KIT | KIT-Bibliothek | Impressum | Datenschutz

MLOps for Scarce Image Data: A Use Case in Microscopic Image Analysis

Yamachui Sitcheu, Angelo Jovin ORCID iD icon 1; Friederich, Nils ORCID iD icon 1; Baeuerle, Simon; Neumann, Oliver; Reischl, Markus ORCID iD icon 1; Mikut, Ralf ORCID iD icon 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Nowadays, Machine Learning (ML) is experiencing tremendous popularity that has never been seen before. The operationalization of ML models is governed by a set of concepts and methods referred to as Machine Learning Operations (MLOps). Nevertheless, researchers, as well as professionals, often focus more on the automation aspect and neglect the continuous deployment and monitoring aspects of MLOps. As a result, there is a lack of continuous learning through the flow of feedback from production to development, causing unexpected model deterioration over time due to concept drifts, particularly when dealing with scarce data. This work explores the complete application of MLOps in the context of scarce data analysis. The paper proposes a new holistic approach to enhance biomedical image analysis. Our method includes: a fingerprinting process that enables selecting the best models, datasets, and model development strategy relative to the image analysis task at hand; an automated model development stage; and a continuous deployment and monitoring process to ensure continuous learning. For preliminary results, we perform a proof of concept for fingerprinting in microscopic image datasets.


Verlagsausgabe §
DOI: 10.5445/IR/1000164691
Veröffentlicht am 23.11.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 18.11.2023
Sprache Deutsch
Identifikator ISBN: 978-3-7315-1324-7
KITopen-ID: 1000164691
HGF-Programm 47.14.02 (POF IV, LK 01) Information Storage and Processing in the Cell Nucleus
Erschienen in Proceedings 33. Workshop Computational Intelligence. Hrsg.: H. Schulte
Veranstaltung 33th Workshop Computational Intelligence (2023), Berlin, 22.11.2023 – 24.11.2023
Verlag KIT Scientific Publishing
Seiten 169-190
Schlagwörter MLOps, Deep Learning, DevOps, Machine Learning
Nachgewiesen in arXiv
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page