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A B S T R A C T

Integrating renewable resources within the transmission grid at a wide scale poses significant challenges for
economic dispatch as it requires analysis with more optimization parameters, constraints, and sources of
uncertainty. This motivates the investigation of more efficient computational methods, especially those for
solving the underlying linear systems, which typically take more than half of the overall computation time.
In this paper, we present our work on sparse linear solvers that take advantage of hardware accelerators,
such as graphical processing units (GPUs), and improve the overall performance when used within economic
dispatch computations. We treat the problems as sparse, which allows for faster execution but also makes the
implementation of numerical methods more challenging. We present the first GPU-native sparse direct solver
that can execute on both AMD and NVIDIA GPUs. We demonstrate significant performance improvements
when using high-performance linear solvers within alternating current optimal power flow (ACOPF) analysis.
Furthermore, we demonstrate the feasibility of getting significant performance improvements by executing the
entire computation on GPU-based hardware. Finally, we identify outstanding research issues and opportunities
for even better utilization of heterogeneous systems, including those equipped with GPUs.
1. Introduction

Power grid utilities heavily rely on simulation and analysis tools
for near- and long-term planning. With increased energy needs, more
variable generation added to the grid, less predictable weather patterns,
and ever-increasing cyber threats, the electric grid planning and opera-
tion have become more complex and compute-intensive. In particular,
the ACOPF [1,2] analysis, which is at the core of economic dispatch,
has become computationally more demanding, pushing the limits of
existing tools. New heterogeneous computing technologies utilizing
GPUs, provide affordable high-density computational power that can
address emerging needs in the energy industry. However, mathematical
and computational methods typically used for economic dispatch are
not designed for and perform poorly on GPUs. This is particularly true
when solving underlying linear systems [3], which typically makes up
more than half of the overall computational cost.

GPUs deliver high performance by executing groups of threads
(warps) within single instruction sequence control. In NVIDIA GPUs,
32 threads form a warp. In AMD GPUs, 64 threads form a wavefront —
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which is equivalent to a warp. Standard CPUs have separate instruction
sequence control for each thread. This means that the computational
power of a GPU can be harnessed only if the computation is expressed
in terms of single-instruction multiple-data (SIMD) operations. Hard-
ware accelerators also have smaller level-1 cache memory compared
to CPUs, which means that poor data coalescence in device memory
can severely degrade computational performance. This also means that
moving data in hardware accelerator memory is more expensive than
moving data in conventional CPU memory. These constraints need to
be factored in when developing mathematical algorithms for execution
on heterogeneous hardware.

There have been several efforts to develop GPU-accelerated sparse
linear solvers that are effective for computations in the power systems
domain, including electromagnetic transient [4,5] and power flow [6]
simulations. There is far less reporting on linear solvers suitable for
ACOPF analysis due to the special properties of linear systems there.
Existing results pertain mainly to dense formulations of the underlying
linear systems [7,8]. However, the computational complexity of dense
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linear solvers is 𝑂(𝑁3) and their memory complexity is 𝑂(𝑁2), where
𝑁 is the number of linear equations. For larger grid models, all per-
formance gains on GPU are offset by a cubic increase in computational
cost and a quadratic increase in memory as shown in, e.g., [9].

In this paper, we discuss the solution of ACOPF on GPUs using
sparse linear solvers. The main contributions of this paper are:

• Two refactorization-based sparse linear solvers — one devel-
oped using CUDA libraries [10] and the other developed within
open-source Ginkgo library [11]. Both outperform existing GPU-
enabled solvers by a wide margin when used within ACOPF
analysis.

• Demonstration of meaningful speedup when our GPU solvers are
used in ACOPF compared to the state-of-the-art baseline on CPU
hardware. We observed matrix factorization speedup of 2.4–3.4×
and triangular solve speedup of 3.2–5.8×, which projects to 1.6–
1.9× overall speedup for the entire ACOPF analysis compared to
the CPU baseline.

• Performance profiles of ACOPF analysis on NVIDIA and AMD
GPUs, as well as on CPU platforms. We identify key performance
bottlenecks and estimate additional performance improvement
attainable with currently existing technologies.

The paper is organized as follows: In Section 2, we describe prop-
rties of linear systems arising in ACOPF analysis. In Section 3, we
escribe the environment and use cases for testing the performance
f linear solvers, and establish the state-of-the-art baseline. We discuss
hallenges when solving those linear systems on hardware accelerators
n Section 4, and present our results in Section 5. Finally, in Section 6,
e summarize our findings and discuss the follow-on research that will

ead to further performance improvements on heterogeneous hardware.

. Problem definition

We test our linear solvers within an ACOPF analysis, which is
epresentative of optimization computations used in economic dis-
atch. Mathematically, an ACOPF is posed as a nonlinear non-convex
ptimization problem

min
𝑥

𝐹 (𝑥) (1a)

.t. 𝑔(𝑥) = 0, (1b)

ℎ− ≤ ℎ(𝑥) ≤ ℎ+, (1c)

𝑥− ≤ 𝑥 ≤ 𝑥+, (1d)

here 𝑥 is a vector of optimization variables, such as bus voltages
nd generator power outputs; vectors 𝑥−, 𝑥+ define variable bounds,
.g. resource capacity limits; 𝐹 (𝑥) is a scalar objective function account-
ng for generator fuel, power imbalance, wind curtailment, and other
ower generation costs; 𝑔(𝑥) is a vector function that defines equality
onstraints, such as power balance; vector function ℎ(𝑥) defines security
onstraints and vectors ℎ−, ℎ+ specify security limits. For a more com-
rehensive discussion of the model aspects of the AC optimal power
low formulation, we refer the reader to [1,12].

We use interior method [13] to solve (1). To keep the presentation
treamlined, we recast (1), without loss of generality, in a compact form

min
𝑦∈R𝑛

𝑓 (𝑦) (2a)

s.t. 𝑐(𝑦) = 0, (2b)

𝑦 ≥ 0, (2c)

where inequality constraints (1c) are expressed as equality constraints
ℎ(𝑥) − ℎ± ± 𝑠± = 0 using slack variables 𝑠−, 𝑠+ ≥ 0. Similarly, bounds
(1d) are expressed in form (2c) by introducing variables 𝑢−, 𝑢+ ≥ 0 such

± ±
2

that 𝑢 = ∓(𝑥 − 𝑥 ). The vector of optimization primal variables is
𝑦 = (𝑢−, 𝑢+, 𝑠−, 𝑠+) ∈ R𝑛 and 𝑓 ∶ R𝑛 → R is a possibly non-convex
objective function. All constraints are formulated in 𝑐 ∶ R𝑛 → R𝑚,
where 𝑚 is the number of equality and inequality constraints.

Interior methods enforce bound constraints (2c) by adding barrier
functions to the objective (2a)

min
𝑦∈R𝑛

𝑓 (𝑦) − 𝜇
𝑛
∑

𝑗=1
ln 𝑦𝑗 ,

where 𝜇 > 0 is the barrier parameter. Interior methods are most
effective when exact first and second derivatives are available, as
we assume for 𝑓 (𝑦) and 𝑐(𝑦). We define 𝐽 (𝑦) = ∇𝑐(𝑦) as the sparse
𝑚 × 𝑛 Jacobian matrix for the constraints. The solution of a barrier
subproblem satisfies the nonlinear equations

∇𝑓 (𝑦) + 𝐽 (𝑦)𝜆 − 𝑧 = 0, (3a)

𝑐(𝑦) = 0, (3b)

𝑌 𝑧 = 𝜇𝑒, (3c)

where 𝜆 ∈ R𝑚 is a vector of Lagrange multipliers (dual variables) for
constraints (2b), 𝑧 are Lagrange multipliers for the bounds (2c), the
matrix 𝑌 ≡ diag(𝑦), and 𝑒 is 𝑛-dimensional vector with all elements
equal to one.

The barrier subproblem (3) is solved using a variant of a Newton
method, and the solution to the original system (1) is recovered by
a continuation method driving 𝜇 → 0. As it searches for the optimal
solution, the interior method solves a sequence of the linearized barrier
subproblems 𝐾𝑘𝛥𝑥𝑘 = 𝑟𝑘, 𝑘 = 1, 2,… , where index 𝑘 denotes opti-
mization solver iteration (including continuation step in 𝜇 and Newton
iterations). Note that for 𝜇 = 0, 𝐾𝑘 is singular. A typical implementation
of the interior method eliminates the linearized version of (3c) by
substituting it in the linearized version of (3a) to obtain a symmetric
linear system of Karush-Kuhn–Tucker (KKT) type [13]

𝐾𝑘
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
[

𝐻 +𝐷𝑦 𝐽
𝐽𝑇 0

]

𝛥𝑥𝑘
⏞⏞⏞
[

𝛥𝑦
𝛥𝜆

]

=

𝑟𝑘
⏞⏞⏞
[

𝑟𝑦
𝑟𝜆

]

, (4)

where 𝛥𝑥𝑘 is a search direction and 𝑟𝑘 is residual of (3) evaluated at
current values of primal and dual variables. The Hessian

𝐻 ≡ ∇2𝑓 (𝑦) +
𝑚
∑

𝑖=1
𝜆𝑖∇2𝑐𝑖(𝑦),

is a sparse symmetric 𝑛 × 𝑛 matrix and 𝐷𝑦 ≡ 𝜇𝑌 −2 is a diagonal 𝑛 × 𝑛
matrix.

The KKT linear system (4) is sparse symmetric indefinite and typ-
ically ill-conditioned. In ACOPF and other analyses for economic dis-
patch, 𝐾𝑘 matrices are extremely sparse due to the connectivity structure
of power grids. The interior method needs to return a solution after
𝜇 is small enough so the solution of (3) approximates the solution of
(2) well, but before 𝐾𝑘 in (4) becomes too ill-conditioned. Having a
solver that can compute an accurate solution to ill-conditioned linear
systems without significant performance penalty is critical for accurate
and efficient ACOPF analysis, especially since solving (4) is the major
part of the overall computational cost.

We note that all 𝐾𝑘 in (4) have the same sparsity pattern. An
efficient linear solver shall take advantage of constant sparsity patterns
and reuse parts of computations over the sequence of 𝐾𝑘 matrices when
possible.

3. Test networks and optimization setup

As our test cases, we use synthetic grid models: Northeastern,
Eastern, and combined Western and Eastern U.S. grid [14]. The details
of our test cases are provided in Table 1.

To establish a baseline for evaluating our new solvers, we use MA57
linear solver [15], which is commonly used in commercial and open-
source tools when solving ACOPF and similar optimization problems.



International Journal of Electrical Power and Energy Systems 155 (2024) 109517K. Świrydowicz et al.
Fig. 1. Computational cost of ACOPF broken down by analysis functions. Linear solver functions (matrix factorization and triangular solve) contribute to 60% of the overall ACOPF
compute time.
Table 1
Characteristics of the three test networks specifying the number of buses, generators,
and lines. The specifics of the linear system (4) for each of these networks are given in
terms of the matrix size (N) and number of non-zeros (nnz) for the matrix 𝐾𝑘. Numbers
are rounded to 3 digits. K and M denote 103 and 106, respectively.

Grid Buses Generators Lines 𝑁(𝐾𝑘) nnz(𝐾𝑘)

Northeastern US 25 K 4.8 K 32.3 K 108 K 1.19 M
Eastern US 70 K 10.4 K 88.2 K 296 K 3.20 M
Western and Eastern US 82 K 13.4 K 104.1 K 340 K 3.73 M

When using MA57, symbolic factorization is performed only once for
all systems with the same sparsity pattern. The profiling results for the
solution of the KKT system for these three networks with MA57 linear
solver show that solving the linear system takes up more than 60%
of the overall ACOPF cost (see Fig. 1). These results were obtained
on an IBM Power 9 CPU; the computing environment is described in
more detail in Section 5.3. Starting from this baseline, any meaningful
speedup of ACOPF requires accelerating the linear solver.

For the ACOPF analysis we use ExaGOTM [16], an open-source
package for solving large-scale optimization problems on CPU and
GPU-based platforms involving security, stochastic, and multi-period
constraints. ExaGOTM models the ACOPF problem in a power-balance
network formulation with a minimum generation cost objective func-
tion and enforcing voltage, capacity, and line flow constraints. It uses
the open-source HiOp optimization engine [17] to solve the resultant
optimization problem. To our knowledge, HiOp is the only open-source
optimization solver capable of solving nonlinear optimization problems
on GPUs. The developed linear solvers described in this paper are
interfaced to and called from HiOp. The ACOPF application provided
with ExaGOTM is used to configure and run our tests. ExaGOTM parses
input data files for power grids, generates model objects 𝐻 , 𝐽 , 𝐷𝑦, 𝑟𝑦,
and 𝑟𝜆, sets variable limits, and passes them to HiOp. The optimization
engine assembles (4), updates it at each iteration, and passes it to the
linear solver. The solution 𝛥𝑥𝑘 to (4) is used by HiOp to update the
vector of primal variables in ExaGOTM for the next iteration. In our
computations we set relative tolerance for the interior method in HiOp
to 10−6. This leads to barrier parameter values reduced to 𝜇 ∼ 10−7

before converged solution is obtained.
A typical implementation of the interior method requires a linear

solver to provide matrix inertia (number of positive, negative, and zero
matrix eigenvalues). Matrix inertia can be readily obtained in 𝐿𝐷𝐿𝑇 ,
but not in 𝐿𝑈 factorization. It is important to note that HiOp offers an
inertia-free interior method implementation [18], as an option, which
allows us to use 𝐿𝑈 linear solvers for ACOPF analysis.

4. GPU-enabled linear solvers

There exists a vast body of literature on direct linear solvers for
heterogeneous compute architectures [19,20]. Moreover, the recent
3

decade brought increased interest in developing solvers that are capable
of using the GPUs efficiently [21]. These efforts, however, usually
target generic problems that are well-conditioned and characterized
by a well-defined structure (i.e., matrices that contain dense blocks
of entries). The available parallel techniques rely on multifrontal or
supernodal approaches; in both cases, dense blocks within the matrix
are essential for satisfactory performance on the GPUs. In [3] we iden-
tified and tested five applicable linear solver packages: SuperLU [22],
STRUMPACK [20], SPRAL-SSIDS [23], PaStiX [24] and cuSolverSP
(we tested the black-box QR and LU-based solve functions). The results
were compared to the MA57 [15], which is a single thread and CPU-
only code. The testing revealed that none of the GPU-accelerated
packages was substantially better than MA57. Moreover, turning on
GPU acceleration within each package often resulted in performance
losses when compared to the CPU-only code. The timing data published
in [3] is summarized in Table 2. The presented timing results are
averaged over a few representative matrix systems for each solver.

The development of GPU-resident solvers for power flow problems
is challenging for several reasons. First of all, it is the nature of sparse
direct solvers that allows only for a limited amount of parallelism. The
situation becomes worse if the sparse matrix has no inherent block
structure, which is the case of power flow problems. As mentioned
earlier in this section, in this case, supervariable agglomeration and
multifrontal approaches that accumulate elements in dense blocks and
invoke dense linear algebra routines are not suitable (which explains
the results from [3]). Instead, we require fine-grained scheduling of
individual variable eliminations once their dependencies have com-
pleted processing. Finally, the power grid problems require pivoting
for numerical stability. Pivoting is a bottleneck on GPUs as it requires
synchronization and inter-block communication, further degrading the
performance.

From a high-level standpoint, sparse direct solver computations can
be split into three phases: (𝑖) symbolic factorization, when the matrix
is reordered and the structure of 𝐿 and 𝑈 factors are set, together with
permutation order; (𝑖𝑖) numeric phase, when numeric factorization is
computed; and (𝑖𝑖𝑖) solve phase, during which the factors obtained in
the previous phase are used to compute the solution.

The symbolic phase of the computation is typically done on the CPU,
sometimes with marginal GPU offloading. The symbolic factorization
does rely on the non-zero structure of the matrix and not on its values.
In the case of the KKT matrices, as mentioned before, the non-zero
structure of the matrix systems does not change during the optimization
solver run, and hence the symbolic phase (or parts of it) can be executed
once and reused for all relevant systems. This idea ties in with the idea
of refactorization. This term is used somewhat loosely in the literature; it
usually means that once the permutation vectors and non-zero patterns
of triangular factors were computed in the numerical factorization, they
are reused for the next system in the sequence. Refactorization is
implemented in some of the existing direct solvers, for instance, in
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Table 2
Test results with various GPU-accelerated linear solvers for representative systems generated with Ipopt [3]. The test linear systems are available
at https://github.com/NREL/opf_matrices. We used the last 3 systems for test case 1 (ACTIVSg2000 in the repository) and the last 5 for the
two remaining test cases (ACTIVSg10k and ACTIVSg70k in the repository).

Test case Size NNZ SuperLU STRUMPACK cuSolver QR SSIDS MA57

Case 1 55.7K 268K CPU (s) 1.1 1.0 2.6 0.7 0.2
GPU (s) 1.6 1.6 1.8 5.1 –

Case 2 238K 1.11M CPU (s) 4.0 2.8 18.2 2.6 0.8
GPU (s) 5.0 3.7 5.7 4.8 –

Case 3 296K 7.67M CPU (s) 30 24 614 29 6
GPU (s) 33 24 – 198 –
l
T
s
p
s

KLU [25], NICSLU [26], NVIDIA’s cuSolverRf, and undocumented
but publicly released NVIDIA’s cuSolverGLU. Refactorization has not
been particularly popular in sparse direct CPU solvers as the cost of
pivoting on the CPU is generally not a concern. In contrast, pivoting on
the GPU is prohibitively expensive, and avoiding pivoting is paramount
for GPU speedups.

We found that refactorization approach is very effective for linear
systems arising in ACOPF (see Section 5). Similar approaches were
successfully used before in modeling power systems. For instance, [4]
develops a partial refactorization method (on the CPU, within NICSLU
package) and compares its efficiency to KLU, SuperLU, and non-altered
NICSLU. The authors use standalone matrices obtained from dynamic
phasor simulations as their test cases. In [5], the authors compare
the performance of NICSLU and KLU (both with refactorization) and
GLU [27], which is a sparse direct solver that performs factorization
on the GPU (but does not enable refactorization); the approach was
also tested on matrices extracted from dynamic phasor simulations and
the results favored NICSLU. Six different approaches for power flow
simulations are tested in [6], two of them being GPU-only, two CPU-
only and two hybrid (GPU+CPU). The tested GPU approaches involve
refactorization based on cuSolverGLU. The hybrid solver turns out
to be the fastest (i.e., preprocessing and symbolic factorization are
performed on the CPU, the refactorization happens on the GPU, the
triangular solve is done on the CPU).

5. Approach and results

We present two refactorization approaches and demonstrate their
performance in the ACOPF analysis context. The first approach we
developed uses KLU and proprietary cuSolver libraries. The second
approach is developed within the open-source Ginkgo library. Both are
hybrid CPU-GPU approaches that exploit the property that the matrix
non-zero structure in (4) does not change from one system to the
next so the same pivot sequence can be reused. Both approaches also
take advantage of KKT matrix regularization performed by the interior
method [13], which has a similar effect as perturbation techniques used
in static pivoting [28], and helps us reuse the same pivot sequence over
a larger number of linear systems. In contrast to the hybrid approach
in [6], we move linear system data to GPU only once, after solving the
first system in (4), and perform all subsequent computations there. In
this way, we avoid excessive data movement between CPU and GPU,
which adds significant overhead to the overall computational time.

5.1. Refactorization solver using CUDA libraries

5.1.1. Approach
In this approach, we completely solve the first system on the CPU

using KLU with approximate minimum degree (AMD) reordering [29].
Then, we extract the elements of the symbolic factorization (i.e., the
permutation vectors and the sparse matrix structures of the factors).
Next, we set up an appropriate cuSolver (Rf or GLU) data structure,
and we then solve all the remaining systems at each next optimization
solver step by calling refactorization function. Typically, hundreds of
4

linear systems need to be solved during ACOPF execution, hence the
cost of solving the first system(s) on the CPU is amortized over many
optimization solver steps. Both cuSolverRf and cuSolverGLU al-
low the user to provide permutation vectors and the sparse non-zero
structure of 𝐿 and 𝑈 matrices obtained by the LU factorization of
choice. We tested the native cuSolver factorization methods on CPU,
however, we obtained the best results with KLU (this agrees with the
results from [6]). KLU also produced the sparsest triangular factors.
Since the same pivot sequence is used over and over in refactor-
ization, the computed solution could potentially have a large error.
Many (but not all) linear solvers follow the factorization by iterative
refinement [30], which is a method of improving the backward error
in the solution. For instance, MA57 by default uses up to 10 iterations
of iterative refinement; for the test matrices from [3] the average
was around 6. How does this work? Let us assume that we solved the
inear system (4) using a direct method and computed a solution, 𝛥𝑥(0)𝑘 .
o improve the solution, 𝜌(0) = 𝑟𝑘 − 𝐾𝑘𝛥𝑥

(0)
𝑘 is computed, and a new

ystem is solved for 𝛿(0): 𝐾𝑘𝛿(0) = 𝜌(0) using the factors of 𝐾𝑘 obtained
reviously. Then, a new solution is formed 𝛥𝑥(1)𝑘 = 𝛥𝑥(0)𝑘 + 𝛿(0). If the
olution is still not satisfactory, 𝜌(1) = 𝑟𝑘 − 𝐾𝑘𝛥𝑥

(1)
𝑘 is computed and

the process repeats. This method is often quite effective. An alternative
method is to use the triangular factors as a preconditioner inside the
linear solver in the same way one would use the incomplete LU (ILU)
preconditioner [31]. The literature suggests using flexible GMRES [32]
as the iterative method deeming it more stable in this case [33]. Some
authors, e.g. [34], mix the two approaches by using an iterative solver
to solve the systems 𝐾𝑘𝛿(𝑖) = 𝜌(𝑖). We use the ILU style approach because
in practice it requires fewer triangular solves and leads to a solution
with the same quality.

Another method to address the deterioration in the solution quality
is to recompute the symbolic factorization (on the CPU) if the solution
quality becomes too poor or if the maximum number of refinement
iterations is exceeded. In our test cases, however, we typically needed
only one or two refinement iterations to maintain an appropriate level
of accuracy. Hence, we never recomputed the symbolic factorization.

5.1.2. Implementation
The refactorization approach is implemented in CUDA/C++ and

currently is distributed with HiOp library. The algorithm follows the
steps below.

Solve the first system in the sequence. The first system in the
sequence (4) is solved completely using KLU (using the usual three-step
approach: symbolic factorization, numeric factorization and solve). We
use AMD reordering and we allow the factorization to continue even
if the matrix is deemed to be singular by the analysis (which is one of
the user-defined KLU options).

Set the sparsity pattern of the factors. The non-zero structures of
the 𝐿 and 𝑈 factors are extracted from KLU together with permutation
vectors. The factors are returned in compressed sparse column (CSC)
format. If cuSolverGLU is used, the factors are combined into a
matrix containing both 𝐿 and 𝑈 and the matrix is copied to the GPU.
If cuSolverRf is used, both factors are copied to the GPU separately
and each factor is converted to compressed sparse row (CSR) format on

the GPU.

https://github.com/NREL/opf_matrices
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Refactorization setup. An appropriate cuSolver refactorization
setup and analysis functions are called (there are different functions for
cuSolverRf and for cuSolverGLU).

Solve subsequent systems. Once the refactorization data is set up,
each subsequent system is solved on the GPU. This consists of two
functions: resetting the values inside the refactorization data structure
and performing the refactorization (factorizing the new matrix using
the prior pivot sequence). Each refactorization method has its own
functions to execute these operations. cuSolverRf follows up with
a ‘‘solve’’ function that permutes the solution to the original order
and performs two triangular solves. cuSolverGLU also adds MA57-
style iterative refinement inside its black-box ‘‘solve’’ function. In the
case of cuSolverRf, we investigated an approach as in [6], in which
the triangular solve happens on the CPU. However, for our test cases,
the GPU-resident cuSolverRf triangular solver was overall faster, as
it avoids moving matrix factors and permutation vectors to CPU and
solution vector back to GPU each time the triangular solver is called.

Iterative refinement. If desired (or if the error in the solution is
too large), cuSolverRf solve can be followed by iterative refinement.
We implemented it as flexible GMRES with re-orthogonalized clas-
sical Gram–Schmidt (CGS2) orthogonalization (to improve numerical
stability and GPU performance).

The iterative refinement was implemented to be highly efficient on
the GPU. For instance, all the large arrays (such as the ones used to
store Krylov vectors) are allocated once and reused for all the systems.
The handles (needed for various CUDA libraries, such as cuBlas) and
uffers (such as the one used in the matrix–vector product) are also
llocated once and reused. For most of the test cases only one or two
teps of iterative refinement were needed.

Both cuSolver refactorization solvers come with limitations. The
aster out of the two, cuSolverGLU does not provide access to
he triangular factors, which makes it impossible to couple it with
lternative (faster) sparse triangular solvers or user-implemented it-
rative refinement. cuSolverGLU also comes with its own iterative
efinement (part of the solve function) which cannot be turned off
nd is not parameterized (i.e., the user cannot specify the maximum
umber of iterations, the algorithm used, or the solver tolerance). Both
efactorization solvers are closed source, which makes it difficult to
xtract pivoting information and impossible to apply problem-specific
ptimization. Also, both of them can only execute on NVIDIA GPUs,
hich limits the platform support.

Against this background, we explored the possibility to design and
eploy platform-portable open-source direct solver functionality in the
inkgo math library.

.2. Ginkgo refactorization solvers

.2.1. Approach
For the refactorization approach, we use the open-source software

ibrary Ginkgo that is developed within the Exascale Computing Project
ECP) [11]. Ginkgo focuses on the efficient handling of sparse linear
ystems on GPUs. Implemented in C++ and featuring backends in the
ardware-native languages CUDA (for NVIDIA GPUs), HIP (for AMD
PUs), and DPC++ (for Intel GPUs), the library combines sustainability
ith performance portability, see Fig. 2.

The implementation using the Ginkgo framework consists of three
phases: preprocessing, (re)factorization, and triangular solve. The pre-
processing step is executed only once, and on the CPU, while the
repeated calculations in the factorization happen entirely on the GPU.
We preprocess the system matrix to improve numerical stability (piv-
oting and equilibration using the MC64 algorithm introduced by Duff
and Koster [35]) followed by a reordering to reduce fill-in (symmetric
AMD on 𝐴 + 𝐴𝑇 ). The resulting permutation and scaling factors will
later be used to map the solution of the transformed system back to
the original linear system. Following the preprocessing, we compute a
5

symbolic factorization of the scaled and reordered matrix. The resulting
sparsity pattern of the 𝐿 and 𝑈 factors can be reused for all subsequent
iterations of the optimization algorithm. Finally, we compute the values
of 𝐿 and 𝑈 on the GPU by first filling the values of 𝐴 into the combined
storage for 𝐿 and 𝑈 and executing the numerical factorization kernel.

5.2.2. Implementation
The components of the algorithm were implemented in the Ginkgo

library using C++ for the high-level control flow and CUDA/HIP for
the factorization kernels. It is included in the Release 1.6.0 of Ginkgo
available on GitHub [36].

Preprocessing. The reordering and equilibriation as well as the
symbolic factorization of the resulting reordered matrix happens se-
quentially on the CPU. The symbolic 𝐿𝑈 factorization closely follows
the fill1 algorithm by Rose and Tarjan [37].

Numerical Factorization. The 𝐿𝑈 factorization kernel (Algorithm
1) uses a fine-grained up-looking parallel factorization based on the
dependency structure encoded in the lower 𝐿 factor. The kernel relies
on two important components: a sophisticated scheduling approach and
an efficient sparse vector addition routine. Each row is mapped to a
warp/wavefront on the GPU and gets updated with all dependency
rows. The updates add a sparse row from 𝑈 in-place to the current
sparse row, thus eliminating the corresponding variable in the current
row. This sparse vector addition is facilitated by a sparsity pattern
lookup structure that uses bitmaps or hashtables, depending on the
pattern, to compute the nonzero index to each column index in the
row. The dependency resolution uses a sync-free scheduling approach
based on a ready flag for each row, previously used for sparse triangular
solvers by Lui et al. [38]. The scheduling takes advantage of GPUs from
NVIDIA and AMD scheduling their thread blocks in monotonic order
and providing strong forward-progress guarantees inside a single thread
block.

set ready[𝑖] ← 0 for all 𝑖;
parfor row 𝑖 = 0,… , 𝑛 − 1 do

for lower nonzero 𝑙𝑖𝑑 do
while ready[𝑑] = 0 do wait;
𝛼 ← 𝑎𝑖𝑑∕𝑎𝑖𝑖;
𝑙𝑖𝑖 ← 𝛼;
parfor upper nonzero 𝑢𝑑𝑗 do // warp-parallel

𝑎𝑖𝑗 ← 𝑎𝑖𝑗 − 𝛼 ⋅ 𝑢𝑑𝑗 ;
end

end
split 𝑎𝑖⋅ into 𝑙𝑖⋅ and 𝑢𝑖⋅ ; // conceptually
ready[𝑖] ← 1;

end
Algorithm 1: Ginkgo LU factorization algorithm

Refactorization. All of the scaling coefficients and permutation in-
dices from Step 1 and all of the lookup data structures and the symbolic
factorization from Step 2 can be reused for subsequent linear systems,
leaving only the numerical factorization itself to be recomputed. Fi-
nally, we permute and scale the right-hand side and solution vectors
into/out of a persistent workspace that needs only to be allocated once.

Triangular Solvers. We solve the resulting triangular systems using
the triangular solvers provided by the cuSPARSE/rocSPARSE library.
Alternatively, the application can be set to use Ginkgo’s own triangular
solvers based on a configuration option. These triangular solvers use the
same sync-free scheduling approach as the factorization (Algorithm 2).
We use a thread-per-row mapping, which requires independent thread
scheduling available on NVIDIA GPUs since the Volta architecture. On
AMD GPUs and older NVIDIA GPUs, we need to modify the control flow
to guarantee forward-progress for the entire warp.

5.3. Performance profiling

We evaluated the approach described herein on the Summit super-
computer and the Crusher test and development system at the OLCF.
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Fig. 2. The overall structure of the Ginkgo math library that was designed for performance portability.
set 𝑥𝑖 ← NaN for all 𝑖;
parfor row 𝑖 = 0,… , 𝑛 − 1 do

�̃� ← 𝑦𝑖;
for nonzero 𝑙𝑖𝑑 do

while 𝑥𝑑 is NaN do wait;
�̃� ← �̃� − 𝑙𝑖𝑑𝑥𝑑 ;

end
𝑥𝑖 ← �̃�;

end
Algorithm 2: Ginkgo triangular solver algorithm solving 𝐿𝑥 = 𝑦

Each Summit node is equipped with two 21-core IBM Power 9 CPUs
and six NVIDIA V100 GPUs, while Crusher’s node architecture consists
of one 64-core AMD EPYC 7A53 CPU and four AMD MI250X GPUs.
The AMD GPU contains two graphics complex dies (GCDs) that can be
treated as individual GPUs. For the present benchmarks, we consider
one CPU core and one GPU/GCD (NVIDIA V100 GPU or AMD MI250X
GCD). The code was compiled with CUDA 11.4.2 and the GNU Compiler
Collection 10.2.0 on the NVIDIA platform and with the ROCm 5.2.0
software stack on the AMD platform.

We used state-of-the-art MA57 linear solver, which implements
𝐿𝐷𝐿𝑇 factorization, as our CPU baseline. The MA57 was configured
to perform symbolic factorization only once, for the first linear system
in (4), and reuse it for all subsequent systems. Numerical factorization
was configured to use default pivoting options and the triangular solve
was configured to use no more than one iterative refinement iteration
to maximize the performance. These are default MA57 settings in HiOp
optimization library. We note it has been reported that performance
of MA57 could be further improved if the numerical factorization is
configured to use static pivoting [28] and triangular solve is followed
with 10 or more refinement iterations to ensure sufficient solution
accuracy is retained. When tested with our use cases, we found that
static pivoting improved linear solver performance by 30%. However,
the solution quality deteriorated so much that even with up to 100
iterative refinement iterations, we could not recover solution accuracy
needed for the optimization solver to converge.

The MA57 and Ginkgo solvers were tested on both systems, as
Ginkgo supports different GPU backends [39], while the cuSolver
approach was only evaluated on NVIDIA GPUs. cuSolverRf was
evaluated with a maximum of 20 refinement iterations and with the
iterative refinement tolerance set to 10−14 (near the double floating
point precision).

Tables 3 and 4 report the overall ACOPF analysis performance when
using different linear solvers for the test cases detailed in Table 1. The
reported total runtimes were each measured from a single profiling
run. Multiple ACOPF runs were subsequently performed to assess the
performance variability, resulting in an observed population standard
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deviations (normalized by the mean value of the total runtime) lower
than 1%.

Figs. 3 and 4 provide additional insight by breaking down the
average runtime of an optimization solver (in this case HiOp) step into
its components. The averages were obtained by normalizing the total
computational time for each component by the number of optimization
steps to allow comparison between the approaches, and these averages
account for the cost of the first factorization performed on CPU.

We first focus on the evaluation of the benchmark results obtained
on the OLCF Summit system equipped with NVIDIA V100 GPU. The
results reported in Table 3 reveal that the GPU solvers outperform
the MA57 baseline implementation for all test cases. cuSolverRf
is 10 − 30% slower overall than cuSolverGLU, though it requires
fewer iterations overall to converge. This implies that the iterative
refinement improves the solution quality and the rate of convergence
for an additional computational cost for the cases evaluated. In terms
of overall ACOPF compute time, using cuSolverGLU and Ginkgo on
V100 GPU leads to 1.3−1.4× and 1.05−1.3× faster solution, respectively,
compared to the CPU baseline with MA57.

The runtime breakdown in Fig. 3 reveals that the performance
advantage of the cuSolverGLU is primarily driven by a faster fac-
torization (which is for the combined Eastern and Western U.S. grid
about 3.4× faster than MA57). The faster factorization compensates
for the slower triangular solves: The cuSolverGLU triangular solves
are about 40% slower than the CPU counterpart. For the Ginkgo GPU
solver, the story is different: though still faster than the MA57 code, the
speedup achieved with the Ginkgo factorization is smaller. On the other
hand, the triangular solve in Ginkgo is faster, mainly because it does not
call iterative refinement. We note that it is impossible to combine the
cuSolverGLU factorization with the Ginkgo sparse triangular solves as
the cuSolverGLU does not provide access to the triangular factors.

We now turn to the performance results on the OLCF Crusher system
featuring AMD MI250 GPUs. The results in Table 4 reveal that ACOPF
is overall 1.8 − 2.4× faster when using the Ginkgo linear solver on the
AMD MI250X GPU than MA57 on the AMD EPYC 7A53 CPU. The
runtime breakdown in Fig. 4 reveals that the performance superiority
comes from both a faster factorization (3 − 4.8× speedup) and faster
triangular solves (1.9 − 3× speedup). Comparing Ginkgo’s linear solver
(triangular solve and factorization) performance on the MI250X GPU
and the NVIDIA V100 GPU, we notice that executing Ginkgo on the
newer MI250 GPU is 20%–40% faster than on the NVIDIA V100 GPU.
MA57 runs slower on the AMD EPYC 7A53 CPU than on the IBM Power
9 CPU.

For completeness, we finally discuss the memory requirements for
the sparse linear solvers on GPU. The GPU high bandwidth memory
required by the linear solvers for three grids evaluated is less than 3 GB
(well below the 16 GB available on NVIDIA V100 and the 64 GB avail-
able on a graphics compute die of AMD MI250X). More specifically, on
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Fig. 3. Comparison of the average computational cost per optimization solver step when different linear solvers are used for ACOPF on OLCF Summit with a breakdown in terms
of most expensive operations. The cost of the first step, which is executed on CPU, is accounted for in the averages.
NVIDIA V100, the solver based on cuSolverGLU requires 2383–3065
MiB, the solver based on cuSolverRf requires 673–1125 MiB, and
Ginkgo requires 725–1109 MiB.

6. Conclusions and next steps

This paper follows up on the analysis from [3] and presents different
strategies to overcome the challenge of fast GPU-resident sparse direct
solvers. Unlike in [3], we test linear solvers within full optimal power
flow applications at interconnection scale, not on standalone test matri-
ces. Our performance analysis reveals that the linear solver dominates
the overall performance.

On both the IBM/NVIDIA-based Summit supercomputer and the
AMD-based Crusher cluster, the GPU-based sparse linear solvers are
faster than the CPU-based solvers. Furthermore, Ginkgo’s GPU-resident
sparse direct solver functionality brings platform portability to the
ACOPF simulation and is, for all considered hardware configurations,
faster than the CPU-based counterparts. For our test cases, we observed
1.9 − 2.3× linear solver speedup when comparing the best GPU to the
best CPU result (see Figs. 3 and 4). This projects to 1.6–1.9× overall
speedup in ACOPF analysis when comparing the best GPU to the best
CPU time (see Tables 3 and 4). These and the results in [8] suggest it
is feasible to develop methods for efficient ACOPF on GPUs and obtain
significant performance gains.
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Table 3
Total runtimes for ACOPF when using different linear solvers on OLCF Summit. The
number of steps is the total number of optimization solver steps to the converged
solution.

Northeast U.S. grid

Linear solver used MA57 cuSolverRf cuSolverGLU Ginkgo

Total time (s) 152 127 116 114
Speedup vs. MA57 – 1.2 1.3 1.3

Number of steps 529 425 547 527

Eastern U.S. grid

Linear solver used MA57 cuSolverRf cuSolverGLU Ginkgo

Total time (s) 196 187 147 153
Speedup vs. MA57 – 1.05 1.3 1.3

Number of steps 263 262 263 263

Combined eastern and western U.S. grids

Linear solver used MA57 cuSolverRf cuSolverGLU Ginkgo

Total time (s) 793 674 575 766
Speedup vs. MA57 – 1.2 1.4 1.04

Number of steps 852 735 747 1038

We note that the refactorization approaches we employ in this work
reuse the same pivot sequence over a large number of linear systems
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Fig. 4. Comparison of the average computational cost per optimization solver step when different linear solvers are used for ACOPF on OLCF Crusher with a breakdown in terms
of most expensive operations. The cost of the first step, which is executed on CPU, is accounted for in the averages.
Table 4
Total runtimes for ACOPF when using MA57 and Ginkgo linear solvers on OLCF Crusher.
The number of steps is the total number of optimization solver steps to the converged
solution.

Northeast U.S. grid

Linear solver used MA57 Ginkgo

Total time (s) 149 81
Speedup vs. MA57 – 1.8

Number of steps 455 446

Eastern U.S. grid

Linear solver used MA57 Ginkgo

Total time (s) 293 122
Speedup vs. MA57 – 2.4

Number of steps 234 263

Combined eastern and western U.S. grids

Linear solver used MA57 Ginkgo

Total time (s) 927 450
Speedup vs. MA57 – 2.1

Number of steps 693 700

(4), and hence come with the risk of deterioration in solution quality.
On the other hand, the linear solver error only needs to be small
compared to the allowed error in optimization solver iteration. We
find that with HiOp’s default tolerance setting of 10−8, refactorization
approach without iterative refinement as implemented in Ginkgo will
perform well in most cases. The exception is the ACOPF analysis for
the Eastern and Western U.S. grid, where analysis using Ginkgo requires
nearly 200 more optimization solver steps than the reference analysis
using MA57 linear solver on CPU (see Table 3).

We observed that using high precision iterative refinement with
cuSolverRf leads to fewer optimization solver steps to the solution
as expected (Table 3). However, iterative refinement can add signifi-
cant computational overhead, as shown in Fig. 3, as it calls triangular
solver repeatedly. Finding the right balance between reducing the
number of optimization solver steps and the cost of each step in order
to reduce the overall computational cost is a nontrivial problem. We
will investigate this further in the follow on research.

We find that numerical (re)factorization in cuSolverGLU is supe-
rior to those in cuSolverRf and Ginkgo. However, cuSolverGLU
does not provide access to the 𝐿 and 𝑈 matrix factors, so its factor-
ization function cannot be combined with other solvers. At the same
time, its triangular solver function performs poorly compared to MA57
8

reference, most likely due to built-in iterative refinement, which the
user cannot configure or disable. As a next step, we will work towards
improving the performance of Ginkgo refactorization functions.

Future work will also include algorithmic and technical strategies
to speed up triangular solves by using an iterative approximation as
proposed in [40]. Furthermore, we will investigate the hybrid strategy
developed in [41], which applies both iterative and direct solvers
with very promising performance results. Hybrid strategies will likely
become more attractive in the future as the hardware manufacturers
plan to develop processing units with CPU and GPU cores on the same
die.

Finally, the full advantage of deploying ACOPF on heterogeneous
hardware will become apparent when the entire analysis is ported
to GPU, including the model evaluation and optimization solver. We
demonstrated this in [8] where the entire compressed ACOPF model
and dense linear solver were run on the GPU. Sparse GPU modules are
currently being developed in both, HiOp and ExaGOTM libraries and,
when completed, we will use them to deploy the entire analysis on GPU.
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