definition range of the B-spline function. Adopted from
[80].

O In nonlinear weighted least squares (NWLS) problems, the solution depends
on the function parameters in a nonlinear fashion. Based on the results of nu-
merical experiments, [73] reports that a B-spline function is useful for solving
NWLS problems as well because of its piecewise polynomial character and
smoothness. For NWLS problems, several batch methods that work iteratively
can be found in literature, e.g. the Newton method, Gauss-Newton method,
Levenberg-Marquardt method, dog leg method of Powell, hybrid method of
Madsen, Levenberg-Marquardt-Fletcher method. None of the algorithms is an
exact method that computes an optimal solution [73]. A method for separa-
ble NWLS problems in which some parameters affect the solution linearly is
derived in [149].

The Levenberg-Marquardt (LM) algorithm, described in more detail in Subsec-
tion 3.4.1, solves in each iteration a linearized NWLS problem [35, pp. 222-
224]. A sliding window implementation of the LM algorithm is stated in [38].
Adopted from [78].

O Recursive methods compute an approximating B-spline function recursively
meaning that the approximation is updated with each new data point. This ap-
proach is preferred in online applications, in which data points are observed one
after another. Recursive algorithms such as recursive least squares (RLS) [164,
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pp- 84-88] usually require less computational power than batch algorithms be-
cause they use smaller matrices and vectors whose sizes do not depend on the
number of data points. The recursive computation is also referred to as progres-
sive, iterative or sequential [110, 192]. This work will use all mentioned terms
synonymously. In computer science, however, an iteration differs from a recur-
sion. In [106], fitting B-spline curves and surfaces are iteratively constructed
based on the idea of profit and loss modification without solving a linear sys-
tem. The authors of [36] build on the progressive and iterative approximation
technique for B-spline curve and surface fitting and prove that their algorithm
achieves a least squares fit to the data points. A recursive algorithm for optimal
smoothing B-spline surfaces inspired by the RLS method is presented in [50].
Algorithms that involve a Kalman filter (KF) are stated in [67, 104]. Adopted
from [80].

Recursive algorithms for NWLS problems can be based on nonlinear filters.
Overviews of commonly used filters and their features are provided by [57] and
[187, p. 615]. In [2] a solution via a modified extended Kalman filter (EKF) is
investigated and algorithms for offline and online applications are stated. The
two-step estimator proposed in [68] splits the problem into a linear subproblem
which is solved with a KF and a nonlinear subproblem to which the Gauss-
Newton algorithm is applied. Section 2.4 will give an introduction into the
aforementioned adaptive filters and categorize them.

Research gap: O Publications of other researchers regarding the recursive
data approximation with a B-spline function assume a constant definition range.
For example, the approaches based on the KF in [67, 104] require that the
KF state vector contains all control points that are estimated during the whole
approximation procedure. Therefore the number of control points has to be
bounded and specified in advance. As a result, these algorithms can only ap-
proximate data points that are within the bounded B-spline function definition
range determined at the beginning. Other researchers have not addressed the
possible issue of data points outside the inital B-spline function definition range.
Adopted from [80].
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Therefore the research gap regarding the recursive data approximation with
a B-spline function consists of the lack of available online methods for data
approximation with B-spline functions in the linear WLS and NWLS sense
that can handle data that leaves the initially chosen bounded B-spline function
definition range. For example, leaving the initial definition range is needed
if an additional data point of an unbounded data set is observed in each time
step and the values in at least one dimension of the data points keep increasing
because they refer to the observation time. More detailed application examples
are stated on page 78 and illustrated by Figure 3.9.

2.4 Adaptive filters

O As a foundation for Chapter 3 and Chapter 5 this section gives an overview
of several kinds of adaptive filters with focus on the Bayesian approach to state
estimation, which calculates the probability density function (PDF) of the un-
known state of a dynamic system. The required information for calculating the
PDF stems partly from a system model and partly from previous measurements.
The state estimation is performed by a recursive filter that alternates between
a time update that predicts the state via the system model and a measurement
update that corrects the estimate with the current measurement. Adopted from
[78].

Assume a system whose input # and output y are measurable and known for a
sequence of time steps p = 1,..., P.

Adaptive filters include a system model f with free model parameter x. Sequen-
tially they adjust x based on the sequence of u and y such that the parameter es-
timate £ minimizes the residuals between the system model output § = f(£, u)
and y [111, p. 1].

Filtering means that £, referring to time step p, is calculated based on data of
the current and all previous time steps, hence p = P. This is also referred to
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as measurement update. The estimation problem is called prediction in case of
p > P and smoothing if p < P [72, p. 7].

Adaptive filters can be subdivided according to their system assumptions. In
systems, in which x is assumed to change over time, it is also called system
state, whereas x is mostly referred to as parameter in systems, in which it is
assumed to be constant.

Linear adaptive filters

0 RLS and KF compute an optimal state estimate for systems with linear system
and measurement equations as well as Gaussian system and measurement noise.
They differ in that RLS assumes a constant state, whereas the KF is designed
for tracking a time-variant state [164, p. 129], [57, pp. 3-5]. Use cases include
parameter estimation [83] and path planning [189], respectively. The KF will
be explained in Subsection 3.3.2 and applied within RBA in Subsection 3.3.3.

Nonlinear adaptive filters

In many scenarios the linear Gaussian assumptions do not apply and subopti-
mal approximate nonlinear Bayesian filters such as the extended Kalman filter
(EKF), unscented Kalman filter (UKF) or particle filter (PF) are required [8].

The EKF applies a local first order Taylor approximation to the nonlinear system
and measurement functions via Jacobians, in order to keep the linear state and
measurement equations. System and measurement noise are both approximated
with zero-mean Gaussian PDFs [57, p. 52]. Although the EKF is not suitable
for systems with strong nonlinearity or non-Gaussian noise, it is still often
successfully used for nonlinear state estimation [27]. For example, NWLS
approximation via a modified EKF is presented in [2].

An alternative to the approximation of nonlinear state and measurement func-
tions is the approximation of the PDFs. This can be done by propagating few
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state samples called sigma points through the nonlinear functions. A filter that
follows this approach is referred to as sigma point Kalman filter. A well known
representative is the UKF. It uses 2- J + 1 deterministically chosen sigma points,
whereby J denotes the system state dimensions. The PDFs are approximated
as Gaussians whose means and variances are determined from the propagated
sigma points [57, pp. 3-5, 62-70].

Compared to the EKF, the UKF offers at least second order accuracy [37] and
is a derivative free filter [57, pp. 62-63], meaning that it does not require the
evaluation of Jacobians, which is often computationally expensive in the EKF
[27]. Several publications report nonlinear problems in which the UKF per-
forms better than the EKF, e.g. for trajectory estimation [37, 63]. However, if
the PDF cannot be well approximated by a Gaussian, because the PDF is multi-
modal or has a strong skew, the UKF will also not perform well. Under such
conditions, sequential Monte Carlo methods like the PF outperform Gaussian
filters like EKF and UKF [8].

The PF approximates the PDF by a large set of randomly chosen state samples
called particles. The state estimate is a weighted average of the particles. With
increasing number of particles the PDF approximation by the particles becomes
equivalent to the functional PDF representation and the estimate converges
against the optimal estimate [8]. For nonlinear and non-Gaussian systems the
PF allows to determine various statistical moments, whereas EKF and UKF are
limited to the approximation of the first two moments [27]. However, the num-
ber of particles that is needed for sufficient approximation of the PDF increases
exponentially with the state dimension [122]. The PF has been successfully
applied to optimization [99] and prediction [190] of trajectories as well.

Many use cases involve a mixed linear/nonlinear system. Typically there are
few nonlinear state dimensions and comparatively many linear Gaussian state
dimensions. The marginalized particle filter (MPF) is beneficial for such prob-
lems as it combines KF and PF. The PF is only applied to the nonlinear states
because the linear part of the state vector is marginalized out and optimally
filtered with the KF.
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This state decomposition is called Rao-Blackwellization [72, pp. 49-50] and
can be described as an optimal Gaussian mixture approximation. Therefore the
MPF is also called Rao-Blackwellized particle filter [70]. Marginalizing out
linear states from the PF strongly reduces the computational effort because less
particles suffice. This often enables real-time applications. Simultaneously the
estimation accuracy usually increases [27, 205]. When the state dimension is
large, the MPF tends to outperform the PF [123].

In the recent past, several publications have proposed approaches for localiza-
tion [135, 191] and trajectory tracking [109, 205] that are based on the MPF
because of its advantages for mixed linear/nonlinear systems. Automotive use
cases include a road target tracking application, whose multi-modality requires
using a PF or MPF [166]. The MPF is chosen as it allows reducing the number
of particles for less computational effort. Similarly, [122] presents a MPF appli-
cation for lane tracking, in which the achieved particle reduction compared to
a pure PF enables executing the algorithm in real-time in an embedded system.
Adopted from [78].

According to (2.17), between spline function value and spline function control
points there is a known linear relationship given by the blending or basis func-
tions. Section 3.1 will state in (3.3) and (3.5) that this applies to both the value
of a B-spline function and its derivatives as well. Therefore NWLS approxima-
tion leads to a mixed linear/nonlinear problem as long as there are target criteria
that refer to the B-spline function or its derivatives directly. For being able to
take into account this known linear relationship instead of having to estimate
it, the iterative algorithm for NWLS approximation, NRBA, that is defined in
Subsection 3.4.3, includes an MPF, which is described in Subsection 3.4.2.

Kernel adaptive filters
The two previous subsections assumed that knowledge about the system state

with respect to the measured input # and measured output y is available. Some-
times this does not apply or the system features are difficult to specify. In such
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cases the unknown system function f with y = f(x) can be approximated by f.
The approximation f is also called black-box model because it is created only
from the data itself without system knowledge.

f can be determined with a kernel adaptive filter (KAF). Using a nonlinear
mapping @(-), KAFs transform the input data « into a high-dimensional feature
space, in which more degrees of freedom are available to solve the problem
with a linear adaptive filter. Due to a property of reproducing kernel Hilbert
spaces no costly explicit mapping is needed to compute inner products (-, -)
of the transformed data ®(x;). Instead, inner product algorithms can be per-
formed implicitly in feature space by replacing all inner products in the original
problem by a kernel function « [146]:

K(Xj, Xm) = (D(x;), P(xXm)) (2.20)

Often Gaussian kernels are used. These kernels differ from multi-dimensional
PDFs of the standard normal distribution with variance o~ only in the missing
normalization constant 1/ (o- 27r):

k(o xm) = exp(= | = x| /202) @21)

The nonlinear mapping f is calculated as a linear combination of kernels, each
of which is weighted by its coefficient. For example, by transforming the RLS
cost function into feature space, a nonlinear kernel RLS (KRLS) algorithm is
derived. With most kernel-based methods the required memory increases with
the processed data points. In contrast, the Fixed-Budget KRLS (FB-KRLS)
algorithm can operate with constant memory by pruning the least significant
data [180]. This enables long-term online applications.

In summary KAFs are nonlinear adaptive filters that result from applying kernel
method concepts to linear adaptive filters. KAFs combine the capability of
approximating any nonlinear function with the advantage that they only require
solving a convex optimization problem instead of a nonlinear problem. For
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convex problems there are solvers that operate within a fixed time interval. This
is important for real-time applications [146].

Subsection 4.7.2 will apply the FB-KRLS to represent the power train of the
research vehicle. The model is updated constantly during vehicle operation.
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3 Data approximation with
B-spline functions

This chapter deals with the general problem of recursive least squares approx-
imation of data points with a B-spline function. First, Section 3.1 states a
B-spline function definition in matrix form. Section 3.2 introduces a data set
which will be approximated by a B-spline function. Section 3.3 addresses
the case of linear least squares approximation and Section 3.4 the nonlinear
case. Each of the two latter sections proposes a novel recursive algorithm
and compares it with a well-known method for batch processing. Section 3.5
summarizes the scientific contribution.

3.1 B-spline function definition

A B-spline function consists of several polynomial basis splines (B-splines), all
of which have the same degree. A B-spline of degree d is piecewise defined
using d + 1 polynomial functions of degree d. Figure 3.1 illustrates the compo-
sition of a cubic B-spline. The solidly drawn parts of the depicted polynomial
functions py, ps, p3 and p4 build a B-spline.

Let [«1, k2] denote a closed interval between and including «; and «» and let
(k1, k2) denote an open interval between but not including «; and ;.

In the interval [«1, k3), the B-spline is given by the first polynomial py, in the
interval [k, k3) it is given by the second polynomial p; and so on. Outside the
interval («1, k5) the B-spline is zero. The dashed curves are only shown for
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3 Data approximation with B-spline functions
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Figure 3.1: Piecewise definition of a cubic B-spline by the solid parts of four cubic polynomials
P1, P2, - - -, P4. Vertical lines indicate the knots k1, . . ., k5.

better visualization of the polynomials but are not part of the B-spline. The
interval borders ki, ko, . . ., k5 are also called knots. Their distances influence
the shape of the polynomials and therefore the shape of the B-spline as well.

O A B-spline function is also piecewise defined. Its value is given by the
weighted sum of J B-splines of degree d. k with k = (k1, k2, ..., Kjtq+1) 1S
the knot vector. Strictly increasing knot values («x < kx+1, k= 1,2,...,J+d)
are assumed. « and d determine the number and shape of B-splines. The j-th
B-spline b;(s), j = 1,2,...,J is positive only for s € (kj, Kj+4+1) and zero
elsewhere [113, pp. 37-42].

The following definitions originate from [113, pp. 47-50, 65-70]: Let [, k;+1)
be a spline interval and let u denote the spline interval index withd+1 < u < J.
For s € [Ky, Ku+1), the B-splines b;(s), j = p—d, ..., u can be nonzero. Their
values for a specific s € [«, k;+1) can be summarized in the B-spline vector
ba(s) = (bu—a(s), bu—as1(s), . .., bu(s)) € R+ which can be computed
according to (3.1):

bua(s) =B, 1(s)Bua(s)...Bus(s)...Bua(s)
ERIXZ ER2X3 ER6X(6+1) ERdx(dH)
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3.1 B-spline function definition

The B-spline matrix B, 5(s) € RO*(®*D js defined for each 6 € N with 6 < d
and given by

Bu,é(s) =
Ku+1—S S—Ku+1-6 0 O
Kurl=Kp+1-6  Ku+1—Kp+l-6 o
Ku+2—S S—Ku+2-8
0 Ho - o 0
Ku+2=Ku+2-6  Ku+2=Kp+2-5 (3.2)
0 0 . e

Ku+s—Ku  Ku+s—Ku

The B-spline function f : D — R,s +— f(s) has the definition range D =
[ka+1, ky+1). For s € [ky, ku+1), the B-spline function is given by

() =bua(s)xpa (3-3)

with control point vector

.
Xpa = (Yuods Xparts o Xu) (3.4)

Adopted from [78, 80]. As stated, the spline types mentioned in Section 2.3
can all be defined using the same structure because they only differ in the
geometry matrix M. Therefore (3.1) and (3.3) correspond to (2.16) and (2.17),
which were obtained for an interpolating polynomial curve.

Figure 3.2 illustrates the construction of a B-spline function. Each cubic
(d=3) B-spline b; is weighted with a corresponding control point x;, here
x1 = 1.5, x4 = 0.5 and all other control points equal one. The cubic B-spline
function f(s) is given by the weighted sum of B-splines but only defined in the
interval [k4, k7). Its shape is given by the solid part of the black curve.

The black dots denote the control points of the B-spline function. The horizontal
position of the j-th point is determined by the value of s, for which the j-th
B-spline reaches its maximum. The vertical position is identical to x;. In each
interval [kg, kx+1), kK = d+1, ..., K, the B-spline function lies within the convex
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3 Data approximation with B-spline functions
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definition range of f(s)
Figure 3.2: Construction of a cubic B-spline function: Equidistant knots «1, 2, . . ., k1o (indicated
by vertical straight lines) and J = 6 resulting B-splines b;, j = 1,2, ..., J weighted
with control points xi, x2, . . ., x¢. The black line indicates the sum of all weighted

B-splines and its solid part is the B-spline function. Black dots represent the control
points and the gray area is the convex hull formed by the first four control points.
Adopted from [80].

hull of the relevant control points. For s € [«4, k5), the four leftmost control
points are the relevant ones. They form the convex hull indicated by the gray
shaded area.

O A B-spline function of degree d is d — 1 times continuously differentiable.
For r € Ny, the r-th derivative % f(s) of the B-spline function with respect to
s is given by

0" o
9" fls) = Wbp,d(s)xu,d 3.5)
with B-spline vector
ﬁb,u,d(s) =
5B (). By ()B4, B, it r <d (3.:6)

01x(d+1)» otherwise.
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3.2 Structure of the data set

01x(4+1) denotes a 1 x (d + 1) zero matrix. The matrix B; s € ROX(6+D) g
obtained by differentiating all entries in B, 5(s) with respect to s:

-1 1 0
Ku+l—Ku+l-6  Ku+l—Ku+l-8 e
’ . . . .
B, ;= ; .. .. : 3.7)
0 = 1

Ku+8—Ku Ku+s —Ku
Adopted from [78, 80].

According to [161] the antiderivative or indefinite integral F'(s) of f(s) with
degree d™ = d + 1 is given by

F(s) = f F(s)ds = BI%, ()X, (3.8)
b™ uses the stricly increasing knot vector k'™ which differs from & only by an
additional knot at either end for the increased degree. u™ equals u + 1. The

control point vector x™ comprises one additional component than x and can
be computed according to (3.9):

J
I I j+d1"‘+1
Xt =0, ijl TN Z = o (3.9

The definite integral of f(s) over the interval [sy, 5] then reads

f‘ f(s)ds = F(s2) — F(s1). (3.10)

3.2 Structure of the data set

O Section 3.3 and Section 3.4 will work with the set {(sp,y,)}p=1,2,...p Of P
data points. p denotes the time step, at which data point (sp, y,,) is measured
or observed.
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3 Data approximation with B-spline functions

sp is the value of the independent variable s at time step p. The vector of
independent variables s is given by s = (s1,...,5p,..., sp)T.

Yp = Op 1 Yp2s- s Ypvs e s y‘,,,yp)T is a vector of V,, measurements y that
refer to s, and may come from different sensors. V,, € N can be different for
each y,, but it is assumed that V;, < P ¥p. The vector of all measurements y is
composed as follows:

Y =Ll s VVis s Y poe e VP15 YPVp) (3.11)
N et ~———

=y| =yp

Adopted from [78, 80].

3.3 Methods for linear weighted least
squares problems

Subsection 3.3.1 describes the WLS approach followed by the KF algorithm in
Subsection 3.3.2. Subsection 3.3.3 presents the RBA algorithm. Its effective-
ness is demonstrated in comparison with the WLS solution in Subsection 3.3.4.

3.3.1 Weighted least squares estimator

O The linear weighted least squares (WLS) method estimates the constant state
vector x € RIX! of a linear system

y =Cx +v. (3.12)

y € RV¥X! js the vector of measurements from (3.11) and C denotes the mea-

surement matrix that relates x to y. The measurement noise v € RV*! ig
assumed to be an uncorrelated white noise process with mean zero. This im-
plies that the covariance matrix of measurement noise R is a diagonal matrix

and R;;, i = 1,..., N is the variance of measurement y; which can differ from
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3.3 Methods for linear weighted least squares problems

the variances of other measurements [164]. The assumptions for {v} can be
generalized to a correlated noise process. This is termed generalized linear
model [138, p. 143]. Then R is a positive definite matrix [20, p. 374].

The linear WLS estimate £ minimizes the sum of squared errors between the
measurements y and the vector Cx which are weighted with the reciprocals of
the variances of the measurements:

# = argmin(y - Cx)"R™'(y - Cx) (3.13)
X

The solution to optimization problem (3.13) is given by the closed-form estima-
tor
£ =(C"R'C)"'C"R 'y [164]. (3.14)

From (3.3) follows that the value of a B-spline function is a linear combination
of its control points. Therefore WLS can be used to determine the control
points such that the function approximates the set of data points defined in
Section 3.2. Then Cis a (2521 Vp) x J matrix because y comprises Z;::l Vi
scalar components y, ,, p=1,...,P, v=1,...,V, (c.f. (3.11)) and there are
J B-splines. yj, , is the ¥-th component of y (\7 = Z;: Ve + v) and provides
information about a‘jTr,f(s,,) with s, € [k, k,11) and an r € Ny. The ¥-th row
of Cis given by Cy.1.._;j = ¢ with

,,,,,

r

0
¢ = (lew—(dﬂ)), Ey bﬂ,d(sp)’olx(]—ﬂ)) (3.15)

Herein 0, denotes a r X ¢ zero matrix. Adopted from [80].

3.3.2 Kalman filter

O The Kalman filter (KF) is an established method for estimating the state of a
dynamic system. Applications include tracking, navigation, sensor data fusion
and process control [60, pp. 4-5]. The KF can be seen as a generalization of the
RLS method [164, p. 129].
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3 Data approximation with B-spline functions

The linear KF estimates the state vector x,, € REXL of a linear time-discrete

system
xp=Apxp_1 +Bpup +wp (State equation) (3.16)
Y, =Cpxp+up (Measurement equation) (3.17)

where p € N denotes the time step. A, is the state transition matrix that relates
Xp_1tox,, up, € RM>1 i5 an input signal vector with known influence on x p
and B, is the input matrix that relates u, to x,,. The vector of measurements
is denoted by y,, € RN *! and C), is the measurement matrix that relates x,, to
Yp- @p € REXD s the process noise with covariance matrix Q,, and v,, € RNX!
is the measurement noise with covariance matrix R,,. Both {w,} and {v,} are
uncorrelated white noise processes with mean zero which implies that @, and
R, are diagonal matrices [164, p. 124].

The KF consists of a sequel of equations, which are computed for each time
step and summarized in Algorithm 1, in which I denotes the identity matrix
with appropriate dimensions. The KF performs a time update followed by a
measurement update. During the time update, the state estimate is updated
based on the knowledge about the system specified by (3.16). Both the a priori
estimate X, and the covariance #,, of the a priori estimation error are calculated.
During the measurement update, the Kalman gain %, is computed and used
together with the information provided by measurement y , for the calculation
of the corresponding a posteriori quantities fc; and SD; [164, pp. 124-129].
KF generalizations for correlated or colored noise processes are stated in [164,
pp. 183-193].

If the state vector x, is constant, then A, = I, w, = 0 and u, = 0, whereby 0
is the zero matrix with appropriate dimensions. In this case, the time update is
redundant and the KF simplifies to the RLS algorithm [164, p. 129].

Data approximation by a polynomial using RLS is described in [164, pp. 92-93].
Due to the unbounded definition range of a polynomial, applying RLS saves
computational effort without limiting the approximation compared to a KF.
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3.3 Methods for linear weighted least squares problems

Algorithm 1: Kalman filter. Adopted from [80].

Input: fc;_l,P;_l,up,yp,ﬂp, B, Cp, Qp, Ry
/* Time update */

1 X, « ﬂpfc;_l +B,u,

2 P, AP, AT+ Q)
/+ Measurement update */

3K, «P,Cp (CrP,Cp7 +R,)™!

4 X, %, +Kp(y,-Cpx,)

5 P; — I -K,Cp)P,d —K,Cp)T +KpR, K, T
Output: fc;;, SD;;

Data approximation by a B-spline based on the KF is proposed in [67, 104].
These approaches require that the state vector x,, comprises all control points
that are estimated during the whole approximation procedure. This means that
Xp, i.e. what is estimated, is constant and only the estimation £, can change.
Hence, RLS would suffice. Combined with the bounded definition range of a B-
spline function, the missing ability to change which control points are estimated
leads to a definition range of the approximation that is also bounded, constant
and needs to be specified in advance.

In contrast to these approaches, the recursive B-spline approximation algorithm
proposed in Subsection 3.3.3 takes advantage of the time update, that the KF
provides, to shift the control points in x,. As a consequence, RBA can shift the
definition range of the B-spline function to consider data points outside of the
current definition range. Adopted from [80].

3.3.3 Recursive B-spline approximation algorithm

O The recursive B-spline approximation (RBA) algorithm computes an approx-
imating B-spline function f(s) of degree d for the set of data points from
Section 3.2 iteratively using the KF. Algorithm 2 summarizes the calculations.
I € N denotes the constant number of spline intervals of f(s). The KF state
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Figure 3.3: Changes of covariance matrix elements for d = 3 and I = 3. e indicates a large
positive value, empty cells indicate zeros and o denotes comparatively small values.

Adopted from [80].
estimate £, = (£,,, Xp,, ..., Xp,) " comprises J = d + I components which are
the estimated control points of f(s). The knot vector k, = (Kp;, Kpys - - s Kp )

for time step p has to contain K = J + d + 1 knots. D, = [Kp .., Kp,,,) 1S the
definition range of f(s) at p.

Initialization

X, is initialized with fcg = X141, where 1,4 denotes a J X 1 matrix of ones
and X a scalar quantity of the magnitude of measurements y,, , that refer to

2 f(s) with r = 0.

The covariance matrix of a posteriori estimation error £ is initialized with
7)3 = pl jxj, where I j»; is a J X J identity matrix. The scalar p should be
chosen large (e.g. 104> because then £, will quickly deviate from its initial
value £ in such a way that f(s) approximates the data points. If the elements
in #,, are small, this signals to the KF that the state estimate X, is very certain

and therefore it will hardly be updated using the measurements. If the KF

+

updates %,

as intended, the elements in 7);; become smaller as p increases.

In the long-run, #,, is strongly influenced by the covariance matrix of process
noise @, according to line 2 of Algorithm 1. If the elements in @, are large,
the elements in #, remain large too. This can lead to volatile state estimates
X, that do not converge to a certain value. Then f(s) will not approximate the
data points well. For that reason a very small positive value g (e.g. q= 10"2)
is chosen for Q), = gl jx;.
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3.3 Methods for linear weighted least squares problems

Algorithm 2: Recursive B-spline approximation. Adopted from [80].

o X NN R W N -

W W W W N NN NN NN NN D e e e e e e e e e
W N = O O 0N AN R WN =S e NN R W N =D

. a+ + — - = =
Input: Kp,l,xpfl,Pp_l,Rp, Sps Y ps Kps X, P, q

J « length(fc;_l)
K < length(x,_1)

d—K-J-1
I —J-d
o0

if s, > kp_1,,, then
if 5, > k1, then

| c—d+1
else

‘ o such that s, € [
end
elseif s, < «,_1,, then
if s, < kp-1, then

| o —(d+1)
else

‘ o such that s, € Kp-1as1i0 Kp=Tas2es)
end

Kp_ld+l+l+o—’ Kp_1d+l+2+(r)

end

Ap € R from (3.19)

Qp — gl jx;

if o > 0 then

K from (3.18)

up — (01— Xlixe) "
Q. . cphm=J-c+1l,J-0c+2,....J
else

Kp from (3.25)

u, — (¥lix-o), 01x(1+a))T
Q.. pPm=12...,-0c

end

usuchthat s, € [kp,, Kp,,,)

Vp < length(y )

C, € RY» from (3.27)

[%,P;] < Algorithm 1()?;;_1,7);;71, Up, Y pr Aps L x5, Cpy Qp, R)p)
Output: Kp,fc;;, 7’;;
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3 Data approximation with B-spline functions

Time update with shift operation

RBA compares the knot vector k,_; with s, in order to determine whether
sp € Dp_1. If necessary, a shift of D,,_; is performed during the time update
of the KF such that s, € D). The variable o indicates the shift direction of
D1 and the number of positions by which elements are shifted. oo > 0 means
a right shift of D,_y, o < 0 a left shift of D,_; and for o = 0 no shift is
performed because s, € O,,_;. Algorithm 2 computes o from line 5 to line 18.

For example, assume d = 3,/ = 3 and k1 = (1,2,...,10), then D,,_; =
[4,7). If 5, = 8.5, two additional knots are needed to be able to perform
a right shift by two elements (oo = 2). 11 and 12 as additional knots give
Kp =(3,4,...,12) and hence s, € D, = [6,9).

Algorithm 2 distinguishes between o > 0 and o < 0. It assumes that
the |o| additional knots are the o last components of the knot vector kK, =
(Kp,> Kpys - - > Kpg ) in case of o > 0 and that they are the —o first components

of k), in case of o < 0.

Case 1: Right shift of definition range (o > 0)

The new knot vector is

Kp — (Kp=1,. s Kp=1,,p0 > Kp—lp>

(3.18)

KPK«HI’ KPK—0-+2’ e KPK)'

The elements in fc;_l are shifted by line 1 of Algorithm 1 using the state
transition matrix

1, ifh=g+0
A, € R with A, = & (3.19)
' 0, otherwise.
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3.3 Methods for linear weighted least squares problems

2, A pfc;_ , updates the old estimate if;_l to

A—

xp = ('fp—l‘,.ﬂs )ep—lourz’ ] -xAp—l‘],UJOlXU')T' (3'20)

With the second part of the instruction (X, < X, + Bpup), input matrix
B, = I ;% and input signal vector

up = (0% flixo) | (3.21)
arbitrary initial estimates X in £, can be obtained:
e ~ ~ ~ _ T
X, = (xp_l‘m, Xp=1y,p0- s Xp=1, . xllxo-) (3.22)

7);71 is updated during the time update as well by line 2 of Algorithm 1. The
first part of the instruction (P, « ﬂpP;_lﬂpT) leadsto®P,, e
P;_l e and all elements in the rows or columns J —oc +1,J — 0 +
2,...,J of ,, equal zero. Especially zeros on the main diagonal prevent that

p, gt XDy garr o X, become different from the initial value x.

These zeros in #, can be replaced with large values using the second part of
the instruction, P, « P, + Q,, with

p. ifh=gnQ
Q, cR”™ with@Q,,, ={G, ifh=gAr-Q (3.23)

0, otherwise

with
h>J-oc+1, ifc=0
0= (3.24)
h < -0, ifo <0.
Figure 3.3 depicts different states of P* and P, respectively. d = 3 and [ = 3
lead to a 6 x 6 matrix . The diagonal values of $ are initialized with a large
positive value as depicted in (a). All other elements of P are initialized with
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3 Data approximation with B-spline functions

zeros. After some data points in the second spline interval have been processed,
different comparatively small values are in the submatrix P . 5.5 (b).

After data points that fall into the third spline interval have been taken into
account, only the elements in the first row and column of P still have their
initialization values (c). If only the first part of the update instruction is executed
during a right shift by one element (o0 = 1), the elements in the last row and
column of £~ become zero (d). With the second part of the instruction, these
elements can be set to nonzero values. For Q¢ = e and all other elements of
Q equal zero, matrix (e) is obtained.

Case 2: Left shift of definition range (o < 0)
The new knot vector is

Kp — (Kpl, KpyseovsKp_ s Kp—1,5Kp=lps--+» Kp_lkm) (3.25)

and the input signal vector reads

up = (Flix-oy O1x+oy) | - (3.26)

Effect of shift operation

The shift operation is the distinguishing feature of RBA compared to the al-
gorithms in [67, 104]. Due to the shift operation, the total number of control
points that will be estimated during the application of RBA does neither have
to be known in advance nor to be bounded. Using k, and fc;;, the determined
B-spline function f(s) can be evaluated at any s € [«p ., Kp,.,.,)-

+

p-1°
constant. In Algorithm 2 |o| is chosen just large enough that the current data

By shifting the entries in k,_1, fc;;_] and P the required memory is held

point can be taken into account during the measurement update. The reason
for this is that the shift operation comes at the cost that parts of an already
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4
P and

P;_l are stored separately from Algorithm 2 before they are removed from the

computed approximation are forgotten unless the values of k,_, *

vectors or matrix, respectively.

Measurement update

During the measurement update, the information provided by (s, y,,) is used
to update f(s). With the covariance matrix of measurement noise R,, different
components of the measurement vector y,, can be weighted relatively to each
other. R, € RY»*Vr is a diagonal matrix with positive elements on its diagonal.

The smaller an entry R, is, the greater is the effect of the v-th component of

+

the measurement error (y,, — Cp%,,) on X ;.

The measurement matrix C,, is a V), X J matrix. y, , is the v-th component
of y,, and provides information about %f(sp) with s, € [k, ky+1) and an
r € No. The v-th row of C), is given by

Cpoa..s=¢ (3.27)

with ¢ from (3.15). According to Cp, (sp,y,,) influences only the estimates
ﬁp,ﬁ e )217,,7 dagr )2,,”. However, other estimates can still be updated by the
KF using the information stored in #,. Adopted from [80].

3.3.4 Effectiveness of recursive B-spline
approximation

O A numerical experiment in [80] demonstrates the effectiveness of Algorithm 2
in comparison with the corresponding WLS solution.
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3 Data approximation with B-spline functions

The data set {(Sp,yp)}pzl,z’___’P from Section 3.2 with P = 5000 is chosen,
whereby

sp =0.01 +0.02(p - 1), (3.28)
20,if30 < s, <70
Yp1 = and (3.29)
10, otherwise
Yp2 = ¥p,3 =0Vp. (3.30)

A cubic (d = 3) B-spline function f(s) approximates the data set, whereby it is
assumed that the measurements y,, » refer to the slope % f(s) of the B-spline
function and the measurements y,, 3 to the curvature g—; f(s). The reciprocals
of the relative weights between the different target criteria are specified by the
diagonal measurement covariance matrix R, € R¥»3 with R, | = I, R,,,, =
1072 and R,,,, = 1073. The diagonal measurement covariance matrix of WLS
R € R3*”*3P has analogous values:

-2 -3
Riitiv1 = 1, Riyzi2 = 1077, Ryyz43 = 1077,

(3.31)
i=3(r-1),r=12,...,P

The chosen weighting helps to prevent overshoots and oscillations of f(s) and
leads to a B-spline function that smooths the jumps of y,, ; in the data set. The
parameter values are § = 10712, ¥ = 0 and p = 10%.

In order to investigate the effect of the choice of I, four runs of RBA with
I = 1,3,7 and 20, respectively, are performed. ko = (—15, 10, 15,20) is used
forl =1, kg = (-15,10,...,30) for I = 3, kg = (-15,10,...,50) for I =7,
and ko = (15,10, ..., 115) for I = 20. For I = 20 the resulting 9y comprises
all s, of the data set and therefore no shift operation is needed. For I = 1,3
and 7, RBA has to perform several right shifts by one element in order to be
able to process all data points. For each shift operation, an additional knot k, .
has to be defined in the vector k. kp, = 25,30,...,115 is chosen for I = 1,
Kpx = 3540,...,115 for I = 3 and kp, = 55,60,...,115 for I = 7. For
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s (sp.yp,1) —— WLS —— RBAj
RBAj-3 --- RBAj=7 - RBAj-79

Yp,1/f($)
20

Figure 3.4: Effectiveness of RBA: 40 of the 5000 data points (sp, ¥, 1) (black dots) and knots
0,5, ...,100 (vertical dashed lines) are shown as well as the B-spline function f(s)
determined by WLS and RBA with I = 1, 3, 7 and 20. Arrows visualize the definition
range of f(s) while data points in the interval [95, 100) are processed. Adopted from
[80].

evaluation purposes £,_1, and k1, are stored separately from RBA before a
shift operation is performed.

Figure 3.4 displays the results. As both the data set and knot vector are symmet-
rical to a vertical straight line through s = 50, the WLS solution is symmetrical
as well. The RBA solution converges to the WLS solution as I increases. For
I =1 and I = 3, the resulting B-spline function is asymmetrical with respect
to a straight vertical line through s = 50. For I = 7, RBA provides almost
the same result as for / = 20. Consequently, in this example / can be reduced
from 20 to 7 without noticeably worsening the quality of the approximation.
Lowering [ leads to less computational effort in the KF because #,, P; and
Q) are (d + 1) x (d + I) matrices and therefore the asymptotic time complexity
of each individual iteration of Algorithm 1is O((d+1 )3) if the standard method
for matrix multiplication is used [25, 97]. Under the same conditions both RLS
and the known methods of other researchers based on the KF need 20 x 20
matrices because shift operations are not possible.

Due to the large possible savings in computational effort, RBA is also beneficial
in offline applications with known finite data set and therefore a definition range
that is known in advance.
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3 Data approximation with B-spline functions

In further experiments in [80] k¢ is chosen such that the first data points lie in the
rightmost spline interval and runs with I = 3, I = 7 and I = 20 are performed.
The deviations of the resulting control point vectors from the those derived
when the first data points are in the leftmost interval are close to the machine
accuracy indicating that the effect of the shift operation on the approximation
result is negligible. Adopted from [80].

3.4 Methods for nonlinear weighted least
squares problems

Subsection 3.4.1 describes the Levenberg-Marquardt (LM) algorithm followed
by the marginalized particle filter in Subsection 3.4.2. Subsection 3.4.3 presents
the nonlinear recursive B-spline approximation algorithm for nonlinear weight-
ed least squares problems. Its effectiveness is demonstrated in comparison with
the LM solution in Subsection 3.4.4.

3.4.1 Levenberg-Marquardt algorithm

Consider the problem

% = argmine’e (3.32)
X

with the error function e given by
e= VR (y-¢(s,x)). (3.33)

s denotes the vector of independent variables, y the vector of measurements
and R the covariance matrix of measurement noise. In (3.33) the difference
between y and ¢ is weighted with the square root of the reciprocal of the
covariance matrix of measurement noise R. ¢ is a function whose values
depend nonlinearly on its control points which are summarized in the control
point vector x. Due to this nonlinear relationship (3.32) is a NWLS problem.
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3.4 Methods for nonlinear weighted least squares problems

The Levenberg-Marquardt (LM) algorithm solves this problem iteratively. &°
denotes the known approximation of the solution £ of (3.32) in iteration i. LM
approximates the error function linearly using

e(®) =e(@) +e’ @& -&) (3.34)
and updates &' according to
(3.35)

with correction step size 6. The optimal step size ¢ is derived by solving the
linear LS problem

5" = argmin|le’ (£')6 + e(£)[1 + A[16° |12 (3.36)
61'

which includes a damping parameter A > 0. The solution 5 to (3.36) with
8 =-[e@)HTe @) + /121]_1 e'(2)Te(®") (3.37)

is determined by setting the first derivative of its optimization function with
respect to ¢ to zero. A too large ¢ can be avoided by choosing A appropriately
because of )
: lle(x")Il
Il < =5 (3.38)

The LM algorithm terminates if
lle’(&)Te(@")ll2 < € (3.39)

with a specified tolerance €. For convergence A needs to be sufficiently large.
However, a large A results in a small correction step size and slow convergence
if the solution is still far away from the optimum. Therefore A is controlled
using heuristic criteria [35, pp. 222-224].
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3 Data approximation with B-spline functions

The computational effort of a single LM iteration roughly equals the effort of
the WLS method. The total computational effort of LM depends on the number
of performed iterations and is given by 0(€7?) [175].

3.4.2 Marginalized particle filter

0O The marginalized particle filter (MPF) is an iterative algorithm for estimating
the unknown state vector x,, of a system at time step p € N.

. o T T\
In the MPF, x, is subdivided into x, = ((xl’;) , (xg ) ) , whereby the KF
optimally estimates the linear state vector x;; and a PF estimates the nonlinear
state vector x 1’7" . Exploiting linear substructures allows for better estimates and
a reduction of the computational effort. Therefore, the MPF is beneficial for
mixed linear/nonlinear state-space models [155]. Due to Equations (3.3) and
(3.5), linear substructures will occur in approximation problems as long as there
are target criteria that refer to the value of the B-spline function or its derivatives

directly.

MPF algorithms for several state-space models can be found in [155] along
with a MATLAB example that can be downloaded from [156]. An equivalent
but new formulation of the MPF that allows for reused, efficient, and well-
studied implementations of standard filtering components is stated in [70].

For a NWLS approximation, the following state-space model derived from [70]

is applied:
x}/)v = f{g xg + wg +u I’;’ (Nonlinear state equation) (3.40)
x]fH = f(;x; + wé + ulL, (Linear state equation) (3.41)
y,=C xﬁ +c (x,I,V ) +v, (Measurement equation) 3.42)

L and N indicate that the corresponding quantity refers to

The superscripts
linear or nonlinear state variables, respectively. A, denotes the state transition

matrix, u is the known input vector, y,, is the vector of measurements, C),
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3.4 Methods for nonlinear weighted least squares problems

is the measurement matrix, and ¢ is the nonlinear measurement function that

N
pr

covariance matrix Q !L,, w ;,V is the process noise of the nonlinear state vector with

depends on x) . wIL, denotes the process noise of the linear state vector with a

a covariance matrix Qg , and v, is the measurement noise with a covariance
matrix R,. The model of the conditionally linear subsystem in the KF has the

T
state vector (fT, (xL) ) , whereby & describes the linear dynamics of x™V:

N N N

Ep| _ [0 AR |[&p L @

L L L L L

X 0 A, J\x, up wp
(3.43)

_ &p L
yp—(O CP) I +C(xp)+v1’
Xp
N
The covariance matrix of process noise is p e and 0 denotes a zero
P

matrix with a suitable size.

A PF with the model
N - N
X =®
pel o (3.44)
Yp =Yp

deals with the remaining nonlinear effects. The noise depends on the estimates
indicated by ~ from the conditionally linear model:

‘D;?v ~N ({A:,,,P,‘z’_) (3.45)
5y~ N (ca2) + 0y () #-.,) '

with
Sp =CpPL~C) + R, (3.46)

where the superscript ~ refers to a priori quantities that are computed in the
time update, which is based on the state of (3.40) and (3.41). In contrast, *
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3 Data approximation with B-spline functions

denotes a posteriori quantities that are calculated in the following measurement
update based on the measurement of (3.42).

Pﬁ’_ and Pi’_ are the covariance matrices of the estimation errors that belong
oL > .
to X and & ,, respectively.

The PF uses multiple state estimates, called particles, simultaneously. The
superscript ? with p = 1,..., P is the particle index and P is the particle count.
In general, a KF is used for each particle. In the chosen state-space model,
however, .ﬂll,‘ s ﬂfy , Qﬁ, and szv are independent of xI]; and xll;’ . This implies
that SD,L,’_ and Pg’_ are identical for all KFs, which reduces the computational
effort substantially [70, 155].

Algorithm 3 states the equations for one MPF iteration and was derived from
[70, 155]. For an implementation in MATLAB, the example from [156] was
adapted. Note that in Algorithm 3 the measurement update of the previous time
step p — 1 occurs before the time update for the current time step p, similar to
the algorithm in [6].

In line 4 of Algorithm 3, linear particles are resampled according to their cor-
responding normalized importance weights. After resampling, particles with

a low measurement error occur more frequently in the set of particles. Subse-

>t P
-1

by calculating their mean.

quently, all particles fcll; are aggregated in line 5 to a single estimate fc;_l

After both KF and PF have been time updated, the KF is adjusted based on
the PF estimates in a mixing step with the cross-covariances of the estimation
errors, PiL’_ and P;f’_.

In the new formulation from [70], resampling occurs after the measurement
update of both PF and KF. Therefore, the quantities computed for the mea-
surement update of the PF can be reused for the KF measurement update. In
particular, each particle is only evaluated once in line 1 of each MPF iteration
instead of twice as with the previous formulation in [155]. Adopted from [78].
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3.4 Methods for nonlinear weighted least squares problems

Algorithm 3: Marginalized particle filter derived from [70, 155]. Adopted
from [78].

10

11

12

13

14

. gL gN L- AL AN L N
Input: A, A, Cp1,¢.P 7. Q. Q) Ry up,uy),s
~L—-p ~N,-p

Xp-1 > Xpo1 2 Yp-1
/* la PF measurement update */
Forp =1,..., P, compute the particle importance weights q},’ using the
. . o ~ L,— oL,—, <N,—,
likelihood g, = N (7, Sp,), 7 = C,,_ﬂ)p_lxp_lp +c (xp_1 ”),
Sp-1=C P*‘Pi’:l C;_l + R -1 and compute the normalized weights
p
=P _ dp
dp = < -
p 5’:1‘1;’] )
/+ 1lb KF measurement update */
~L,+.p ~L,—.p L—- T -1 _ 5P
xp—l <_xp—1 +Pp—1 pflspfl (yP—l y )
L+ L- L- T o-1 L-
Pl =P —PlC,8,0Cr P
/* 1lc Resampling */
Resample P particles with replacement,
o L+, (p)) _ ~L+p\ _ ~p

probability (xp_1 =& ) =dp.
ot ~L,+p _
X <—mean0fxp_1 ,p=1,...,P
/% 2a KF time update */
~L—p LsL+p L
X, <—.7lpxp_1 +uy
2P N+ L+p N
§p — ﬂp Uty

L~ LopL.+ L\" L
P« AP (AF) + Q)

&- NgpL.+ N\T N
Py~ AYPLY (AY) + Q)

£L,— NasL.+ L\T
Pp AP (‘7[17)

L&,- £L—\T
P« (PE)
/* 2b PF time update */
Forp = 1,..., P, predi icles, &, " ~ N (&, P5"
orp=1,..., P, predict new particles, £, ~ &p Py )
/* 2c Mixing step, update KF */

B e e P (P) (5 - 6)
PL= Pl _pLé= (p&o) T pEle

. L— o+ sL,—p oN,-p
Output: SDI, i JARTE S EE o
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3 Data approximation with B-spline functions

3.4.3 Nonlinear recursive B-spline approximation
algorithm

O Nonlinear recursive B-spline approximation (NRBA) adapts a B-spline func-
tion f(s) with degree d iteratively to the data set from Section 3.2. Algorithm 4
states the instructions for one iteration of NRBA, which is based on the MPF.

In each iteration p, NRBA modifies f in / € N consecutive spline intervals.

. : ~Lp _ oL oL SL \T : :
E?vCh linear particle ¥,"" = (xp Xy Ay J) and each nonlinear particle
£, = ()?2’], )22’2, .. .,ig,)T contains estimates for J = d + I control points of
fKkp = (Kpys Kpys . . Kp ) denotes the knot vector comprising K = J +d + 1

knots. The resulting definition range D,, of f is given by D), = [kp..> Kp,.1)-
NRBA checks if s, is in the definition range of the previous time step, D,_i.
If not, D,,_; needs to be shifted such that s, € D,,. A shift can be conducted
in the MPF time update. The result of the time update is the a priori estimate
%, In the following measurement update, s, is needed again to compute the
measurement matrix Cp, and then, to take into account y b The result of the
measurement update is the a posteriori estimate fc;;.

Figure 3.5 depicts the allocation of available data points and computed estimates
X to KF iterations in RBA versus MPF iterations in NRBA. The arrows indicate
the needed information for computing the estimates. The KF is initialized with
%, and conducts in each iteration a time update first and then a measurement
update. Therefore, P iterations are required for P data points. In contrast,
the MPF performs the measurement update first and is initialized with £.
Therefore, y p has to be stored and s, 5,41, and y » have to be provided for
iteration p+ 1. Hence, in order to take into account all data points, an additional
iteration compared to the KF is needed. By definition, (s1,y;) is used for
computing £ and s, for &, as indicated by the dashed arrows.
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3.4 Methods for nonlinear weighted least squares problems

Algorithm 4: Nonlin. recurs. B-spline approximation. Adopted from [7§].

1

. sL—p sN,—p ~+ L,— P
Inp‘“- Kp—lsxp_l 7xp_1 sxp_zvpp_l’.Rp—lsspv Sp—l,yp’yp_]vasp,

95,9 ,¢

J < length (fﬁ’j—l’p); K < length (Kp_l); d—K-J-1;1<J-d
/* Quantities for MPF measurement update */
Compute u such that s,,_; € [K,,_lﬂ, Kp-1,.,)3 Vpo1 < length(yp_l)
Cp1 € RV>-1*/ from (3.47)
/* Quantities for MPF time update */
o0
if s, > kp-1,,, then
if s, > «p_1, then

| ce—d+1
else

‘ Compute o such that s, € [Kp-1,,,. .00 Kp=14.71200)
end
elseif s, < «,_1, , then
if s, < kp_1, then

| ce——-@d+1)
else

‘ Compute o such that s, € [«,_
end

H+1

d+1+o0’ Kp_ld+2+rr )

end
if o > 0 then
X « last element of fc;_z

Kp, u]% u;,\’ from (3.18), (3.49) and (3.53)
else

X « first element of 32;72
Kp, wh, ul from (3.18), (3.55) and (3.56)

end

Compute u such that s, € [kp . kp,.,,)

AL, QL. AN and Q) from (3.48), (3.51), (3.52) and (3.54)

[Phm. %) 1 2570, &) 7] « Algorithm 3 (AL, AN, Cppoy, 0, P,
Q. Q) Ryt uboul 3 2y, )

. ot ~L,—p oN,—p pL,—
Output.K,,,xp_l,xp »Xp ,PP
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3 Data approximation with B-spline functions

Initialization

s TP Sy Y

. . ~L e e .. AL —Tni
Each linear particle X is initialized with X, = zlnity, ., and each non-

. . ~N,— o e el e .
linear particle £~ P s initialized with

277 = T + chol (51 7xy) - tnd .

Hereby, 174 is a J x 1 matrix of ones and ¥™ indicates an initial value equal
to the scalar measurement y; ,, referring to f. chol(-) computes the Cholesky
factorization, and rnd;y; is a J X 1 vector of random values drawn from the
standard normal distribution. The covariance matrix of a priori estimation error
of linear states, %7, is initialized with Pé’_ = pljxy. Ijxy denotes a J X J
identity matrix.

The large scalar value p causes X, to quickly change such that f adapts to the
data. Provided that the values in Q[’; are small, the values in P[L," decrease as p
grows according to line 8 of Algorithm 3. Small elements in 5011;— correspond

P are slower to

to certain estimates. Therefore, the particles fcf;’_’p and fcg’_
be updated using measurements such that f converges. Analogous statements

hold for Pi’_ according to line 9 of Algorithm 3.

Hence, the process noises are defined as Q; = g1 ;5 and QII,V = gNI
with small positive values g~ and ¢", respectively.

Measurement update

The measurement update from line 1 to line 4 of Algorithm 3 adapts f(s)
based on (sp-1,¥,-1). The v-th dimension of y,_; refers to either f itself or
a derivative of f. Therefore, the v-th row of the V,,_; X J measurement matrix
Cp-1 reads

r

0
Co-t1,..s = (OIX(u(dH)% Wbu,d(spl)aolxum), (3.47)

64



3.4 Methods for nonlinear weighted least squares problems

Time step 1 2 3 n
t t pom—— - —p
Data points (Y1) (s2,¥2) (53,¥3) (S, Y)
*I/ \\\‘\‘~)
Btmaes &5 &) 87 # 88 55 GE
—_—
KF Init. Iter. 1  Iter. 2  Iter. 3 Iter. n
—_—
MPF Init. Iter. 1  Iter. 2  Iter. 3 Iter. n + 1

Figure 3.5: Allocation of availabe data points and computed estimates £ to KF iterations in RBA
versus MPF iterations in NRBA. Arrows indicate the needed information for computing
the a priori estimates £~ and the a posteriori estimates £ *. By definition the MPF uses

(s1,y) for computing far and s, for computing £, . Adopted from [78].

whereby s,_1 € [k, kut1) and r € No. Algorithm 4 computes Cj,—; in line 3
using (3.47).

The value of the nonlinear measurement function ¢ depends on the nonlinear
particles fcgj’p . Furthermore, ¢ can depend on additional quantities that vary
with the application and are not stated in Algorithm 3.

The diagonal V,, X V,, covariance matrix of measurement noise R,,_ enables a
relative weighting of the dimensions of y,,_; because the influence of the vth
. . N ~L,—, ~N,-,
dimension of the measurement error e}, = (y oot =9 ) onx P and &P
p-1 p-1

decreases with a growing positive value R, .

Time update with shift operation

Based on a comparison between k,_; and s, NRBA decides if a shift operation
of the B-spline function definition range is required to achieve that s, € D,,.

The variable o calculated from line 4 to line 17 of Algorithm 4 states the shift

. . .. . ~L, 4
direction of D,,_; and by how many positions components in K ,_, x0T and

fcll)\/j’p need to be moved for that purpose. o~ > 0 indicates a right shift of D,,_y,
o < 0 indicates a left shift, and o = 0 means that no shift is conducted because

Sp € Z)p—l-
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3 Data approximation with B-spline functions

Algorithm 4 expects that, for o > 0, the |o"| additionally needed knots are the
o last entries of the knot vector K, = (Kp,, Kp,, - - -, Kpy ) and that they are the
—o first entries of k, if o < 0.

Case 1: Right shift of definition range (o > 0)

The new knot vector k), is given by (3.18) and line 6 of Algorithm 3 updates
fci’fl’p to J?IL,’_”J using the state transition matrix

AL = A, from (3.19) (3.48)
and the input signal vector
ul = u, from (3.21). (3.49)
~L,+,p

Thereby all entries of XL are moved to the left and the last o entries of

oL . L _
X, P have an arbitrary initial value ¥:

oL-p _ (AL N sL - )T
X, Sl G T s PSR xlixo (3.50)

During a right shift of the definition range, X is set to the last element of fc;;fz,
which is determined during the preceding call of Algorithm 3 in line 5. This is
based on the assumption that )?;_2 is a good initial value in the magnitude of
the data.

Additionally, line 8 of Algorithm 3 updates 5011;’_+1 to SDIL,’_ using (3.48) and

p ifh=gn0
Q, e R with @y, , = {g", ifh=gn-Q (3.51)

0, otherwise

with Q given by (3.24). The update operation moves the elements in PII;’_JE to

the top left and replaces the zeros on the last o main diagonal elements of Qé
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3.4 Methods for nonlinear weighted least squares problems

with p in order to get large values on the last - main diagonal elements of PII;’_
and a fast adaption of the initial estimates X to the data points.

In line 7 and line 9, Algorithm 3 computes the quantities {A-‘ﬁ and Pﬁ’_ that are
needed for the PF time update. The calculations of the state transition matrix
AN with

A = A, from (3.19) (3.52)

and the input signal vector u” with

ul) = u, from (3.21) (3.53)

are analogous to those for the linear quantities. Q" uses gV instead of g*:

p. ifh=gnQ
Q) eR™ with @y =1g", ifh=gA-Q (3.54)

0, otherwise.

Case 2: Left shift of definition range (o < 0)

The updated knot vector is given by (3.25), the input signal vector for linear
states u’ reads

ul = u, from (3.26) (3.55)

and the input signal vector for nonlinear states u” is given by

ul) = up from (3.26). (3.56)

Additionally, x is set to the first component of fc;_z.

Since ﬂ{; and ?{g are identical in the chosen state-space model, computational
effort can be saved when calculating the covariances and cross-covariances from
line 8 to line 11 in Algorithm 3. Adopted from [78].
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3 Data approximation with B-spline functions

3.4.4 Effectiveness of nonlinear recursive B-spline
approximation

O Numerical experiments conducted in [78] demonstrate the effectiveness of
Algorithm 4 in comparison with solutions determined using the LM [115] al-
gorithm. Therein effects of the number of simultaneously adaptable spline
intervals and the particle count on the NRBA solution are also investigated. A
MATLAB implementation of the experiments is provided in [76].

General experimental setup

The data set {(sp, y p)}pzl,z,___, p is defined according to Section 3.2, whereby

5, =0.25+0.5-(p—1),

40,if 80 < s, < 120
Yp.1 =
P 30, otherwise (3.57)

Yp,2 = Yp.3 = Yp4a = 0vp
P =400.

A B-spline function f(s) with knot vector k = (=30, -20,...,230) and de-
gree d = 3 approximates the data. Thereby, it is supposed that y, | refers
to f, ypo to the first derivative of f, y,3 to the second derivative of f,
and y, 4 to the value of the nonlinear measurement function ¢, which is
defined as a quadratic B-spline function with k = (=5,0,...,70) and x =
(0,0,0,0.25,1.5,5,5,0,0,6,8,8,8)".

¢ depends on the value of the approximating function f(s) and is displayed
in Figure 3.6. The input variable f(s) of c is restricted to the definition range
[5,60] of c.

The diagonal measurement covariance matrix R, € R¥* with Rp, = 1,
Rp,, =5-1072, R, =5-107 and R, , = 0.8 or 10°, respectively, comprises
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c (f(s))

[=I ST S N S)
. I I I
f f f

‘ ; ; ‘ : £(s)
10 20 30 40 50 60

Figure 3.6: Nonlinear measurement function ¢ (f(s)) depending on the value of the B-spline
function f (s) approximating the data. Adopted from [78].

the reciprocal weights of y,, 1, yp,2, yp,3 and yp, 4. The reciprocal weight values
for the first three dimensions of y,, avoid that f oscillates and cause that f
smooths the jumps in the first dimension of the measurements. With R,,,, =
0.8, the nonlinear target criterion c (f(s)) = 0 is weighted strongly, whereas it
is almost completely neglected with R, , = 10.

Depending on the applied algorithm, solutions for the former weighting case
are denoted by NRBAN or LMN indicating the nonlinear problem. Conversely,
solutions for the latter case of a quasi-linear approximation problem are denoted
by NRBA" or LML

Solutions for two different numbers of spline intervals / are analysed. For I = 1,
k is initialized with ko = (=30, 20, . . ., 40) which leads to an initial definition
range [0, 10) of f(s). For I = 3, « is initialized with ko = (=30, 20, ..., 60)
and the resulting definition range is [0, 30). In both cases NRBA approximates
the data by repeatedly shifting the function definition range to the right. Each
time, an additional knot value k,, needs to be provided in the vector k,,. For
I = 1 these values are k,, = 50,60,...,230 and for / = 3 they read k,, =
70, 80, . ..,230. In order to display the NRBA results for the whole data set, all
values that are moved out of NRBA matrices and vectors are stored elsewhere.

The remaining NRBA parameters are g~ = 0.005, g = 0.25 and jp = 30. The

LM algorithm uses X" = 30 as the initial value for each control point.

Due to the included PF, NRBA is a nondeterministic method. For each setting,
50 runs are performed and for each run the normalized root mean square error
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3 Data approximation with B-spline functions

(NRMSE) between the B-spline function determined by NRBA, fnrpa, and
the B-spline function according to LM, f1.m, is calculated as follows:

1

maxp:l,...,P{fLM(sp)} - minp:l,...,P{fLM(sp)}

J 211,3:1 (fNRBA(Sp) - fLM(Sp)>2
P

NRMSE =

(3.58)

The terms NRBA™ and NRBA™® refer to the NRBA solution with the median
or maximum NRMSE, respectively, in each set of 50 runs.

Results

Figure 3.7 shows for both the quasi-linear (L) and the nonlinear (N) problem
the approximating functions NRBA™ and NRBA™* compared to the LM
solutions. Black dots depict the first component y, | of 40 of the 400 data
points (sp, y,). Dashed vertical lines indicate knots, whereby the first and last
knots are not shown.

Figure 3.7a shows NRBA approximations for I = 1 and P = 6561 = 9*. In this
case the MPF state vector comprises four linear and four nonlinear components
and the PF creates nine samples per nonlinear state dimension.

At f(s) = 30, the deviation between the value of ¢ and its target value y, 4 = 0
has a local maximum (c.f. Figure 3.6). The nonlinear problem penalizes this
deviation strongly; hence, NRBAN and LMY avoid f(s) = 30. In contrast,
NRBAL and LM" approximate data with ¥p,1 = 30 closely.

Data and knot vector are symmetrical to the straight line given by s = 100.
Since the LM algorithm processes all data simultaneously in each iteration, the
solutions LM" and LMY in Figure 3.7a reflect this symmetry.

In contrast, NRBA processes the data from left to right and can only adapt
some control points at a time. For I = 1, these are the four control points that
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Figure 3.7: B-spline functions f with NRBA for interval counts I and particle counts P and with

median (med) and maximum (max) NRMSE compared to the LM solution for quasi-

linear (L) and nonlinear (N) problems. Only 40 data points (sp, ¥, 1) and a subset of

knots « is shown. Adopted from [78].
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3 Data approximation with B-spline functions

influence the B-spline function in the spline interval in which the current data
point lies and for / = 3 additionally the two control points that affect the two
spline intervals to the left.

NRBAL and NRBAN are both asymmetrical and mostly delayed with respect
to LM" and LMN. For NRBAN, the asymmetry is less distinct because the PF
removes states that translate to a large delay more quickly from the particle set
because they create a larger error. Additionally, the range of values in NRBAN
is smaller than in NRBAL so that a present lag is less obvious.

For the same weighting NRBA™Y and NRBA™** differ only slightly, which
suggests that, for the given setup, P = 6561 suffices for a convergence of
NRBA solutions.

With RBA for linear weighted least squares approximation similar numerical
experiments but without any nonlinear approximation criterion were performed
in Subsection 3.3.4 and [80]. For I = 1, a strong asymmetry and delay are
observed with RBA, analogous to NRBAL in Figure 3.7a. The delay decreased
as I was increased because the filter was able to update more control point
estimates with hindsight based on P&+,

By increasing / to three with NRBA, the dimension of the state space also
increases to six linear and six nonlinear components. The PF in NRBA samples
the state space less densely, unless the particle count is increased exponentially
with 1.

Figure 3.7b displays the results for the quasi-linear approximation problem for
the case of keeping the sampling density per nonlinear state space dimension
constant by choosing P = 625 = 5% for / = 1 and P = 15625 = 5° for
I = 3. Overall the NRBA solution is more symmetrical with / = 3 but a
comparison of NRBA™4 for / = 1 and / = 3 indicates that the delay for
s > 120is not reduced. Instead, the ability to adapt more control point estimates
simultaneously sometimes leads to undesirable results, e.g. the too low course
between s = 40 and s = 60 as well as the overcompensation of the delay
between s = 60 and s = 75.
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3.5 Scientific contribution

For I = 1, NRBA™** differs more from NRBA™4 and shows larger oscillation
amplitudes than for I = 3. This suggests that P = 625 is not sufficient for
a convergence of NRBA for / = 1. However, even with 625 particles for
I =1, the required increase to P = 15625 for I = 3 is already quite strong.
Keeping the sampling density constant quickly becomes infeasible, especially
if computation time constraints are present [70].

All other factors held constant Figure 3.7c shows the results for the nonlinear
approximation problem, which support the previously drawn conclusions. Ad-
ditionally, the conflicting target criteria in the nonlinear approximation problem
cause a larger stabilization period at s < 20.

Figure 3.7d depicts the effect of increasing / from one to three while main-
taining the particle count of Figure 3.7a. For I = 3 NRBA™* differ much
more from the corresponding NRBA™®4. This indicates that more particles are
needed for convergence for I = 3. Furthermore, for I = 3 these differences are
much larger for NRBAN than for NRBAL,

A comparison between corresponding NRBA™4

solutions in both figures shows
only a small approximation improvement from increasing / for the chosen
setup. In Figure 3.7d NRBAN temporarily decreases below f(s) = 30, the
position of the maximum of ¢ (c.f. Figure 3.6). This is a case in which NRBA
chooses a locally but not globally good solution. More detailed investigations
on the effects of particle count P on convergence can be found in the cited

prepublication. Adopted from [78].

3.5 Scientific contribution

This chapter presented two novel algorithms for the weighted least squares
(WLS) approximation of a set of data points with a B-spline function. These are
the algorithm recursive B-spline approximation (RBA) for the case of a linear
WLS problem and the algorithm nonlinear recursive B-spline approximation
(NRBA) for the case of a nonlinear WLS problem.
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3 Data approximation with B-spline functions

| Unconstrained WLS B-spline function approximation |

| Batch/offline | | Online |
I

|wis | [ruske| [RBA| [ L™ | [NRBA|

Nonlinear

Figure 3.8: Classification of unconstrained weighted least squares (WLS) B-spline approximation
problems and suitable algorithms.

Table 3.1: Comparison of B-spline approximation methods. *: Only applies to WLS. **: Also
applies to LM if the sliding window method in [38] is used with a window size very
small compared to P. Adopted from [80].

WLS/LM WLS/LM

Feature (single call) (multiple callsy RLS/KF ~ RBA/NRBA
Number of bl

da‘iglpgfn?s jocessable Bounded Unbounded  Unbounded Unbounded
Time complexity O(P)* O(P)** O(P) O(P)
Approximation interval Fixed Variable Fixed Variable
Determination of total X

number of control points At During At During
being estimated beginning run-time beginning  run-time

Figure 3.8 subdivides the unconstrained WLS B-spline approximation problem
and illustrates the problem types to which RBA, NRBA and the well-known
algorithms WLS, RLS, KF and LM can be applied.

Table 3.1 compares features of the mentioned approximation methods. With
LM the computational effort in each iteration depends on the number of data
points P. However, the number of iterations performed depends on the specified
tolerance and cannot be deduced solely from P. Therefore the time complexity
statement in Table 3.1 does not apply to LM in the general case. However, the
sliding window LM approach in [38] has time compexity O (P) if the window
size is very small compared to P.
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3.5 Scientific contribution

The design of RBA, NRBA in this chapter as well as their applications in the
following chapters are limited to the B-spline representation and functions.
However, the limitation to functions and B-splines in this work did not lead to
a loss of generality and the approach of RBA and NRBA can be generalized
to curves and surfaces of all spline representations that offer local control, so
that the benefits of RBA and NRBA stated in the following can be directly
transferred to them as well.

This is because according to Section 2.3, curves and surfaces are direct exten-
sions of functions. Moreover, spline representations with local control only
differ in the geometry matrix M and therefore in the blending functions, but
they all share the same structure of (2.17) for curves and of (2.19) for surfaces.
Their local control results from the bounded interval, in which a blending func-
tion is nonzero. As a result, other local spline representations suffer from the
same identified research gap.

Recursive B-spline approximation

O The RBA algorithm prepublished in [80] solves a linear WLS approximation
problem iteratively using a KF which estimates the control points of the B-
spline function sequentially. Therefore the total computational effort increases
linearly with the number of approximated data points.

The main contribution is to use the time update of the KF for a shift of estimated
B-spline control points in the KF state vector in combination with a shift in the
B-spline knot vector. The shift operation enables to shift the definition range
such that it is always possible to take into account the latest data point for the
approximation.

Thereby RBA overcomes the limitation of other recursive algorithms based on
the KF that can only approximate data points within the initially chosen and
fixed approximation interval.
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3 Data approximation with B-spline functions

RBA is especially advantageous in online applications in which the magnitude
of the data points is not exactly known or changes over time because then data
points outside the initially chosen bounded B-spline function definition range
can occur.

RBA is also beneficial when a tradeoff between low computational effort and
high approximation quality is needed because the shift operation of RBA allows
to reduce the size of the KF state vector in both online and offline applications.
A smaller state vector causes less computational effort.

Numerical experiments in [80] and Subsection 3.3.4 show that the RBA re-
sult converges to the WLS solution as the size of the state vector is increased.
Additionally the experimental results reveal that few simultaneously adaptable
spline intervals suffice for good approximation results.

The number of required shift operations can increase when the size of the
state vector is reduced to lower the computational effort. The experiments
indicate that shift operations influence the control point values of the resulting
approximation function only in a magnitude that is close to numerical accuracy.
Each shift operation comes at the expense that a part of the approximation
result is forgotten in order to keep the sizes of matrices and vectors constant.
A growing approximation interval can be realized by storing matrix and vector
elements separately from RBA before they are overwritten. Adopted from
[80].

Nonlinear recursive B-spline approximation

0O The NRBA algorithm prepublished in [78] is a generalization of RBA for
NWLS problems which result from target criteria that depend on the control
points nonlinearly.

NRBA determines a B-spline function such that it approximates an unbounded
number of data points with respect to both linear and nonlinear target criteria.
The approach uses a MPF for solving the approximation problem iteratively.
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3.5 Scientific contribution

In the MPF, a PF takes into account target criteria that do not relate to the
control points in a linear fashion whereas a KF solves any linear subproblem
optimally for each particle [70]. As the values of the B-spline function and its
derivatives depend linearly on the control point values, linear target criteria will
occur in most approximation applications.

The MPF can take into account the exactly known values of the B-spline basis
functions and does not need to estimate them like most other nonlinear filters
do. Taking advantage of the linear substructure of the problem allows to reduce
computational effort and achieve better results compared to purely nonlinear
filters like a PF [155].

The features and benefits of RBA that result from the shift operation also apply
to NRBA. Numerical experiments in [78] and Subsection 3.4.4 investigated
the effectiveness of the approach in comparison to the LM algorithm and il-
lustrated the effects of selected NRBA parameter values on the approximation
result. Provided that the parameters are chosen appropriately, the solution of the
proposed method is close to the LM solution apart from a slight filter-typical
delay.

NRBA use cases are NWLS problems in which a linearization of nonlinear cri-
teria is not desired or promising, for example because of distinct nonlinearities.

For linear WLS problems RBA should be used instead of NRBA. RBA is based
on the KF, which computes an optimal solution [205]. For linear problems
NRBA can at best reach the same approximation quality provided that the
particle count is large enough, which requires more computational effort.

Furthermore, with NRBA the approximation depends more strongly on the
parameterization of the underlying filter algorithm than with RBA.

Increasing the number of control points that NRBA can adapt simultaneously
is not as unambiguously beneficial for the approximation result as with RBA.
Moreover, with NRBA the increase of control point count usually needs to be
combined with an exponential increase of the particle count in the PF for an
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Figure 3.9: Exemplary use cases for different operating modes of RBA and NRBA. Optimization
range (OR).

improvement of the approximation. This is known as curse of dimensionality
and a general problem of sampling-based nonlinear filters. Adopted from [78].

Use cases in terms of operating mode

Use cases of RBA and NRBA can be classified according to whether the knot
vector changes only with a shift operation or with each iteration:

» Knots change only with each shift operation: This mode assumes that the
independent variable will not take values large enough to create an arith-
metic overflow during operation. Therefore the knot vector changes only
with a shift operation. Figure 3.9a illustrates this mode at the example of
trajectory optimization, whereby the independent variable ¢ refers to the
planned trajectory time. From the top plot to the bottom plot the compu-
tation time progresses and the number of processed data points increases.
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3.5 Scientific contribution

In the example, ¢t grows with the data, but a limited planning horizon,
that does not lead to arithmetic overflows, can be assumed. Ideally, ¢
increases much faster than real time so that there is no need to evaluate
the trajectory in the optimization range (OR), in which it can change.
Chapter 5 will investigate this use case in more detail. The examples
in Subsection 3.3.4 and Subsection 3.4.4 also belong to this operating
mode.

Knots change with each iteration: This operating mode is required in
case of an unbounded independent variable, that eventually will take a
value that causes an arithmetic overflow. Figure 3.9b illustrates this mode
at the example of an analytic representation of a signal or its derivative or
its integral over the recent past up to the present point in time. From the
top plot to the bottom plot a new measurement is received with each plot.
If the independent variable ¢ were assigned to the observation number,
eventually an overflow in the knot vector would be encountered. Let
dt denote the time interval between the two latest measurements. For
simplicity, let df be constant. An overflow can be avoided by subtracting
dt from the knot vector after each iteration. Thereby the latest measure-
ment is always assigned to # = 0 and the knots are continuously shifted
to the left in Figure 3.9b as their values keep decreasing until they are
removed from the knot vector and the OR of RBA or NRBA. The signal
representation application requires to evaluate the function within the OR
unless a time delay of the magnitude of the OR is acceptable and a some
knots and control points can be saved when they leave the OR. If so, the
function can be evaluated outside of the OR and further into the past.

Differentation from previous works

In the previous project e-generation [22, pp. 29-35] an iterative data approxima-

tion by a functional representation was developed as well and was patented by

F. Bleimund and S. Rhode [21]. This previous approach has in common with

RBA that it also solves the linear WLS optimization problem (3.13) iteratively,
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whereby the target criteria refer to the value of the functional representation
and its first two derivatives. Moreover, the optimization problem is solved
iteratively using a KF and a shift matrix.

However, in the previous project, a polynomial as in (2.8) is adapted to the data.
This polynomial exhibits the features discussed in Section 2.3 along with its
flaws compared to a spline representation, such as coupling between degrees
of freedom and polynomial degree, risk of oscillations from the Runge’s phe-
nomenon, global effect of coefficient value changes and geometrically difficult
to interpret coefficients.

Due to the global control of the polynomial, a shift operation and therefore the
KF would not be needed if the approximation were performed analogously to
the case depicted by Figure 3.9a, in which the value of the independent variable
can take large values. For this case, RLS would suffice.

However, the approach assigns the latest oberserved data point always to the
same value of the independent variable, analogous to Figure 3.9b. This is
achieved by defining the shift operation via an upper triangular matrix such that
a coefficient vector is calculated for a polynomial that is shifted by dt to the left
with respect to the current polynomial during the time update of the KF. This
shift operation for the polynomial corresponds to the subtraction of d¢ from the
spline knot vector as described above for the second operating mode.

In contrast, the shifting operation stated in the previous sections of this work is
needed in general for both of the above described operating modes. It modifies
both the knot vector and the control point vector and occurs depending on the
knot vector and the independent variable of the latest data point.

The algorithms presented in this work are superior to the one developed in
e-generation in that they allow to benefit from the advantages of spline repre-
sentations with local control during an iterative data approximation. The NWLS
problem adressed by NRBA was not considered in the previous project.
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4 Models of research vehicle and
reference route

This chapter describes models of the research vehicle and the reference route.
The content of this chapter and the previous one will then be combined for
trajectory optimization in Chapter 5 and ALC in Chapter 6.

The research vehicle is an all-wheel-driven BEV based on the Porsche Boxster
(type 981) which was developed during the research project e-generation. Fur-
ther information about the vehicle is provided in the remainder of this chapter
as well as in [14, 16, 207].

Detailed nonlinear models allow a representation of the dynamic vehicle behav-
ior that is close to reality. Such models take into account the kinematics of the
vehicle and of its subsystems like the wheel suspension. They also comprise
models of tire forces. However, a model should also focus on the aspects that
are important for the actual application and simplify where possible. Depend-
ing on the desired level of detail and the application, different vehicle models
are known in literature [157, pp. 5-6].

The purpose of the vehicle models in this work is to investigate the energy
consumption of the research vehicle under ALC on a reference route. According
to [187, p. 28] with a normally experienced driver the absolute value of the
lateral acceleration is below 3.5 m/s? and the longitudinal acceleration ranges
roughly from —2.4 m/s? to 1.8 m/s?. For comfort and acceptance reasons, an
ALC should not exceed these limits most of the time, therefore models for
low dynamics suffice. Simplifying assumptions of this work for longitudinal
dynamics include:
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Figure 4.1: Lateral view of research vehicle at slope of angle a with acting climbing force F,
rolling resistance FyqJj, cornering resistance Fcor, air resistance Fy;; and inertial force
Fipert- Vehicle drawing from [46].

L]

Lifting, rolling and pitching motions of the vehicle are neglected.
» The vehicle mass is concentrated in the center of gravity (COG).
¢ The vertical wheel force, also known as wheel load, is constant.
* Longitudinal tire slip is neglected.

For describing the lateral dynamics the linear single track model is used.

Section 4.1 states the coordinate system. Section 4.2 describes relevant driving
resistances and Section 4.3 the power train of the research vehicle. Section 4.4
explains how the resulting energy consumption for a given route can be de-
rived and reasons the approach for optimization of energy consumption that
the ALC takes. Section 4.5 describes vehicle models for ALC tests in a simu-
lation environment and for investigations of the resulting energy consumption
of the research vehicle. The reference route is mentioned in Section 4.6 and
Section 4.7 derives two simplified adaptive vehicle models for use within the
ALC.
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4.1 Coordinate system

4.1 Coordinate system

Several coordinate systems are used to describe vehicle position and orientation
[157, pp. 17-31]. This work uses a body-fixed right-hand vehicle coordinate
system with origin in the vehicle COG and axes x, y and z. The axes are
perpendicular to each other and shown in Figure 4.1 and Figure 4.2. The x axis
is the vehicle longitudinal axis and points towards the vehicle front, whereas
the y axis is the vehicle lateral axis that points towards the left vehicle side.
Since rolling and pitching movements of the vehicle with respect to the road
surface are neglected, the plane that x and y axes span is parallel to the road
surface. The z axis is the vertical axis that points upwards and is perpendicular
to the road surface.

4.2 Driving resistances

This section states the main forces acting on a vehicle and the force equilibrium
that they form at the wheels. Figure 4.1 and Figure 4.2 illustrate these forces.

4.2.1 Climbing force

O The climbing force Fy; results from the gravitational force acting on the COG
and is given by
Fo = mynel - g - sin(a). 4.1

F¢1 depends on the vehicle mass myp; and road slope angle o which is measured
between the road surface and the plane that is perpendicular to the direction of
gravitational force myp) - g With gravitational constant g. Adopted from [79].
The road slope angle « can be computed from the road slope vy stated in percent
using

a = arctan(y/100) [119, p. 95]. “4.2)
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4.2.2 Wheel resistance

The wheel resistance consists of several components, of which only rolling
resistance and cornering resistance will be considered. Resistance components
neglected in this work include the toe-in resistance and flood resistance. The toe-
in resistance is caused by not perfectly parallel wheels and the flood resistance
occurs on wet roads when the tire evacuates water [119, pp. 11-19]. Moreover,
the longitudinal tire slip resistance [165] and the ventilation resistance of the
rotating wheel [182] are not considered.

Bearing friction as well as residual braking torque from the hydraulic brakes
can also be assigned to wheel resistance but will be considered as resistances
of the power train in this work.

Rolling resistance

O Rolling resistance results from damping forces of the deformed tire rubber.
When driving straight on a dry road, the wheel resistance almost entirely comes
from the rolling resistance Fyop [119, p. 11] with

Frott = fr + Myhel - & - cos(a). 4.3)

Adopted from [79]. The normal force mypc - g - cos(a) equals the sum
of vertical front axle wheel force Fwn,pa and vertical rear axle wheel force
Fwnizra- In the static case the distribution of the vertical forces between front
axle (FA) and rear axle (RA) can be determined from the wheel base (), the
distance between FA and COG (/ga) and the distance between RA and COG
(Ira)- The road slope influences the static load distribution between the axles
as well but since the distance between COG of the research vehicle and road
surface is small, this effect of road slope is neglected.
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4.2 Driving resistances

The rolling resistance coefficient f; depends on the vertical wheel force, tire
pressure and slightly increases with velocity [24, pp. 50, 52-53]. For most
passenger vehicles f; can be assumed between 0.007 and 0.014 [10].

Cornering resistance
In curves the centrifugal force Feepy With

Feentr = Myhel - \.}thl,y 4.4)

acts on the COG. The lateral acceleration Vypcly is given by
; =vZ - 45
VVhely = Vypel - K 4.5)

for small side slip angles and constant velocity [157, p. 228]. The road curvature
k is the reciprocal of the curve radius.

The single track vehicle model represents the fundamental driving dynamics
for lateral acceleration smaller than Vypey = 4 m/ s2 on dry roads. The model
is very idealized and uses the following simplifications:

* Lifting, rolling and pitching motions of the vehicle are neglected.

* The vehicle mass is concentrated in the COG.

* The vehicle velocity is assumed to be roughly constant, i.e. quasi-
stationary.

* Wheels on the same axle are represented by a single wheel in the center
of the corresponding axle.

 The vertical wheel force is constant.

* Pneumatic trail and aligning torque resulting from the slip angle of the
tire are neglected.

» Longitudinal tire forces are neglected [157, pp. 225-226].
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+y Fair,y

+x @+——

COG PP

Figure 4.2: Top view of research vehicle with acting air forces. Environmental wind with velocity
Vwind and angle Twing as well as vehicle velocity vyp| result in relative air flow with
velocity vy and angle 7. This causes longitudinal air resistance Fy;,x and lateral air
resistance Fyjr,y acting on the pressure point (PP). COG denotes the center of gravity.
Vehicle drawing from [46].

In order to stay on the road, the tires need to provide lateral forces that counter-
act the centrifugal force. These lateral forces are distributed among the axles
depending on the position of the COG and created using tire slip angles.

These slip angles cause the cornering resistance Fio acting in longitudinal
direction. Under the assumption of small road curvature, small steering angle,
small slip angles and identical tires, F.o; according to the single track model
reads

2 4 2 2

K“-v [ I

Feor = Vhel i Myhel | + RA . Nlyhcl (4.6)
2-c¢ l l

whereby c¢ denotes the tire cornering stiffness [64, p. 147].

4.2.3 Air resistance
The air resistance Fy;; acts on the pressure point (PP) of the vehicle and results

from the turbulences of air stream and friction of the air flow. The relative air
velocity vy and relative air flow angle 7] both depend on the vehicle velocity
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Vynhel, the environmental wind velocity vwing and the environmental wind angle
Twind as Figure 4.2 illustrates:

_ |2 2
Viel = \/ Vhel F Viwing T 2 * VVhel * YWind * €OS(Twind)
4.7

. [ VWind
Trel = arcsin | ——

) : Sin(Twind)
Vrel

The angles are measured anticlockwise starting from negative direction of the
x axis. O The longitudinal air resistance Fj;.x is given by

Fair,x = ¢x (Trel) Agvrzel- (4.8)
cx 1s the dimensionless longitudinal drag coefficient that describes the shape
of the vehicle and depends on the relative air flow angle 7.]. A denotes the
effective vehicle cross-sectional area perpendicular to the vehicle longitudinal
axis and p is the air density. Adopted from [79]. Analogous to the centrifu-
gal force, the lateral air resistance Fyy needs to be balanced by lateral tire
forces. The required slip angles in turn cause a driving resistance component
in longitudinal direction.

Neglecting environmental wind leads to Vel = Vyhel, Trel = 0 and Fyiy = 0.
cx(Te1 = 0) is also denoted ¢y [157, pp. 212-214]. For passenger vehicles
cw usually lies between 0.20 and 0.40 and A ranges from 1.5 m? to 2.5 m?.
With increasing vehicle velocity Fyx becomes the largest driving resistance
component [24, pp. 50-51].

4.2.4 Inertial force

Inertial forces arise when vehicle velocity changes. Analogously variations
of the angular velocity of power train components cause inertial torque. Each
axle of the research vehicle is driven independently as Figure 4.3 illustrates.
Due to the fixed gear ratio of each gear box and the assumption of negligible
longitudinal tire slip, angular velocities are proportional to the vehicle velocity.
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Computing the equivalent mass of the power train allows to summarize both
inertial force and inertial torque in the inertial force Finerr With respect to the
vehicle longitudinal acceleration vype x [62, pp. 16-17]:

Finert = (Myhel + Meq, FA + Meq,RA) * VWhel,x 4.9)

Megq, F A 18 the equivalent mass of the power train components that drive the front
axle FA and meqra denotes the equivalent mass of components that drive the
rear axle RA:

2
JEM,FA “ iG + JGB + 2 - JWheel FA + 2 * JBrake,FA
Meq,FA = 5
rdyn,FA

.2 (4.10)
JEM,RA “ iG + JGB + 2 - JWheel,RA t 2 * JBrake,RA

Meq,RA 2
dyn,RA

Jem is the mass moment of inertia of the corresponding electric motor (EM)
that is connected via a gear box (GB) with integrated differential to the wheels.
Both gear boxes have the same gear ratio i = 9.59 [14]. Jgp is the mass
moment of inertia of a GB, Jywpee the mass moment of inertia of a wheel, Jprake
the mass moment of inertia of a brake and 74y, the dynamic wheel radius.

4.2.5 Force equilibrium

O The sum of the driving resistances from (4.1), (4.3), (4.6), (4.8) and (4.9)
equals the traction force Fi, between all tires and the road surface:

Ftrac =l + Froll + Fair + Fcor + Finert (41 1)
The mechanical traction power Pyac mech corresponding to Fir,e reads

Ptrac,mech = Firac * VVhel. (4.12)
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Figure 4.3: Model of power train of research vehicle.

Providing Fi,. requires longitudinal tire slip. Under the assumption of negligi-
ble slip losses, Piac.mech €quals the wheel power Pypee provided by the power
train [157, pp. 152-153]. Adopted from [79].

4.3 Power train

Figure 4.3 depicts the power train of the research vehicle. In various compo-
nents of the power train power losses occur. These power losses are measured
during component and vehicle tests on test benches and are stored in look-up ta-
bles, which have been provided for the research vehicle. Depending on the kind
of input power, components of the power train can be divided into mechanical
components and electrical components.
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4.3.1 Mechanical components

The wheel power Pypeel provided by the power train reads

Pyneet = Tra - wwnipa + TRA - WWhRA (4.13)

with front axle torque Tga, rear axle torque Tra, front wheel angular velocity
wwhira and rear wheel angular velocity wwhira-

The torque distribution between Tgs and Tra is computed by the motor elec-
tronic control unit (ECU) as a function of Fi,.. At each axle a gear box (GB)
with open differential distributes the torque equally among the left and right
wheel.

When driving straight, wwnipa and wwnira are given by

. Vhd _ VVh
WWhI,FA = P WWhI,RA =
Vdyn,FA Tdyn,RA

(4.14)

with dynamic front wheel radius rgy, ra and dynamic rear wheel radius 7gyn rA-
Between wheel and gear box undesired friction occurs in the wheel bearing,
which results in braking torque. There is also residual brake torque caused by
permanent residual friction between brake pad and brake disc. The model takes
into account the front axle brake torque gk pa and the rear axle brake torque
Teikra- The values are derived by interpolating linearly with respect to the
wheel angular velocities in look-up tables.

At each axle a 1-speed gear box with gear ratio ig increases the motor angu-
lar velocity and reduces the motor torque. Front axle motor angular velocity
wgM A and rear axle motor angular velocity wgmra are given by

WEMFA = IG - WWhIFA» WEMRA = IG - WWhLRA- (4.15)
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Front axle motor torque Tgm pa and rear axle motor torque Tgv ra read

Tra
TemFA = T + T8rk.GB.FA (TEM.FA, WEMFA) 5
G (4.16)
_ Tra
TemRraA = G + T8, GB.RA (TEMRA, WEMRA) »
G

whereby Tsrk g ra and Tgr G rA denote the braking torques occurring in the
gear boxes during the not lossless power conversion. The absolute values of
these quantities increase with the absolute values of motor torque and angular
velocity and are determined using two-dimensional linear interpolation in look-
up tables.

4.3.2 Electrical components

A permanently excited synchronous motor (PSM) with 120 kW drives the front
axle and an asynchronous motor (ASM) with 144 kW drives the rear axle. The
PSM has a higher efficiency whereas the ASM has lower drag losses. Therefore,
mainly the PSM propels the vehicle and is supported by the ASM only in case
of high power demands [14]. The motors are connected to the high voltage
(HV) battery via power electronics (PE). The losses of both motors including
the losses in the power electronics are modelled by two-dimensional linear
interpolation with respect to motor torque 7y and motor angular velocity
wgMm in look-up tables. Ohmic resistance and magnetic resistance as well as
switching losses contribute to the losses of EM and PE. Py, elec 1S the electrical
traction power that results from the mechanical traction power Pacmech and
includes the power losses between power electronics and wheels.

While braking, the motors act as generators and convert mechanical traction
power Piracmech into electrical traction power Pygc elec that is recuperated into
the HV battery. For driving stability reasons, the majority of the recuperation
power comes from the front wheels, which are connected to the more efficient
PSM. When the braking power demand exceeds the recuperation capabilites,
hydraulic wheel brakes are activated in order to fulfill the demand. Hydraulic
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wheel brakes convert mechanical traction power into thermal power that cannot
be reused for vehicle propulsion anymore. Additional hydraulic braking power
is usually needed when braking at high velocity or when high deceleration is
requested. Furthermore, during a standstill and at very low speeds hydraulic
brakes are solely used.

Due to the powerful drive train, the vehicle has a high recuperation power limit.
Furthermore, simulations of the ALC for determining the energy consumption
will not include standstills, high dynamic driving maneuvers and driving at high
speeds. Therefore this work assumes that the vehicle can brake solely using
recuperation, also denoted perfect recuperation by [62, p. 16], and does not
consider hydraulic braking power in the vehicle model.

Apart from the power electronics, the motors and the HV battery, a positive
temperature coefficient (PTC) battery heating, an air conditioning (AC) com-
pressor and a DC/DC converter for the 12 V circuit belong to the HV system.
The on-board network (OBN) is fed via the 12 V battery or directly from the
DC/DC converter. The on-board network (OBN) also powers a thermoelec-
tric heat pump for heating the passenger cabin. Arrows in Figure 4.3 indicate
possible power flow directions between electrical components.

As aresult the PTC power consumption Pprc, the AC power consumption Pac
and the DC/DC converter power consumption Ppc/pc also contribute to the HV
battery power demand Pggit dem:

PBatt,dem = Ptrac,elec + PPTC + PAC + PDC/DC (417)

In case of recuperation Ppadem Can become negative indicating that power is
transferred to the battery.

The HV battery consists of four cell strings arranged in parallel. Each cell
string is composed of 100 lithium nickel-manganese-cobalt oxide (LiNMC)
cells connected in series [207]. The cells are liquid cooled and can be heated
using PTC elements. The battery can provide an electrical power of 300 kW at
a nominal voltage of 370 V [14]. Its nominal capacity of 38.3 kWh enables a
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vehicle range of more than 200 km [16]. The grid charging power Pggq is up
to 22 kW with AC via the battery charger inside the vehicle and up to 100 kW
with DC [14].

According to [71] the terminal voltage Uty of a LINMC battery can be de-
scribed using the following model stated in [134]:

Urv = Uocv(SOC) =R -1

R™, I>0 (4.18)
R =
R*, 1<0

Hereby Uogcv is the open-circuit voltage as a function of state of charge (SOC).
The internal ohmic resistance R can be separated into charge resistance R* and
discharge resistance R™. The battery current / is assumed positive for discharge
and negative for charge. Upcy, R* and R~ are determined by cell testing [134]
and have been provided for the HV battery of the research vehicle in look-up
tables.

Figure 4.4 shows the equivalent circuit from [134] and the approximate open-
circuit voltage derived from [71]. A comprehensive literature review of battery
models and their application to LINMC batteries is given in [71].

According to (4.18) the internal ohmic resistance of the battery causes a HV
battery power loss Pgagt1oss» during a HV battery power demand Pgyt dem:

- 2
Uocv-I- R -I” , Ppatdem >0
=:Ppa>0 ::PBalt,Loss>0 (4 19)
U .I- R*-I? , Pg, <0 .
OoCcVv > L' Batt,dem

=:Ppat<0 ::PBalt,Loss>0

PBatt,dem = UTV -1 =

This means that if the HV battery power Ppyy is positive, i.e. the battery is
discharged, the battery must provide Ppy1.oss in addition to Py dem in order
to compensate for its ohmic losses. As a result, the SOC will decrease faster.
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Figure 4.4: High voltage battery characteristics. Top: Equivalent circuit according to the "sim-
ple model" in [134] with state of charge (SOC), open-circuit voltage Upcy, charge
resistance R*, discharge resistance R~, battery current I and terminal voltage Uty.
The diodes are assumed ideal. Bottom: Exemplary Uty of the LINMC battery in the
research vehicle depending on SOC and voltage across the internal ohmic resistance.
Uopcy was derived from [105].

Conversely, if Ppyy 1S negative because of recuperation, the SOC will increase
slower because the absolute value of the charging power is reduced by Pyt Loss-

4.4 Energy consumption and optimization
approach

0 Coming from a temporal representation, the HV battery energy Ep,y needed
for a route results from integrating Ppay over time f, whereby f1i, denotes the
trip time:

Trip
Epay = f Ppay(1)dt (4.20)
t=0
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Adopted from [79]. One goal of the ALC is to compute an energy-efficient ve-
locity trajectory. For reducing the energy consumption of a BEV three different
cost functions in time domain are compared in [81]:

First, motivated by reports in literature that a velocity profile with low accel-
eration and deceleration is beneficial for energy savings, a penalization of the
absolute value of acceleration is investigated. Due to the resulting reluctance
to change velocity limits, this approach is suitable for the considered ACC ex-
ample only to a limited extent. The approach offers the least energy savings in
the comparison (8.4 % and 4.1 % depending on the scenario). This approach
is also used in [107] and has the benefit that no power consumption model is
needed.

Second, the difference of Ppyy from its minimum value is penalized, which
means that the recuperation maximum is seen as the optimal state. This ap-
proach leads to unnecessary strong and frequent recuperations, that are fol-
lowed by corresponding accelerations. As losses occur in both recuperation
and traction mode, this approach is the second least effective (10.6 % and 5.2 %
on average).

The highest effectiveness (11.9 % and 5.6 % on average) comes from avoiding
deviations of Ppy from zero only for the case of traction and to not consider
recuperation.

O The rationale of the energy consumption optimization approach in this work
is to avoid power losses between battery and wheels denoted by Pposs:

Pross = PRax — Ptrac,mech (421)

The corresponding efficiency measure Pirac mech/ PBart 1S known as energy effi-
ciency of driving and tank to wheel efficiency [10].

Pross can be expressed with respect to Pyacelec as in Figure 4.5. The data
points result from computing the driving resistances and power train quantitites
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Figure 4.5: Power loss between HV battery and wheels Py versus electrical traction power
Prrac elec for various combinations of vehicle velocity vype and vehicle longitudinal
acceleration vyl x. Adopted from [79].

for various combinations of vehicle velocity vype and vehicle longitudinal
acceleration vype x With road curvature and slope both equal zero.

Py oss increases with the absolute value of vype and Vype x. Arrows indicate how
the operating points are shifted when vypc1 and Vype x are increased. The Ppogs
minima for each Py clec can be approximated by a parabola through the origin.
The slope of the parabola increases with the absolute value of Py elec indicating
that the efficiency of the power transmission decreases with increasing amount
of transferred power. Adopted from [79].

Sensitivity analyses by [10] reveal that Pyac mech/PBau 1S the parameter with the
highest impact on the energy consumption in a BEV. Frequently, consumption
models that require detailed knowledge of these usually only roughly known
parameter values are used at the risk of inaccurate results [10]. To overcome
this problem, this work applies data-driven models that learn such relevant
parameters in aggregated form during vehicle operation.
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O Due to lack of sensors Ppqgs is not known during vehicle operation and
therefore cannot be used for a data-driven model. However, Pyycelec Can be
derived from voltage and current sensor data of the power electronics and can
serve as a proxy for Pp o according to the above considerations. Therefore the
energy optimization criterion in the cost function of the ALC is designed to
penalize the absolute value of Piacelec. Adopted from [79].

In comparison, the approach of this work comes closest to the third cited method
but goes beyond in that it additionally penalizes the also imperfect recuperation
mode. Furthermore, using Piacclec @S Optimization criterion is assumed to be
more effective than using acceleration and deceleration as the first cited method
does. This is because for the same requested acceleration or deceleration the
required Pyqcelec can differ significantly depending on road slope and vehicle
velocity.

O The power required for auxilaries such as light, ventilation, heating, cooling
and radio can contribute to the total energy consumption for a trip significantly,
in case of low velocity vype < 30 km/h. For vy > 80 km/h the auxiliary
power demand is negligible. It also strongly depends on environmental condi-
tions and individual comfort preferences. Its 5 % and 95 % quantils are given
by 0.2 kW and 1.3 kW [10]. Adopted from [79].

Furthermore, some components such as the AC compressor are only temporarily
active and their activation can be scheduled. Therefore a predictive operating
strategy that consideres both traction power demand and cooling power demand
has much more energy-saving potential compared to for instance penalizing the
sum of instantaneous AC power consumption and electrical traction power. A
longitudinal control that includes operating strategies of auxiliaries is presented
in [183].

O For these reasons this work focuses on optimization of traction consumption
and neglects auxiliaries by assuming Pgatt,dem = Piracelec. Even without explicit
consideration of power demand of auxiliaries, the penalization of Py elec has a
beneficial effect on efficiency because any additional consumption of auxiliaries
further increases the HV battery power loss.
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The goal is to penalize Picelec Only to such an extent, that the ALC avoids
inefficient power peaks that have negligible effect on the trip time. Adopted
from [79]. With large penalty for Pyycelec, the vehicle will drive very slow or
even come to a standstill because of lack of Pirac mech that is needed to overcome
the driving resistance. Then the resulting trip time will strongly increase as
well as the energy consumption because of the power demand of auxiliaries.
However such large penalty for Py elec 1S far beyond the driver acceptance.

4.5 Vehicle models for simulation
environment

The preceding sections investigated the driving resistances that result from a cer-
tain vehicle velocity vyy, vehicle longitudinal acceleration vy x, road slope
angle @ and road curvature x and stated how the corresponding HV battery
power Pgay can be derived from the mechanical traction power Piac mech- The
upper diagram in Figure 4.6 depicts this approach, which is referred to as back-
ward simulation. Starting from the desired driving state backward simulation
computes the state of components such as gear box against the direction of the
effect chain.

Backward simulation assumes that the power train can provide the power
needed for the given driving situation. Due to the missing consideration of
physical root causes, this approach is also denoted non-causal modelling [45].
Non-causal models include no control loop, therefore no controller is needed.
However, backward simulations are only suitable for quasi-stationary simula-
tions that do not take into account transient effects. Quasi-stationary states
of components are usually derived by interpolation between values of look-up
tables as mentioned in Section 4.3.

Backward simulation will be applied for computing the resulting energy con-
sumption for planned trajectories in Chapter 5 and for recorded drives in Chap-
ter 6. The model will be referred to as open-loop reference model.
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Figure 4.6: Sequences of forward (top) and backward simulation (bottom).

The equations from the previous sections can also be rearranged for a forward
simulation. The lower diagram in Figure 4.6 depicts this case. Forward simula-
tion computes component states starting from the cause in accordance with the
cause-and-effect chain. Therefore this approach is denoted causal modelling.

Forward simulations enable dynamic simulations that incorporate dynamic com-
ponent behavior, e.g. transient effects in the motors and battery. Components
can be described using differential equations which are connected to each other
according to the cause-and-effect chain. In this work the cause is the desired
motor torque Tyes While Vypcl x 1S at the end of the cause-and-effect chain. Vypcrx
is derived by rearranging (4.9) and used for computing vvy for the next sim-
ulation time step. Causal models include a closed control loop and therefore
require a controller.

Forward simulations will be used for testing the interaction between ALC and
vehicle. The model will be referred to as closed-loop reference model. The
controller inside the ALC chooses Tges such that deviations of vype1 and Vypelx
from the desired velocity vq4es and the desired acceleration ages, respectively,
ideally vanish. v4es and ages are specified by the planned trajectory of the ALC
[48], [62, pp. 37-41].
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Figure 4.7: Course of the Weissach route (WR) that is used as reference route for the evaluation

of the automated longitudinal control. The dotted arrow indicates the driving direction
and the straight line the start and end point of the WR.

4.6 Model of reference route

O The reference route is a roughly 23 km long circuit around the village Weis-
sach in Southwest Germany, hence denoted Weissach route (WR). Figure 4.7
depicts on a map the WR, that comprises urban sections as well as country
roads. The legal speed limit varies between 30 km/h and 100 km/h and the road
slope ranges from -8 % to 10 %. Adopted from [79].

Figure 4.8 displays the corresponding map data consisting of legal speed limit,
road curvature and road slope as well as the therewith derived elevation profile.
The map data was extracted from a navigation system and will be used in back-
ward and forward simulations with the closed-loop and open-loop reference
model, respectively.
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Figure 4.8: Route data of Weissach route (WR) consisting of legal speed limit, road curvature and
road slope used for simulation as well as the therewith derived elevation profile. The
position is measured from the start of the WR (c.f. Figure 4.7).
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4.7 Vehicle models for automated
longitudinal control

O This section presents two models for use within the ALC system. For a given
driving situation, the first model provides the required traction force Fi,c and
the second one the required electrical traction power Py, elec. Both quantities
depend on the driving resistances, which in turn are affected by the given driving
situation as well as parameters. Adopted from [79].

According to sensitivity analyses in [10], the second most relevant parameter
for the accuracy of a vehicle model is f;. In the comparison, the model is only
affected by p for vypg > 100 km/h, whereas ¢y, and A are negligible in the
investigated situations. myp is only relevant for hilly trips and trips that lead
to higher elevation.

O During vehicle operation these parameters are not exactly known. miyp
changes with additional passengers or luggage, ¢, and A when the convertible
top is being opened and f; with tire temperature.

Therefore adaptive models are applied, which estimate these parameters during
vehicle operation either explicitly or in aggregated form. In order to be able
to adapt a model, its inputs and outputs must be quantities that can be derived
from signals on the Controller Area Network (CAN) bus.  Adopted from
[79]. However, only few quantities of the power train that are relevant for
this purpose, are measured. Therefore the adaptive models represent the power
train properties only on an aggregated level and cannot state losses in individual
components, e.g. gear box losses.

Compared to the vehicle reference models for the simulation environment both
vehicle models for ALC are simplified in that they first do not take into account
road curvature explicitly and in that they second do not distinguish between
vehicle mass and rotational masses of the power train as (4.9) does.
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Some publications take into account the inertia of rotating parts of the power
train [96, 188] for more accuracy but the majority does not [12, 91, 102, 127,
195, 204]. Due to lack of a fly wheel, less complicated gear boxes and smaller
motors, the inertia of rotating parts are usually less in a BEV than in a conven-
tionally driven vehicle. As the inertia of rotating parts is usually not known and
elaborate to determine, publications that consider it, mostly increase the vehicle
mass by 5%. In the research vehicle, the equivalent masses add up to roughly
5.6 % of the vehicle mass. Varying the mass factor between 0 % and 5 % had
almost no impact on the results in the sensitivity analyses for a BEV in [10].

O The simplification regarding rotational masses allows using the sensor lon-
gitudinal acceleration ay as a model input. ay is measured by the acceleration
sensor and is influenced by both change of velocity and road slope angle:

dx = VVhelx + 8 ° sin(a) 4.22)

Adopted from [79]. The required traction force and the required electrical
traction power can differ for the same ay even if all other influence factors are
kept constant. This is because in the case that ay results from driving at a slope
with constant velocity, no rotational acceleration of the power train occurs but
it does if ay results from change of velocity at zero slope. The adaptive models
cannot distinguish these cases. The simplification using ay is frequently used
for driving resistances parameter estimation [140, 170, 178].

A comprehensive review of vehicle energy consumption models including an
analysis of influence factors on the energy consumption is given in [118]. Fur-
thermore, [118] classifies consumption models into white-box, gray-box and
black-box models. White-box models are based on high knowledge of the
underlying system and incorporate detailed descriptions of subsystems. In con-
trast, black-box models only learn an input-output pattern from provided data
and require no system knowlege. Gray-box models partly use system knowlege
and are partly driven by data.
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Based on the inputs to a black-box consumption model, [118] distinguishes
engine-based consumption models with engine torque and engine speed as
inputs, vehicle-based consumption models with instantaneous vehicle speed
and acceleration as inputs and modal-based consumption models which use
operating modes such as idling, accelerating or cruising as inputs.

Based on the criteria in [118], the proposed traction force model can be regarded
as a gray-box model and the proposed model for the electrical traction power
as a vehicle-based black-box consumption model.

Similar models can be found in literature. For example, [48] models the tractive
force without cornering resistance and the mechanical traction power of a BEV
similar to (4.11) and (4.12) depending on instantaneous speed, acceleration and
road grade information. The driving resistance parameters are assumed to be
known and constant. A parameter that describes the efficiency of recuperation
is estimated with the LS method.

In contrast, [51] takes a more aggregated approach and models the traction force
with a quadratic polynomial as a function of vehicle velocity. This traction
force model is then used for a multivariate model of power demand and energy
consumption of a BEV that depends on vehicle velocity and acceleration. In
[194] the polynomial regression model additionally uses the SOC as an input.
Two KAF algorithms are compared to RLS for representing Pirac elec depending
on ax and velocity in [146].

4.7.1 Adaptive traction force model

0O The ATFM answers the question how much traction force is needed in order
to fulfill the driving demand of the longitudinal control in the current situation.
The ATFM is used as a pilot control in the controller depicted in the lower
diagram in Figure 4.6. The controller computes a motor torque demand such
that the vehicle tracks the planned velocity trajectory. The ATFM is based on
the following simplification of the longitudinal traction force equation (4.11)
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that neglects the cornering resistance (4.6) and the equivalent masses of the
power train in the inertial force (4.9):

Ftrac = Froll + Finert,simpliﬁed + Fcl + Fair
= Myhel * 8 * fr -cos(a) + Mynel - ‘./thl,x 4.23)

. P 2
+ Mypel - g - sin(a) + ECW “A - Vyhe

For small slope angles cos(a) ~ 1 applies. Therefore the first summand can
be approximated by the rolling resistance constant Fy when additionally the
vehicle mass in this summand is assumed to change only slowly. Moreover, the
second and third summand are merged using (4.22). The traction force Fiqc iS
not measured but it can approximately be computed as

G

+ TEM,RA . (424)

Firac = TEMFA - ,
I'dyn,FA Tdyn,RA

whereby the braking torques in the power train are neglected in contrast to
(4.16). Temra and Tem ra are no measured quantities either. These signals are
computed by the motor ECU from the measured motor voltages and currents
using look up tables.

With these adaptions (4.23) in matrix form reads

Firae = (1 @ vwnet?) - (Fo, et (2 ewA)T, (4.25)
— 2
=:Cyhl .
=X Vhel

whereby Cyy is the vehicle motion vector. The vehicle parameter vector X ypc|
summarizes the driving resistance parameters. These parameters are generally
not fully known. Therefore x vy needs to be estimated such that the estimation
minimizes the residual between the traction force computed with (4.24) and the
traction force according to the model output from (4.25). Adopted from [79].
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This optimization problem is solved with a KF (c.f. Subsection 3.3.2) and the
following model equations:

XVhel,p = XVhel,p-1 + Wp (State equation) (4.26)

Firac,p = Cvnel * XVhel,p + Up (Measurement equation) 4.27)

p denotes the time step, w the process noise and v the measurement noise.
Frequently, algorithms such as RLS, KF, EKF are used to determine the driving
resistance parameters [140, 170, 178]. O For the ATFM a Stenlund-Gustafsson
M-Kalman filter described in [145] is applied. It uses a regularization from
Stenlund and Gustafsson [168]. This regularization method sets lower bounds
for the covariance matrix in such a way that the estimated parameters are kept
constant in phases of low excitation, i.e. when Fi,c and Cyy) temporally remain
constant, such as while driving with roughly constant velocity and road slope.
Low excitation also applies to vehicle standstill but for this phase a simple
criterion for pausing the adaption can be defined. Adopted from [79]. The
ATFM was created by F. Bleimund [22, pp. 24-29] within e-generation and
reused by the author of this work without modifications.

Literature also proposes methods that focus on fusing the information of differ-
ent sensors [74, 198] as well as methods that divide the estimation into several
stages [101, 199].

4.7.2 Adaptive electrical power model
Model interfaces and features

0 The AEPM answers the question how much electrical traction power Pyyc elec
is required to fulfill the driving demand. The ALC uses the AEPM during
trajectory optimization in order to derive trajectories that require few electrical
traction power. As shown in Section 4.4, this corresponds to a low power loss
between HV battery and wheels.
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Piracelec can be determined from the measured voltages and currents of the
electric motors that are available on the CAN bus. Apart from the power losses
in the drive train, Pirac clec €quals the mechanical traction power Pirac mech Which
can be computed as the product of traction force Fi,. and vehicle velocity vypc
(cf. (4.12)). According to Subsection 4.7.1, Fi;,. can be modelled as a function
of the CAN signals vype and ax. Therefore the AEPM relates vype and ayx to

P trac,elec-

Pagpm = AEPM(Vyhel, ax) (4.28)

Features of power consumption representation

A substantial fraction of Piac mech 1S needed to overcome the acceleration resis-
tance mypel - Vvhelx from (4.9). The corresponding acceleration power myp -
VVhel x * Vhel depends on an unseparable product of Vyher x and vypc. For negligi-
ble road slope angle a these quantities are similar to the model inputs because of
(4.22) (c.f. [51]). Therefore the linear model structure used in Subsection 4.7.1
for the ATFM is not suitable for the AEPM. Adopted from [79].

The power consumption representation in time domain is highly nonconvex,
as stated at the example of a Py = f(Firac VVhel) T€presentation in [81]. An
approximation of Pg, with a convex function can be used as a cost function in
an convex optimization problem that can be solved more easily than a nonlinear
optimization problem. The quadratic approximation accuracy for various repre-
sentations is also investigated in [81]. Due to the less prominent nonconvexity
of the representation in space domain, the highest accuracy is observed for the
(PBatt/vhel) = f (Ftrac Whet?) representation, which is the energy consumption
in Watt seconds per meter. In space domain, however, vehicle dynamics and
the vehicle control problem are more nonlinear [81].
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Algorithm for model adaption

0O The AEPM is based on the Fixed-Budget KRLS (FB-KRLS) algorithm de-
scribed in [180], which is a representative of KAFs introduced in Section 2.4.
The source code of FB-KRLS is available at [181]. With each new data point,
FB-KRLS adds a new kernel support vector in the vyn — ax plane, updates
the approximation and discards the least important kernel support vector to
keep the required memory constant. During model evaluation the model output
PagpMm results from computing the sum of all kernels at (vypc, ax), weighted
with their corresponding control points. Adopted from [79].

The model captures aggregated power train losses that are constant or depend
on vype or ax. If vehicle parameters or power train properties change, the
AEPM will adapt itself accordingly.

While [81] approximates the nonlinear structure by a convex function to get
a convex optimization problem, a KAF approximates the nonlinear structure
using a nonlinear function and still offers a convex optimization problem for
model adaption. For this kind of convex problems there are solvers that con-
verge in a defined time period, which is important for real-time model adaption.

RLS and two fixed-budget KAFs, called KRLS Tracker (KRLS-T) and QKLMS-
FB, are applied to (4.28) in a very similar approach in [146]. KRLS-T achieves
the highest accuracy, followed by QKLMS-FB. As expected, the linear RLS,
proves not suitable for strong nonlinearity and achieves the lowest accuracy.

All three mentioned KAF use the Gaussian kernel defined in (2.21). The KRLS-
T algorithm published in [179] in 2012 is a KAF algorithm for time-varying
regression that includes a forgetting factor that can handle non-stationary scenar-
i0s. In contrast, the FB-KRLS published in 2010 stems from a sliding-window
approach with the improvement that it maintains not the kernels for the latest
but for the most important data. Its forgetting mechanism is not optimized
towards non-stationary scenarios [181].
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The idea to model the power train characteristics with a FB-KRLS originates
from S. Rhode [146], who also provided a first script in MATLAB that performs
this task. Based on this, both researchers continued the investigations inde-
pendently from each other, so details differ. The content of the remainder of
this subsection, except from the normalization described below, stems from the
author of this work. The novelity of this work regarding FB-KRLS is limited
to the application of this kind of black-box model for trajectory optimization
and within the ALC along with required problem-specific adaptions such as
the data shift as well as the determination of model hyperparameters, both also
mentioned below.

Data transformation

O For various (vypel, ax) combinations the trajectory optimization algorithm
evaluates the AEPM and takes decisions based on the AEPM outputs. The
standard FB-KRLS output is zero in border areas where no data points have
occured yet. This means that if the trajectory optimization evaluates the model
for high velocities or accelerations that are beyond the capabilities of the vehicle,
the AEPM states Py elec = 0. To avoid that results of evaluations of the model
in its border areas appear as efficient and therefore favorable driving states to
the trajectory algorithm, the model outputs must have large absolute values
in border areas. This can be achieved by shifting Pir,celec in training data by
subtracting a large offset value.

After the shift, all components of training data (Vyncl, @x, Piracelec) and evalu-
ation data (vync, @x) are additionally scaled to a ranges between -1 and 1 by
multiplying each of them with a constant between 0 and 1. This process is
called normalization. Frequently better aproximation quality is observed for
models that work with normalized data.

Shift and normalization form the transformation. Results of model evaluations
are retransformed by a denormalization and backshift operation before they are
provided to the trajectory optimization algorithm.
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Figure 4.9: Electrical power Pagpy according to the adaptive electrical power model (AEPM)
depending on sensor longitudinal acceleration ay for various vehicle velocities vyp.
The gray shaded area is the ALC operating area, max Py clec the maximum traction
power and min Pypyc elec the maximum recuperation power. Adopted from [79].

Figure 4.9 depicts the retransformed model output as a function of ay for various
nonnegative vehicle velocities. Negative velocities are not shown for simplicity
and because with ALC the vehicle only drives forward. For medium negative
ay the Pyycelec 1S negative indicating that power is recuperated into the battery.
The gray shaded area indicates possible operating points of the vehicle while
driving with activated ALC under the assumption of no slope. As the ALC
limits are defined with respect to Vyncl x, the width of the area will change in
presence of slope according to (4.22).

In border areas that exceed the vehicle capabilities the shift leads to very large
AEPM outputs of up to three times the maximum Piryc elec- AS a result, the tra-
jectory optimization algorithm avoids trajectories that include such unreachable
(Vvhel, ax) combinations. Adopted from [79].

In case of negative slope peaks or strong braking, the simple shift leads to a
zero-crossing of Pac elec at roughly —7 m/ s2 < ay < —5 m/s? before Prrac elec
increases to large values. This case can still mislead the trajectory optimization
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4.7 Vehicle models for automated longitudinal control

algorithm but for the given setup it did not present a problem. As Figure 4.8
indicates, on the WR peaks in the course of the road slope are stronger in the
positive direction than in the negative direction. This asymmetrical road slope
distribution causes that in AEPM evaluations the maximum absolute value of
ay is greater for ax > 0 than it is for ax < 0 and that border areas on the left
hand side of Figure 4.9 are not reached.

To prevent that negative slope peaks cause issues on other hilly routes, the
shift should be improved by subtracting a plane from the model input data
instead of a constant. This plane can be designed so that it goes through the
origin and is tilted upwards in the directions of the vyn and ayx axes, e.g.
—C1 " VWhel — €2 - Ax + €3 * Pyac elec = 0 with constants cy, ¢2, c3 > 0. By choosing
these constants appropriately, physically unreasonable zero-crossings of Poppm
can be avoided.

Determination of model hyperparameters

The question is how kernel variance o2 in (2.21) and kernel count M should
be chosen for the AEPM. For better differentiation from other parameters like
control points, o> and M are called hyperparameters [146] and determining
them is part of the model selection process [72, pp. 128-130]. A model with
many parameters usually provides more accurate results at the cost of increased
effort for parameterization and evaluation.

Model selection criteria, also called information criteria, assess models and
thereby can help to find a trade-off between model complexity and model qual-
ity. The general structure of an information criterion is:

SSE
criterion = P - In (T) + penalty term (4.29)
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4 Models of research vehicle and reference route

In(+) is the natural logarithm, P the number of observations and SSE is the sum
of squared errors with

P
SSE= " (vp—5p) - (4.30)
p=1

y denotes the measurement and ¥y the model output. The selected criterion is
computed for a set of trained models and the model with lowest criterion value
is chosen. Several information criteria have been introduced, which are based
on different principles and differ in the penalty term. In a comparison in [89]
the Hannan-Quinn information criterion (HQC) performs best:

HQC=P-In (g) + M - In(In(P)) 431

Number of model parameters M and kernel variance o> from (2.21) span the
hyperparameter space for the search for the most suitable AEPM. For each
combination of M = 10,20, ...,100and o2 = 1/1,1/2, . . ., /30 a model is trained
and tested to determine the model with the lowest HQC.

Data for model training and test was created using the open-loop reference
model. Thereby the vehicle longitudinal acceleration was sampled with Vype x =
-10,-9.8,...,10 m/s? and the vehicle velocity with vype = 0,0.5,...,56 m/s.
Slope and curvature were assumed equal zero. Operating points that are be-
yond the vehicle capabilities according to the open-loop reference model were
removed from the data set. The data set that comprises all possible vehicle
operating points (PVOP) in random order is split into a PVOP training data set
and a PVOP test data set. The randomly chosen PVOP test data set comprises
10 % of the original PVOP data set and the remaining data points form the
PVOP training data set.

Additionally, a WR data set was created from the closed-loop reference model
output during a simulated drive with the ALC on the WR including slope and
road curvature information. The WR data set was split analogously into WR

112



4.7 Vehicle models for automated longitudinal control

training data set and WR test data set. PVOP data set and WR data set contain
roughly the same amount of data points.

The upper diagram of Figure 4.10 depicts the best HQC as well as the corre-
sponding o for each investigated kernel count. Only for models that are both
trained and tested using data from the PVOP data set the HQC course shows
a local minimum at 50 kernels along with comparatively large kernel variance
values.

The lower diagram of Figure 4.10 depicts the corresponding 95 % quantile Qgse,
of absolute values of the relative error e, between the output of the AEPM and
the reference model for PVOP and WR, respectively. With increasing M the
95 % quantiles decrease.

Models that are both trained and tested with PVOP data achieve better HQC
values and lower quantiles than models that are trained with PVOP data and
tested with WR data. The PVOP data set contains much more dynamic driv-
ing states than the WR. Furthermore, only the PVOP test data set evaluates a
model that has been trained with the PVOP training data set in its border areas.
Therefore, the worse result for the WR test data set seems counterintuitive at
first.

However, only the WR data set considers road curvature and road slope. On
the WR the road slope is up to 10 %. The AEPM does not use road curvature
input and summarizes road grade and change of vehicle velocity in the input ay.
Hence, the results indicate that road geometry has more influence on the quality
of the model output than the driving style. However, for M > 40 the quantils
are below 2 % for all considered combinations of training and test data sets.
Therefore not considering road curvature in the AEPM explicitly is acceptable.

Since the goal is not to optimize the model parametrization with respect to
the WR but to find a suitable model for the vehicle in general, the best model
parametrization according to HQC for the PVOP test set was chosen. This is
a model with M = 50 and ¢ = 1/9 that achieves Qosq,(Jerer]) = 0.94 % for
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Figure 4.10: Results of full factorial search for best model hyperparameters kernel count M and
kernel variance o-2. Top: Both the best HQC and the corresponding o2 are plotted
versus M for each combination of training and test using the data sets from possible
vehicle operating points (PVOP) and Weissach route (WR) . Bottom: 95 % quantile
Qosq, of absolute values of relative error ey between output of AEPM and reference
model versus M.

PVOP and Qosq,(lerer]) = 1.5 % for WR. This AEPM model is used in the
remainder of this work and depicted in Figure 4.9.

With the hyperparameter optimization technique from [146] the KRLS-T accu-
racy increases for M < 50 and converges for more kernels. Therefore M = 50
is considered the optimal KRLS-T hyperparameter, analogously to this work.
However, with o2 = 6.25 the reported kernel variance is different. Reasons can
be contrasting data sets and differences in the KAF algorithms themselves.
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5 Planning of velocity trajectories

This chapter presents a trajectory planning approach based on the B-spline ap-
proximation methods from Chapter 3. Section 5.1 states how an upper speed
limit for the route ahead is created from map data. Section 5.2 includes con-
siderations on how to represent the planned vehicle velocity and Section 5.3
describes the trajectory optimization. Section 5.4 proposes an extension of the
trajectory optimization problem for taking into account the required electrical
traction power. Section 5.5 states ways to enforce constraints on the trajectory
beginning and Section 5.6 summarizes the scientific contribution of this work
regarding trajectory planning.

5.1 Generation of upper speed limit

An upper speed limit for each meter of the road section ahead of the vehicle
is computed using map data. The upper speed limit takes into account legal
restrictions, limitations from driving dynamics as well as safety and comfort
requirements and serves as input data for the trajectory optimization process.

The map data consists of three P X 1 vectors, each with component index
p = 1,...,P. The vectors state the meter-discrete courses of road slope vy,
road curvature « and legal speed limit viim aw for the road section ahead of the
vehicle in driving direction. The first component of each vector refers to the
current vehicle position. P is called the length of the electronic horizon.

Figure 5.1 depicts various speed limits that occur during generation of the upper
speed limit and are described in the following paragraphs.
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Figure 5.1: Computation of upper speed limit with respect to position measured from vehicle at
km 11 of Weissach route in driving direction. Corresponding route data depicted in
Figure 4.8 between km 11 and km 13. Legal speed limit v jm 1aw, legal speed limit in-
cluding speedometer offset VL im Speedo, Speed limit resulting from curvature viim, curve
and speed limit resulting from crests vy im crest are intermediate quantities. The speed
limit resulting from map data vimmap i the minimum of viim Speedo> VLim,Curve and

VLim,Crest- End result is the speed limit from map data with desired acceleration
VLim,Map,v -

The course of the legal speed limit vy j; 12w forms the basis of the upper speed
limit. The speedometer in a vehicle includes an offset and therefore indicates
a velocity that is slightly higher than the actual vehicle velocity. For better
acceptance by the driver, the legal speed limit including speedometer offset
VLim,Speedo 18 used instead of vy jm Law. This causes that the speedometer will

indicate roughly the same velocity value as the traffic sign when there are no
relevant restrictions other than vijm Law present.

Due to tight curves, crests or comfort requirements the upper speed limit needs
to be corrected starting from v im speedo further downwards.
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5.1 Generation of upper speed limit

Driving with vehicle velocity vyp on a road with curvature « causes a lateral
acceleration Vypely = v%,hcl -k (c.f. (4.5)). A maximum absolute value of lateral
acceleration Vyncl y,max 18 specified, which leads to the speed limit resulting from
curvature Vyim Curve given by

‘.}thl,y,max
|kl

VLim,Curve <

6D
Thereby | - | denotes the absolute value. A comfortable lateral acceleration
maximum varies with vehicle speed [153]. As a first draft a lateral acceleration
table Vynel,y,max (V) Was created using a characteristic curve from [153]. In test
drives the characteristic curve was further adapted to suit the vehicle charac-
teristics. The lateral acceleration table consists of (\')thl,y,max, v) supporting
points because these quantities can be specified more conveniently than « in
test drives. With (4.5) the corresponding « values are computed. Thereafter
VVhely,max for a given « is determined from map data by linear interpolation and
VLim,Curve 18 derived using (5.1).

Crests on the route cause another restriction on the upper speed limit. From road
slope data an elevation profile is obtained and it is calculated how far ahead the
road can be seen according to geometrical considerations. It needs to be ensured
that the vehicle can always come to a standstill within the sighting distance
Assighting. Assuming that the absolute value of the maximum deceleration is the
gravitational constant g leads to the speed limit resulting from crests viim crest

given by VLimCrest < /2 * ASsighting * &-

The speed limit resulting from map data vy jm Map is the minimum of viim Speedos
VLim,Curve aNd VLim Crest- Usually VLim crest 1s high compared to the other quanti-
ties and therefore rarely determines v im Map-
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5 Planning of velocity trajectories

In the last step the desired longitudinal acceleration ages is taken into account.
The desired acceleration and deceleration values are derived by interpolat-
ing with respect to velocity v in separate acceleration tables for acceleration
Ades,pos (V) and deceleration dgesneg (v) < 0. Enforcing the constraints

Vp+l < \/vp +2-As - agespos(Vp), p=1,2,...,P—1
(5.2)

Vp-1 < \/vp =2-As - dgesneg(Vp), p=P,P—1,...,2

with As = 1 on v jmMap gives the speed limit from map data with desired
acceleration vLjm Map,y, Which is the output of the whole procedure.

The content described above in this section originates from F. Bleimund [22,
pp- 29, 30], who implemented it during e-generation. The adaptions done
during e-volution are limited to enhancements of the acceleration tables and
adaptions of their entries during test drives.

Other works such as [114, 139] additionally specify a lower speed limit as a
certain percentage of the upper speed limit. Both limits then form a so-called
driving tube that defines the solution space of valid trajectories. An alternative
term is driving envelope [44]. This work specifies no explicit lower limit but
enforces a nonnegativity constraint on velocity trajectories as Section 5.5 will
state.

5.2 Representation of vehicle velocity in time
domain

There are several ways to define a course of velocity that stays below the upper
speed limit. Figure 5.1 illustrates that in general only a functional representation
with many degrees of freedom can sufficiently adapt to the upper speed limit
over several kilometers.
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Section 2.3 investigated the properties of several function types and the advan-
tages of spline functions over polynomials. Based on the conclusions drawn
there, the velocity trajectory will be represented using a cubic B-spline function.
This function is twice continuously differentiable which means the trajectory
velocity vy is smooth. This is beneficial for driving comfort but not sufficient
for jerk-free driving behavior. If the B-spline function has many degrees of
freedom in a short time period and unfavorably chosen control points, it can
lead to an oscillating and uncomfortable velocity course.

A further helpful feature is that in each interval a B-spline function lies within
the convex hull of the control points that are relevant for this interval (c.f.
Section 2.3 and Section 3.1). This feature allows to enforce vryy > 0 by simply
restricting the control points to nonnegative values.

Since the upper speed limit depends on the position, a straight-forward approach
is to define the trajectory with respect to the position as well. This was done in
[22, 139].

RBA described in Subsection 3.3.3 allows to adapt the control points of a B-
spline function iteratively such that it approximates a set of data points in the
WLS sense. With RBA a spatial velocity trajectory vy (s) that depends on the
position s can be adapted to the upper speed limit by solving the LS problem

p
) 2
X = argmin Z (VLim,TJY,p - VTJY(Sp)) (5.3)
using the data set
(Sp, VLimTiY,p)s Sp =p—1L p=12,..., P, 5.4

in which viim1yY,p 1 derived from viimmap,y as (5.12) will define. A spatially
defined trajectory can easily be compared against the upper speed limit and
adjusted downwards at any position without risking to violate the upper speed
limit at another position. However, the spatial trajectory definition has at least
four flaws:
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First, at low speeds the position s changes slowly in a given time interval. If
the knots of vryy () are spatially equidistant, the trajectory can only represent
a comparatively reluctant driving behavior at low speeds, whereas at highway
speeds it has an excessive number of degrees of freedom in each time interval
that facilitates undesired velocity oscillations and increases the computational
effort unnecessarily.

RBA only chooses the control points and requires knots as an input. Regarding
RBA this means that simply specifying spatially equidistant knots is not suitable.
This was also confirmed by real test drives with a spatial trajectory planning
approach based on RBA. Therefore a knot placement procedure was added that
computed spatial knot positions that were equidistant with respect to time. The
degrees of freedom were then spatially dense at low speeds and with increasing
vryy their density decreased.

There are also solutions for adapting both knots and control points when fitting
a B-spline function to data [36, 93, 130] but this problem is a nonconvex one
with many local minima and therefore difficult to solve [15]. For example,
[158] solves a reduced nonlinear B-spline LS approximation problem, in which
only the knots are optimization variables using a generalized Gauss-Newton
method, whereas [141] applies the LM algorithm from Subsection 3.4.1. A
review of state of the art methods for this kind of problem is provided by [43].

Second, a spatial velocity trajectory cannot represent driving off again after
coming to a standstill because if vryy (s*) = 0, at any position s*, then s* cannot
be left anymore. Hence, starting from a standstill requires a different trajectory
planning approach.

Third, the time #* at which a vryy(s) trajectory reaches a certain position s*

. . « s* 1 . .
requires to compute the integral 7(s*) = L 0 mds. For a cubic function
v1yy (8) the solution can be determined using a partial fraction decomposition
(PFD). Since the solution of PFD depends on the control point values, a system
of equations needs to be solved repeatedly.
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5.2 Representation of vehicle velocity in time domain

Fourth, derivates of vyy(s) are no common quantities with known interpreta-
tion. Common quantities refer to time and deriving them from vty (s) is costly.
For example, the derivative vryy’(s) is not the trajectory acceleration atyy (s)
but the pseudo trajectory acceleration [55]. atjy needs to be computed from
vrry (s) as a product:

dvryy (s) _ ds dvryy(s)

dr dr o - vmy(s)- vry'(s) (5.5)

aryy(s) =

Hence, atjy cannot be repesented by the linear combination of basis functions
and control points from (2.17) and (3.3), respectively, anymore. Equation (5.5)
gives oscillations in the acceleration course, which become larger as the knot
distance is decreased to allow for more agile vehicle behavior. The reason is that
the result of (5.5) is no B-spline product and therefore also does not fulfill the
convex hull property. Ways to correctly compute product functions of B-spline
functions are given in [121, 133]. The approach in [133] relies on intermediate
transformations to the Bézier functions (c.f. Section 2.3). A sliding window
B-spline multiplication algorithm is presented in [30].

A time dependent velocity trajectory overcomes these flaws. First, the knots
can simply be chosen temporally equidistant. Then the trajectory represents
a vehicle behavior whose agility does only depend on the chosen constant
knot density but not on vehicle velocity. Second, driving off from a standstill
poses no problem because ¢ still changes during a standstill and so can vryy (¢).
Third, the corresponding trajectory position sty (¢) is obtained efficiently by
integration: .

sy (1) = f voyy (T)dT (5.6)

7=0

Fourth, meaningful quantities like trajectory acceleration and trajectory jerk
arise from a linear combination of basis functions and control points.

For these reasons a time dependent trajectory vy (¢) is chosen. The problem
of adapting vty (¢) to the upper speed limit is formulated analogously to (5.3)
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5 Planning of velocity trajectories

as an approximation problem but an additional change of representation space
from position to time is included:

P
* = arg min Z (viimzry (sTov(2p)) = VTJY(tp)>2 (5.7

X p=1
The trajectory position styy is given by (5.6) and computed as in (3.10).

In contrast to (5.3), the error viim 11y (STIY) — vIvy in (5.7) does not linearly
depend on the control point vector x. Instead, x is linked to the error by the
nonlinear upper speed limit, which makes (5.7) a NWLS problem.

The described approach is similar to parametric B-spline curve approximation.
As mentioned in Section 2.3, a B-spline curve is a generalization of a B-spline
function that uses multi-dimensional control points. These enable an indepen-
dent curve shape in each dimension such that the curve can represent edges of
a geometrical object [3]. The velocity trajectory approximates (sp, VLim,17Y,p)
data points with respect to the parameter . However, styy and vryy are coupled
via (5.6) and by still using a B-spline function with scalar control points this
constraint can be enforced.

A disadvantage of the temporal trajectory definition is that road grade, speed
limit and road curvature are position dependent, whereas the position of the
vehicle depends on the future course of velocity. Therefore a velocity optimiza-
tion requires a vehicle position estimate [82]. Specifically for the approach in
(5.7) this means that if any component of the solution ¥ of the optimization
problem is modified, the trajectory will likely exceed viimMap,y at some later
point in time. In contrast, with vyy(s) control point values can always be
reduced without risking to violate viimmap,» afterwards.

For completeness a styy () trajectory is considered as well. Against such a tra-
jectory argues the fact that syy is unbounded and may take large values for long
trajectories. This encourages numerical problems and instable computations in
optimization algorithms.
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5.3 Trajectory optimization

5.3 Trajectory optimization

O Trajectory optimization involves adapting the vy (¢) trajectory function to
the data set in (5.4) that is created using the upper speed limit vy imMap,s- VTrY ()
is defined according to (3.3) with degree d = 3, knot vector k and control point
vector x. k given by

K = (Ki,K2, ..., KK)

= (Aty - (=d), Aty - (=d + 1), ..., Atg - (=d + K = 1))

(5.8)

has equidistant and strictly monotonously increasing entries. At, denotes the
constant temporal distance of neighboring knots. Due to the choice of k, the
trajectory can be evaluated for r > 0.

t is discretized by a constant temporal distance of neighboring data points Ary:
tp=@-D-An, p=1...,P (5.9

The approximation problem that is solved reads

P
% =arg minz (R;l : [VSet (STJY(tp)) - VTJY(lp)]2
x (5.10)

-1 2 1 . 2
+R, - (aSet - aTJY(lp)) +R; - (JTJY(lp)) .
atyy denotes the trajectory acceleration and jryy the trajectory jerk. These
quantities are the first and second derivative of vyyy and can be calculated

according to (3.5). The trajectory position styy is measured from ¢ = 0, hence
stry(t = 0) = 0. styy can be computed using (3.10) and (5.6).

Unless stated otherwise, the set point of trajectory velocity vse and the set point
of trajectory acceleration ase; are defined as follows:

VSet = VLimTJY> dset = 0 (5.11)
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In contrast to (5.7), the optimization problem in (5.10) includes two additional
summands that refer to the derivatives atyy and jryy of the vy (¢) trajectory.
By penalizing deviations of aryy from ase: and deviations of jrjy from zero,
the vryy () function is stabilized and uncomfortable driving is avoided, which
can be caused by acceleration peaks and velocity oscillations.

Each optimization goal has a corresponding weight. R;! denotes the weight of
velocity error square, R;! the weight of acceleration error square and R]TI the
weight of jerk error square. The reciprocals of the weights follow the interpre-
tation of the filter algorithms from Subsection 3.3.2 and Subsection 3.4.2 by
referring to the variances of the artificial measurements vse, ase; and 0. R, is the
variance of velocity measurement, R, the variance of acceleration measurement
and R; the variance of jerk measurement. R;! can be interpreted as a weight for
the optimization goal of few travel time whereas both R;' and RJT1 refer to driv-
ing comfort. A suitable weighting combination reads R, =5, R, = 10, R; = 1.
This combination was derived by experiments, validated in real test drives and
will be used in the remainder of this work.

WLS and NWLS approximation algorithms usually solve an unconstrained
problem and compute a function that is close to the data points. Problem
(5.10) follows this approach and penalizes deviations of the function value
from the data symmetrically. This interpretation of the data neglects that the
data points of the upper speed limit also present a constraint to vyyy. This
constraint character is taken into account by using modified data in (5.10). Set
point of trajectory velocity vse in (5.11) i8 not vy im Map,» but the speed limit for
trajectory optimization vpim Try:

VLim,TJY = min (vLim,Map,\} [Pminl; - - -» VLim,Map,v [Pmax])
Pmin = round (styy — viyy - AfLimTyy + 1) (5.12)
Pmax = round (styy + vryy - AfLimmyy + 1)
VLim,TJY 18 the minimum of vy im Map,» Within a spatial distance around the calcu-

lated trajectory position styy. The distance depends on the trajectory velocity
vryy and the temporal safety margin to upper speed limit Aty im T7y. AfLimTIY
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is a tuning parameter. In combination with Aty sufficiently small it causes
that there are enough data points at local minima of vLim Map,y such that the
trajectory does not exceed local minima of Vi im Map,v-

The nonlinear approximation problem (5.10) can be solved with LM and NRBA.
To an approximation of (5.10) RBA can be applied.

Advantage of solving the approximated optimization problem

Regarding the control, [82] states that the time domain is beneficial because the
vehicle dynamics itself is almost linear except from the air resistance. Therefore
the problem can easily be simplified to a linear constrained quadratic program-
ming (QP) problem. In contrast, the control in space domain is very nonlinear
when the distance to the vehicle ahead is considered and therefore harder to
be solved. Due to the spatially defined upper speed limit, (5.10) is a nonlinear
problem though.

However, RBA can solve an approximation of the nonlinear problem (5.10) by a
quadratic problem. For this, in each iteration p the trajectory position styy at the
current time ¢, is determined by temporal integration of the trajectory velocity
vrry with its currently estimated control point vector x in order to derive the
upper speed limit viim 1ry (STIY (2p)). Then vsey = viLimTyy 18 provided to the
linear WLS algorithm RBA. The linear algorithm has no knowledge of the
nonlinearity and assumes that the error vy, T7y — vry depends linearly on x.

The solution of RBA is not guaranteed to be optimal under these conditions.
However, the effort is lower than with a method for NWLS and the solution
of the approximated problem is satisfactory compared with an in general not
globally optimal solution of the actual NWLS problem. For predictive vehicle
control, [47, 28, 86] also approximated a nonlinear problem by a quadratic
problem in order to be able to apply a quadratic programming method instead
of a sequential quadratic programming method like LM.
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Influence of temporal safety margin to upper speed limit

The upper diagram in Figure 5.2 depicts the velocity v versus the position s
measured from the vehicle in driving direction. The dashed line shows the speed
limit from map data with desired acceleration vpimmap,». The solid red line is
a trajectory computed using RBA with At jn1yy = 18, Aty = 15, Aty =0.1's
and / = 1, whereby I denotes the number of spline intervals. Each red dot is
a set point of trajectory velocity vse; that occurs during the iterations of RBA.
For better view, only every tenth vse point is shown in Figure 5.2. The blue
dots and lines show the same quantities for Aty im Tyy = 4 5.

The temporal parametrization causes that in the v — s diagram the v data
points are less close at higher speeds (e.g. for s < 200 m) compared to at
low speeds (e.g. around s = 600 m). Due to the temporal safety margin to
upper speed limit in (5.12), the spatial distance between the courses of vge
and VLimMap,v 18 larger at higher speeds. Provided that Aty is sufficiently small
and that Afpim 1y is sufficiently large, there are enough data points to cause
that the resulting trajectory does not exceed ViimMap,» at local minima, e.g. at
s =400 m and s = 600 m.

Increasing Aty im Try also reduces the possibility of short-lasting velocity peaks.
For example, at s = 500 m vpjmMap,y has a local maximum that both vge
with AtimTiy = 1 s and the corresponding trajectory vryy(¢) reflect. For
AtrimTry = 4 S, both vse; and vryy (f) cannot maintain the local maximum of
VLimMap,» at s = 500 m, however.

Since the course of vse is not jerk-free and must be smoothed by the trajectory,
close proximity of vy (¢) to vse is not intended in all situations. The extent to
which the trajectory can follow vse is determined by the weighting factors R,
R, RjTl and the temporal distance of neighboring knots At,. Furthermore, the
temporal distance of neighboring data points Aty needs to be sufficiently small.
Reducing Aty increases the computational effort of RBA linearly.

In the upper v — s diagram of Figure 5.2 vLim Map,v is identical for all trajectories.
The lower diagram depicts the same quantities versus time. In a v — ¢t diagram

126



5.3 Trajectory optimization
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Figure 5.2: Influence of temporal safety margin to upper speed limit Aty iy, Tyy on set point of
trajectory velocity vser and trajectory velocity vryy. Only a subset vge is shown.
Upper diagram: The speed limit from map data with desired acceleration vy im Map,v 18
identical for both trajectories. Lower diagram: vyim Map,v differs with the trajectories.
Adopted from [79].

VLim,Map,» N€eds to be shown individually for each trajectory because when two
trajectories differ, in general they have a different trajectory position at the same
time ¢, hence vLim Map,y also differs between the two trajectories. Adopted from
[79]. A v—s diagram is often more convenient for comparisons because of the
identical Vi im,map,s. However, the lower v — t diagram in Figure 5.2 illustrates
well that the temporal safety margin to upper speed limit leads to a constant
time gap between the courses of vser and VLim Map,v -

Moreover, because of the constant temporal density of degrees of freedom
resulting from the temporal distance of neighboring knots Az, the curvature of
the trajectory is independent of velocity in the v — ¢ diagram. In contrast, in the
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Figure 5.3: Iterative trajectory optimization using RBA: Speed limit from map data with desired

acceleration vyim Map,v (black) and trajectory after 100 (green), 200 (yellow), 300 (red)
and 400 (blue) iterations p.

v — s diagram the trajectory curvature usually decreases as velocity increases.
Due to the equidistant knots with respect to time and (5.12), the trajectory
can approximate the upper speed limit very close at low speeds because its
degrees of freedom are dense with respect to position whereas at high speeds
the approximation is less close.

Advantage of iterative approach of RBA

LM, RBA and NRBA compute the trajectory iteratively but in different ways.
LM adapts all control points simultaneously, hence the whole trajectory is
improved during an iteration. In contrast, RBA and NRBA process only a
subset of the control points simultaneously and the temporal length of the
trajectory increases with the number of iterations.

Figure 5.3 shows a vy (¢) trajectory generated using RBA after 100, 200, 300
and 400 iterations with Az, = 2's, Aty = 0.1 s and Aty 17y = 2 s. The iterative
approach of RBA allows to pause the calculation and use the intermediate result
before continuing the calculations. This possibility is beneficial in presence of
restrictions on computation time. It is also known that the optimization is
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5.3 Trajectory optimization

finished for the subtrajectory that can be computed from knots and control
points that are not used by RBA anymore but have been shifted out of the KF.

Furthermore, with RBA the number of data points is not required to be bounded
because of the shifting function. This is beneficial because a priori it is not
known how much time data points 7,, the trajectory needs in order to reach the
end of the electronic horizon. Also the length of the electronic horizon usually
increases as the navigation system is recalculating the route (c.f. Section 5.1).
RBA can start trajectory optimization immediately parallel to the route recalcu-
lation and can add knots during the optimization process as needed.

In contrast, LM cannot change the knots. Hence, the number of needed knots
has to be overestimated, which causes additional computational effort, because
more control point values are computed.

Influence of temporal distance of neighboring knots and number
of spline intervals

Figure 5.4 shows trajectories with Aty Ty = 1.5 s and Aty = 0.2 s. Trajecto-
ries with temporal distance of neighboring knots Af, = 1 s are depicted in red
and trajectories with Af, = 5 s in blue. For both cases trajectories computed
by RBA with number of spline intervals / = 1 and / = 5 are compared to the
LM solution. The solutions of both algorithms are similar and differences can
mainly be identified from the acceleration diagram.

Increasing the temporal distance of neighboring knots Az, reduces the possible
oscillation of velocity in a given time interval. This effect can be seen in the
acceleration diagram for 200 m < s < 600 m. However, a large change of
vy as for 600 m < s < 800 m can still be represented by At, = 5 s through
correspondingly larger differences of temporally less dense neighboring control
point values. For Ar, = 1 s, the RBA solutions are closer to the LM solution

than for At, = 5s.
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Figure 5.4: Influence of temporal distance of neighboring knots Az, on trajectory optimization
using RBA and LM and influence of number of spline intervals I on trajectory opti-
mization using RBA.

Increasing I also enables to smooth the trajectory because the filter can rework
larger parts of the trajectory with hindsight when additional information is
available. However, this can result in undesired velocity oscillations, e.g. for
800 m < s < 1200 s. This applies to both RBA and LM.

Furthermore, RBA trajectories with larger / are more likely to exceed Vi im Map,v-
This slightly occurs at s = 1200 m where the RBA trajectory with Az, = 5's
accelerates too early. The reason is a general flaw of the filter-based approach.
When the filter adapts control points of previous spline intervals according to
the knowledge of its state estimation covariance matrix, it does not compute any
deviations or errors for these control points that could be penalized. Exceeding
VLim,Map,» €an be avoided by increasing Aty im tyy with 1.
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5.4 Trajectory optimization considering electrical power

As LM evaluates the whole sum of squared errors in the approximated NWLS
problem in each iteration, this problem does not occur with LM. At around
s = 1200 m both LM trajectories are identical.

Although the above stated approach does not optimize the energy consumption
by taking into account the electrical power explicitly, a reduction of energy
consumption can be achieved implicitly by increasing the weight of acceleration
error square R,'. The method of reducing acceleration and braking was also
chosenin [1, 107, 112]. According to the investigations in [81] it is less effective
than using an energy consumption model. Instead its advantage is that a simpler
optimization algorithm can be used.

5.4 Trajectory optimization considering
electrical power

O According to Section 4.4 low absolute values of the electrical traction power
Prrac.elec lead to low power losses. Piac elec 15 described by the adaptive electrical
power model (AEPM) proposed in Subsection 4.7.2. The model output Psgpm
is given by

PappMm(?) = AEPM(vryy (1), ax). (5.13)

The sensor longitudinal acceleration ayx from (4.22) is computed as

ax = aryy(t) + g - sin(a(sTyy (1)) (5.14)

and the road slope angle @ can be derived from the road slope stated in percent
according to map data using (4.2).

When considering the required electrical power in trajectory planning, (5.10) is
augmented with the summand R;,l . (PAEPM)2 which penalizes absolute values
of PAgpM. R;,l denotes the weight of power error square and its reciprocal Rp
is the variance of power measurement.
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5 Planning of velocity trajectories

The resulting optimization problem reads

P

x=arg minz (1’3;1 . [VLim,TJY (STJY(Ip)) - VTJY(fp)]2
x 0

+R,' - (ades - aTJY(tp))2 + R (jTJY(fp)>2 G

+R;3l . (PAEPM(IP))Z) .

As PagpyM correlates with the product of vy and its derivative aryy, an approx-
imation of this fourth optimization goal such that RBA can be applied, seems
not promising for good results. Adopted from [79].

Most nonlinear filter algorithms such as UKF or PF do not accept a measure-
ment matrix that relates a control point vector to a measurement as input. In-
stead, they apply a given nonlinear measurement function to a set of control
point vectors and use the resulting function values for estimating the relation
between measurement and control points. However, for the first three optimiza-
tion goals the exact values of the measurement matrix are known. These result
from the values of the B-spline basis functions.

Estimating the B-spline basis functions and additionally performing the tran-
sition from a spatial to a temporal representation poses a challenge for the
convergence of a nonlinear filter. Experiments were conducted with a square-
root cubature Kalman filter (SCKF) stated in [6, 7]. The SCKF can be seen
as a special case of the UKF. In experiments no weighting factor combination
was found that yielded consistent convergence of the trajectory to the upper
speed limit. This was also the case when the SCKF was applied to optimization
problem (5.10), which does not consider electrical power.

The MPF is beneficial for problems that can be subdivided in a linear subprob-
lem and a nonlinear subproblem. A KF solves the linear subproblem optimally
using a given measurement matrix while a PF is applied to the nonlinear prob-
lem [155]. In the trajectory optimization application the nonlinear problem is
the fourth optimization goal. The MPF converges for problem (5.15) reliably
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5.4 Trajectory optimization considering electrical power

provided that the weighting factors are within a certain range. For these reasons,
NRBA includes a MPF. However, even though the MPF comprises a KF, the
convergence radius of the MPF is still noticably smaller than that of a pure KF
and the MPF is much more sensitive to filter parameter variations.

O Braking for an upcoming curve usually requires negative Pagpm for recu-
peration. Strong penalization of P/iEPM can prevent braking for upcoming
curves. In order to enable sufficient braking power, the computation of the error
e = VLimTJY — v1rYy Within the MPF is designed asymmetrically. If e < 0, the
artificial measurement vy im 13y is replaced with viim 1y = RysvLim - € + VTIY-
Hence, e is multiplied with RysyLim if v1yy is above viim 17v. In case of e > 0
the original e is multiplied with Ry<yLim, the error weighting if vryy is below
vLim Y- In each case the resulting error square is afterwards weighted with
R;! in the MPF. Adopted from [79].

Ry>vLim cannot be chosen arbitrarily large. First, Ry~yLim > 2 can prevent the
MPF from converging to the upper speed limit. Second, during operation of the
ALC situations can occur in which the vehicle exceeds viimMap,». An example
is that the driver intervens and accelerates in order to overtake a slower vehicle.
At its beginning the trajectory needs to indicate the current vehicle velocity.
Ry~ Lim should be only so large that a clearly noticable braking occurs until the
vehicle is below vLim Map,v- FOr RysyLim > 2 braking according to the computed
trajectory is uncomfortably abrupt.

O The asymmetrical weighting of the velocity error can also be used in combi-
nation with RBA but since there is no incentive to exceed Vi imMap,» because of
the missing optimization goal regarding Pagpym, the asymmetric weighting has
very limited influence. Adopted from [79].

Influence of weight of power error square
O By increasing the weight of power error square R;] or by lowering the vari-
ance of power measurement Rp, respectively, the trajectory can be optimized

towards low energy consumption. Figure 5.5 depicts various quantities for
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5.5: Relevant quantities of trajectories determined by NRBA and LM for different variance
of power measurement. Velocity v, electrical traction power Pl clec, r0ad slope
v, energy loss between HV battery and wheel Ejoss and HV battery energy Epai
for trajectories determined by NRBA and LM that differ in the variance of power
measurement Rp. Adopted from [79].



5.4 Trajectory optimization considering electrical power

trajectories determined by NRBA with Rp = 102, Rp = 10° and Rp = 10*.
For comparison, the LM solution for Rp = 10* is also shown. The remaining
trajectory parameters are Az, = 2's, Aty = 0.25 s, Aty immry = 1 sand [ = 1.

In the depicted situation, all tractories indicate roughly the same velocity at
the start position and also at the end position. Hence, the kinetic and potential
energy of a vehicle at the beginning and end is roughly the same regardless of
which trajectory it tracks. Therefore the energy consumptions resulting from
following each of the trajectories can be compared.

For Rp = 10 the depicted quantities for the NRBA and LM trajectories are
very similar and both trajectories follow vy im Map,» closely. With LM the energy
loss between HV battery and wheel (Epqss) i Eross = 77 Wh and the required
HV battery energy (Epay) is Epay = 721 Wh. For Rp = 10* NRBA achieves
Eloss = 75 Wh and Ega = 714 Wh.

When Rp is lowered, peaks in the electrical traction power Py elec are reduced
which translates to less energy loss between HV battery and wheel as well as
less HV battery energy. Rp = 103 leads to Eposs = 71 Wh and Egyy = 703 Wh.
For Rp = 10% Eposs = 65 Wh and Ep,q = 684 Wh result.

Regarding the driving style it can be observed that with lower Rp, the trajectory
exhibits lower acceleration, stays more below Vi imMap,v, avoids short-lasting ve-
locity peaks and tends to oscillate more. Adopted from [79]. The oscillations
can mainly be explained by the larger slope variations which affect Pyrac elec but
they partly also result from the fact that the MPF estimations are more strongly
based on the state-space sampling of the PF than on the KF. With LM no en-
ergy savings were achieved by lowering Rp, even after varying LM parameters.
Instead, the trajectory diverged which indicates a narrow convergence radius of
the unapproximated nonlinear optimization problem.

O During the acceleration phase up to s = 1000 m the NRBA does clearly avoid
peaks in Py, elec by reducing the acceleration at the slope. However, this does
apply to the deceleration phase not to such an extent, even under consideration
that from s = 2200 m on there is a high road grade which avoids the need for
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5 Planning of velocity trajectories

large negative Piracelec- The filter could still smooth power demand more by
decelerating earlier. It was also oberserved during road sections with negligible
slope that NRBA decelerates too late and therefore the asymmetrical weighting
of the velocity error was added. Adopted from [79].

As shown in Subsection 3.3.4 and Subsection 3.4.4, both novel filter based
methods RBA and NRBA can reproduce a symmetrical approximation of WLS
and LM, respectively. Provided that I is large enough, the filter lag is negligible
with RBA. When the nonlinear optimization goal is weighted heavily with
NRBA, a filter lag occurs, solutions become more oscillating and increasing /
is not as unambigiously beneficial as with RBA. In the situation depicted by
Figure 5.5, increasing I mainly leads to more oscillating trajectories whereas
no significant change in deceleration can be noticed. Hence, the energy-saving
potential of NRBA during recuperation is lower than expected.

Increasing I should facilitate early deceleration because NRBA can adapt larger
parts of the trajectory with hindsight when data that involves the lower speed
limit is processed. MPF improvements that achieve the same approximation
quality with less particles as stated in [203] would be beneficial for good results
with larger /. They could help to overcome the flaw concerning deceleration
because they enable to keep the state-space sampling density in each dimension
constant when / is increased.

At an early stage, at which the trajectory representation was not yet tempo-
ral, the AEPM hyperparameters were not final and NRBA still included the
SCKEF instead of the MPF, automated tests for finding suitable target criteria
weightings were done by A. Thorgeirsson [173] as a student assistant.

5.5 Considering trajectory constraints

After each iteration of the trajectory optimization, a lower limit on the trajectory
velocity vryy is enforced and the trajectory acceleration aryy is restricted. This
ensures that after any iteration a feasible trajectory is available. Due to the
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high execution frequency the formulae are rather simple, avoid evaluating the
B-spline function and take advantage of the convex hull property.

vryy is restricted to nonnegative values, which translates to restricting all com-
ponents of the state estimate X to nonnegative values:

X = min (%,0) (5.16)

Additionally the differences between neighboring components % of % are lim-
ited according to

A

Xj = max ()’5[71 +t Ades,neg * At,, min (fia i1+ Ades,pos * AZK)) s

i=23,...

(5.17)

Ages,pos denotes the desired positive longitudinal acceleration and dgesneg 1S
the desired negative longitudinal acceleration. The approach in (5.17) over-
estimates the absolute value of trajectory acceleration using the convex hull
property of the B-spline function. Hence, (5.17) might in some situations adjust
control points although the specified acceleration limits are not yet exceeded.

The following subsections state further constraints which are taken into account
partly as hard constraints and partly as soft constraints. Hard constraints are
constraints that reduce the solution space of an optimization problem and can
lead to an empty set of feasible solutions. In contrast, the term soft constraints
means that the optimization function is chosen such that violating these soft
constraints leads to very bad function values with the aim that such solutions
are avoided by the optimization method.

5.5.1 Adaption to vehicle motion state
O Small deviations between trajectory velocity vryy and vehicle velocity vypc

always occur because of an imperfect control. However, there are several cases
in which both quantities differ significantly from each other. Examples are
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driving off from a parking position and when the driver stops overriding the
ALC by pressing accelerator or braking pedal.

If the deviation exceeds a tolerated threshold, a new trajectory should be
planned. The velocity and acceleration at the trajectory beginning should be
adapted to the vehicle motion state given by vehicle velocity vyne and vehicle
longitudinal acceleration vyhe1x. Hence, the constraints

vrry (f1 = 0) = vypel 5.18)

atyy (t1 = 0) = Vyhelx

shall be enforced. Several methods for taking into account state constraints
during Kalman filtering are presented in [163]. The state projection method can
modify the control points such that the trajectory fulfills certain hard equality
constraints at single points in time. Adopted from [79]. The state projection
method projects an unconstrained estimate fc;; onto the hyperplane defined by
the constraints Dx = d. Usually Dx = d is an underdetermined equation
system. The constrained estimate £, is given by

-D" (DD") (D2} - d). (5.19)

The difference of the projected control points need to be checked against the
desired longitudinal acceleration. If they exceed the acceleration limits ages neg
OT ddes pos, the projection needs to be repeated with additional constraints that
refer to differences between neighboring control point values.

O The state projection method changes only the control points that influence
the trajectory function at r; = 0. If the function is projected onto a vehicle at
standstill and the temporal distance of neighboring knots Az, between knots
is small, the trajectory will demand an abrupt acceleration towards the upper
speed limit unless control points that refer to following spline intervals are
adapted too.

A jerk-free and comfortable velocity transition can be achieved by modifying
in the optimization problems (5.10) and (5.15) the desired acceleration value
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Figure 5.6: Individual effects of projection onto vehicle motion state using (5.19) (1), enforcement
of acceleration constraints with (5.17) (2) and adaption of filter settings using (5.20)
(3) on the trajectory during trajectory adaption to vehicle motion state.

aset(tp) from (5.11) and the acceleration weight R;l in the first filter iterations
as follows:

“1 _ pl 1 pel .
R, =R, + (R, — R, )/ Atvhciadapt - min(Atvnciadapts 1),

(5.20)
aSet(tp) = VVhelx + (O Vthl,x)/AchclAdapt . mln(AchclAdapt, 1.

-1

Atvnciadapt and R

are tuning parameters. From an initially strong weighting
R;’lto of aser = Vvhelx at ¢ = 0, the quantities R;,' and ase, return to their standard

values in a linear fashion until 7o + Atvhciadapt. Adopted from [79].

Figure 5.6 illustrates the individual effects of projection onto vehicle motion
state with (5.19), enforcement of acceleration constraints using (5.17) and adap-
tion of filter settings according to (5.20) on the trajectory. The trajectory param-
eters are At, =25, Aty = 0.1 s, AtLimmyy =2sand [ = 1.
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In the depicted situation, the speed limit from map data with desired accelera-
tion VL im Map,y 1S constant at 26.7 m/s (black solid line in upper diagram). The
vehicle motion state consists of the vehicle velocity vyp; = 20 m/s and the ve-
hicle longitudinal acceleration Vypejx = —1 m/s?. Each component is indicated
by a black dot in the corresponding diagram. A trajectory without adaption (de-
picted by green dotted line) starts at vy jm,Map,» instead of vypel. A trajectory that
is only projected onto the vehicle state (orange dashed line) can demand strong
accelerations since the projection only changes the first four control points. The
red solid line results from additionally enforcing acceleration constraints with
(5.17). The adaption of the filter setting using (5.20) with R;’lto = 0.01 and
Atvnciadapt = 150 s allows to get a more comfortable transition.

The desired effect could also be achieved using a sigmoid function. However,
the parameters of the sigmoid function need to be chosen carefully because
filter sensitivity differs strongly with the magnitude of R,'. For simplicity a
linear transition with rather high Afyhciadape Was used.

5.5.2 Adaption to previous trajectory

vryy (t1), atry(t1) and jryy(¢t;) with 11 = O of a new trajectory can also be
projected onto vryy, atyy and jryy of the current trajectory at its current eval-
uation point ¢* in order to achieve a C> continuous connection between both
trajectories.

When connecting two trajectories using state projection, the knot positions
of the new trajectory are additionally chosen such that the distance of #; to
the neighboring knots equals the distances of #* to the neighboring knots of the
previous trajectory. Then the shape of the new trajectory around ¢#; is identical to
that of the previous trajectory around ¢* and uncomfortable velocity oscillations
at the joint are avoided.
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Figure 5.7: Individual effects of projection (1) and improved control point initialization (2) on

the new trajectory during adaption to current trajectory at evaluation point styy (¢*) of
current trajectory.
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Figure 5.7 depicts various trajectories with At, = 15, AfimTiy = 1 5, Aty =
0.1 sand I = 3. Att* = 14.333 s or sTyy(t*) = 201.75 m, respectively, re-
planning occurs and the new trajectory needs to be connected to the current
trajectory depicted in green. The new trajectory depicted in orange is not
projected and therefore the connection is not continuous. The new trajectory
depicted in red is projected and a C? continuous connection to the current trajec-
tory is achieved. However, shortly behind the connection point the courses of
its derivatives deviate from the corresponding courses of the current trajectory.
The blue trajectory results when additionally the control point vector of the new
trajectory is initialized with the corresponding control point values of the cur-
rent trajectory. The deviations in the courses of the derivatives are significantly
reduced.

However, in case of I = 1 the second derivative still deviates with this ap-
proach. This is because the estimate cannot be improved with hindsight using
the knowledge stored in the KF covariance matrix that results from additional
data points.

5.5.3 Adaption to vehicle ahead

The Intelligent Driver Model (IDM) described in [174] provides an ACC func-
tionality by computing a desired vehicle acceleration ajpy given by

aipM = dfree t dint- (5.21)

The free-road acceleration term afee With

5

1%

Qfree = (des,pos [1 - (ﬂ) :| (5.22)
VSet

determines how the vehicle velocity vype converges to the set velocity vse
without a vehicle ahead. ages pos is the desired positive longitudinal acceleration.
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5.5 Considering trajectory constraints

The acceleration exponent ¢ is usually 4. The interaction acceleration term ajp,
with )
Aint = ddes,neg (&) (5.23)
ASVhelAhead
causes the vehicle to decelerate in order to adjust the distance to the vehicle
ahead AsvhciAhead tO the desired minimum distance Asges given by

VWhel * (VWhel = VVhelAhead)
ASges = ASjam + AfvnclAhead * Vhel + . (529

2\/ades,pos : |ades,neg|

Asvynciahead and the velocity of the vehicle ahead vyhcianead are measurements

of the radar sensor. Asy,y, denotes the desired traffic jam distance with a typical
value of 2 m. Afvhclahead 1S the desired time gap to the vehicle ahead and
Agesneg < 0 the desired negative longitudinal acceleration.

Vset in (5.11) can be modified with aipy during the iterative solution of (5.10)
and (5.15) such that the trajectory optimization process takes into account
the vehicle ahead as a soft constraint. The radar sensor data Asvhcianead and
VVhelAhead Tefers to the new trajectory at start time ¢y = 0. Under the assump-
tion that vypciahead 1S constant and that the ego vehicle will follow the planned
trajectory perfectly (Vwhel (1) = vyy (¢), Yt 2 0), Asvhciahead can be calculated
in following iterations as the sum of the initial distance Asyncianead(f1) and
VWhelAhead (1) + £, from which the trajectory position styy is subtracted:

Asvhcianead (tp) = Asviciahead (1) + Vvnclahead (1)  tp — STyY(fp)  (5.25)

In order to avoid dividing by small values, the IDM interaction free road term
from (5.22) with velocity dependent ages pos according to the acceleration tables
and with vse; = vryy is used only if vryy is larger than 2 m/s. For vryy < 2 m/s,
Afree 1S et to the trajectory acceleration atyy. The interaction term remains as
in (5.23).

vset 1S determined depending on a hysteresis with respect to ain: If aijne >
—0.05 m/s?, vse; for trajectory optimization is computed according to (5.11). If
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Figure 5.8: Effect of Intelligent Driver Model (IDM) on set point of trajectory velocity vse; and
resulting trajectory depending on the chosen desired time gap to the vehicle ahead
Atvhclahead during trajectory adaption to a vehicle ahead with a velocity of 12 m/s.
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Qint < —=0.15 m/s2, braking because of a vehicle ahead is required and aipy is
used to correct vse; downwards:

Vser = max (0, min (vyy + Aty - aipm, VLimT3Y) ) (5.26)

In experiments it turned out beneficial to let age; remain at zero. With these
modifications the free-road term in (5.22) causes a comfortable acceleration or
deceleration towards the current vryy coming from the upper speed limit.

The minimum operation in (5.26) ensures that vryy can decrease fast enough.
Without this minimum operation, the IDM can weaken the braking for a tight
upcoming curve when there is no vehicle ahead. This is because (5.22) causes
a deceleration towards a lower velocity set point vse that is sufficient and
comfortable on highways but too weak for country roads, on which vge can
vary strongly and deviations between vype and vser should be minimal.

Figure 5.8 shows a situation in which the IDM adapts the trajectory using (5.26).
If the vehicle trajectory tracks the planned trajectory and the velocity of the
vehicle ahead remains constant, the specified desired time gap to the vehicle
ahead will result.

5.6 Scientific contribution

DM are popular for automotive applications and have great potential in combi-
nation with DP as their orthogonal features can complement each other. How-
ever, the exponential growth of computational effort with increasing time hori-
zon limits the application of DM to short time horizons.

In general the resulting static optimization problem (2.7) in the DM approach
is nonlinear and solved by sequential quadratic programming (SQP) techniques
or interior point methods [187]. Frequently trajectory optimization is applied
to vehicles with combustion engine or a hybrid power train, both of which have
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Nonlinear problems, e.g. NWLS

Convex problems, e.g. WLS

Linear problems

Figure 5.9: Classes and examples of optimization problems

lots of degrees of freedom and constraints. For example, if the optimization
problem incorporates the gear selection it is a mixed integer problem.

In comparison, BEVs often have a power train with 1-speed gear box which
simplifies the optimization problem. Quadratic problems are a subset of nonlin-
ear problems that can be optimized more efficiently with QP methods because
setting the derivative of the convex optimization function to zero results in
sufficient conditions for the global optimum.

The common linear WLS approximation problem is an unconstrained quadratic
optimization problem and the NWLS approximation an unconstrained nonlin-
ear optimization problem. Figure 5.9 depicts different classes of optimization
problems.

This work presents a DM based trajectory optimization approach for an ALC
of a BEV with fixed gear ratio such as the considered research vehicle. With
the presented approach, the computational effort only grows linearly with the
number of function parameters or the time horizon. This substantial saving is
achieved by formulating the trajectory optimization problem as either a WLS
approximation problem or a NWLS approximation problem. The approxima-
tion problem is solved iteratively by RBA or NRBA, respectively. Each iterative
method includes an iterative state estimator, also known as filter.

Usually filters solve unconstrained linear and nonlinear WLS problems. There-
fore limitations of the vehicle and restrictions of the environment enter the
trajectory optimization problem in the presented approach mainly as soft con-
straints. This means that the objective function is designed such that undesired
solutions coincide with comparatively very bad values of the objective function.

146



5.6 Scientific contribution

However, some hard constraints are also enforced using the state projection
method from [163]. Hard constraints narrow the solution space of the optimiza-
tion problem.

The trajectory is defined by a B-spline function and describes the desired vehicle
velocity with respect to time. The trajectory results from an iterative solution
of the approximation problem. Spatially or temporally defined soft constraints
or optimization goals referring to derivatives of the function or its integral can
be taken into account during the optimization process. For example, a spatial
upper limit on the velocity defined by the trajectory results from the legal speed
limit or tight curves.

Treating such spatial constraints as soft constraints leads to a NWLS problem.
However, the iterative trajectory optimization approach allows to approximate
this problem in each time step by a WLS problem similar to [28, 47], who
approximated a nonlinear problem by a quadratic problem in order to be able
to apply a QP method instead of a SQP method. The linear state estimator for
WLS problems enables large savings in computational effort compared to the
nonlinear state estimator for NWLS problems.

The energetic optimization of the trajectory is a case in which the approximation
with a WLS problem cannot be expected to produce acceptable results. Then a
nonlinear state estimator can be applied as demonstrated.

The presented iterative trajectory optimization approach offers the following
additional advantages:

First, the number of function parameters does not need to be bounded. In-
stead, the iterative estimator can determine additional function parameters if
the temporal length of the trajectory needs to be increased. As this does not
influence the computational effort in each iteration of the estimator, arbitrarily
long trajectories can be planned.

Second, the temporal length of the trajectory increases with the iterations and
after each iteration an intermediate result is available for use. Therefore, the op-
timization can be paused and continued in accordance with the time constraints.
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Differentation from previous works

The previous project e-generation [22, pp. 29-35] uses a spatially defined veloc-
ity trajectory represented by a cubic polynomial. The polynomial is iteratively
adapted to map data using a KF in such a way that an optimization problem simi-
lar to (5.3) but with additional target criteria referring to the first two derivatives
is solved.

Due to few degrees of freedom of the cubic polynomial, only a trajectory with
simple shape can be represented. The spatially defined velocity trajectory ex-
hibits the flaws mentioned in Section 5.2. Especially the reluctant behavior at
low velocities is noticable in test drives. A target criterion referring to the elec-
trical traction power or the consumed energy is not included in the optimization
problem.

The approach presented in this chapter ensures nonnegative trajectory velocities
at the spline function level by restricting its control point values via (5.16). In
contrast, the nonnegativity of the polynomial is not ensured, only the result of
the polynomial evaluation is restricted to nonnegative values.

Furthermore, the previous approach adapts the trajectory only roughly to the
vehicle velocity and acceleration by modification of the target values in the
approximation, whereas in (5.18) an exact adaption via parameter projection is
done.

An adaption to a previous trajectory as in Subsection 5.5.2 is not needed with
the polynomial function and constraints resulting from a vehicle ahead as in
Subsection 5.5.3 were not considered.
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Section 6.1 of this chapter states the stages of the development process of
the ALC followed by a description of the architecture of the ALC and its
components in Section 6.2. Section 6.3 investigates the influence of selected
parameters on the ALC energy-saving potential in simulations. Section 6.4
summarizes the technical contribution of this work concerning ALC.

6.1 Development process

The development of the ALC in the project e-volution followed the V model,
which describes the software development process in the shape of the letter V
and is depicted in Figure 6.1. The V model is widely used in the automotive
industry [152, p. 25]. ISO 26262 states requirements for the development
process of safety critical components and systems in vehicles. The procedure
described in ISO 26262 is oriented towards the V model [187, pp. 110-111].

In the descending branch of the V model the customer requirements are ana-
lyzed and translated into a logical architecture from which a technical architec-
ture is derived. In subsequent steps this technical architecture is decomposed
into systems and components. During this process on each level specifications
and test cases are defined for later review of the development steps. The last
step of the descending branch coincides with the first step of the ascending
branch and includes the implementation of the specified components.
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. Validation instructions
Customer requirements \fw————=————=—=————=—=== Acceptance test
Validation results
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Component test

Implementation

Figure 6.1: Software development process according to V model with allocation of in-the-Loop
methods according to [187, p. 165].

The ascending branch comprises subsequent testing and integration steps from
individual components up to testing the customer acceptance on the whole
system.

Each step of the descending branch defines specifications that have to be met
during verification on the same level of the ascending branch as indicated by
dashed arrows in Figure 6.1 [187, pp. 163-168].

The V model distinguishes four different test steps. The first three are compo-
nent test, integration test and system test. These are verificiation tests. Verifi-
cation denotes the process of evaluating whether an implementation meets the
specified requirements for the corresponding development phase. Only the cus-
tomer acceptance test is a validation test that determines whether all customer
requirements are fulfilled. Methodological additions to the V model such as
rapid prototyping enable validation at an early stage and help to avoid time-
consuming and costly reworking loops across various stages of the V model
[152, pp. 33, 152-154].
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Rapid prototyping denotes process steps that enable early verification or valida-
tion of specifications. Typical process steps are modelling, simulation, integra-
tion and test of the prototype in the vehicle [152, pp. 160-162]. Model-based
methods can be applied for specification of software functions as well as vali-
dation of specifications. Model-based software development allows to model
software functions in a graphic environment using block diagrams [152, pp. 31-
32]. A model compiler can compile the software functions for various target
hardware such that the functions can be simulated as well as tested in the vehicle
[152, p. 208]. If rapid prototyping methods support the development process, a
virtual integration of the system is possible at the end of the descending branch.
Before the integration steps this virtual prototype can be evalutated in simulated
test drives [187, pp. 163-168].

In-the-Loop methods allow to combine models or real components at each de-
velopment step with a reproduction of their real environment in order to obtain
an assessable system. As there are no real components until the implementation
phase of the V model, a simulation environment is used for virtual integra-
tion. Figure 6.1 allocates different in-the-Loop methods to the steps of the
development process.

Model-in-the-Loop (MiL) enables a confirmation of the specification of cus-
tomer requirements up to the logical architecture. The created model-based
algorithms do not yet refer to the hardware of the target system. By transfer-
ring the model-based algorithms into a simulation environment that is hardware
independent but exhibits already technical characteristics similar to that of the
target system one can perform Software-in-the-Loop (SiL) which allows for an
assurance up to individual components. Hardware-in-the-Loop (HiL) denotes
methods that transfer models from the SiLL environment to real components.
For example a function can be executed on a vehicle ECU while the system
architecture of the vehicle is simulated. This allows to verify the interaction
of the ECU with other simulated vehicle components [187, pp. 163-168]. HiL
simulation usually requires real-time capable components [152, pp. 297-301].
When HiL methods are applied consequently, the entire system exists in real
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components and can be verified up to the logical architecture. The Vehicle-
in-the-Loop (ViL) method is especially useful for the development of driver
assistance systems as it allows the operation of a real test vehicle in a virtual
environment. Vehicle and virtual environment can be linked by either replacing
the real sensors with interfaces to the virtual environment or by stimulating real
sensors artificially.

In the research project e-volution, the customer requirement was stated as an
ALC that is as comfortable and reliable as its predecessor from the previous
project and offers at least the same dynamic driving style as the ALC that
was developed during the previous project e-generation for the same research
vehicle. As main enhancements the e-volution ALC was required to be capable
of planning of longer, more far-sighted trajectories and of realizing an energy-
efficient driving style.

The specifications of logical and technical architecture were taken over from
e-generation. The logical architecture can be summarized as a system that
controls motor torque according to map data. The technical architecture defines
the interfaces of the ALC to the vehicle, for example which CAN messages are
sent and received. Furthermore, it specifies the interfaces to the driver, e.g. how
the driver can control the ALC using buttons next to the steering wheel and
which information about the ALC state is displayed by the instrument cluster.

System design specifies the software architecture that implements the ALC
functionality. The functionality is divided into different components whose
interfaces are defined. System design was conducted during e-generation and
reused for e-volution. O The system design is specified by a framework
in the model-based development environment MATLAB Simulink by Math-
Works. The framework was created by an employee of the Porsche Engineering
Services GmbH. It also takes care of communication with other vehicle com-
ponents via several CAN busses and converts CAN messages into physical
quantities. Furthermore, it checks the torque demand of the ALC system output
for plausibility. This allows a safe vehicle operation in conjunction with an
agile development of the ALC. Adopted from [79].
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Design of components converts the black-box description of the system de-
sign into a white-box description for each module including the internal data
flow such that each module can be implemented [187, pp. 168-173]. Within
e-volution, component design led to the approximation algorithms RBA and
NRBA and the AEPM. These components were implemented and tested in
MATLAB. Then the trajectory planning based on RBA and NRBA was de-
veloped and tested in MATLAB using the open-loop vehicle reference model
mentioned in Section 4.5 to investigate its energy-saving capabilities.

For further integration steps these functions were included into the Simulink
framework. Translating MATLAB functions into sequences of Simulink blocks
seemed not be advantageous. Therefore these functionalities were integrated
into the Simulink framework as embedded MATLAB functions. As a result,
each of the ALC components is based on few Simulink blocks that contain
embedded MATLAB functions. Around the framework several simulink blocks
including the closed-loop vehicle model from Section 4.5 were added in order
to enable SiL tests of individual components and the whole ALC system. Ex-
tensions for considering constraints stated in Section 5.5, such as the projection
of the trajectory as well as taking into account the vehicle ahead, were almost
exclusively developed within the Simulink framework because of the closed
control loop.

Additionally, a HiL test bench was used for component, system and integration
tests as well as calibration. The HiL test bench was created by B. Fath during
e-generation [22, pp. 60-73]. During HiL tests the developed functions run on
the target hardware of the research vehicle. The target hardware is an ETAS
ES910 rapid prototyping ECU and can execute compiled Simulink models.
The HiL test bench allows to test the interaction of the software on ECU with
the simulated vehicle architecture close to reality before the actual test in the
vehicle.

The HiL test bench consists of four hardware components. A real-time com-
puter, a host computer, the prototyping ECU and a car PC. Figure 6.2 shows

153



6 Automated energy-efficient longitudinal control
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Figure 6.2: Simplified illustration of HiL architecture according to [22, p. 66]

the connections between the components of the HiL test bench in a simpli-
fied manner. The real-time computer is an [PG Xpack4 that runs a simulation
environment including all CAN communication between the ES910 and the
architecture of the virtual vehicle. The host PC is an ordinary desktop com-
puter that controls the real-time computer via an ethernet connection, starts
simulations, records simulation data and provides a graphic simulation output.
The simulation software is [PG CarMaker HiL, a vehicle dynamics simulation
software that is extended by the capability to control the Xpack4.

In CarMaker a vehicle model was created that is more detailed than the vehi-
cle reference models described in Section 4.5 and also takes into account tire
characteristics and vehicle kinematics. Furthermore, a model of the power train
as described in Section 4.3 was integrated into the CarMaker vehicle model as
a Simulink model and a road model of the WR was created from Open Street
Map data and included in CarMaker. These models were also added by B. Fath.

The host PC also runs the experiment environment ETAS INCA. Via a second
ethernet connection of the host PC, INCA can flash compiled Simulink models
onto the ES910, start them on the ES910 and view and change model parameters
during run-time, e.g. for calibration purposes.

The car PC is a small computer designed for automotive applications and con-
nected to the ES910 via a CAN bus. It receives a GPS position that is generated
by the simulation on the Xpack4 and passed trough the ES910. Using this
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information the map software EB Assist ADTF by Electrobit, which runs on
the car PC, provides map data for the ES910.

A similar HiL setup also for a trajectory optimization and vehicle control use
case is described in [54, pp. 181-192].

The HiL environment enables safe, reproducible and automatically performed
tests. It also helps to reduce expensive testing time in the real vehicle because
most specifications can be verified in advance [187, pp. 163-168].

Despite the great benefits of the in-the-Loop methods, they cannot completely
replace real test drives. At further development stages new test scenarios that
cause problems more likely occur in reality than in the already well-known
and simplified simulation environment. Furthermore, some features of driver
assistance systems require a subjective assessment [187, pp. 163-168].

O Real test drives were conducted on the WR itself as well as on the highway
and at roundabouts nearby. The test drives could focus on determining various
calibration parameters such as acceleration look-up tables, weighting factors of
the trajectory optimization and parameters of the controller that computes the
torque demand. Parameter settings for three different modes that correspond to
different driving styles were derived. In a final acceptance test about ten em-
ployees of the project partner who work in automotive research and engineering
tested the ALC on self chosen routes. Adopted from [79].

6.2 System architecture and design

O The software components of the ALC are denoted modules. The ALC system
consists of route data module, parameter adaption module, trajectory module
and controller module. Figure 6.3 depicts the architecture of ALC. The fol-
lowing sections describe the component design, i.e. the function each module
performs. Adopted from [79].
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Figure 6.3: System architecture of the automated longitudinal control. Adopted from [79].

6.2.1 Route data module

O The input to the route data module comprises six vectors that contain the
values and positions of legal speed limits, the road curvature and the slope for
the road section ahead of the vehicle in driving direction. Similar to a run-
length encoding, the vectors contain only information for positions at which the
corresponding quantity changes significantly. The map data is provided via the
CAN bus by the navigation system. Adopted from [79]. Since no destination
is specified, the navigation system only knows the route up to the next junction
or roundabout. If all roads connected to the junction have the same average
amount of traffic, the electronic horizon ends at this junction. If one road has a
higher traffic density, the navigation system assumes that the driver takes this
road because it is the most probable path (MPP).

Following the MPP repeatedly leads onto the next larger road and finally onto a
highway. Unless the driver follows an assumed MPP, there will be a short time
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period with no available map data. The navigation system then recalculates a
new path whereby the length of the electronic horizon quickly increases.

Sometimes the driver likes to turn at a junction but the navigation system as-
sumes that the junction will be crossed straight. In such cases the ALC does
not reduce the vehicle velocity sufficiently and the driver needs to brake. Since
the ALC neither uses information about right of way nor can detect traffic signs
or traffic lights via a camera, the driver usually has to override the ALC at
junctions and roundabouts.

The length of the electronic horizon ranges from several hundred meters in
urban areas over roughly 1 km on country roads to several kilometers on high-
ways.

The route data module is executed every 500 ms and mainly converts the map
data to a meter discrete representation for up to 3 km ahead of the vehicle
position and provides three vectors that describe the courses of road slope, road
curvature and legal speed limit. However, the input vectors of the legal speed
limit can be modified before the conversion by three mechanisms:

First, the driver can overwrite the current legal speed limit of the map data by
adding a positive or negative offset using buttons next to the steering wheel.
This adaption functionality proves beneficial in situations in which the legal
speed limit in the map data does not match the actual legal speed limit, for
example at temporary construction sites.

Second, the positions of upcoming speed limits can be changed. If the legal
speed limit is increased, the ALC will not start to accelerate the vehicle before
the new traffic sign is passed because the planned trajectory does not exceed
the generated upper speed limit. When leaving a city, this behavior is usually
undesired by the driver and can provoke overtaking maneuvers of following
vehicles. Therefore two parameters were added. Both describe a time offset,
one for the case of an increase of the legal speed limit and one for a decrease of
the legal speed limit. In both cases the corresponding parameter is multiplied
with the lower of the two speed limits to determine the spatial distance by which
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the position of the higher speed limit is shifted in the map data. This allows to
implement a more realistic driving behavior or adaption to driver preferences.
For example, it can be achieved that the ALC already starts to accelerate when
the driver sees the traffic sign that indicates a higher legal speed limit.

Third, an upper limit is enforced on the legal speed limit depending on the
driving mode of the ALC selected by the driver. This is needed on highways
because there is not always a legal speed limit.

The route data module was implemented by D. Dorr [22, pp. 23, 24]. The
author of this work added the time offset parameters and logic for processing
roundabout data.

6.2.2 Parameter adaption module

0O The parameter adaption module updates the ATFM and AEPM described
in Subsection 4.7.1 and Subsection 4.7.2, respectively, every 50 ms using ve-
hicle data from the CAN bus. During the ATFM update one KF iteration is
performed and during the AEPM update the FB-KRLS takes into account a new
measurement.

An update of the ATFM requires the traction force Fi,c, the vehicle velocity
vvhel and the sensor longitudinal acceleration ax and an update of the AEPM
the electrical traction power Pic elec, Vvhel and ax. While vypl and ay are mea-
surement signals on the CAN bus, Fi,. needs to be approximately computed
from the motor torque signals using (4.25). Piacelec can be determined from
the voltages and currents of the electric motors that are available on the CAN
bus.

Before CAN signals are fed to an estimator or used to calculate the input quan-
tity for an estimator, signal noise is removed using a polynomial function ap-
proximation method [145], also denoted polynomial Kalman smoother [144].
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In two cases the models are not adapted: First, during a vehicle standstill
because the missing excitation in the data can cause estimations to diverge
from their true value. Second, if CAN signals indicate that there is signifi-
cant hydraulic brake pressure because the models only consider braking via
recuperation and are not valid when hydraulic brakes are active.

Output of the parameter adaption module are updated parameters of ATFM and
AEPM. The parameter adaption module including ATFM is from F. Bleimund
[22, pp. 24-29]. The author of this work added the AEPM. Adopted from [79].

6.2.3 Trajectory module

O The trajectory module performs the tasks that Chapter 5 described in detail.
These tasks include generating an upper speed limit and planning a trajec-
tory. Inputs are the map data from the route data module, parameters of the
AEPM provided by the parameter adaption module, vehicle data and the se-
lected driving mode. The selected driving mode determines which longitudinal
acceleration look-up table is used to compute the speed limit from map data
with desired acceleration. Furthermore, in driving mode "Normal" and driving
mode "Sport" RBA performs the trajectory optimization whereas in driving
mode "Range" NRBA optimizes the trajectory using the AEPM, whereby the
absolute value of the electrical traction power is penalized strongly.

The trajectory module is called every 500 ms and then can either continue
planning the current trajectory or start planning a new trajectory.

Continuing planning the current trajectory means that the module performs
additional iterations of RBA or NRBA until it reaches the iteration limit for the
current module call or the optimized trajectory reaches the end of the electronic
horizon (c.f. Figure 5.3).

Planning of a new trajectory is only triggered if distance limit or time limit since
the last beginning of a trajectory planning have been exceeded, if the driver has
stopped overriding the ALC by pressing the braking pedal or accelerator pedal
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or if data of the curvature vector has changed more than a threshold since the
last module call indicating that the driver has chosen a route that differs from the
MPP. Additionally, the length of the electronic horizon must exceed a specified
lower limit to enable planning of a new trajectory. Adopted from [79].

In two cases, vrjy and aryy of the new trajectory are projected onto the vehicle
velocity vypcl and vehicle longitudinal acceleration vyl x according to Subsec-
tion 5.5.1: First, if there is no valid previous trajectory, e.g. because map data
was temporarily not available, and second, if the current vehicle velocity devi-
ates more than a certain threshold from the planned velocity v1yy, e.g. because
the vehicle is starting from a standstill or because of an intervention by the
driver.

In all other cases vy (f1), aryy (f1) and jyy(¢1) with #; = O of the new trajec-
tory are projected onto vryy (t*), atyy (t*) and jryy (¢*) of the current trajectory
at its last evaluation point t* according to Subsection 5.5.2 in order to achieve a
smooth connection between both trajectories at ¢*.

The knot vector k and estimated control point vector X are the outputs of the
trajectory module.

6.2.4 Controller module

O Every 20 ms the controller modules computes the desired velocity vges and
desired acceleration agqes and translates these quantities into a motor torque
demand Ty that causes the vehicle to track the velocity trajectory. In most cases
vdes and ages equal the trajectory velocity vyy and the trajectory acceleration
atyy, respectively. vryy and aryy are determined by evaluating the trajectory
defined by the knot vector and estimated control point vector from the trajectory
module at the current point in time measured starting from the last trajectory
planning start. Adopted from [79].

However, the controller also comprises three functionalities of the trajectory
module:
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1. Trajectory adaption to vehicle motion state: While the driver is overriding
the ALC by using the pedals, the controller module projects the trajectory
onto the vehicle motion state given by vehicle velocity and vehicle accel-
eration as stated in Subsection 5.5.1. Therefore, as soon as the ALC takes
over control again, the controller can immediately evaluate the trajectory
that is connected jerk-free to the vehicle motion state. During the next
call of the trajectory module planning of a new trajectory is initiated.

2. Trajectory adaption to the vehicle ahead (c.f. Subsection 5.5.3): The
IDM in the trajectory module serves mainly for planning the approach
to the vehicle ahead. For the actual vehicle following task an IDM is
implemented in the controller as well. In order to be able to modify vryy
and atjy according to IDM, the controller module can perform the state
projection method described in Subsection 5.5.1.

3. Enforcement of velocity and acceleration constraints: If the controller
changes the control points of the trajectory, it must also enforce the
restrictions vryy > 0 by adapting control point values and enforce re-
strictions with respect to atyy by adapting the differences of neighboring
control point values (c.f. Section 5.5).

Since the controller module can alter the trajectory, the trajectory module ac-
cepts a control point vector coming from the controller module as input and
interprets it as the previous trajectory. If there is no valid trajectory available
for evaluation, the controller module causes the desired vehicle acceleration to
quickly diminish and keeps the velocity constant. If no map data is available
for several seconds, the ALC system deactivates itself.

The in this subsection above stated functionality was added by the author of this
work. However, the architecture and control loop including the pilot control
were adopted from F. Bleimund [22, pp. 35, 36].

O Figure 6.4 depicts the controller module architecture and the control loop.
vdes and ageg are inputs to a pilot control and a model predictive control (MPC).
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Figure 6.4: Architecture of controller module and control loop. The pilot control generates an open-
loop motor torque demand Ty pc based on desired velocity vges, desired acceleration
ages and road slope angle a using the adaptive traction force model (ATFM). The
model predictive control (MPC) computes a closed-loop torque demand Tjes Mpc tO
minimize the remaining deviation of vehicle velocity vyyc and vehicle longitudinal
acceleration Vypel x from vyes and ages. Adopted from [79].

The pilot control contains the ATFM and computes an open-loop torque de-
mand Tyes pc based on road slope angle @, vges and ages. Due to imperfect
map data, sensor data and ATFM, the vehicle velocity vyp deviates from vges
and the vehicle longitudinal acceleration Vypc x deviates from ages. The two-
dimensional MPC computes a closed-loop torque demand Tyes Mpc in order to
minimize these deviations.

The torque demand of the controller module Tges is the sum of the pilot control
torque demand Tges pc and the MPC torque demand Tyes mpc and reaches the
motor ECU via the CAN bus. The motor ECU computes the distribution of the
torque demand between the front and rear motor using the strategy described
in Section 4.3 and controls these actuators accordingly. If the torque demands
indicates a deceleration request, it can additionally be allocated to the brake
ECU that controls the hydraulic brakes.

The control loop is closed through the vehicle where CAN messages transfer the
feedback information. A comprehensive review of trajectory tracking methods
is provided in [40].
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Pilot control

The pilot control determines an open-loop torque demand Tyes pc With

Firac  Ydyn,FA + T'dyn,RA
TdCS,PC = '~

o 5 6.1)

so that the vehicle roughly tracks vges and ages. iG is the gear ratio, rgynra the
dynamic front wheel radius and r4ynra the dynamic rear wheel radius. The
traction force Fi,c results from the ATFM in Subsection 4.7.1:

Fiac = (1, ay, Vges) "X Vhel (6.2)
———

=:Cvnc

The parameter adaption module provides the adapted vehicle parameter vector
Xvhel- The vehicle motion vector Cype) depends on vdes2 and ay, whereby

ax = ddes + g - sin(a). (6.3)

Adopted from [79]. According to Subsection 4.2.1, the road slope angle o can
be computed from the road slope y, which can be derived from map data or the
signal of a slope estimator that is available on the CAN bus.

The simple calculations in the pilot control are very transparent, the estimated
vehicle parameters can easily be limited to a valid range and the other values
are measurements. The pilot control contributes to the torque demand to a large
extent and serves for overcoming the majority of the sum of driving resistances.
Using the pilot control allows to restrict the output of the MPC that closes the
control loop to low absolute values without risiking a vehicle standstill at a
slope. Restricting the MPC output seems beneficial from safety considerations
because the MPC performs operations that can be numerically problematic such
as dividing by potentially small values. Additionally it allows to apply a simpler
vehicle model in the MPC for less computational effort.
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Model predictive control

Model predictive control (MPC) is a direct trajectory optimization method
that approximates the constrained infinite dimensional OCP from (2.1) by a
finite dimensional problem that can be solved efficiently in real-time. The
approximation occurs by discretizing the problem and solving it for a finite
time horizon T'.

MPC uses a system model to predict the future system behavior. A possible
linear time invariant system model without uncertainties reads

Xpi1 = Axp + Buy, 6.4)
yp =Cxp

with system state xp,, control input u,, system output y, and discrete time
index p. In each time step ¢, MPC solves the following optimization problem
for the horizon ¢ = 0, 6t, . . ., T with cycle time 6t:

it; = argmin J (x;, u;)
u;

D

JGenu) =Y [ =Cxi1)" Q (3, - Cxyyy) +uj Ruf, ] (6

4

subjectto Fx, + Gu; <1

Il
(=)

Herein the control input sequence u; = {ug;, w1y, . . ., wr-1:} over the horizon
is the optimization variable. x;|; and u;; denote the predicted values of x and
u, respectively, for time ¢ + i based on the information available at ¢, whereby
xo|; = X, is assumed. Present and future set points are specified via the system

output y; = {yois Y1jes - -» YT-1]t }-

The cost function J includes symmetric error weighting matrices R and Q,
which are assumed positive definite and positive semidefinite, respectively.
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past | future
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Figure 6.5: Model predictive control optimization horizon with time horizon T, cycle time o¢,
current time step #,,, planned and actual state £, x, planned and actual control input &,
u [187, p. 1431, adapted].

The matrices ¥ and G allow for linear constraints with respect to x and u,
respectively. The constraints are formulated as inequalities, which apply ele-
mentwise. 1 is a matrix of ones. For increased robustness and in order to avoid
an empty set of feasible solutions, constraint softening can be applied. Thereby
hard constraints become penality terms in the cost function analogously to the
approach stated in Section 5.5 [61].

Of the optimal control sequence @, only the first element &), is applied to the
system. At the following time step the process is repeated with the additional
information x| on the system state.

Figure 6.5 illustrates this MPC approach, that creates a feedback which partially
compensates for model inaccuracies and leads to a closed-loop control that can
take anticipatory control actions for future set points and events. The abilities
of looking ahead and considering constraints are also distinguishing features of
MPC compared to a PID controller [187, pp. 1431-1432], [95, pp. 2, 13-16].
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An analysis of different controller designs is provided by [169] and different
vehicle models for controller design are stated in [136, p. 12].

Vehicle related MPC applications in literature include ACC systems, e.g. [13,
61, 112, 154]. These use MPC as a high level controller that calculates a
sequence of acceleration commands for the ACC equipped vehicle so that it
keeps the required distance to a vehicle ahead, whereas a low level controller
tracks the acceleration sequence using commands to power train and brakes. In
the MPC the vehicle is represented with a first-order model because the low
level controller cannot realize commands instantaneously due to the limited
bandwidth of the vehicle.

In this work the MPC serves only as a low level controller and is additionally
supported by the pilot control that considers the driving resistances. Further-
more it seems reasonable to assume that the research vehicle is capable of
following power train and brake commands relatively quickly because of the
high power to weight ratio and the missing delay from changing gears. For
these reasons a vehicle model similar to the one in [116] is used. It is not a
first-order model but a double integrator involving vehicle velocity vy, vehi-
cle longitudinal acceleration Vypc x and vehicle longitudinal jerk ¥yhex. The
forward difference approximations

Vwhel (£ + 61) — Vyhe ()
ot
‘./thl,x(t + 6t) - ‘./thl,x(t)
ot

‘.}thl,x @) =
(6.6)

Vhelx (1) =

give the time-discrete state-space representation of the vehicle model, in which
Vvhelx 1s the control input [13, 116]:

VWhel, 141 1 ot YWhelt | 0 5 ©6.7)
= : * VWhel,x,r .
VWhel,x, 141 0 1 VWhel,x, ¢ 1
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The system state comprises vehicle velocity and acceleration and should be
equal to the set points for the desired velocity vq4es and desired acceleration ages.
Hence, the quantities in the state-space model of (6.4) read:

s s

1 ot 0 1 0
= )’ B: C:

0 1 1 0 1
6.8)
. VVhel Vdes
Ur = Vhelxs Xt =1 . S
Vthl,x) ades)

Simplifying Firac 10 (6.1) t0 Fipae = Mypel - ")thl,x and calculating the temporal
derivative shows that the control input u# defined as the vehicle longitudinal jerk
Vyhelx translates to changes of MPC torque demand, Tyes Mpc:

dTgesMPC ~ Miyhel * VWhelx  TdynFA + Tdyn,RA

dt - i . 2 ©9)

Discretization of the above equation using the backward difference approxima-
tion gives Tyes mpc for the current time step:

Myhel * 0 Ydyn,FA + dynRA

TaesmpC,t = Tdes,MPC,1—1 + VVhelx,r * (6.10)

iG 2

Thereby Tyes Mpc,0 = 0 and 6t = 0.2 s are used. The change of Tyes Mpc in each
ot is limited to [AT min, AT max] = [-50 Nm, +50 Nm] with following matrices
in (6.5):

0 0 __ Miyhel -6 (Fdyn, FA+7dyn,RA)
F = g — 2-iG AT min (6 11)
0 0 ’ Myncl 01 *(Fdyn, FA+¥dyn,RA) '
2-iG AT max

Furthermore, the R describing the cost of the jerk and Q describing the cost
of deviating from the trajectory velocity and the trajectory acceleration on its
main diagonal elements are set to

R=10"% Q= (20 1)-1. (6.12)
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The horizon comprises the current time step ¢ and nine future time steps, which
results in 1.8 s look ahead of the MPC. With a previously in e-generation
applied PID controller uncomfortable oscillations between acceleration and
deceleration occured on test drives while driving downhill with roughly constant
velocity. After the PID controller had been replaced with the MPC, these
oscillations were not noticed anymore.

However, the computational effort of MPC is usually much larger than that
of the PID controller and depends on the system model and the prediction
horizon [147]. Problem (6.5) has a convex quadratic objective function and
linear constraints, which allows using various QP solvers based on active set
methods or interior point methods for performing the online MPC optimization.

This work uses the general purpose QP solver provided by [94] with minor
modifications that consist of rewriting instructions that are incompatible with
compilation for the target hardware and of removing functionality and depen-
dencies that are not needed to solve the above stated problem. Modifications
of the solver, first implementations and tests of promising state-space models
within a provided simplified control loop were done by C. Lee [98] during his
time as student assistant that started after completion of his Master’s thesis.
Parameter tuning and closed-loop testing within the ALC in simulated and real
test drives were done by the author of this work.

The disadvantage of general purpose QP solvers is that they do not exploit the
special MPC problem structure and therefore using them might prevent the ap-
plication of MPC to problems with a high sample rate, high-dimensional model,
or long time horizon T. For example, the computational effort of both active
set and interior point methods increases roughly cubically with 7', whereas the
effort of algorithms that exploit sparse matrices increases only linearly [95,
p- 42], [147]. A survey of technologies for linear and nonlinear MPC is given
by [137] and [171] provides a comparison between PID controller, linear MPC
and nonlinear MPC.
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6.3 Energy-saving potential and effects of parameters

6.3 Energy-saving potential and effects of
parameters

O This section investigates the energy-saving potential using the automated
longitudinal control (ALC) with different parameter settings compared to drives
with manual longitudinal control (MLC) on the Weissach route (WR) defined
in Section 4.6 in simulations.

Automated longitudinal control setup and data
generation

The varied parameters are the temporal distance of neighboring knots Az,, the
number of spline intervals /, the temporal safety margin to upper speed limit
Aty im 1y and the weight of power error square R;,l.

Simulations of the ALC are conducted for all possible parameter combinations
that result from Az, = {1 5s,3s), I ={1,3}, AtLimTry = {1 5,2 s} and R;,l =

111
{75000 10000* 5000° 1000° 300° m» %} Adopted from [79].

During a simulation of the ALC on the WR, the position s on the WR is calcu-
lated by integrating the vehicle velocity over time. With s the corresponding
road curvature and road grade are determined from the map data of the WR.

Section 5.4 applies the open-loop reference model from Section 4.5 in a back-
ward simulation in order to calculate the energy consumption that results when
the vehicle tracks a planned velocity trajectory perfectly. The current section
considers the whole ALC including its controller module and calculates the
energy consumption that results from the actually realized velocity trajectory
using the closed-loop reference model from Section 4.5 in a forward simulation.

O In order to compare different ALC settings, the required trip time f1yjp for
completing the WR is converted into the average velocity by dividing 1yip
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ALC with AtLim,TJY =2 O At =151=1 Aty =3,1=1
ALC with At imTry =20 0 Aty =151=3 -4 At =3,1=3
ALC with AtLim,TJY =1: -0- Aty =151=1 At =3,1=1
ALC with AtpimTriy =10 —0- At = 1.51=3 -a- At, =3,1=3
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Figure 6.6: Average energy consumption vs. average velocity on the Weissach route with auto-
mated longitudinal control (ALC) under different parameter settings in comparison to
adapted and resimulated real drive with manual longitudinal control (MLC). Adopted
from [79].

by the length of the WR and the energy consumption is scaled to the energy
consumption per 100 km. This approach allows to summarize each simulation
in a single data point in Figure 6.6, which depicts energy consumption versus
average velocity. The lines are approximations of data points differing only in
R;l by quadratic polynomials. Adopted from [79].

For some parameter combinations the values of R;,l are high or low enough to
make the MPF instable. In such cases the resulting energy consumption is very
high while the average velocity is either very low or very high. Such data points
are excluded from Figure 6.6. Reduced convergence radii are noticed mainly
for the combinations that include AfpimTiy = 2 s and At, = 1.5 s. AtLimTiy
influences the data provided to the MPF and for nonlinear filters the covariance
also depends on the data. If Az, is reduced while Ary is kept constant, the
covariance matrix entries tend to remain larger. This suggests that for these
settings, the MPF parameter Q", Q" need to be reduced.
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Manual longitudinal control setup and data generation

O For comparison with a drive with MLC, a real test drive on the WR with
MLC was performed and CAN data was recorded. From the recorded data, only
the vehicle velocity vyy with a sample rate of 100 Hz was further used. By
integrating vyl over time, the corresponding position on the WR for each data
point is computed. Time information is then discarded because the following
modifications of vyyc do not depend on time:

First vy is multiplied with a factor around one in order to achieve MLC drives
with various average velocities in the same range as the average velocities of
the ALC simulations.

During the real test drive the driver had to stop the vehicle at junctions in order
to check for other traffic participants with right of way. When the vehicle
has to come to a standstill and drive off again this increases both the energy
consumption and time required for completing the WR.

The simulation environment neglects right of way and other traffic participants
do not occur. Therefore the vehicle passes junctions with a low speed without
coming to a standstill. In order to not disadvantage MLC drives in the compari-
son, position dependent lower limits on vy are applied to MLC drives. These
lower limits coincide with the velocities the ALC chooses at the corresponding
junction. Varying ALC parameter settings influences the velocity with ALC at
the occuring junctions only slightly.

During the real test drive there was few traffic and only once during a short
period the driver was restricted in the choice of vehicle velocity because of
a vehicle ahead. At the corresponding position the recorded vyyc data was
adapted to a typical ALC behavior.

The ALC computes an upper speed limit for the route ahead, which among
others depends on the specified maximum absolute value of lateral acceleration
VVhel,y,max- The originally recorded vyp results in a lateral acceleration larger
than the maximum absolute value of lateral acceleration for the ALC. Increasing
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VVhel,y,max leads to higher average velocity and less energy consumption. In
order to compare ALC and real drive under same conditions, an upper limit
is enforced on the vyye of the MLC drives. The upper limit is the speed limit
from map data with desired acceleration.

After multiplying the recorded vyp with a factor around one and imposing the

various limits the corresponding time ¢ is re-calculated using ¢ = W“hl and the
MLC energy consumption is determined with the open-loop reference model.
Figure 6.6 depicts the resulting data points and quadratic approximation for the

MLC in black and by a solid line.

The quadratic approximation line serves as a benchmark. The ALC data points
should be below this line, meaning that the ALC achieves the same average
velocity with less energy consumption or a higher average velocity for the same
energy consumption.

Initial evaluations of the energy consumption of MLC and ALC in a non-final
setup were performed by A. Thorgeirsson [173] as a student assistant.

Parameter effects
Temporal distance of neighboring knots

Approximations for data points that differ only in the temporal distance of
neighboring knots Az, and weight of power error square R;,l indicate higher
average velocities and mostly also higher energy consumptions for Az, = 1.5 s
than for At, = 3 s. The reason for this is that trajectories with larger Az, cannot
follow the upper speed limit as closely because their degrees of freedom are
temporally less dense. Hence, the vehicle is generally slower and omits some
inefficient velocity peaks. Adopted from [79].
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Number of spline intervals

When the number of spline intervals / is increased, the MPF can adjust the
trajectory in more previous trajectory intervals. When R;,l is chosen high for
strong penalization of the electrical traction power, a large I should be beneficial
because the MPF can for instance retrospectively reduce the acceleration if the
road grade suddenly increases and maintaining the acceleration would lead to
large power demand and therefore large power loss.

However, similar to Chapter 3 and Chapter 5 the simulation results do not
support this statement. All approximations for Az, = 1.5 s and I = 1 are below
those for A, = 1.5 sand I = 3. For Ar, = 3 s the ranges of the average
velocities of the approximations for / = 1 and I = 3 do not always overlap
but they can still be compared using their positions with respect to the MLC
approximation. Using this criterion the approximations for / = 1 are always
better.

The reason for the worse results with larger I can be explained by the fact that
the PF in the MPF uses a set of particles, each of which is a possible trajectory
control point vector. The number of particles equals 100 for all simulations. For
larger I, each particle comprises more dimensions and therefore each particle
dimension is sampled less densely.

In order to keep the sampling density in each dimension constant, the number
of particles needs to be increased exponentially with /. Since the computational
effort increases linearly with the number of particles, this quickly becomes
infeasible especially with computation time restrictions. From these consid-
erations and the simulation results, it seems beneficial to only use I = 1 in
combination with MPF and power penalization. Section 5.3 investigated the
effect of increasing I in combination with the KF.

Furthermore, with I = 3 there is less potential for an effect from varying weight
R;,l. Moreover, the approximation for Aty 7y = 25, Aty = 1.5sand [ =1
comprises a larger range of average velocities and energy consumptions than
the corresponding approximations for At, = 3 s.
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Temporal safety margin to upper speed limit

When the temporal safety margin to upper speed limit Afy;m 17y 18 decreased,
the trajectory follows the speed limit from map data with desired acceleration
VLim,Map,y more closely which increases the average verlocity. Furthermore, the
trajectory can follow short lasting inefficient velocity peaks which increases
energy consumption. Both these effects can be observed for the setting Af, =
3 sand I = 3, which achieve comparatively low average velocities. For the
other settings, however, the average velocity remains almost unchanged but the
energy consumption decreases. Lowering Aty i, 17y also increases the trajectory
velocity at local minima of viimmap,y and can cause the trajectory to exceed
VLim,Map,v at its local minima. Such a behavior decreases energy consumption
and increases average velocity at the same time at the expense of driving safety.
The increase in average velocity is not observed though.

VLim,Map,» 18 an upper speed limit calculated using parameters that are deter-
mined in real test drives. Slightly exceeding VviimMap,y i in most cases not
noticed but should be avoided because the extent to which the trajectory ex-
ceeds VLimMap,» s not clearly defined. Figures in Chapter 5 demonstrate that
trajectories with Aty jm1yy = 1 s stay below vpim Map,v- Figure 5.4 indicates that
even with the combination At im iy = 18, I = 5 and Az, = 5 s the trajectory
remains below Viim Map,v-

For a more complete assessment of the extent and relative frequency of viim Map,
exceedances, Figure 6.7 shows histograms of the relative difference between
the actual vehicle velocity vyhe and ViimMap,y for the Atpimtry = 1 s and
AtLimTry = 2 s with the other parameters At, = 1.5,/ = 1 and R;l = SOIW'
The histograms reveal that there are exceedances which was to be expected
because of the unconstrained trajectory optimization problem formulation. The
majority of these remain below 2 %, which also includes the controller inac-
curacies. Higher exceedances can be observed but their relative frequencies
are too low to lead to a safety critical situation during the roughly 1400 s long
drive. It also needs to be mentioned that map data itself is not perfect and can
be deprecated or be unavailable, especially during the first seconds after the
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Figure 6.7: Histograms of the relative frequencies of relative differences between vehicle velocity
Vvnel and speed limit from map data with desired acceleration vy jm Map,v for different
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Figure 6.8: Histograms of the relative frequencies of relative differences between vehicle velocity
Vvhel and speed limit from map data with desired acceleration vy jm map,v for different

weight of power error square R;,l with At imTyy =15, Aty =1.5sand I = 1.

driver has taken a different route than expected by the system in real test drives,
which poses a higher risk in practice. Nevertheless, a slight shift to higher
velocities is noticeable when Aty iy 11y is reduced from 2 s to 1 s, which leads
to a reduction in the energy consumption if the exceedance occurs in curves.

Figure 6.8 shows histograms of the relative exceedance for two values of the
weight of power error square R, whereby AtpimTry = 18, Af, = 1.5 s and
I = 1. The results indicate that stronger penalization of the electrical traction
power mainly leads to an in general slower drive and is unlikely to cause an
exceedance of Vi im Map, in curves for the chosen settings.
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Saving potential and assessment

O For the parameter combination Aty imTiy = 18, Afy, = 1.5sand [ = 1,
the ALC achieves on average the largest absolute energy savings with respect
to MLC. With additionally R;,l = ﬁ, the ALC requires 3.4 % less energy
than the MLC at the same average velocity of 59.0 km/h, and for the same
energy of 16.9 kWh/100km the ALC achieves a 2.6 % higher average velocity.
Increasing R;,l from ﬁ to %, reduces the energy consumption by 2.9 % while

the average velocity decreases by 3.1 %.

Table 2.2 on page 11 supports assessing the time and energy savings by summa-
rizing the results for different types of vehicles, roads and ALCs. The results
in the first three lines were obtained for the WR, however for a conventional
vehicle. The saving potential of a BEV is much lower than for a conventional
or hybrid vehicle because of three reasons:

* Recuperation capability: The table indicates that when investigations
include a highway section, the saving potential is in general less than
when only urban and country road sections are considered. This seems
reasonable as drives on the latter types of roads usually incorporate much
more acceleration and deceleration than highways and kinetic energy
cannot be recovered for later use without losses. While conventional
vehicles need to convert all kinetic energy into heat, hybrid vehicles can
recuperate at least some of it. BEVs have the highest recuperation power
limit and therefore can reuse much more energy.

e Efficient power train: The tank to wheel efficiency (c.f. Section 4.4) of
a BEV is much higher, especially because the electric motor does not
perform the inefficient conversion from the chemical energy of the fuel
into kinetic energy as a combustion engine in a conventional vehicle or
hybrid electric vehicle (HEV) does. An efficiency of up to 95 % for
electric motors and of up to 35% for petrol engines are stated in [10].
As part of the electricity comes from non-renewable energy sources, an
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inefficient energy conversion process usually also takes place for the oper-
ation of a BEV but it occurs earlier during the electricity production from
non-renewable energy sources and is therefore less frequently considered.
Since the mix of available energy sources varies with the region so does
the efficiency of fuel and electricity generation. If these processes are
efficient, the total efficiency also referred to as well to wheel efficiency
can be twice as high for a BEV than for a conventional vehicle. The gear
box in a BEV is also more efficient since it usually only has a fixed gear
ratio and therefore much less moving parts [10].

o Less degrees of freedom for optimization of driving stategy: Since most
BEVs have a fixed gear ratio the only degree of freedom is the choice of
torque, which is however strongly coupled to the trip time and constrained
quantities such as velocity and acceleration. Opposed to that, the power
train of a conventional vehicle offers selected gear and clutch state as
additional degrees of freedom for optimization. In a HEV even the way
internal combustion engine, electric motor and battery work together can
be chosen. For that reason the latter vehicle types benefit strongly from a
look-ahead driving strategy.

Due to these aspects it is no surprise that the largest time saving of 21.13 % at
the same energy consumption is stated for a HEV and the largest energy saving
of 23.8 %, that however is accompanied by a 1.5 % longer trip time, is reported
for a conventional vehicle. These large savings were achieved in investigations
including country road and urban sections though.

For a BEV the results of Table 2.2 state average energy savings of 1.21 % on
a 1400 km long highway section and of 5.6 % on an only 400 m artificial road
profile which comes closest to an urban section due to its velocity of roughly
30 km/h and maximum absolute slopes of 10 %. Compared to these results,
the savings achieved by the ALC of this work seem reasonable. Adopted from
[79].
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6.4 Technical contribution

On the level of driver assistance systems, the contribution of this work is the
development of an energy-efficient automated longitudinal control for a BEV
and its parametrization and test in simulations and real test drives. The devel-
oped ALC system shares some similiarities with the solution presented in [114,
139, 183]. All systems use predictive route data and measurements of a radar
sensor. Each system performs an ACC functionality that is extended by the use
of map data. This enables the system to choose a suitable velocity depending
on legal speed limits and road geometry.

The systems can provide the most benefit on winding country roads, on which
the standard ACC requires frequent manual adaption of the desired velocity.
The systems can also be used on highways and within cities. However, on
highways there is a comfort advantage over ACC only when the legal speed
limit changes and within cities the driver frequently has to interven because the
systems do no consider right of way or traffic signs. Furthermore, other traffic
participants are only detected by a radar sensor.

Power train models enable the systems to determine a more energy efficient
driving strategy compared to manual driving.

The differences and unique features of the system described in this work refer to
the target vehicle and especially the approach for planning the course of velocity.
The two target vehicles in [139] have an internal combustion engine and the two
target vehicles in [183] a hybrid power train. Therefore rather complex planning
approaches that consider gear selection are applied to derive an energy-efficient
course of velocity. 0O In contrast a BEV like the target vehicle for this work
usually has a 1-speed gear box, i.e. a constant gear ratio. The proposed ALC
includes a novel trajectory planning method that takes advantage of the simple
BEV power train.

Compared to the ALC that was developed for the same research vehicle during
the preceding project, the ALC in this work uses a trajectory with respect to

178



6.4 Technical contribution

time. Especially at low speeds the time-based approach enables a much more
dynamic vehicle behavior, which is beneficial for driver acceptance. Further-
more, the ALC of this work considers the required electrical power explicitly
and allows to optimize the trajectory not only with respect to travel time and
comfort but also with respect to driving efficiency.

In simulative investigations of the energy-saving potential for a BEV the ALC
requires up to 3.4 % less energy than the MLC for the same average velocity
and achieves a 2.6 % higher average velocity for the same energy consumption
on the reference route.

In a final acceptance test about ten employees of the project partners who all
work in automotive research and engineering tested the ALC on self chosen
routes. The ALC yielded throughout good comments, which especially ad-
dressed the comfortable and smooth driving style.

The developed system can be used on its own or in combination with other
assistance systems such as an automated lateral control. Adopted from [79].
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7 Conclusions

7.1  Summary

This work describes novel methods for the general problem of approximating
an unbounded number of data points using a B-spline function in the linear
and nonlinear weighted least squares (WLS) sense. The developed methods
are based on iterative algorithms for state estimation and their computational
effort increases linearly with the number of data points. The methods can adjust
the bounded definition range of a B-spline function during run-time if this is
required to approximate the latest data point.

The approximation problem is reformulated as a trajectory optimization prob-
lem such that the approximation methods compute a velocity trajectory with
respect to time using data points created from map data. The developed tra-
jectory optimization methods fall into the category of direct methods and its
effort increases linearly with the temporal length of the planned trajectory. The
combination with an adaptive model that describes the power train properties of
the battery electric vehicle (BEV), allows to plan velocity trajectories whose re-
sulting energy consumption varies depending on the chosen relative weighting
of different target criteria.

The trajectory optimization is extented to an assistance system for automated
longitudinal control (ALC) that is tested in simulation as well as in real test
drives. In simulations on a reference route the developed ALC is compared to
arecorded and re-simulated real drive with manual longitudinal control (MLC)
and can achieve better ratios between average velocity and energy consumption
than MLC.
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7.2 Contribution

The contribution of this work is threefold and comprises approximation algo-
rithms, a trajectory planning method and a system for energy-efficient ALC of
aBEV.

Iterative algorithms are proposed for the approximation of an unbounded set of
data as it occurs in online applications. The first algorithm denoted recursive
B-spline approximation (RBA) and prepublished in [80] solves a linear WLS
approximation problem iteratively using a Kalman filter (KF). The second al-
gorithm is termed nonlinear recursive B-spline approximation (NRBA) and
prepublished in [78]. NRBA is generalization of RBA for nonlinear weighted
least squares (NWLS) problems and uses a marginalized particle filter (MPF).
In the MPF a particle filter (PF) deals with the nonlinear subproblem, whereas
a linear KF solves the linear subproblem optimally.

RBA and NRBA include a novel shift operation which allows to shift the
bounded definition range of a B-spline function during run-time such that it
is always possible to take into account the latest data point. With previous
recursive algorithms the approximation interval is fixed during run-time and if
data outside this interval occurs, it cannot be considered. Moreover, the shift
operation allows to decrease the size of vectors in the filters in order to reduce
computational effort in both offline and online applications. In offline applica-
tions all data points are available at once, so their number is bounded and batch
processing in one step is possible. In contrast, in online applications, additional
data points are oberved in each time step, therefore a previously calculated
solution must be updated with each new observation.

The exponential growth of computational effort with increasing time horizon
limits the application of direct trajectory optimization approaches to short time
horizons. O This work presents a direct trajectory optimization method whose
computational effort only grows linearly with the number of function parame-
ters or the time horizon.
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7.2 Contribution

This substantial saving in computational effort is achieved by taking adantage
of the comparatively simple power train of a BEV with fixed gear ratio and by
formulating constraints coming from the vehicle dynamics or the environment
mainly as soft constraints. The resulting nonlinear optimization problem is for-
mulated as an NWLS problem and solved using NRBA. The trajectory can be
optimized with respect to travel time, comfort and energy consumption. With-
out consideration of energy consumption the nonlinear optimization problem
can be approximated by a quadratic optimization problem that is solved with
less computational effort using RBA. Adopted from [79].

The trajectory is defined by a B-spline function that describes the desired vehi-
cle velocity with respect to time. The temporal length of the trajectory increases
with the iterations and the number of function parameters does not need to be
bounded. If the temporal length of the trajectory must be increased, function
parameters can be added during the optimization. After each iteration an inter-
mediate result is available. The optimization can be paused and continued in
accordance with computation time constraints.

O Based on the novel trajectory planning approach a system for energy-efficient
automated longitudinal control of a BEV is developed and tested in simulation
and real test drives. The system can provide the most benefit on winding country
roads, but can also be used on highways and within cities.

In simulations on a chosen reference route the ALC needs up to 3.4 % less
energy than the MLC for the same average velocity and achieves a 2.6 % higher
average velocity for the same energy consumption as with MLC.

For additional subjective impressions, employees in automotive research and
engineering tested the ALC on other, individually chosen routes. The through-
out good reviews especially mentioned the comfortable and smooth driving
style of the ALC. Adopted from [79].
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7 Conclusions

7.3 Suggestions for further research

The approximation algorithms RBA and NRBA have only been investigated
for B-spline functions. According to Section 2.3, they can be extended to
multidimensional control points for approximation of parametric curves and
surfaces. Furthermore, RBA and NRBA can be transferred to other spline
representations which offer local control and arise from a linear combination
of basis functions and control points.

O Additionally, the modular concept of these algorithms allows to replace the
included filters. The KF used for the linear approximation is known to be
optimal, but for the PF and the MPF used for the nonlinear approximation
various improvements are available in literature. For example, [203] proposes a
MPF that determines the particles of the PF using particle swarm optimization
and achieves better results at lower effort compared to both a standard MPF and
PF. Adopted from [78]. Even more promising for the nonlinear approximation
seems using a kernel adaptive filter as it does not suffer from the curse of
dimensionality and requires only solving a convex problem, which is very
beneficial for real-time applications (c.f. Section 2.4 and Subsection 4.7.2).

Regarding trajectory planning the computation of the temporal safety margin
to upper speed limit can be enhanced such that the trajectory follows the upper
speed limit closer at high speeds while still remaining below local minima of
the upper speed limit.

A more comprehensive improvement consists of an adaptive selection of the
values of temporal distance of neighboring knots, the temporal safety margin to
upper speed limit and the temporal distance of neighboring data points so that
the trajectory degrees of freedom per trajectory time unit are not constant but
depend on the driving situation. For example, on country roads and highways
with simple shape of the upper speed limit, temporal distance of neighboring
knots and temporal distance of neighboring data points can be increased. Then,
for the same computational effort, longer, more farsighted trajectories can be
planned because the tractory degrees of freedom are temporally less dense.
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7.3 Suggestions for further research

The resulting larger time horizon, that can be optimized simultaneously by the
proposed local trajectory optimization approach, facilitates achieving higher
reductions of energy consumption. In contrast, in situations with complicated
upper speed limit or at low speeds, the values can be reduced to enable a
more dynamic trajectory. Analogously, the relative weighting of the trajectory
optimization can be designed adaptive.

Moreover, additional information can be used for calculating the upper speed
limit. This can be either data from vehicle-based sensors such as cameras for
detecting traffic signs and other traffic participants like pedestrians or it can
be messages of other vehicles or the infrastructure. In particular the driving
style should be adapted according to the present weather and friction coefficient
between tire and road [19].

The mentioned improvements of the trajectory planning directly translate to
improvements of the ALC system which can also be extended by other systems
such as a lateral control system.

Alternatively, the trajectory optimization approach can be combined with Dy-
namic Programming (DP), as [187, pp. 1430-1431] suggests and Table 2.5
illustrates, in order to solve more complex problems, for which the presented
filter-based approach on its own seems not suitable.

In such a case, DP can still plan in the spatial domain, which can be even more
coarsely discretized for less computational effort because a rough long-term
trajectory is sufficient. From this long-term trajectory the filter-based trajectory
optimization approach creates a smooth trajectory in time domain with the
benefits mentioned in Section 5.2 that can represent the vehicle velocity starting
from zero so that the case of driving off can also be covered by the trajectory
optimization.
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