
The challenge of dispatching the right
ambulance

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

von der
KIT-Fakultät für Wirtschaftswissenschaften

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation
von

Dipl.-Ing. David Alfredo Olave Rojas

Tag der mündlichen Prüfung: 23. Februar 2023
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Zusammenfassung

Das Gesundheitswesen ist eine der wichtigsten Disziplinen, um die Lebensqualität der
Menschen zu sichern. In diesem Zusammenhang wurde Rettungsdienst mit dem Haupt-
zweck, Leben zu retten, geschaffen. Die Verwirklichung dieses Ziels erfordert eine kor-
rekte Reaktion auf lebensbedrohliche Zustände, die sich aus verschiedenen unvorher-
sehbaren Situationen wie Unfällen, Naturkatastrophen, Terrorismus und Pandemien
ergeben. In vielen dieser Fälle geht es um das Sammeln von Informationen über den
Notfall und die Koordination verschiedener Ressourcen um den Notfall behandeln zu
können. Zum Beispiel sind Ressourcen wie Ambulanzteams, Notärzte, Krankenhäuser
und Notrufzentralen innerhalb des Medizinischen Rettungsdienst-Systems durch dyna-
mische Kommunikation miteinander verbunden Diese Ressourcenkommunikation und
-koordination sollte so gut wie möglich sein, um die Überlebenswahrscheinlichkeit eines
jeden Patienten zu erhöhen. Diese Situationen fördern unterschiedliche Probleme, die
analytische, logistische und betriebswirtschaftliche Merkmale umfassen.

Einige dieser Herausforderungen können z. B. durch eine geeignete Einsatzstrate-
gie für Krankenwagen bewältigt werden. Die Auswahl des richtigen Rettungswagens
für einen bestimmten Notfall bringt jedoch nicht nur analytische und modelltechni-
sche Herausforderungen für die korrekte Untersuchung des Systems mit sich, sondern
erfordert auch genaue und realitätsnahe Entscheidungshilfen, die eine angemessene Mo-
dellierung des Systems und der Ressourcen sowie die Koordinierung der entsprechenden
medizinischen Notfallsysteme gewährleisten.

Obwohl frühere Arbeiten aus dem Bereich des Operations Research Anstrengungen
unternommen haben, um eine Verbesserungen bei der Suche nach der besten Einsatz-
strategie zu erzielen, basiert die überwiegende Mehrheit von ihnen auf der Integration
von Standortzuweisung und Einsatzplanung. Außerdem, hat keine dieser Arbeiten alle
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Akteure in integrierter Weise berücksichtigt und sowohl die Integration als auch die
Interaktion zwischen ihnen in Betracht gezogen. Dieser Idee folgend wird in dieser
Dissertation ein methodischer Rahmen untersucht und vorgestellt, mit dem Ziel, die
Analyse und Reaktion der Rettungsdienste eines bestimmten Gebiets von einer opera-
tiven Ebene aus zu verbessern.

Vor diesem Hintergrund wird ein hybrides Simulationsmodell unter Verwendung
eines Machine-Learning-Ansatzes für den präklinischen Rettungsdienstprozess vorge-
stellt. Dieses Modell wird mithilfe von Analytics-Methoden erstellt und validiert,
um eine sorgfältig ausgewählte Datenbank zu erstellen, die zwei wichtige Regionen
des deutschen Rettungsdienstsystems repräsentiert. Dieses Simulationsmodell enthält
wichtige Funktionen, die im Notfallprozess dargestellt werden, wie z. B. die Möglich-
keit, den Krankenwagen zu entsenden, wenn dieser zur Wache zurückkehrt, die erneute
Disposition im Falle eines schwereren Notfalls, der in das System eingeht, und die
Synchronisierung von Notärzten mit Krankenwagen-Teams, usw.

Des weiteren wird eine Methodik zur Bewertung der Einsatzstrategie vorgestellt,
die auf dem hybriden Simulationsmodell und der Online-Optimierung basiert. Ab-
schließend wird eine auf Online-Optimierung basierende Studie für das Problem der
Einsatzplanung vorgestellt.

Aus den Ergebnissen lässt sich schließen, dass gemischte Strategieansätze in rea-
len Szenarien robuster, zuverlässiger und vorhersehbarer sind als einzelne Dispatch-
Strategien. Darüber hinaus wirkt sich die Anzahl der Krankenwagen im System direkt
auf die Untersuchung aus, um zu bestimmen, welche Dispatch-Strategie besser oder
am Besten abschneidet. Dies ist auch mit der Ressourcenauslastung verbunden, die
diesen Indikator als die Stressmenge im System versteht. Obwohl diese Dissertation ein
Versuch in die richtige Richtung ist, um neue Möglichkeiten für die Entwicklung eines
leistungsfähigeren und dynamischeren Rettungsdienstes zu entdecken, ist es schließlich
auch klar, dass es notwendig und dringend ist, mit dieser Doktorarbeit weiter zu ge-
hen, einschließlich neuer Ansätze, wie z. B. die Integration verschiedener Methoden
(Simulations-Optimierungsmodelle + künstlichen Intelligenz), um der Komplexität und
Nichtlinearität von notfallmedizinischen Systemen zu begegnen.

Stichwörter Simulation, Machine Learning, Rettungsdienst, Online Optimierung
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Abstract

Healthcare is one of the most important disciplines to ensure life quality for human
beings. In this context, Emergency Medical Systems (EMS) have been created with the
principal purpose of saving lives. Addressing this objective implies a correct response
to life-threatening conditions resulting from several unpredictable situations such as
accidents, natural disasters, terrorism, and pandemics. Many of these cases involve
collecting critical information about the emergency and coordinating several resources
to attend to it. For instance, resources such as ambulance teams, emergency doctors,
hospitals, and call centers are interrelated within the EMS system through dynamic
communication. This resource communication and coordination should be the best
possible to maximize the survival probability of each patient. These scenarios propose
diverse issues from the analytical, logistical, and managerial points of view.

Some of these challenges can be faced, for example, through a proper ambulance
dispatch strategy. However, selecting the right ambulance for a specific emergency not
only involves analytical and modeling challenges for the correct study of the system but
also calls for accurate and real-world-based decision-making tools that ensure appropri-
ate system and resources modeling and coordination of the corresponding emergency
medical systems.

Although previous works have devoted efforts from operations research in order to
provide improvements towards finding the best dispatch strategy, the vast majority
of them are based on the integration of location-allocation and dispatch approaches.
Furthermore, none of them has included all the actors in an integrated manner, con-
sidering the integration and interaction between them. Following this idea, in this
thesis, a methodological framework is studied and presented to enhance the analysis
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and response of the emergency services of a particular territory from an operational
level.

In particular, a hybrid simulation model using a machine learning approach is pre-
sented for the pre-hospital emergency process. This model is built and validated using
analytics tools to produce a carefully-curated database representing two important
regions of the German emergency medical system. This simulation model includes
important features presented in the emergency process, such as the ability to dispatch
the ambulance when returning to the base, re-dispatching in case of a more severe
emergency entering the system, and synchronizing emergency doctors with ambulance
teams, among others. After that, a dispatch strategy evaluation methodology is pre-
sented based on the hybrid simulation model and Online optimization. Finally, an
online optimization-based study is presented for the ambulance dispatch problem.

The results can conclude that mixed strategy approaches are more robust, reliable,
and predictable than single dispatch strategies in real-world scenarios. Furthermore,
the number of ambulances in the system directly affects the analysis to define which
dispatch strategy performs better. This is also associated with the resource utilization
understanding this indicator as the amount of stress presented in the system.

Finally, although this thesis is an effort in the right direction in order to discover new
opportunities for developing a more capable and dynamic emergency medical service,
it is also clear that there exists a need, an urgency, to go further with this doctoral
thesis, including new approaches, such as combinations of different methods or Artificial
Intelligence Simulation-Optimization models in order to face the complexity and non-
linearity of emergency medical systems.

Keywords Ambulance dispatch, Simulation, Machine Learning, Emergency Medical
Service, Online Optimization.
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Chapter 1

Introduction

In this chapter we present an introduction to the principal challenges related to Emer-
gency Medical Systems which motivate this thesis. Furthermore, the research goals
and the structure of the thesis are also presented.
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Chapter 1. Introduction

1.1 Motivation

According to World Health Organization [2020] (WHO), cardiovascular disease (CVD)
is the first cause of death worldwide, taking an estimated 17.9 million lives each year.
Four of five CVD deaths are related to heart attacks and strokes. In Europe, CVD
causes more than every second disease, according to WHO Europe [World Health Or-
ganization regional office for Europe, 2020]. Meanwhile, in the United States, Coronary
Heart Diseases (CHD) are the leading cause of CVD deaths, followed by strokes, ac-
cording to Virani et al. [2020]. The vast majority of these cases are time-critical, i.e.,
survival expectations depend directly on how fast patients receive the proper treatment.
In these cases, Emergency Medical Services (EMS) are the first to respond and take
care of the patients, many of them in life-threatening conditions. However, EMS also
have to attend to calls from different situations such as accidents, natural disasters,
terrorism, pandemics, and patient transport. These present complex scenarios from
a logistical point of view. The dispatch and the use of resources should be resolved
efficiently to achieve a satisfactory response to each situation.

Facing these scenarios involves resolving logistic challenges, such as ambulance lo-
cation, allocation, workforce scheduling (ambulances and call centers), and ambulance
dispatch problems. Within the EMS system, resources such as ambulance teams, emer-
gency doctors, hospitals, and call centers are interrelated through dynamic communi-
cation. For instance, in a heart attack situation, the call-taker attends the emergency
call. After collecting all relevant information, an emergency resource is dispatched
according to the available options by a dedicated dispatcher or the same call-taker.
Subsequently, the emergency resource, commonly an ambulance team and an emer-
gency doctor, drives to the emergency place. Meanwhile, the call-taker assists the
cardiopulmonary resuscitation by phone until the emergency resources arrive at the
patient. This event sequence takes place just in minutes, forcing the system to a
coordinated response in just seconds.

In this context, resource coordination should be the best possible to maximize the
survival probability of each patient. Proposing solutions for the ambulance dispatch
problem could be challenging since sometimes the information about the emergency is
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1.1 Motivation

incomplete, and it is hard to predict when and where the next emergency will occur.
Two essential works in this field, such as Aringhieri et al. [2017a] and Singer and

Donoso [2008] , present simulation techniques as one the best in terms of reality process
representation for complex systems. Such an approach is one of the best to evaluate
implementable solutions. In fact, Aringhieri et al. [2017a] point out that establishing
some assumptions for better computational tractability could affect the solution quality.
According to the authors, these assumptions are required to use classical operational
research approaches such as stochastic and mixed-integer programming or queue theory.

Furthermore, Aboueljinane et al. [2013] indicate that integrated approaches such
as optimization and simulation lead us to better decisions and better analysis since
simulation would assess the impacts of the solutions proposed by the optimization
models in a more realistic context.

In this context, online optimization approaches are perfect since the ambulance
dispatch problem is defined at the operational level. Moreover, ambulance dispatching
is highly complex due to the number of variables and players, and the findings could be
easy to implement in the real world. Online optimization approaches are pretty close
to reality and can address the difficulties presented in the real world.

Several previous studies in the area of ambulance dispatch compare many strategies
to find the best in terms of response time, survivability or coverage. The most common
policies are the nearest idle ambulance, some strategy based on a covering indicator, or
some policy based on maximizing survivability [see Aboueljinane et al., 2014, Bandara
et al., 2014, Bélanger et al., 2020, as examples in the literature]. Furthermore, many
studies test a combination of location-allocation strategy with a dispatch strategy. This
approach is efficient since there are synergies between both strategies working together,
as pointed out by Aringhieri et al. [2018], Bélanger et al. [2020], among others.

However, these approaches are challenging to implement without incurring negoti-
ations with paramedics or ambulance teams. They claim these strategies force them
to be in constant movement, increasing travel times and workload but decreasing rest
time. Moreover, an allocation-dispatch strategy does not allow us to know how effective
the dispatch strategy is.

Additionally, the works including dispatch policies tested using simulation, do not
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Chapter 1. Introduction

represent EMS in a detailed manner since they do not include the interaction between
resources, ambulance dispatching when the ambulance is returning to the base, realistic
travel speeds according to the moment of the day or distances, decision protocols
of ambulance teams, re-dispatching among others (see section 4.1 and 6.1 for more
details).

This scenario proposes the following research questions(RQ):

RQ 1. How is the interaction presented between the emergency resources in an EMS
process?

RQ 2. How could affect the territory orography and external parameters the ambulance
dispatch performance?

RQ 3. What are the relations between capacity, demand, and dispatch strategy?

RQ 4. Which mathematical characteristics shall be present in a model which includes
the requirements from practitioners, patients, and the EMS?.

Finally, these questions lead the research effort, where the corresponding results we
present in this doctoral thesis. Furthermore, these RQs inspire the goals of this work.

1.2 Research goals

1.2.1 General objective

This thesis aims to develop and present a model and an evaluation methodology frame-
work for assessment and testing ambulance dispatch strategies to aid decision-makers
in real-life situations.

1.2.2 Specific objectives

• To understand and characterize the existing emergency medical service process
in a real-world context.
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1.3 Overview of the thesis

• To characterize the elements presented in the emergency medical service pro-
cess by representing functional and topological properties and characteristics, re-
source availability, the interrelation between these resources, and the emergency
demand.

• To propose simulation models that allow us to understand the relationship be-
tween dispatch strategies and a particular territory.

• To establish the applicability of the methodological framework for defining the
best ambulance dispatch policy for robust system response.

1.3 Overview of the thesis

The presented doctoral thesis is organized as the following:

Chapter 2: We discuss Emergency Medical Service (EMS) systems in this chapter,
presenting the main philosophies and focusing on the German EMS.

Chapter 3: It includes the methodological background presented in this thesis, which
includes simulation, online optimization, and machine learning approaches.

Chapter 4: We present a detailed and realistic simulation model for the pre-hospital
emergency medical process based on the German EMS system.

Chapter 5: It presents an evaluation methodology for ambulance dispatch strategies.
We also present theoretical analysis to understand how some spatial and resource
variations could affect dispatch strategy performance.

Chapter 6: We present our study to answer which ambulance dispatch strategy is
the best. This study includes realistic characteristics using the methodology
presented in Chapter 5.

Chapter 7: Finally, we present the conclusions, further research, and some discussions
about this thesis.

David Olave-Rojas 5





Chapter 2

The Emergency Medical Service
system

This chapter presents a definition of Emergency Medical Service (EMS) Systems through
a historical overview. Furthermore, we present the main EMS models and philosophies
from the point of view of the resources. Finally, we describe the German EMS system’s
organization and resources. Some parts of this chapter are published in Olave-Rojas
and Nickel [2021].

7



Chapter 2. The Emergency Medical Service system

2.1 Towards a modern Emergency Medical Service

Emergency Medical Services (EMSs) are one of the three emergency services presented
the modern society, besides Police and Fire and Rescue Services. Their principal task
is to provide Emergency Medicine.

Nevertheless, the question remains about what EMSs are. The European Society
for Emergency Medicine [2021] defines EMS as the following:

Emergency Medical Service A primary specialty established using the
knowledge and skills required for the prevention, diagnosis, and man-
agement of urgent and emergency aspects of illness and injury, affecting
patients of all age groups with a full spectrum of undifferentiated phys-
ical and behavioral disorders.

According to World Health Organization et al. [2008], A short definition is that EMS
“typically refers to the delivery of medical care at the site of the adverse medical event”
at a certain amount of time.

Historically, Dominique Jean Larrey is considered the father of emergency medicine,
as pointed out by Skandalakis et al. [2006]. He distinguished himself during the French
wars. After seeing the speed of the flying french artillery due to carriages, he imple-
mented this idea in health care, inventing the “ambulances volantes” or flying ambu-
lances in 1792. The flying ambulances aimed for the rapid transport of injured soldiers
from the battlefield to a more safe place. However, the word ambulance’s first appear-
ance was in the 15th century when the Queen Isabella of Spain introduced the term.
She used this word to refer more to the military field hospitals, which were located in
tents, than to carriages or wagons that allowed the transport of the wounded to a safe
place, according to Ortiz [1998].

Wilford [2008] points out that civilians had to wait until 1832 for the implementa-
tion of early ambulances in a city area after the outbreaks of cholera in London.

The United States of America was the pioneer in terms of a hospital-based ambu-
lance service. In 1865, the first service in Cincinnati began to operate, followed by
another one in New York (Barkley [1990]).
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2.2 The Anglo-American model

Through the years has been several improvements and new techniques, such as the
development of the first training program for ambulance attendants by the American
College of Surgeons on mid 1950s and the demonstration of the efficacy of mouth-to-
mouth ventilation by the Dr. Peter Safar, according to Sanders et al. [2012], among
others. Nevertheless, in the 1960s started a modernization and professionalization of
processes and professionals, especially in the United States, as described by Kouwen-
hoven et al. [1960]: (i) Cardiopulmonary reanimation (CPR) and defibrillation became
as the standard manner to care cardiac arrest outside of hospitals; (ii) the role of
the paramedic was created; (iii) it started the specialization of physicians orientating
their formation specifically to emergency accidents started; (iv) the German emergency
doctor was introduced in the German EMS, among others.

Each country has a specific organization and structure according to its needs in this
context. The differences could be present in the response time targets, the payment
structure, whether the service is entirely public, private, or a combination of both
approaches, among others.

Some authors, such as Al-Shaqsi [2010], recognize two main philosophies in orga-
nization and paradigms: The Anglo-American model and the Franco-German model.
The Anglo-American philosophy is “Scoop and Run”. Meanwhile, the Franco-German
philosophy follows the idea of “Stay and Stabilize”. As described by Dick [2003], the
patient is transported to the treatment in the Anglo-American model, whereas in the
Franco-German model, the treatment is carried to the patient. However, most EMS
systems in the world are derivations or combinations of these models.

2.2 The Anglo-American model

The Anglo-American model, as pointed out, follows the idea of transporting the patient
to the treatment as soon as possible. This shapes the entire process. Commonly, an
EMS based on the Anglo-American model is composed of the following resources related
to the emergency scene, according to Sanders et al. [2012]:

Dispatchers: Their are telecommunicators with the aim to stablish the primary con-
tact with the public, and to direct the proper agencies to the scene. These
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Chapter 2. The Emergency Medical Service system

agencies are the typical resources presented in a EMS such as ground and air
ambulances, fire departments, utility services, among others.

Emergency Care Assistants (ECA): Their main task is to support the emergency
Medical Technicians or the Paramedics. They are also capable of driving and
giving first aid.

Emergency medical Technicians (EMT): They can perform monitoring procedures
such as blood pressure monitoring or intravenous and intraosseous access. Could
work without supervision in some low-risk emergencies.

Paramedics: They are the most competent and skilled professional on the emergency
scene. Hence, they can perform advanced life support procedures such as intuba-
tion, defibrillation, and drug administration under the direction of a physician.

In the Anglo-American Model, Physicians or emergency doctors are present as consul-
tant figures, giving some feedback and supervision to the paramedics. Usually, they
are located in a hospital. However, they can also be on-site since they are also part
of the air ambulance team. When an air ambulance is called, critical care medicine is
required on the scene, which a doctor provides.

There are two types of ambulances: Basic Life Support (BLS) and Advanced Life
Support (ALS) ambulances. BLS ambulances can transport patients to and between
hospitals. The crew is composed of a least two persons: an ECA and an EMT. Some-
times they also attend low-risk emergencies. ALS ambulances are prepared for life-
threatening emergencies. The crew is composed of at least two persons but, in this
case, are a Paramedic and EMT. Usually, an ECA is also part of the team. Sometimes,
they also perform transport duties when the patient is at risk.

2.3 The Franco-German model

The Franco-German Model is well-known for stabilizing and treating the patient in
place. Some countries following this model use the acronym SAMU for their EMS,
which means ”Mobile Emergency and Resuscitation Service”. With this aim, an EMS
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based on the Franco-German Model is composed of the following resources on the scene,
according to Organization et al. [2008], and Bos et al. [2015]:

Dispatchers: They address similar functions as their colleagues in the Anglo-American
model, such as to receive and process calls for EMS assistance, to dispatch and
coordinate EMS resources, to relay medical information and the coordination
with public safety agencies as required by the emergency.

Basic Emergency Medical Technicians: They are equivalent to the ECAs and
perform almost the same tasks as their colleagues in the Anglo-American model.

Advanced Emergency Medical Technicians: Also known as Paramedics in some
Latin-American countries, but equivalent to the EMT. Some countries have some-
thing between the EMT and Paramedics from the Anglo-American Model.

Physicians: They are specially qualified for applying treatment at the emergency
scene. The entire ambulance Team is under the direction of an emergency doctor.
They usually arrive at the scene in the same vehicle as the ambulance team.
Sometimes they arrive in a separate vehicle driven by an Advanced EMT.

We also recognize BLS and ALS ambulances in this model with differences in ca-
pacity and capability when attending an emergency. By definition, ALS should also
be able to attend a birth in some Latin-American countries. The crew is equivalent
since there are composed by least two persons who have different skills depending on
whether they are a team of a BLS or an ALS ambulance.

2.3.1 The German EMS system

In Germany, each of the 16 federal states is organized in several EMS regions, composed
of either rural areas, urban areas, or a mix. Each EMS region is controlled and managed
by a coordination center attending emergency calls and managing the resources. In
some EMS regions, the coordination center is an integrated one, which means that it
is in charge of both medical emergency and firefighter resources. This approach yields
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a better response in emergency rescue cases by coordinating resources, such as traffic
accidents and landslides.

The main emergency resources are call-takers, ambulances, emergency doctors, and
helicopters. They can be briefly described as follows:

Call-takers: They are located at the coordination center. Their tasks include an-
swering emergency calls, gathering the relevant information about the emergency
event, entering corresponding information in the IT system, booking, dispatch-
ing, and alarming the emergency team. The last three tasks are assigned to a
dedicated dispatcher in some coordination centers.

Ambulances: They are located in hospitals and ambulance stations. Their teams
are always composed of two persons: two emergency medical technicians (EMT)
when the ambulance is assigned to transport duties or at least one paramedic
if the ambulance is required for emergency rescue. These ambulances have dif-
ferent equipment according to what task they perform, whether transport or
emergencies. In some regions, the same kind of ambulance performs transport
and emergency duties.

Emergency doctors: In Germany, by law, an emergency doctor is required on-site
for particular types of treatments such as defibrillation or life-saving drug ad-
ministration. Doctors are located in hospitals or their private practices. An
emergency doctor generally drives to the scene in a separate vehicle and meets
the patient and the ambulance team at the emergency location. Emergency doc-
tors can be dispatched either at the same time as the ambulances or afterward
an evaluation by the ambulance team.

Helicopters: Commonly, helicopters are used when immediate treatment at a hospital
is necessary. They are used for emergency rescues or intensive care transports.
Sometimes, accessibility is a decisive factor in dispatching a helicopter.

Finally, one ambulance can serve one patient at a time. Then, in the case of a
multiple accident, several ambulances should be dispatched, depending on the number
of people involved in the medical emergency.
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Figure 2.1 presents a scheme with the main stages in an emergency medical service
process, according to Reuter-Oppermann et al. [2017].

Figure 2.1. Schematic process of a emergency medical service.

Despite the differences, both philosophies pursuit the same goal in life-threatening
cases, which is a fast response to saving lives.
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Chapter 3

Methodological background

This chapter presents the methodological background used to develop this work. Since
the methodology is based on simulation and optimization models, we focus this chapter
on these model techniques. We organize this chapter as follows: first, we present some
simulation approaches, with a focus on those we use in this thesis; second, we present
simulation validation techniques; finally, we present the elements used in this work
related to online optimization and the reasons about why is this type of optimization
one of the best approaches for the problems addressed by this thesis.
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3.1 Simulation

Simulation is one of the high-level tools in system analytics for aiding decision-makers
since they allow us to know and analyze a complex process deeply. These models
include each stage of the process and the interrelation between them. Each simulation
approach has advantages and disadvantages, depending on which kind of decisions we
desire to study. Baseline literature in this field is Law et al. [2000] and Banks et al.
[2013]. Most of the following descriptions and definitions are based on these books,
as well as key literature such as Carter and Price [2017], Ingalls [2011], Loper [2015],
Nelson et al. [2013] and White and Ingalls [2018].

In order to understand what simulation is and what it is capable of, let us define
the concepts of model and simulation, according to Loper [2015]:

Model is a physical, mathematical or otherwise logical representation of a
system, entity, phenomenon or process.

Simulation is a method for implementing a model over time.

Modeling is the process of creating a simplified representation of a real system. This
is done through simplification, or removing unimportant details, and abstraction, which
is representing the essential features of a system in a different manner. The resulting
model should demonstrate the qualities and behaviors of the real-world system that
are relevant to the questions that the modeler is trying to answer.

Simulation is the process of running a model over time. This can be done on a
computer, which allows for the study of how the modeled system works. By chang-
ing variables in the simulation, predictions can be made about the behavior of the
system. There are many different types of computer-based simulations. Some of the
most common approaches include discrete event, continuous system, agent-based, and
system dynamics. A common feature they share is generating or predicting an artificial
time history of the system, allowing the observer or experimenter to draw inferences
concerning the operating characteristics of the real system that is represented.

While a model is essential to a simulation, other elements, such as data to stimulate
model inputs and the target computer architecture, directly affect performance and

David Olave-Rojas



3.1 Simulation

accuracy and must be included in the definition of a simulation. Considering these
various aspects of a simulation leads to the following conceptual definition, according
to Tavernini [1996]:

Simulation = Model + Data + Method + Implementation + Realization

(D.1)

Where the components of D.1 are defined as the following:

Model could be a mathematical formulation, a flowchart a logic diagram, a state
diagram, or a workflow, among others. It should be also formulated for a spe-
cific problem with defined border conditions, and also robust enough for address
practical situation related to the phenomenon to be studied.

Data are the model inputs. They are commonly constrained to a number of represen-
tative situations that the system addresses. The combination of data and model
results in a unique solution independent of the selected method, implementa-
tion and realization. When the parameters are modified between runs, then the
treatment of them are similar to data. Nevertheless, in some simulations, a num-
ber of parameter values are defined as an integral part of the model. Moreover,
random variables could be part of the data in order to define some probabilistic
parameters of the model.

Method refers to different numerical procedures and algorithms for solve the model’s
equations. The selection of an appropriate method defines the mathematical
accuracy and the computational complexity of the entire simulation. The better
is the accuracy, the longer is the computation time.

Implementation corresponds to how the selected methods are implemented. For
instance, a non-linear relationship between two continuous variables could be
represented as a table function (the method) using discrete values and intervals
or steps. Specifying how to adjust the step size and defining the values where
the values are valid are part of the implementation.
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Realization refers to the considerations and characteristics related to the computing
hardware, variable size (i.e., integer vs. float vs. double), coding language and
operating system, among others.

3.1.1 Simulation approaches

3.1.1.1 Discrete event simulation

Discrete Event Simulation (DES), as the name describes, models processes focusing on
discrete events. First works related to this approach are those which define and intro-
duce the terminology and key features of DES, such as simulation clock by Kiviat [1969],
virtual clock and event ordering by Lamport [1978] and time-stamp order by Chandy
and Misra [1979].

In general, DES models are composed of stages in the same manner as processes.
Then, events trigger stage changes of specific agents, which represent entities in the
simulation model. Hence, discrete events define when an agent enters the process, the
stage duration, when an agent leave the process, etc. A discrete-time unit defines the
minimum amount of time represented in the DES model. Some stages need resources.
These are represented also as agents on the simulation model. For instance, in an
emergency department, patient arrival is considered as an event, and stages represent
each operation in the process on the simulation model. Nurses and Medical Doctors
are resources of the system which are also modeled as agents. Every stage in the
model takes a certain amount of time, which could be deterministic or stochastic.
These characteristics present DES as one of the best approaches for processes where
operational level decisions occur or short-term planning times.

Some examples of systems that might be evaluated using DES include any queueing
system, such as a bank service counter, manufacturing systems and inventory and sup-
ply chain systems. We present an easy example of a DES representation in Figure 3.1,
where circles represent entering or leaving the process. Blue boxes denote stages, and
sky-blue boxes represent seizing or releasing a resource.
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Figure 3.1. Example of a Discrete Event Simulation model for a simple pre-
hospital emergency process.

3.1.1.2 Agent-based simulation

Agent-Based Simulation (ABS) focuses on the behavior of individual agents. This
approach allows us to model a behavior protocol for each agent, addressing multiple
situations and representing more complex behaviors. For instance, the interaction
between agents could be addressed in detail. Sending information and instructions as
well as synchronizing resources or implementing a shift schedule is also possible.

In the 1990s, some early agent-based models were built using SoftWare and Algo-
rithms for Running on Multicore (SWARM) software, according to Minar et al. [1996],
which was developed for artificial life and was focused on investigating emergent behav-
iors. In the 1980s and 1990s scientists in the field of ecology were using an approach
called individual-based modeling, a paradigm very similar to agent-based modeling,
according to Grimm and Railsback [2006].

ABS is especially suitable for highly complex processes where several agents inter-
play. These characteristics present ABS as one of the best approaches for tactical-level
decisions or long-term planning times. We present a schematic version of an ABS
model for an ambulance in Figure 3.2. There, we represent stages with yellow boxes
and transitions with arrows. Specific parameters could define following one branch over
the other, as we represent in the bifurcation between DrivingToBase and Transport.
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Figure 3.2. Example of a Agent-Based Simulation model for an Ambulance
protocol.

3.1.1.3 Dynamic simulation

Dynamic Simulation (DS) or system dynamics (as presented also in literature) was
developed by Jay Forrester at MIT Sloan School of Management in the 1950s to help
solve management problems, as presented by Forrester [2007], and it is focused on
flows. These flows could be information, products, patients, materials, among others.
These elements call resources and are collected in Stocks. The incoming and outcoming
flows from and to each Stock is determined by the flow rates. These flow rates could
be modified by information links which affect differential equations.

Dynamic Simulation represents a top-down approach with a high level of abstrac-
tion. Hence, DS is one of the best approaches for long-therm decisions. Examples
where DS could be implemented for what-if analysis are military, environmental de-
signs, population growth analysis, engineering design, weather and crop production,
among others. Figure 3.3 presents a simple version of a DS model applied in a emer-
gency process context. In the example, population denotes a stock, decreaseFactorCalls
illustrates a flow rate, and arrows represent information links.
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Figure 3.3. Example of a Dynamic Simulation model for a top-level emergency
model.

3.1.2 Validation techniques

Validation and verification of simulation models are crucial since a simulation model
aims to allow us to understand and experiment with situations and find solutions for
real-world problems without the costs of doing it in the real system. Proper validation
ensures that the model is a valid representation of reality. It also defines under which
parameters and characteristics the model is representative and, therefore, under which
scenarios the conclusions obtained from the model are implementable.

3.1.2.1 Without historical data

Animation: In animation, we can see the agents and event movements graphically
in the layout of our simulation model. This possibility allows the observation
and the comparison of the agents’ behavior to find inconsistencies between the
model and the real world. Some works pointing this out are Churilov et al. [2013],
Jánoš́ıková et al. [2019], Kleijnen [1995].

Extreme condition test: Testing the simulation model in extreme conditions allows
us to see if the simulation model does what is expected in those test conditions.
For example, if there are no emergencies in a particular region, none of the

David Olave-Rojas 21



Chapter 3. Methodological background

ambulances should respond. Hence, we should see zero travels in our simulation.
Some works including this are Churilov et al. [2013] and Silva and Pinto [2010].

Face validity: When there is no access to real data, the opinion of an expert group
could be the best approach. Experts have enough experience to identify some
errors in the results, in the process or in the behavior of the agents. They also
can be helpful to define critical parameters such as travel speed, treatment time,
among others. Some works such as Aboueljinane et al. [2013], Churilov et al.
[2013], Jánoš́ıková et al. [2019] and McCormack and Coates [2015] pointed out
this importance.

Trace: In complex simulation models, tracing an event or an agent in detail could be
the right approach. This is based on saving the time in every step of the process
where an agent is taking part for post-analysis. For instance, if a nurse has
to vaccine a patient, we save the timestamps for the entire vaccination process.
Then, we compare the timestamps with the expected ones collected from the
actual process. Works addressing this technique are Granberg and Nguyen [2018],
Kergosien et al. [2015] and Kleijnen [1995].

3.1.2.2 With historical data

Event validity: It compares the event time distribution from real data and the simu-
lation model. This could be implemented for a specific step of the process or the
entire system. Some references for this validation are Aboueljinane et al. [2013],
and Churilov et al. [2013].

Graphic comparison: It takes into account the visual comparison of graphics. These
graphics are statistical parameters or distributions from the simulation model
and the historical data. Works describing this are Carson [2002], Granberg and
Nguyen [2018], and Kleijnen [1995].

Inspection approach: It consists of the inspection and comparison of key perfor-
mance indicators (KPIs), such as mean values or variances of specific output
parameters. The comparison is performed between the KPIs from the simulation
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model and their real-world counterparts. Some works that point this out are
are Aboueljinane et al. [2013], Jánoš́ıková et al. [2019], Mendez-Giraldo et al.
[2018], and Pinto et al. [2015].

Hypothesis test: It is an alternative to the inspection approach and consists of a
statistical test, refusing the null hypothesis at a specified confidence level. In
this case, the null hypothesis means no difference between the output parameters
from both the real system and the simulation model. Some references describing
this technique are Kleijnen [1995], and Churilov et al. [2013].

Confidence intervals: It is a very objective validation system based on statistical
theory. Nevertheless, it takes several independent datasets from the existing
system and simulation model for proper validation, which could be a drawback.
Law et al. [2000] and Sargent [2013] mention this technique in the literature.

In this thesis, we apply ABS and DES to develop a Hybrid Simulation model. We
use this approach since the problem faced in this thesis includes emergencies, which
we model as events, and ambulances and medical doctors, which we model as agents
(chapter 4 details why this approach is the best in our context). We use animation,
face validity, trace, event validity, and graphic comparison as validation and verification
techniques.

Several of these techniques are also presented in machine learning algorithms since
they are used to model and predict the behavior of a particular variable, including
sometimes an extensive set of independent parameters.

3.2 Machine learning

In this thesis, we also use machine learning algorithms. These algorithms are suitable
for recognizing patterns, characteristics, and tendencies presented in a database to
replicate or predict them. The concept of an algorithm with a learning capacity is not
new. The first work speaking about this idea is Samuel [1959]. However, recently this
topic has been getting more attention since the actual computer capacity can manage
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instances large enough as presented in real-world problems. Some literature related to
this topic is Amat Rodrigo [2020], IBM Cloud Education [2020], James et al. [2013],
Kubat [2017], Mitchell et al. [1990], and Zhou [2021]. In general, the literature identifies
three main machine learning algorithm groups:

Supervised learning: It consists of a mathematical model that has access to both
input and output data. The data is, in this case, a kind of “teacher” since
it shows the correct answer for a particular input of parameters. A common
approach is to split the dataset into two groups. The first group is designated for
training purposes, changing the parameters of the mathematical model to meet
the predicted values with the actual output data based on the input data. The
second group is used for testing purposes with the aim of identifying the response
of the machine learning algorithm under unknown data. Classes of algorithms
included in this group are classification and regression algorithms. Classification
algorithms are better for those situations where the output is restricted to a
limited set of values. Regression algorithms are conceived for those cases where
the output may have any numerical value within a specific interval. Examples
of supervised learning algorithms are Support Vector Machine, Random Forest,
and Decision Trees.

Unsupervised learning: It includes algorithms capable of recognizing patterns or
similar characteristics by using only output data. Typical problems where this
approach is applied are clustering problems, anomaly detection, and density func-
tion finding. In general, these algorithms need some entry parameters for proper
performance besides the data. For example, some entry parameters in cluster-
ing applications are the maximum distance between two points, the minimum
amount of points for being considered a cluster, and the desirable number of
clusters. Some examples of unsupervised algorithms are k-nearest neighbors (k-
NN), Local outlier factor (LOF), k-means clustering and Density-based spatial
clustering of applications with noise (DBSCAN). The first two are examples of
anomaly detection algorithms and the second two are algorithms for clustering
problems.
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Reinforcement learning: It follows the idea of try and error. The algorithm learns
by following a system of rewards for the correct answers or predictions and penal-
ties for the incorrect ones. The algorithm generates new knowledge under this
approach, which the algorithm uses to explore unknown data and generate more
knowledge. In this case, the data is called the environment, which is affected by
actions coming from the algorithm. The results are evaluated and interpreted
through rewards. The objective of these rewards is to indicate if the evaluated
action is in the correct direction or not. Some examples are Q-learning, State-
action-reward-state-action algorithm (SARSA), and Temporal difference learn-
ing.

Machine learning algorithms are handy tools for modeling and predicting datasets.
However, we should consider the fact that they require large amounts of data to obtain
accurate results.

In the context of this thesis, we use supervised and unsupervised machine learning
algorithms. Specifically, we apply random forest for a regression problem and DBSCAN
for a clustering problem.

3.2.1 Error and validation strategies

We use machine learning methods as a technique to recognize patterns and predict the
values of a certain dependent variable, according to a number of independent variables.
In order to achieve it, we use a dataset, which is split in a least two partitions: the
first one is the training set, which it is used to train the model, and the second one is
the testing set, which it is used to test the model performance.

In order to quantify the accuracy of our model, we have to define the amount of
error at the outputs. More generally, the difference between the output predicted by
the learner and the groundtruth output (presented in the dataset) is called error. In
this case, the literature establish that the error calculated on the training set is called
training error or empirical error and the error calculated on the new samples or testing
set is called generalization error. We wish to have a learner with a small generalization
error. However, since the details of the new samples are unknown during the training
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phase, we can only try to minimize the empirical error in practice.
In order to define and quantify how accurate is a machine learning-based model,

there exist a number of techniques, which we proceed to describe:

Simple Validation This method consists of randomly dividing the available obser-
vations into two groups, one used to train the model and the other to evaluate
it. However, this technique has two main considerations: (i) The error estimate
is highly variable depending on which observations are included as the training
set and which are included as the validation set (variance problem); and (ii) By
excluding part of the available observations as testing data, there is less infor-
mation available to train the model, resulting in an overestimation of the error
compared to what would be obtained if all the observations were used for training
(bias problem).

Leave One Out Cross-Validation It is an iterative method that starts using all
available observations as a training set except one, which is excluded for use
as validation. If a single observation is used to compute the error, the error
varies greatly depending on which observation is selected. To avoid this, the
process is repeated as many times as available observations, excluding a different
observation in each iteration, adjusting the model with the rest and calculating
the error with the excluded observation. Finally, the error estimated by Leave
One Out Cross-Validation (LOOCV) is the average of all calculated errors. The
LOOCV method makes it possible to reduce the variability that arises if the
observations are randomly divided into only two groups. This is so because at
the end of the LOOCV process, all available data is used for both training and
validation. As there is no random separation of the data, the LOOCV results are
fully reproducible.

The main disadvantage of this method is its computational cost. The process
requires that the model be readjusted and validated as many times as available
observations in the dataset. Exceptionally, in least squares regression and poly-
nomial regression, due to their mathematical characteristics, only one adjustment
is necessary, which greatly speeds up the process.
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LOOCV is a very widespread validation method since it can be applied to evaluate
any type of model. However, there exist the risk of falling into overfitting since
the method uses all the observations as training, with the aim of minimizing the
error.

k-Fold Cross-Validation This method is also an iterative process. It consists of
dividing the data randomly into k groups of approximately the same size. k − 1
groups are used to train the model and one of the groups is used as validation.
This process is repeated k times using a different group as validation in each
iteration. The process generates k estimates of the error whose average is used as
the final estimate. In this case, the number of necessary iterations is determined
by the selected value of k. In general, a k between 5 and 10 is recommended,
which present a good computational tractability in comparison with LOOCV.

However, the main advantage of K-fold CV is that it achieves an accurate esti-
mation of the test error thanks to a better balance between bias and variance.
LOOCV uses n-1 observations to train the model, which is practically the entire
available data set, thus maximizing the fit of the model to the available data and
reducing bias. Nonetheless, for the final estimate of the error, the estimates of
n models trained with practically the same data are averaged (there is only one
data difference between each training set), so they are highly correlated. This
translates into a higher risk of overfitting and therefore of variance. In the K-fold
CV method, the k groups used as training are much less overlapping, avoiding
the risk of overfitting.

Bootstrapping It is a technique based on obtaining a sample from the original one by
means of replacing observations (resampling with replacement), and of the same
size as the original sample. Resampling with replacement means that, after an
observation is extracted, it is made available again for subsequent extractions. As
a result of this type of sampling, some observations will appear multiple times in
the bootstrap sample and others will not appear at all. Unselected observations
are called out-of-bag (OOB). For each bootstrapping iteration, a new bootstrap
sample is generated, the model is fitted with it, and it is evaluated with the
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out-of-bag observations.

In this thesis, we use the Simple Validation and the k-Fold Cross-Validation since
the combination of both techniques ensure that we can avoid bias and variance problems
with an acceptable computational resource consumption.

3.3 Online optimization

In this thesis, we use online optimization, which we could define by comparison with
the standard and well-known offline optimization. The main difference between both
is the amount of information accessible at the decision moment.

Some literature related to this topic are Borodin and El-Yaniv [2005], Bubeck [2011],
Fiat and Woeginger [1998], Grötschel et al. [2013], Karp [1992] and Dunke et al. [2014],
which are the baseline for this section.

According to Borodin and El-Yaniv [2005], in an online optimization problem, an
algorithm decides how to act under incoming information items without any knowl-
edge of the inputs in the future. In an offline optimization problem, the algorithm is
aware of the incoming information items since it has complete access to information.
In colloquial terms, we could say that online optimization is being a general on the
battlefield, looking for the best decision while the battle is happening. Meanwhile,
offline optimization is being a general after the battle, defining the best decisions, and
knowing the events that happened on the battlefield.

In a similar manner, Dunke et al. [2014] point out that decisions have to be made on
an ongoing basis, and algorithms for determining them have to deal with incomplete
information available. This information is usually presented as an input sequence
σ = (σ1, σ2, . . . , σn) where the individual elements σi, with i = 1, . . . , n, are only
gradually known to an online algorithm Alg for processing σ. Hence, the characteristics
of σ in terms of the amount of available information for Alg, define how complete or
partial the solution could be.

An excellent example in the EMS context is the ambulance dispatch problem. An
offline optimization approach is to solve the problem using the historical data for a spe-
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cific time interval, meeting a threshold response time. An online optimization approach
is solving the problem according to how the emergency calls arrive at the system.

In order to know the quality of the performance of an online algorithm, competi-
tiveness has been established as the main criterion [see e.g. Sleator and Tarjan, 1985,
as early work related to this topic]. In general, the competitiveness is defined by com-
parison with the offline solution of the problem. For instance, in a cost minimization
problem, an online algorithm Alg is c-competitive if, for all σ, Alg(σ) ≤ c Opt(σ) + a

with a constant a, where Opt(σ) is the optimal solution for σ of the offline algo-
rithm.Then, the competitiveness of Alg is defined as the smallest value of c ≥ 1 such
that Alg is c-competitive.

However, a competitive comparison with an offline algorithm is not always the best
approach since it means that Alg has to deal with a double worst-case orientation: Alg

not only has to compete against the strongest possible offline algorithm Opt, but also
has to keep the competitive factor on any given input sequence σ. In this context,
comparing two online algorithms could give more information considering real-world
situations, as proposed previously by Dunke and Nickel [2016].

In general, Online Optimization could be divided in two main groups: classical
online optimization, and online optimization with look-ahead. The first group corre-
sponds to the given definition previously, where the Alg is aware of σi at the decision
moment. Hence, the Alg its not aware about the future in any case. In the second
group, Alg is aware of not only σi, but also it is aware at least of σi+1 at the decision
moment. The more elements of the input sequence σ in advance Alg is aware, the
bigger the look-ahead is and a better and more competitive decision is achieved.

In this dissertation we use the classical online optimization and we implement
algorithm variations inspired on the concept of look-ahead to address the problem that
inspires this work.
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Chapter 4

Modeling a pre-hospital Emergency
Medical Service using hybrid
simulation and a machine learning
approach

This chapter presents the problem related to the representation of a pre-hospital emer-
gency medical process, which is addressed by developing and implementing a hybrid
simulation approach. First, we present the literature related to this topic. Subse-
quently, we present a process model for the German rescue chain and the validation
process. Then, we establish the characteristics of the agent modeling and the simu-
lation modeling in general. Moreover, we propose a machine learning approach for a
realistic simulation modeling process. Finally, we design an experiment with real-world
curated data and discuss the results.

Contents of this chapter have been published in Olave-Rojas and Nickel [2021].
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Chapter 4. Modeling a pre-hospital Emergency Medical Service using hybrid simulation and a
machine learning approach

4.1 Related work

The use of simulation models to evaluate the performance of EMSs are not new and
they have been used in the early stages of the professionalization and modernization of
emergency medical process [see Swoveland et al., 1973, Wilmot, 1969, as early examples
of the use of this technique in EMSs] As explained in the previous section, EMS is
complex, with multiple interactions between resources. Since simulation is one of the
best approaches in terms of performance under these complex conditions, this approach
is also suitable for proposing and modeling solutions, besides other operations research
techniques. Therefore, our review focuses not just on articles presenting simulation
models as a central contribution but also on introducing simulation models combined
with optimization or statistical models.

Commonly, in the second group of articles, simulation models are proposed as an
evaluation or assessment tool to determine the solution quality or the impacts of the
solution implementation. We adopt this approach since most of the literature related to
healthcare emergency pathways, and simulation models are concentrated on Emergency
Departments (ED) and less on EMS. Furthermore, we take into account five character-
istics and their study in the literature.We present an overview of the literature analysis
in Table 4.1. These characteristics encompass, which EMS resources are modeled, the
EMS philosophy characterized by the simulation model, how travel distances are con-
sidered, which population area is modeled, and if emergency differentiation is taken
into account.

The information displayed in Table 4.1 shows that most of the work in recent years
does not address the interaction between two or more resources. For instance, Koch and
Weigl [2003] model both ambulances and helicopters but do not explore their relation.
However, both Aringhieri et al. [2007] and Aringhieri [2010] are exceptions since they
explore the relation between ambulances and call centers. Note that, Aringhieri [2010]
is the only work presented as an agent-based simulation (ABS) and a discrete-event
simulation (DES) simultaneously. The authors call DES to model workflow, identify-
ing bottlenecks, and ABS as a better approach for modeling the interactions among
ambulances and operation centers.
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As Al-Shaqsi [2010] presents, EMS’s two main design and process philosophies are
the Franco-German approach and the Anglo-American. The main differences are that
the Anglo-American philosophy depends on paramedics and rapid patient transport
to the hospital. Meanwhile, the Franco-German philosophy includes emergency doc-
tors and focuses on patient stabilization at the accident place. Nevertheless, both
approaches are focused on the same objective in life-threatening cases, which is a fast
response to saving lives. According to Al-Shaqsi [2010], the process differences between
both systems are presented in non-life-threatening situations and by patient transport.

Although both philosophies are well studied, none of the models in the literature
under the Franco-German philosophy are tested using a German EMS.

We also identify works focused on call-centers, such as Ünlüyurt and Tunçer [2016],
van Buuren et al. [2017], and Petitdemange et al. [2019]. In these works, the au-
thors concentrate the efforts on call-center problems, but ambulance resources are not
modeled as agents and are represented through events or timestamps.

The research has been concentrated in urban areas instead of rural areas in the
last years. We assume this is a consequence of having more available data related to
cities. However, the complexity of the interchange between urban and rural areas has
been hardly addressed. Concentrating efforts on models based in more populated areas
is expected since the more available data, the better the understanding of a particu-
lar region. This understanding could be critical in the early stages of modeling since
the possibility of errors is less with a more painless validation process. This situa-
tion presents research gaps for applying simulation models to model emergency calls
from both urban and rural areas simultaneously, sharing resources, and establishing an
interplay between both areas.

Besides the characteristics mentioned above, we consider travel speed and distance
as critical parameters since they are strongly connected to travel time and response
time. As presented in Table 4.1, time estimation for distance and travel speed, ei-
ther from data or statistical distribution, is used in most cases. Only Pinto et al.
[2015] establish a relation between speed and some independent variables. By con-
trast, Jánoš́ıková et al. [2019] use Geolocalization Information System (GIS) data to
estimate a particular path’s speed. This approach considers speed limits for city streets
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and highways but does not consider traffic or related historical data. These simplifica-
tions could lead to mistakes or a restricted vision when evaluating emergency policies
in our simulation model, as described by Aringhieri [2010].

As well as the works described in this section, the summarized articles in Table 4.1
address, but not entirely, the interplay between not just agents, such as ambulances,
call-takers, and emergency doctors, but also between crucial variables such as response
time, distance, traffic, and travel speed. Nonetheless, none of them provides a simu-
lation model consolidating all agents and variables by integrating them in a detailed
manner. This work, which is also described in Table 4.1, proposes a simulation hybrid
model integrating crucial agents in the EMS, modeled by ABS, and variables and pa-
rameters, mainly part of the DES, building a hybrid simulation model. The simulation
is embedded in a GIS environment, allowing a detailed analysis of critical travel vari-
ables. Furthermore, we present a speed-based approach for modeling the dynamical
traffic on streets and highways and its influence on response times.

Reference Resources Emergency Process philosophy Population Travel Country
Amb Cc Others Triage Fra-Ger UK-USA Area Distance Speed

Koch and Weigl [2003] ✓ ✓ ✓ urban + rural euclidean fixed Austria
Aringhieri et al. [2007] ✓ ✓ ✓ ✓ urban euclidean time estimation Italy
Bayer et al. [2010] ✓ ✓ urban time time estimation UK
Aringhieri [2010] ✓ ✓ ✓ ✓ urban euclidean fixed Italy
Churilov et al. [2013] ✓ ✓ urban time time estimation Australia
Aboueljinane et al. [2014] ✓ ✓ ✓ urban + rural euclidean time estimation France
Kergosien et al. [2015] ✓ ✓ urban time time estimation Canada
Pinto et al. [2015] ✓ ✓ ✓ urban GIS avg. by zones Brazil
Ünlüyurt and Tunçer [2016] ✓ ✓ urban time fixed Turkey
van Buuren et al. [2017] ✓ ✓ urban time time estimation Netherlands
Aringhieri et al. [2018] ✓ ✓ — euclidean avg. time —
Lanzarone et al. [2018] ✓ ✓ urban time fixed Canada
Petitdemange et al. [2019] ✓ ✓ ✓ — time — France
Jánoš́ıková et al. [2019] ✓ ✓ ✓ urban + rural GIS GIS info Slovakia
Karatas et al. [2020] ✓ sea euclidean time estimation Turkey
Our work ✓ ✓ ✓ ✓ ✓ urban + rural GIS multi-variable function Germany

Table 4.1. Summary of the literature related to EMS simulation models,
incorporating resources (Amb = ambulances, Cc = call center), emergency
triage and methodologies for modeling travel distance or time.
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4.2 Process model for the German rescue chain

In the 4th Bad Boller Reanimationsgespräche workshop organized by the German So-
ciety for Anesthesiology and Intensive Care [Deutsche Gesellschaft für Anästhesiologie
und Intensivmedizin e.V., 2017], a group of 70 experts from different disciplines and
interest groups stated the need for an in-depth analysis of the survival chain in the Ger-
man emergency medical service. This group aims to model the German EMS with a
strong focus on the heart attack pathway. However, the resulting German EMS model
from the analysis also includes a general process pathway for other diseases validated
by the interdisciplinary group of experts.

This pathway includes steps from the emergency scene, rescue team, coordination
center, and hospital team. Nevertheless, our simulation model shall include all of them,
except for the hospital team, which we consider as a particular process.

Figure 4.1 presents a flowchart of the general EMS model based on the findings of
the workshop. It shows the interaction between actors and which of them completes
each procedure. Furthermore, it is possible to identify the patient pathway through
the entire emergency process, starting when the emergency occurs (Emergency event).
Thereafter, someone on the scene (i.e., it could be the patient or someone else as a
qualified first responder or a bystander) calls to the emergency service, establishing
a communication link (dashed line) with the coordination center. The coordination
center receives the call (Emergency call entry) and activates the respective procedure
(Processing emergency call). In case of the emergency involves a heart attack, the call-
taker performs cardiopulmonary resuscitation assistance to the person on the scene.
After collecting the information from the scene, the coordination center (more specifi-
cally, the dispatcher in) selects the resources (Booking Resources) and sends the alarm
message, which is received by the corresponding rescue team.

The alarm message triggers the rescue team process, starting with the preparation
according to the received information from the coordination center. When the res-
cue team arrives to the emergency place, they take the responsibility for the situation
(Taking over from a first responder), and carry out an evaluation in order to define
the best treatment in place. If the patient needs a complex treatment, the rescue

David Olave-Rojas 35



Chapter 4. Modeling a pre-hospital Emergency Medical Service using hybrid simulation and a
machine learning approach

team contacts the coordination center to demand more resources such as an emergency
doctor. Once the patient has been stabilized, the rescue team proceeds to transport
him to the hospital, in case of a transport is required (Transport to Hospital). Mean-
while, the coordination center selects the hospital and sends the information for patient
registration.

GERMAN EMERGENCY MEDICAL SERVICE MODEL
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Figure 4.1. Flowchart of the general model of German emergency medical
service. Dashed lines represent communication links, whereas lines represent
transitions. Red boxes are milestones on the process

As explained in Section 2.3.1, model is generally performed by four main agents
(call-takers, ambulances, emergency doctors, and helicopters). These agents accom-
plish complex tasks following a specific protocol for each situation. This leads us to
the idea that each agent should be modeled as an independent entity in an agent-based
simulation model. As in discrete event simulation models, emergencies enter the sys-
tem as events, triggering a succession of operations. Hence, a hybrid simulation model
arises to be the best approach to address the situation’s complexity. It allows us to
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model details that profoundly affect the system’s performance after emergency events.
Furthermore, this approach permits us to model situations where operational decisions
must be taken by coordinating a group of agents. In the following, we describe the
characteristics of the three agents Ambulance team, the Emergency doctor and the
Call-taker, as well as some necessary considerations for our simulation.

4.3 Agent modeling

4.3.1 Ambulance team

In the German EMS, ambulance teams perform different tasks such as patient transport
and handling accidents. Due to the importance of this resource in the system, we model
the ambulance team as an agent. In Figure 4.2a, we present the real-world agent
protocol for ambulance teams. This protocol includes two combined states which are
a novelty of this thesis: the Idle state and the PreTreatment state. The Idle state
encompasses three sub-states where the ambulance team is available for dispatching
and handling an incoming emergency call. These three sub-states are the following:

Free state: In our simulation model, the connection between the patient and ambu-
lance team is over when the patient does not need transport after a treatment
at the emergency site or when the hospital takes over the patient. Then, after
the Preparation2 state, the ambulance team is available to attend an incoming
emergency call.

DrivingToBase state: The ambulance Team is in this state when the team returns
to the base. It happens when the ambulance team has finished a certain com-
mitment.

AtTheBase state: This state represents the moment when the ambulance team is
located at the base.

The ambulance team can be selected and dispatched in these three states since it
is idle, as presented in the real world. As expressed in Section 4.1, this feature is not
correctly addressed by the literature.
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Since our simulation is aware of the emergency seriousness and the emergency call
prioritization, we can re-dispatch ambulance teams that have been assigned to low
priority calls. The PreTreatment state contains the activities between the ambulance
dispatch and arriving at the emergency site. At this moment, the ambulance team has
not arrived at the patient. Hence the ambulance team is available to re-dispatch it
for a high-priority emergency call. The sub-states in the PreTreatment state are the
following:

Preparation state: In this state, the ambulance team receives information about the
emergency call from the call-taker. Hence, this is the entry state of the process.

DrivingToScene state: This state represents the moment when the ambulance team
travels to the patient after receiving the information.

ReDispo state: If the call-taker considers a dispatched ambulance team the best one
for a high-priority level emergency, the ambulance team shall be re-dispatched.
The ReDispo state state represents this moment..

The idea related to the PreTreatment state exists in real life and is helpful for
life-threatening emergencies, improving the response of the entire system. Another in-
teresting state is the Preparation2 state, which involves activities (ambulance cleaning,
supplying, and ambulance disinfection) after serving a patient and before being ready
for dispatch. These actions are presented in the process, but they are not adequately
addressed in the literature. We consider these features critical for a realistic evaluation
of the pre-hospital emergency process since the involved time in these actions could
represent an essential amount of time in the entire process.

4.3.2 Emergency doctor

As described above, in the German EMS exist the figure of emergency doctors, who
provide help in the most challenging situations, such as life-threatening accidents. Fig-
ure 4.2b depicts the agent protocol for an emergency doctor, which specifies the team-
work between the ambulance teams and the emergency doctors. The team communi-
cation between both agents is quite significant, considering that an emergency doctor
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(a) ambulance team agent protocol

(b) emergency doctor agent protocol

Figure 4.2. Graphical representation of agent protocols implemented in Any-
Logic™.
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never attends an emergency without an ambulance team. We model this by creating
a link between the agents and controlling state transitions, synchronizing both agents.
For instance, in life-threatening accidents, the emergency doctor guides the treatments
at the accident location, performing the treatment as a team with the ambulance team.
The TreatmentTeam state represents this situation in Figure 4.2a and the Treatment
state in Figure 4.2b.

Hence, the ambulance team’s state changes are synchronized with the state changes
from the emergency doctor, and there exists a communication link for instructions in
both directions. For instance, in the DrivingToHospital state, the patient, the ambu-
lance team, and the emergency doctor usually travel to the hospital in the ambulance.
The ambulance team performs this task. Consequently, the emergency doctor has to
wait for a message from the ambulance team to change its state to the DrivingTo-
Hospital state. To the best of our knowledge, no other work considers this interplay
between both agents working as a team. Therefore, the analysis of this feature is also
a novelty of this thesis.

4.3.3 Call-taker

This agent handles crucial information quickly since its main task is the correct assess-
ment and the collection of the incoming information. The more precise and detailed
the information, the better and faster the emergency team’s preparation and treatment
are. As a matter of simplicity, we combine both the call-taker and the dispatcher in
the same agent. Although, in some coordination centers, they are different persons
who accomplish these tasks. This approach unifying both agents is not uncommon in
real-life systems. Finally, the call-taker agent supports cardiopulmonary resuscitation
per phone until the emergency team arrives. During this time, the call-taker cannot
answer other calls but is still in contact with the emergency team.
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4.3.4 Further considerations

4.3.4.1 Geographic Information System

We implement our simulation model using Geographic Information System (GIS) data.
This approach helps to explore routing options or dispatch strategies to simulate actual
travel routes for different scenarios, considering the actual infrastructure of the studied
area.

4.3.4.2 Average travel speed

We consider average travel speed (ATS) one of the critical parameters to simulate the
emergency process accurately since most of the response time belongs to travel time.
Its prediction depends on several parameters. For instance, road traffic affects travel
times: the more traffic, the slower the travel speed, resulting in a longer response time.
Additionally, road traffic is not constant throughout the day, causing differences in
response times at different moments of the day for the same emergency type in the
same place. Furthermore, travel distance also affects the speed: long distances are
commonly covered using highways or main roads, promoting high speeds. Meanwhile,
short distances are covered using primary and secondary roads, streets or passages.

In this context, we identify the following critical factors for the travel speed: emer-
gency resource state (i.e., at the base, travel to the base, at the hospital), the emergency
priority (the more significant the severeness, the higher the priority), the resource type
(emergency doctor or ambulance team), whether the siren is on or off, and the mo-
ment of the day. Considering this, we propose developing a machine learning algorithm
model to predict travel speed and, subsequently, to predict travel times for each re-
source involved in an emergency. In Section 4.5, we present the application of this
approach more in deep.

4.4 Validation

As explained by Churilov et al. [2013] and Law et al. [2000], there exist different
approaches of simulation validation. In this work, we use three of these approaches: (i)
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The expert validation, represented by the interdisciplinary group of 70 experts reunited
by the German Society for Anesthesiology and Intensive Care [Deutsche Gesellschaft
für Anästhesiologie und Intensivmedizin e.V., 2017] in different workshops; (ii) the
visual validation, performed by means of the implementation of a control panel shown
in Figure 4.3, allowing us to control the accuracy and the logic of the process; and (iii)
data validation by comparing historical data with those obtained from the simulation.
We explain more about the last validation in Section 4.5.3.

Figure 4.3. Detail of the control panel of the Simulation EMS model imple-
mented in Anylogic™. This detail is part of the discrete event simulation model
following the emergency call flow through the process.

4.5 Experiment

4.5.1 Data

Since the EMS started a professionalization process in the early 60s, as described in 2.1,
Germany has become a world benchmark in EMS, according to Lechleuthner [2019].
A majority of EMS regions have an integrated coordination center, i.e., the ambulance
services and the fire department services are coordinated by the same coordination
center, allowing better service to all types of accidents.

A good example is the Coordination Center North (Leitstelle Nord in German),
which is located in Germany’s northernmost region. This center is in charge of 58
ambulances, 14 emergency physicians, and one helicopter. Furthermore, it works to-
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gether with six hospitals, covering a region of 4,211.29 [Km2] and 453,356 Inhabitants,
according to Statistical Service for Hamburg and Schleswig-Holstein [Statistische Amt
für Hamburg und Schleswig-Holstein, 2020].

Additionally, the region comprises a mixture of interesting characteristics such as
urban areas, rural areas, and island and mainland regions. Moreover, the Coordination
Center North is located next to the Danish border. This situation means that some
accidents require resource coordination from Germany and Denmark simultaneously.

(a) Ambulance allocation across the Co-
ordination Center North

(b) Emergency call localization

Figure 4.4. Ambulance bases and Emergency call locations in the Coordina-
tion Center North from 2017 and 2018.

In this context, the coordination center controls an area where it can find a great
variety of emergency events. Figure 4.4b, presents around 270,000 emergency events
from a curated database between 2017 and 2018 for the coordination center. As ex-
pected, there is an intense event concentration at the city locations. Nevertheless, a
homogeneous distribution of emergency calls is present in rural areas. We also present
in Figure 4.4a the existing ambulance base positions in the coordination center area.

4.5.2 Travel speed modeling

We consider travel speed the most crucial parameter for addressing a region’s complex-
ities in terms of orography, response time, traffic circulation, and resource availability.
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Following this idea, we propose a machine learning model approach to predict travel
speed. There are commonly two trips involved in an emergency event: the first one
between the place where the ambulance is located at the moment when the emergency
call comes in and the emergency place. The second one, if necessary, is between the
emergency place and the hospital where the patient is finally allocated. Furthermore,
an ambulance is dispatchable if it is Idle, being at the hospital, traveling back to the
base or at the base.

Ambulances track their rides. They register when they receive a new emergency
call and at which location. They track the localization of the patient and the time
of arrival. Likewise, they enter into the system when they arrive at a hospital to
drop off a patient. Generally, this happens by pressing a button in their IT-System,
stating trip finished. This activity is automatically attributed with a timestamp and
the ambulance’s GPS location at that very moment.

Finishing a trip, i.e., pressing the button to state the end of a trip, often happens
not just at the hospital itself but often some meters or even some streets before. The
same applies when being alarmed and leaving the hospital premises or an ambulance
base.

In Figure 4.5, we show examples of ambulance positions at the alarming moment
found in the data for both a hospital location and an ambulance base, represented by
blue dots. These points represent the same place, i.e., the same hospital or ambulance
place.

For the sake of tractability, we cluster the positions related to the same location,
applying a Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
algorithm Ester et al. [1996]. Figure 4.5 presents the situation related to a hospital
(Figure 4.5a) and an ambulance base (Figure 4.5b). The blue dots are the alarm posi-
tions for ambulances; the yellow dots are the related clusters’ centers. As parameters
for the DBSCAN algorithm, the minimum cluster size is 30, and the maximum distance
between two points of the same cluster is 5 meters.

Following the idea of calculating the travel speed, we need the distance between the
start point and destination and the required time for covering the distance for travel
speed calculation. The travel time is easy to get having timestamps corresponding to
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the two moments between the travel occurs.
Then, identifying the start point and destination coordinates related to the respec-

tive cluster center, we estimate the actual travel distance utilizing the Openrouteservice
tool [openrouteservice, 2020], developed by Heidelberg University.

(a) Hospital (b) Ambulance Base

Figure 4.5. Examples of real alarm positions for ambulances (blue dots) and
the respective cluster (green dots).

Using this information, we estimate the travel speed for each trip associated with
a cluster, obtaining a total of 87,453 emergency events with travel speed data.

The travel speed prediction can be seen as a regression problem. In order to predict
a suitable regression function, we apply the following machine learning algorithms:
Generalized Linear Model (GLM), Multivariate Adaptive Regression Splines (MARS),
Random Forest (RF), Support Vector Machine (SVM), and Decision Tree (TREE).

We select these algorithms since they are well-known and commonly used for re-
gression problem applications.

After a brief data exploration, we identified as travel speed predictors the emergency
priority level (the so-called triage level), the resource type (e.g., ambulance, emergency
doctor), the resource state (i.e., at the base, going to the patient, among others), the
siren state (on, off), the travel distance, and moment in the day (clustered by six groups
of 4 hours each). For data training purposes, we use 15% of the data. The remaining

David Olave-Rojas 45



Chapter 4. Modeling a pre-hospital Emergency Medical Service using hybrid simulation and a
machine learning approach

85%, we use for testing. We select this split due to the amount of data and the available
computing capacity.

In Figure 4.6, we present the test results for the five machine learning algorithms.
The tests are the 5-fold cross-validation error (Figure 4.6a) and the test error (Fig-
ure 4.6b). The metric is the root mean square error (RMSE), and the RF is the model
with the best performance.

RF is the machine learning algorithm with the best performance for our problem
structure, showing the smallest test error of 22.19, compared to 23.98 for TREE and
SVM, 25.09 for TREE, and 25.48 for GLM. Also, considering the cross-validation error,
the Random Forest performs best since it is the algorithm with the smallest average
error and the smallest standard deviation compared to the other algorithms.

(a) Cross Validation Error (b) Test Error

Figure 4.6. Test results of different machine learning models for travel speed
prediction.

Furthermore, for illustrative purposes, we show in Figure 4.7 the historical and
the predicted data for different distances, given an emergency priority level of 3, i.e.,
low priority, and an ambulance state being AtTheBase for both siren states. The
RF model’s predicted data consistently follows the data’s tendency despite the strong
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variability presented for distances shorter than 30 [km]. The RF model also works for
distances greater than 40 [km], despite the few data compared with short distances.

Due to the complexity and variety of the predictors, we consider the machine learn-
ing approach as one of the best possibilities to predict travel speed applied to travel
time modeling.

(a) Historical data for travel speed (b) predicted data for travel speed

Figure 4.7. Historical and predicted data for ambulance travel speed.

4.5.3 Simulation parameters and validation

As presented in chapter 3.1.2, we use animation, face validity, trace, event validity
and graphic comparison as validation and verification techniques in order to define the
correct parameters that are involved in the simulation model. In this context, we use
the curated database to obtain empirical density curves for most of the parameters.
We prefer this approach over statistical curve fitting since it is more accurate for
representing what occurs in reality.

In Figure 4.8, we present four graphs comparing the time for four process stages:
information request time used by call-takers to recollect the information from the event
scene; preparation time, which is the required time by the emergency team for being
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ready (also called reaction time); travel time, which is the time for travel to the scene;
and treatment time, which is the time required for the emergency time at the scene for
patient’s treatment.

The implemented curves in the simulation are step functions since they are em-
pirical. Furthermore, in Figure 4.8, we point out that there is a difference between
historical and simulation curves for travel time and preparation times. This difference
occurs because travel times and preparation times depend on many factors and not
only on the type of emergency to be attended to. This circumstance presents a sce-
nario where the preparation time for the same type of accident and the same team
is not equal. However, we consider this difference between the curves to be positive
since it makes the modeled scenarios more pessimistic than those presented in the real
world.

Figure 4.8. Cumulative distribution curves for simulation and historical data.

4.5.4 Experiment setup

To expose some of the use possibilities of our simulation model, we study the impact of
the call-takers capacity change on the system’s general performance by analyzing the
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response time. For this analysis, we use the concept of counting distribution presented
in Dunke and Nickel [2016]. However, we apply this concept for scenario comparison
instead of optimization function comparison in this work.

Call-takers are one of the critical resources of the entire emergency process. The
call-taker crew is in charge of several tasks: attending the incoming emergency calls, as-
sessing the emergency seriousness, selecting the emergency team and doctor according
to the seriousness, and assisting with cardiopulmonary reanimation by phone. Call-
takers’ performance and the selection of the right capacity could lead to better results
in terms of shorter response times. Furthermore, the required investment in a new
call-taker could be less than the required for a new ambulance team, but the entire
system’s impact could be the same or more profound.

For this experiment, we propose five scenarios where the total amount of call-
takers is different: The base scenario is the existing configuration in the control center,
consisting of 4 call-takers during the day shift (07:00 to 19:00 Hours) and two workers
on the night shift (19:00 to 07:00 Hrs). We call it “4+2 call-takers”, and the other four
scenarios are variations of this defined base scenario. The second and third scenarios
are the base scenario plus one and minus one call-taker from the day shift (5+2 and
3+2, respectively). The last two are the half capacity and double base capacity (2+1
and 8+4 call-takers, respectively).

Additionally, we perform these scenarios employing our simulation model, running
40 instances. Each instance is composed of one day randomly selected from the cu-
rated emergency call database. Furthermore, this data corresponds to emergency calls
between 2017 and 2018, as explained above.

The simulation time unit corresponds to one minute, and the model is implemented
on Anylogic™8.2. Furthermore, we run our experiment in an Intel® CoreTM i7-4600U
2.10GHz machine with 8GB RAM and Windows™10.

4.6 Results

We present in Figure 4.9 three graphs with the results for our experiment set up ac-
cording to the five scenarios presented in Section 4.5.4. In Figure 4.9a, we display the
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counting distributions for the scenarios. In this context, the call-taker capacity vari-
ation does not statistically represent a real variation in response times. Furthermore,
the utilization resource proportion is the ratio between the busy time of the resources
over the total available time. By comparing the respective utilization proportions, we
expose in Figure 4.9b that this indicator is stable for each scenario and less than 20%,
except for the “2+1 call-takers” scenario. This result means that the actual “4+2
call-takers” scenario could be oversized.

Nevertheless, we consider the current scenario the best option, considering a robust
approach, since the exact future demand is stochastic, despite some profile tendency
existing in demand. In the scenario “2+1 call-takers”, the call-taker utilization ratios
are between 20% and 40%. Given the actual demand, we consider this result the
capacity’s collapsing border. Any increment in the number of calls is not manageable
in this scenario.

Response time and resource utilization are two indicators that help to understand
the system’s performance or, in this case, the performance of a resource. However,
the most important agents in this process are the beneficiaries, i.e., the patients. Fur-
thermore, response times are not strictly linked to call-takers performance but the
emergency team. Hence, we could argue that response time is not the most significant
indicator for assessing call-takers performance.

Taking this into account, we present in Figure 4.9c the results for the maximum
waiting queue for entering the system, i.e., the queue for waiting for some idle call-
taker. Again we notice the same tendency as in Figure 4.9b. The longest queue for
each instance is between 2 and 6 emergency calls for all the scenarios except “2+1
call-takers”. This scenario presents a queue of between 2 and 8 emergency calls and
consistently presents between 1 and 3 calls more than other scenarios for 90% of the
instances. We again consider this last scenario as the border where the system collapses.

For the scenarios different than “2+1 call-takers”, we consider the results are the
same since the performance is equal for 70% of the instances.

After this experiment, we consider the base scenario (“4+2 call-takers”) as the
coordination center’s best configuration. This configuration offers almost the same
performance as the scenarios with more capacity. Moreover, it presents a buffer in
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(a) counting distribution for emergency response time by ex-
periment scenarios

(b) cumulated distribution for call-taker utilization by ex-
periment scenarios

(c) maximum waiting queue by experiment scenarios
Figure 4.9. experiment results for proposed call-taker capacity scenarios.
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terms of utilization for unexpected disasters such as terrorism and natural disasters
where demand escalates quickly.

4.7 Conclusion and outlook

Emergency Medical Services is one of the most important organizations to ensure life
quality. Since there are many unpredictable situations in the real world, such as earth-
quakes, tsunamis, terrorism attacks, fires, and traffic accidents, an in-depth analysis
of these services is required. However, this analysis and understanding generate the
need for tools that include the multiple variables and existing parameters, presenting
a closer representation of reality.

In this paper, we presented a hybrid simulation model of a pre-hospital emergency
medical service. This model is based on a resulting process from a workshop. In
this workshop, experts from several disciplines developed and analyzed the emergency
rescue chain and established the general German system-based emergency process.

The simulation model considered the interplay between the resources, which affects
the entire process’s performance for the incoming call and future calls. Furthermore,
there is a particular emphasis on the connection between call-takers, ambulance teams,
and emergency doctors for life-threatening emergencies, such as a cardiac arrest. This
is possible through a hybrid simulation approach, which is unexplored in this field.
Additionally, we also presented a machine learning approach for travel speed modeling.
This technique admits several parameters which influence the travel speed of ambu-
lances and emergency doctors to the accident scene. Since much of the response time is
determined by travel time, we considered the travel speed critical for the entire system
performance. This approach is also new and unexplored, as presented in Section 4.1.
Hence, this work pursuits addressing non-linearities presented in the system such as
traffic, weather and maximum travel speed by means of the implementation of the
techniques described above in emergency medical services.

Using a real case study located in a northern region in Germany and characterized
by curated data, we showed improvements compared to existing tools. These improve-
ments lie in a more realistic representation of the entire pre-hospital emergency service

David Olave-Rojas



4.7 Conclusion and outlook

since it considers the abovementioned approaches..
Since there are just some works in the context of the study of call centers (see

Table 4.1), including urban and rural areas, we tested our simulation model’s capability
by performing a crew capacity experiment based on the operational decisions of the
entire process. This experiment is built using real-world data from the coordination
center north, located in the North of Germany.

Nevertheless, the capabilities of our model are broader, including dispatch strategy
analysis, ambulance facility location analysis, and system stress analysis, among others.
These possibilities are based on considering the operational decisions presented in the
process, which enhance the decision analysis’s accuracy on the tactical and strategical
decision level.

Finally, we consider our model to represent Anglo-American-based EMS since the
main difference between Anglo-American and Franco-German systems is the emergency
doctor. Nevertheless, our simulation model needs to be tested with real-world data from
one system based on the Anglo-American philosophy.
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Chapter 5

A methodological framework for
ambulance dispatch strategy
evaluation in a hybrid simulation
model context

In this chapter, we present the dispatch algorithms included in this thesis. Then we
present the Simulation-Online Optimization Framework to evaluate online ambulance
dispatch algorithms. After that, we show an experiment that aims to understand
how some spatial and resources variation could affect the performance of dispatch
algorithms. Finally, we discuss the results obtained from the experiment.

Contents of this chapter have been published in Olave-Rojas and Nickel [2021] and
submitted in Olave-Rojas and Nickel [2023].
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simulation model context

5.1 Dispatch strategies for an ambulance coordina-

tion center

Dispatch problems applied to emergency systems are well-known and have been well
studied at least, in the last 50 years [see Daskin, 1983, Fitzsimmons, 1973, as examples
in the literature]. Basically, these are the decision problems to determine which vehicle
to assign to an emergency call. Is a matter of fact, that dispatching decisions about
where to send emergency vehicles impact the system’s future ability to meet demands
adequately. If a vehicle is sent to a call in a particular region, it can be expected that
the coverage in that region will degrade. However, relocating vehicles can help reduce
such degradation. Therefore, dispatch decisions and relocation strategies are closely
related, as presented in the literature [see Aringhieri et al., 2017a, Bélanger et al., 2019,
Lu and Wang, 2019, Zaffar et al., 2016, as reviews where this relationship is exposed].

Nevertheless, we concentrate our effort on the effect and performance of dispatch
strategies without any relocation or allocation improvement. In this context, we iden-
tify the following main ambulance dispatch strategies in the literature:

5.1.1 Nearest ambulance dispatch strategies

These dispatch strategies are the most common in coordination centers since the im-
plementation is straightforward and inexpensive. Furthermore, several studies include
it in order to evaluate the performance and to compare with other strategies, as pre-
sented by Lim et al. [2011], McLay and Mayorga [2013a], Schmid [2012]. In this case,
we consider as representative the nearest ambulance by euclidean distance (NearestBy-
Distance) and the nearest ambulance by route (NearestByRoute).

We consider these versions different since the response after the selection criteria
could not be the same due to geographical features such as a river or a hill that shall
be surrounded.

Considering γ as the emergency call and W as the set of ambulances in the system,
these dispatch strategies are represented by the following algorithm:
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1 Algorithm: Nearest Vehicle Dispatch Algorithm

input : γ, W .
output: selected ambulance for dispatch.

2 flag = false;
3 V ehicle0 = GetNearestVehicle(γ,W );
4 while W ̸= ∅ and flag ̸= true do
5 V ehicle = GetNearestVehicle(γ,W ) ; // searching idle closest

vehicle

6 if Vehicle.inState(Idle) then
7 flag = true;
8 else
9 Remove(W ,V ehicle);

10 if W = ∅ then
11 V ehicle = V ehicle0;

12 return V ehicle;

5.1.2 Covering dispatch strategies

The aim of covering strategies is to improve the average response of the system in the
long term using covering criteria. We consider in our work the following:

5.1.2.1 Maximal covering

It is a classical formulation implemented using mixed-integer programming. A so-called
covering matrix represents the covering criteria. The area is represented by quarters
assigned to a respective ambulance base. Let us define W as the set of ambulances
in the system and Z as the set of quarters where the incoming emergency calls are
located. Then, we define yij as the binary variable indicating if a call from quarter i

is assigned to ambulance j; xi as the binary variable indicating if quarter i is covered
for some idle ambulance (i ∈ Z); and ui as the binary variable indicating if ambulance
i is idle or not (i ∈ W ).
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As parameters, let us define di, which is the demand from quarter i, and cij, which
indicates if the ambulance i covers quarter j. After this definition, we implement the
following formulation:

MAXY =
∑
i∈Z

xi (FO.1)

s.t.:

∑
i∈W

yij = dj, ∀j ∈ Z (C.1)

yij ≤ cij, ∀i ∈ W, ∀j ∈ Z (C.2)∑
i∈Z

cijyij ≤ 1, ∀j ∈ W (C.3)

uj ≤ (1 − yij), ∀i ∈ δ{j}, ∀j ∈ W (C.4)
xi ≤

∑
j∈W

cijuj, ∀i ∈ Z, ∀j ∈ W (C.5)

yij, xj ∈{0, 1}, ∀i ∈ W, ∀j ∈ Z (C.6)

Constraint C.1 ensures that the demand from each quarter is covered. Constraint
C.2 assigns an ambulance j to an emergency call from a quarter i only if the quarter
i is covered by the ambulance. Constraint C.3 ensures that only one ambulance can
serve one emergency call. Constraints C.4 and C.5 ensure that a quarter is covered by
idle ambulances. The nature of the involved variables is expressed in C.6.

Once the formulation is solved, we analyzed the solution to know which ambulance
should be dispatched for a specific call. In this context, we look for the yij where i

corresponds to the quarter where the emergency call is located. We call this strategy
the MaxCoveringByZones.

5.1.2.2 Maximum expected covering location problem

The first version of this formulation is proposed by Daskin [1983]. After some modifica-
tions, Jagtenberg et al. [2017] proposed a dispatch formulation based on the Maximum
Expected Covering Location Problem (MEXCLP). The principal idea is that ambu-
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lance resources have a certain probability of being busy based on the time when the
ambulances are attending some emergency call. Then, the expected covering of an am-
bulance through time depends directly on this probability. Furthermore, the expected
coverage of a specific point also depends on the among of ambulances reaching this
point under a threshold time.

This concept is represented under the following formula for the dispatching problem:

∑
i∈D

di(1 − p)pk−1 (M.1)

Where D is the set of demand points, di is the number of emergency calls related
to each point i, p is the ambulance busy fraction, and k is the number of ambulances
covering point i.

Therefore, the dispatched ambulance for the emergency call will be the one with the
smallest sum of marginal coverings over the emergency calls. This idea is summarizes
by Jagtenberg et al. [2017]:

arg minx∈Widle

∑
i∈D

di(1 − p)pk−1· 1τLoc(x),i≤T (M.2)

Where Widle is the set of idle ambulances, T is the threshold time for arriving at the
patient, Loc(x) is the location of the ambulance x, τLoc(x),i is the driving time between
Loc(x) and emergency i at the emergency categorization of i.

5.1.2.3 Mixed dispatch strategies

We also consider a mixed dispatch strategy. This approach is new since we found
insufficient literature related to [see Bandara et al., 2014, as an example]. In our
case, this strategy consists of using the nearestByRoute strategy for the worst and life-
threatening cases; and the MEXCLM strategy for the other emergencies. With this
approach, we expect a faster response in those cases where time is critical. Note that
we suppose a relation between time response and survival probability, particularly for
life-threatening cases. We call this strategy as MEXCLM+NearestByRoute.
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5.2 Simulation-optimization framework for ambu-

lance dispatch algorithms

Chapter 4, presents a realistic simulation model for the pre-hospital EMS based on
exchanges with practitioners and decision-makers from the Health Care area. In Sec-
tion 5.1, we present the dispatch approaches that we consider as principals in the
literature. In order to evaluate the impact of dispatch algorithms in EMS, we present
a bi-level approach for the evaluation framework.

Roughly speaking, the simulation model replicates the reality by means of the
running of different instances. These instances are composed of a stream of emergency
calls as input in the EMS process. Every call follows the EMS process, going through
the flowchart presented in Figure 4.1. After the call-taker has collected the patient
information, a dispatch decision has to be made. At the moment of the dispatch
decision, the Simulation Model is in a specific configuration that represents the state
of the EMS system at that particular moment.

We call it Process Snapshot λ, and it is defined by the set of parameters that
describes this moment, and it is the input for the online optimization model. Then,
after running the dispatch algorithm, we obtain an ambulance φ which is the choice
for dispatching.

Note that the online optimization model is required in real-time since the dispatch
algorithm shall deliver the solution within a very tight time-bound. Then, the ambu-
lance φ is an input in the dispatch process stage, allowing the simulation model to run
according to the online solution. Finally, the emergency call goes through the following
stages until it is officially out of the EMS process.

In Figure 5.1, we present the diagram of the Simulation-Online optimization frame-
work that summarizes the interaction between both models.

With the aim of comparing the performance of dispatch algorithms, some indicators
should be collected. The most common indicators are the response time and a covering
indicator based on an area or a certain number of calls. In this chapter, we use both the
average response time (since it is the most common indicator) and a covering indicator
based on the area.
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Figure 5.1. Simulation-Online Optimization framework for ambulance dis-
patch problem.

5.3 Experiment setup

We are aware that several events are taking place simultaneously in the EMS process.
The nature of these events is stochastic. Even when they are not directly correlated,
the configuration and how some resources are interrelated in the EMS process result in
a no-linear environment. This non-linearity could be challenging to understand what
is happening and which dispatch strategy is the best. To understand more deeply
how some spatial variation could affect the performance of the dispatch algorithms, we
build a theoretical experiment, proposing deterministic scenarios, which are easier to
understand.

Inspired by the example in Jagtenberg et al. [2017], we create several spatial con-
figurations presented in Figure 5.2, where Zi ∈ Z = {1, . . . , 9} are the emergency call
places and Aj ∈ A = {1, 2, 3} are the ambulance depots. Please note that Z2 in Fig-
ures 5.2a, and Z5 in Figure 5.2b and 5.2c are in cyan since they are places where a
hospital is located. The time between the knots is the response time for an ambulance
in this environment, which means that the travel speed is fixed and is the same for

David Olave-Rojas 61



Chapter 5. A methodological framework for ambulance dispatch strategy evaluation in a hybrid
simulation model context

every emergency.

Based on the spatial configurations of Figure 5.2, we define five scenarios. We
present these scenarios in detail in Table 5.1.

Scenario Description
Line Scenario Instance configuration shown in Figure 5.2a
Cross Scenario Instance configuration shown in Figure 5.2b
Rhombus Scenario Instance configuration shown in Figure 5.2c
Big Cross Scenario Same configuration as Figure 5.2b but with double travel times
Big Rhombus Scenario Same configuration as Figure 5.2c but with double travel times

Table 5.1. Description of the scenarios based on the configuration presented
in Figure 5.2.

In order to obtain a deterministic version of the emergency process, we use the
average time of each step in the emergency process based on two datasets coming
from two emergency coordination centers: The coordination center North [In German,
Leitstelle Nord, 2021] and the coordination center Karlsruhe Department of Quality
Assurance of Emergency Medical Services in Baden Wuerttemberg [In German, Stelle
zur trägerübergreifenden Qualitätssicherung im Rettungsdienst Baden-Württemberg,
2021]. The first one is located in Schleswig-Holstein, the northernmost state of Ger-
many, and the second one is located in Baden-Württemberg, which forms the southern
part of Germany’s western border with France.

For the emergency events, we implement the following idea: every 18 minutes, a
new emergency call entries to the system, randomly located in Z. Considering this, we
build 30 instances of two days long. Finally, our experiment consists of the ambulance
and emergency doctor capacity variation, composing several configurations. Table 5.2
presents the configurations included in the experiments.

Since some dispatch strategies presented in Section 5.1 are variations of a previous
one, we consider these strategies a family and implement just one of them in our exper-
iment. For instance, NearestByRoute and NearestByDistance are in the same dispatch
strategy family since the dispatch philosophy is the same. Considering this, we include
one strategy of each family: NearestByDistance, MaxCoveringByZones, MEXCLM, and
MEXCLM+NearestByDistance, respectively. Note that MEXCLM+NearestByDistance
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Z1 A1 Z2 A25 min 2 min 6 min

(a) Line Scenario.

Z1 A1 Z2 A2

Z3 Z4 Z5 Z6

Z7 Z8

Z9 A3

5 min 2 min 6 min

2 min

5 min

6 min

(b) Cross Scenario.

Z1 A1 Z2 A2

Z3 Z4 Z5 Z6

Z7 Z8

Z9 A3

5 min 2 min 6 min

2 min

5 min

6 min

(c) Rhombus Scenario.

Figure 5.2. Spatial configurations for analytical experiments. Knots Ai are
ambulance depots. The Zi (Cyan) is where the hospital is located. Finally,
emergency calls come from Zones Zi.

Version Name Description
Version 1+2 resources with 1 ambulance and 2 emergency doctors.
Version 2+2 resources with 2 ambulances and 2 emergency doctors.
Version 3+2 resources with 3 ambulances and 2 emergency doctors.
Version 4+2 resources with 4 ambulances and 2 emergency doctors.
Version 5+2 resources with 5 ambulances and 2 emergency doctors.
Version 5+3 resources with 5 ambulances and 3 emergency doctors.

Table 5.2. Description of the resource configurations for experimentation.

induces the same results as MEXCLM+NearestByRoute since the distance and the
route are the same in almost all cases for our instances.

5.4 Results

In Figure 5.3, we present the average emergency response time result for the “Line
Scenario”, which corresponds exactly to the representation in figure 5.2a. The first sit-
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uation we recognize is that MaxCoveringByZones is clear the strategy with the worst
performance. This strategy presents a strong dependence on the system’s capacity:
the bigger the capacity, the better the performance. This performance is entirely un-
derstandable since we consider it as a static strategy (based on a static and defined
covering matrix) for a dynamic situation. For NearestByDistance we notice a slightly
better performance for “Version 3+2” and “Version 4+2” compared to the other strate-
gies.

Nevertheless, we cannot conclude that this strategy seems to be the best by the
analysis of Figure 5.3. The same result appears for the Cross Scenario and the Rhombus
Scenario. We include these graphs in Appendix A.

For a better analysis we have to examine Figure 5.4, which is a larger scenario
than the “Line Scenario” (Figure 5.3), and Figure 5.5, which includes longer travel
times than “Rhombus Scenario” (Figure 5.4). In this case, we also recognize a strong
dependence not only for MaxCoveringByZones, but also for NearestByDistance. Both
strategies present almost the same behavior under ambulance quantity changes, with
a better performance in terms of response time for NearestByDistance by around 2
minutes in the last tested version, which are the “Version 4+2” for the “Rhombus
Scenario” and the “Version 5+3” for the “Big Cross Scenario”. Nevertheless, when
the resources are not enough for the demand, NearestByDistance presents the worst
performance as presented for “Version 3+2” in both Figure 5.4 and Figure 5.5.

The performance for MEXCLM and MEXCLM+NearestByDistance is almost the
same no matter how the resource capacity is. Since we present aggregated results,
there exists almost no difference between these strategies. In “Version 4+2” we present
the cross point, where the tendency changes about which strategy is the best. Further-
more, these results are also representative of the “Cross Scenario” and “Big Rhombus
Scenario”, which we include in Appendix A.

From the covering point of view, we identify a better performance of the MaxCov-
eringByZones strategy when the resources are limited, as presented in Figure 5.6 for
the Line Scenario. However, the tendency changes when more resources are available
since the “Version 3+2” NearestByDistance outperforms the other strategies.

To better understand the strategy behavior, we present the results for the average
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Figure 5.3. Dispatch strategy counting distribution for average emergency
response time: Line scenario.

Figure 5.4. Dispatch strategy counting distribution for average emergency
response time: Rhombus scenario.
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Figure 5.5. Dispatch strategy counting distribution for average emergency
response time: Big Cross scenario.

emergency call covering related to the “Cross Scenario” in Figure 5.7 and the “Big
Rhombus Scenario” in Figure 5.8. In these scenarios, we identify a clear outperformance
of NearestByDistance in the first place and MaxCoveringByZones in second place over
the MEXCLM -based strategies. We understand this as a result of the faster response
of NearestByDistance than the MEXCLM -based strategies. In this context, it is a
matter of fact that a faster response is based on shorter travel times, which promotes
shorter process times for emergency calls. Finally, shorter process times mean that
the emergency resources are free sooner, and they have more time to be ready and in
position.

However, again we find some interesting characteristics. For instance, it seems
that the MEXCLM -based strategies are distributed in a smaller difference between
the minimum and the maximum value than the non-MEXCLM -based strategies. This
difference is evident in Figure 5.7, especially in limited resources scenarios, such as
“Version 2+1” and “Version 2+2”.

These results are almost identical to the scenarios we do not include in detail here
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but they are included in Appendix A.

Figure 5.6. Dispatch strategy counting distribution for average emergency
calls covering: Line scenario.

After analyzing the results, we can declare that the answer to which dispatch strat-
egy is the best is strongly related to the ambulance capacity and the stress presented in
the system. There are clear advantages for the non-MEXCLM -based strategies when
the system is well planned or oversized, and a quick response is needed. However,
these strategies are susceptible to changes in the demand or the capacity of the sys-
tem. From our point of view, the MEXCLM -based strategies are more predictable in
terms of performance which means they are more robust than the rest of the strategies.

5.5 Conclusions

In this chapter, we present a Simulation-Optimization Framework for ambulance dis-
patch algorithms, including a theoretical analysis of some of the most important dis-
patch strategies.

In this context, we tested NearestByDistance, MaxCoveringByZones, MEXCLM,
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Figure 5.7. Dispatch strategy counting distribution for average emergency
calls covering: Cross scenario.

Figure 5.8. Dispatch strategy counting distribution for average emergency
calls covering: Big Rhombus scenario.
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and MEXCLM+NearestByDistance.
The results allow us to establish a relation between stress and dispatch performance

of the system since we isolate the performance behavior related to the system’s capacity
from the other variables, such as traffic, and difficulties on the emergency site, among
others. In this context, we find that the relationship between resource capacity vs.
demand affects the performance of the dispatch strategies and is critical for concluding
which strategy is the best performer. MEXCLM -based strategies are more reliable and
predictable, maintaining their performance when the system is under stress. We also
identify that these strategies are not the best performer when the emergency system is
in a relaxing configuration or when the system is not under pressure. Furthermore, we
identify configurations where the classical NearestByDistance or its “brother”, Closes-
tAmbulance, are better in response time. Considering this, it seems to be necessary the
detection of the inflection point, which means finding the capacity or the configura-
tion when the non-textitMEXCLM-based dispatch strategy performs better than the
MEXCLM -based strategies.

However, we consider the MEXCLM -based strategies the best all-around performers
since they deliver better responses when unpredictable scenarios are taking place.

Finally, we consider that these findings should be confirmed under a realistic sce-
nario with real-world data. Some assumptions and simplifications in this chapter could
cause non-representative results.
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Chapter 6

A study for dispatch strategies: A
simulation-optimization approach
for a real world scenario

This chapter addresses the ambulance dispatch problem under a realistic simulation
model. Using two curated datasets from emergency regions in Germany, we present
two case studies to find which ambulance dispatch strategy is the best. Both regions
are very different in terms of resources, orography, and challenges, presenting various
scenarios and options in real-world situations.

Part of the content of this chapter will be published in Olave-Rojas and Nickel
[2023].
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6.1 Literature review

As explained previously in this thesis, life-threatening emergencies require a fast re-
sponse to have good survival possibilities. These emergencies are taking place in the
real world with complex EMS trying to coordinate several resources and attending to
multiple emergencies simultaneously. Several techniques for addressing the ambulance
dispatch problem exist in the literature, such as offline optimization Andersson and
Värbrand [2016], Markov process McLay and Mayorga [2013a,b], among others.

However, our review focuses on articles presenting simulation and optimization
models as a significant contribution to facing the ambulance dispatch problem.

In this context, Zarkeshzadeh et al. [2016] propose a hybrid dispatch model consid-
ering relocation with generated data. This method includes the first-in-first-out (FIFO)
approach, the maximum centrality approach, and the nearest ambulance approach. Al-
though the simulation result shows an improvement in response times, the authors did
not include call priorities, road traffic, variable ambulance speed, and different types
of ambulances, as pointed out in the work.

Bélanger et al. [2020] propose a recursive simulation-optimization framework to
face the ambulance location and dispatching problem. The simulation model performs
a dispatching list based on the busy fraction of the ambulances. Using data from
Montreal, Canada, the busy fraction is updated after every simulation run through
two different methods based on the Bernoulli distribution and the queueing theory.
The busy fraction is used in an optimization formulation to determine the relocation
position and the dispatching list for the next run. However, the simulation model is
simple and does not address the system’s complexity since the main simulation model
objective seems to be the actualization of the entire region regarding which ambulance
is occupied and which is not.

Jagtenberg et al. [2017] ask if the closest-idle policy is always optimal. To answer
this, the authors propose first a Markov Decision Process (MDP) and second a heuris-
tic for dynamic ambulance dispatching based on the Maximum Expected Covering
Location Problem (MEXCLP) proposed by Daskin [1983]. The authors pointed out
that the second approach is tractable for real-world instances. For validation purposes,
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the authors use a discrete event simulation model representing the region of Utrecht,
Netherlands. Nevertheless, the simulation model includes only ambulances with two
states: idle and busy, neither re-dispatching nor dispatching during the travel to the
base.

Lim et al. [2011] review dynamic ambulance relocation models from the perspective
of dispatch policies. The authors declare that deterministic and probabilistic ambu-
lance location models cannot handle the fluctuating demand over time. A dynamic
model including dispatch policies overcomes this problem. Furthermore, the authors
use a simulation model for testing purposes by implementing a hypothetical region rep-
resented by a grid. They also established a fixed ambulance travel speed of 60 km/h
and a fixed treatment time of 10 min.

Bandara et al. [2014] study dispatch strategies, including the call’s severity, us-
ing call priorities to increase patient survivability. The authors propose a dispatch
heuristic algorithm to send the closest available ambulance to priority one calls (the
most severe) and the less busy ambulance for the priority two calls. This algorithm
is tested through a simulation model characterized using data from Hanover County,
Virginia, USA. One crucial finding in this work is that priority dispatching policies
could improve the performance for urgent calls, meaning a cost in performance for
non-urgent calls. Nevertheless, the authors do not consider the realistic possibility of
ambulance dispatching when the ambulance is returning to the base since they consider
the implementation not easy in systems with limited resources.

McLay and Mayorga [2013a] propose a model for optimal ambulance dispatch con-
sidering classification errors in patient priorities. The authors compare an MDP with
myopic policies, considering a zero-length queue assumption since the dispatch strategy
could depend on the length of the queue, and the problem could be untractable with
this technique. The myopic policies presented in this paper are the closest approaches
to online optimization models. Although this work does not implement a simulation
model, it is the only work considering classification errors to the best of our knowledge.

Sudtachat et al. [2014] study the multiple-unit dispatch to multiple call priorities
problem through simulation, optimization, and heuristics. This work aims to maxi-
mize the most severe patients’ overall expected survival probability. After analyzing
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the performance of different dispatch policies in small-size instances, the authors pro-
pose a heuristic algorithm for real-size problems. One of this work’s findings is that
considering emergency severity could improve the overall expected survival probabil-
ity. Implementing a simulation-optimization model, this work is the only one that
includes multiple resource types since the model differentiates between advanced life
support (ALS) units and basic life support (BLS) units, which should work together
in life-threatening accidents. Nevertheless, the authors recognize the complexity of
the emergency system and declare as future research the formulation of a more exact
model.

Van Buuren et al. [2012] present a Testing Interface For Ambulance Research (TI-
FAR) simulation tool. The authors claim that one application of the tool is testing
different dispatch strategies. This tool includes call priority differentiation, generates
calls by postal codes, and allows the dispatching of ambulances when they are return-
ing to the base. However, the authors recognize that the generation call approach
does not locate calls in forests, water, or highways. Furthermore, this work includes a
redeployment strategy but does not allow the re-dispatch of ambulances.

Aringhieri et al. [2018] present a simulation and online optimization approach to
managing ambulances in real-time. The work address three decisions for defining a
policy. These decisions are dispatching, routing, and redeployment of ambulances.
The authors test several strategies for generating instances based on planar graphs.
We also point out that the authors include different average speeds for each arc based
on three-speed levels: low, medium, and high. However, the study focuses on urban
areas, not on the countryside or the entire emergency department.

Zaffar et al. [2016] present a simulation model based on a seven steps ambulance
dispatch process for a comparative study to solve the ambulance location problem.
The objective functions are maximizing coverage, survivability and minimizing average
response time. The authors’ main finding suggests that the better results come with the
survivability objective. However, the authors also declare that survivability statistics
could be challenging to collect and explain to the policymakers and the general public.
The authors also recognize that the limitations could play an essential role in the
findings since all demand is assumed to be aggregated to knots in a grid, the ambulances
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could not attend a call when are returning to the base, and the calls are assumed with
an equal priority.

Lanzarone et al. [2018] propose a recursive simulation-optimization approach for
the Ambulance Location and Dispatching Problem (ALDP). The simulation model is
considered for validation purposes and for improving the optimization model. This
work is one of the first attempts to apply this methodology to the ALDP. Nevertheless,
the simulation model is simple regarding ambulance process complexity, including fixed
travel speed.

Aringhieri et al. [2017b] discuss the possibilities of quantitative analysis based on
Health Care Big Data to evaluate dispatching policies for a region to fairly distribute
workload after clustering by emergency departments (ED). Using data from Piedmont
in Italy, the authors developed a discrete event simulation model, including call pri-
oritization. Furthermore, this is the only work developed under the Franco-German
philosophy. Although the authors recognize the need for an analysis of the entire emer-
gency department network, they also declare the need to improve the current model
by adding a more detailed representation of the transportation network.

Amorim et al. [2018] analyze two dispatching rules with the closest idle ambulance
dispatch policy: the random and the intelligent survival dispatch rule. In order to test
the performance, the authors also propose a simulation model based on an algorithm.
This algorithm includes two states for ambulances, busy and idle, which cannot repre-
sent dispatching when the ambulance returns to the base. A grid represents the spatial
area of San Francisco, USA, with nodes for the emergency call positions and hospi-
tals. Since travel times are modeled using data from Google and its Direction API, the
authors declare that real-time traffic information is essential in every simulation.

Following the works described in this section, they address the ambulance dispatch-
ing problem using a combination of operation research methods. However, there are
some concerns in implementing the findings in the real world since they are tested in
simulation models that do not represent a real emergency system properly. For in-
stance, none of the works address the interplay between call-takers and ambulances,
as the different travel speed profiles presented during a day neither. We consider this
characteristic extremely important since speed defines time response and covering un-
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der a threshold time. Since most of the response time is used for the ambulance travel,
we point out that none of the simulation models include a Geographical Information
System (GIS) environment to replicate the travel distances. According to Aringhieri
[2010], this kind of simplification could lead to errors and a restricted vision at the
moment to evaluate emergency policies.

This chapter proposes a comparison between realistic dispatch policies performed
in a simulation model, which is a detailed representation of the complex emergency
system. Employing real-world data, the simulation model can interact with the dis-
patch strategies facing situations such as classification errors, dispatching direct after
the patient transport, and re-dispatching if one dispatched ambulance is better located
for a life-threatening emergency. A detailed explanation of the methodology for the
simulation model is presented in Olave-Rojas and Nickel [2021]. A resume is presented
in Chapter 4.

6.2 Dispatch strategies for an ambulance coordina-

tion center

Dispatch strategy problems have been well-known and well studied for years. In am-
bulance dispatching, we concentrate our effort on those that are tractable in terms of
computer implementation and less costly in terms of implementation in the real world.
In this context, we consider the following ambulance dispatch strategies:

NearestByDistance: This dispatch strategy is the same as presented in Section
5.1.1, i.e., the emergency call will be attended by the nearest ambulance by
euclidean distance.

NearestByRoute: This strategy is similar to the previous one. The only difference
is the way to define the distance, which is the existing route to the patient.

MaxCoveringByZones: This strategy is explained in detail in Section 5.1.2 and is
based on a covering matrix. This matrix is not updated during the experiments.
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MEXCLM:aC : This strategy is based on the concepts explained in Section 5.1.2 for
the Maximum Expected Covering Location Problem. In this case, we consider for
covering purposes not only the unattended calls but also the attended calls that
are still in the system. We consider that areas with a high population could lead
to a high density of accidents, and consequently, emergency calls should come
from these areas more frequently. The idea of including the attended calls is an
effort to address this phenom dynamically.

MEXCLM+NearestByRoute: This is one of the two strategies considering a mixed
approach, as explained in Section 5.1.2.3. In this version, we consider only the
unattended calls for covering purposes.

MEXCLM+NearestByRoute:aC : This strategy is similar to the previous one, but
it considers all the existed calls in the system for covering purposes.

6.2.1 Further considerations

There are two characteristics present in all strategies: The idea of re-dispatching and
dispatching when the ambulance is returning to the base. Both are present in the real
world, according to Hackstein [2019]. Not including these features could lead to errors
in analyzing the results since they improve the response of the entire system.

6.3 Cases

6.3.1 Coordination Center North

As explained in Section 4.5.1, the coordination center North is the Northernmost region
in Germany, including a variety of essential characteristics since this region includes
urban and rural areas and mainland and islands. Furthermore, this area is located
beside the German border with Denmark. We use a curated dataset for this region,
including around 270,000 emergency events from 2017 and 2018.

In Figure 6.1, we present the ambulance allocation bases and emergency call local-
ization included in the respective dataset.
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6.3.2 Coordination Center Karlsruhe

Karlsruhe’s coordination center controls an area, including lands, towns, and cities.
The name of this coordination center comes from the second biggest city in the state of
Baden-Würtemberg. This area is located in the southwest of Germany beside the Rhine
river, one of the mayors of Europe. The coordination center (CC) area is composed of
two administrative regions: the city of Karlsruhe and the county of Karlsruhe. These
regions include 25 ambulances, seven emergency doctors, and one helicopter, working
together with 19 hospitals and covering an area of 1,261.42 [Km2] and 755,288 Inhab-
itants Statistisches Landesamt Baden-Württemberg [2021b]. Some characteristics to
emphasize are: (i) the region concentrates almost 3/4 of the population on the city
of Karlsruhe; (ii) it is limited to the west by the Rhine river. Hence, the river is a
natural barrier to the cooperation between the coordination center and the region on
the other side, located in the Rhineland-Palatinate state. In this case, the emergency
call dataset is composed of 65,000 emergency events from 2019.

(a) Ambulance allocation across the Co-
ordination Center Karlsruhe

(b) Emergency call localization

Figure 6.1. Ambulance bases and emergency call locations in the Coordina-
tion Center Karlsruhe from 2019.

We consider both regions necessary for our study since one region is located in the
north and the other is the south of Germany. This geographical difference means the
type of emergencies are not the same because weather affects what kind of accidents
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are presented and how the system can respond to these emergencies. Furthermore,
the resource distribution is different in both regions: In the CC North, there is one
ambulance for every 7816 Inhabitants; In the CC Karlsruhe, there is one ambulance
for every 30211 Inhabitants, which is almost four times more Inhabitants for each
ambulance.

Moreover, the area of the CC North is almost four times bigger than the area of
the CC Karlsruhe. Finally, in the CC North, there are 72.61 [Km2] per ambulance
compared to CC Karlsruhe, where there are 50.46 Km2 per ambulance. These dif-
ferences establish two scenarios that help us specify each strategy’s performance more
profoundly and detailed.

6.3.3 Simulation parameters

To achieve a proper representation of the real world, we use the methodology proposed
by Olave-Rojas and Nickel [2021]. Based on this methodology, the authors developed a
simulation model using the data from CC North, which we use for our experiments in
this work. Using the methodology of Olave-Rojas and Nickel [2021], we developed the
simulation model for CC Karlsruhe. For instance, we use a machine learning approach
for the average ambulance speed. Specifically, we use a Random Forest algorithm for
travel speed prediction since it has the best test results among five different options,
as presented in 6.2 for the CC Karlsruhe.

The parameters are based on curated data to obtain empirical density curves. These
data from CC North and CC Karlsruhe are results of the cooperation with the Coordi-
nation Center North [Leitstelle Nord, 2021] and the Department of Quality Assurance of
Emergency Medical Services in Baden Wuerttemberg [Stelle zur trägerübergreifenden
Qualitätssicherung im Rettungsdienst Baden-Württemberg, 2021], respectively. As
Validation methodology, we use the same approach as Olave-Rojas and Nickel [2021]:
Expert validation, Visual validation, and Data validation.
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(a) Cross Validation Error (b) Test Error

Figure 6.2. Test results of different machine learning models for travel speed
prediction in the Coordination Center Karlsruhe region.

6.3.4 Experiment setup

In order to compare the performance of the dispatch strategies, we use the idea of the
counting distribution function defined and developed by Dunke and Nickel [2016]. The
authors present this function with the aim of evaluating online algorithms:

FALG(v) =
∑

i∈I 1[−∞,v](vALG(i))
|I|

, FALG : R → [0, 1] (F.1)

Where vALG(i) is the resulting value of the algorithm ALG on instance i, I is a set
of instances, and 1A(x) is the indicator function (it is 1 if x ∈ A and 0 otherwise).

We also use the concept of performance ratio proposed by Dunke and Nickel [2016],
which establishes a relation between two algorithms:

rALG1,ALG2(i) = ALG1(i)
ALG2(i)

(F.2)
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The value of rALG1,ALG2(i) in F.2 is greater than 1 when ALG1 outperforms ALG2

for the instance i, and it is smaller than 1 if ALG2 outperforms ALG1 for the instance
i. In the case of both algorithms having the same value, F.2 is equal to 1.

Furthermore, we perform our experiment by running 40 instances. Each instance is
composed of one day randomly selected from the curated emergency database for both
Coordination Centers.

The simulation time unit is equal to one minute, and the model is implemented on
Anylogic™8.2. Finally, we run our experiments in an Intel® CoreTM i7-4600U 2.10GHz
machine with 8GB RAM and Windows™10.

6.4 Results

6.4.1 Response time

In figure 6.3, we present the counting distributions of each dispatch strategy for average
emergency response time. Each column of graphs corresponds to the CC North and the
CC Karlsruhe results, respectively. The first row corresponds to non-life-threatening
emergency calls, and the second one shows the results for the life-threatening emergency
calls. For the calls without worst cases, NearestByRoute and NearestByDistance are the
two dispatch strategies with the best performance, with an advantage for NearestBy-
Route. Furthermore, there is a clear dominance of the strategies based on distance over
those based on covering for the average emergency response time since the difference
in performance is about 3 minutes. However, for life-threatening emergencies, MEX-
CLM+NearestByRoute is the best strategy in terms of average emergency response
time. There are also results in terms of compactness. A slight difference between the
best and the worst instance means a more predictable response. Meanwhile, a more
significant difference means that the response could not be stable for different scenarios.

For the worst cases in CC North, NearestByRoute has a difference of 8.7 minutes
between the best and the worst instance. The MEXCLM+NearestByRoute presents
a difference of 5.9 minutes. The CC North, MEXCLM+NearestByRoute:aC shows a
difference of 3 minutes. For the same cases, in the CC Karlsruhe, the differences are
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3.1, 4.5, and 3.6 minutes, respectively.
MaxCoveringByZones is the strategy with the worst performance, especially in

CC North, which involves a more extensive area and a more complicated orography,
including islands.

Figure 6.3. Dispatch strategy counting distribution for average emergency
response time.

With the aim of a more detailed analysis, we present in Figure 6.4 the performance
ratio of all the dispatch strategies or algorithms compared to NearestByRoute for both
CCs. In this case, we point out that a performance ratio less than 1 means that the se-
lected algorithm for the comparison outperforms the NearestByRoute algorithm. In the
same way, a performance ratio bigger than 1 means that NearestByRoute outperforms
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the selected algorithm for the one-to-one comparison.

For CC North, NearestByRoute is the strategy with the best performance in 70%
of the cases (see Figure 6.4a) for non-life-threatening emergencies. For CC Karlsruhe,
the result is similar: the best performer is NearestByRoute in 60% of the instances for
calls without including the worst cases (Figure 6.4b).

However, MEXCLM+NearestByRoute outperforms NearestByRoute in 57% of the
cases for CC North and 70% of the instances for CC Karlsruhe, for the life-threatening
cases.

This result presents the idea that MEXCLM+NearestByRoute is the best competi-
tor for the classical NearestByRoute in performance, where response time is critical.
Furthermore, there is a difference of a least 40% between the MEXCLM and MEX-
CLM+NearestByRoute in comparison of NearestByRoute for life-threatening emergen-
cies. For the emergencies without the worst cases, the difference in performance com-
pared to NearestByRoute is similar.

Response Time [min]Call Group Algorithm Mean Min P25 P50 P75 Max
NearestByDistance 18.10 3.55 11.18 15.42 22.80 55.11
NearestByRoute 17.97 3.48 11.18 15.36 22.58 53.10
MaxCoveringByZones 21.04 4.09 12.71 18.45 27.29 59.39
MEXCLM:aC 20.94 3.94 13.75 17.88 24.68 87.90
MEXCLM+NearestByRoute 20.47 3.61 12.99 17.60 24.30 85.59

All

MEXCLM+NearestByRoute:aC 20.89 3.97 13.33 17.90 24.60 91.39
NearestByDistance 11.81 4.66 8.78 11.22 13.99 26.43
NearestByRoute 11.84 5.07 8.98 11.38 13.92 25.01
MaxCoveringByZones 12.40 5.12 9.32 11.82 14.66 26.21
MEXCLM:aC 13.10 5.23 9.76 12.26 15.01 32.47
MEXCLM+NearestByRoute 11.51 4.95 8.71 11.09 13.51 23.52

worst cases

MEXCLM+NearestByRoute:aC 11.74 5.09 8.83 11.12 13.62 25.65
NearestByDistance 19.30 3.82 12.11 16.77 24.48 55.11
NearestByRoute 19.14 3.85 12.00 16.68 24.02 53.10
MaxCoveringByZones 22.67 4.67 14.33 20.47 29.22 59.15
MEXCLM:aC 22.48 5.07 15.27 19.18 26.45 87.43
MEXCLM+NearestByRoute 22.20 4.06 14.76 19.04 26.21 85.59

not worst cases

MEXCLM+NearestByRoute:aC 22.61 4.55 15.06 19.20 26.58 91.39

Table 6.1. Average values of statistics for the response time over 40 instances
of Coordination Center Karlsruhe. P25, P50 and P75 mean percentile 25,
50 and 75 respectively.
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(a) Coordination Center North

(b) Coordination Center Karlsruhe

Figure 6.4. Dispatch strategy performance ratio for average emergency re-
sponse time: 40 Instances, NearestByRoute
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Call Group Algorithm Response Time [min]
Mean Min P25 P50 P75 Max

All

NearestByDistance 13.61 1.51 8.80 11.88 16.02 72.77
NearestByRoute 13.21 1.59 8.85 11.78 15.88 52.37
MaxCoveringByZones 19.70 2.02 11.43 17.54 22.88 234.15
MEXCLM:aC 16.04 2.92 10.02 13.62 18.35 93.18
MEXCLM+NearestByRoute 15.24 1.95 9.47 13.05 17.78 95.12
MEXCLM+NearestByRoute:aC 15.19 1.89 9.46 12.99 17.67 87.43

worst cases

NearestByDistance 13.88 3.82 8.72 11.56 15.48 60.41
NearestByRoute 13.08 4.01 8.78 11.38 15.06 44.76
MaxCoveringByZones 16.09 4.58 10.34 14.74 20.17 47.88
MEXCLM:aC 15.25 3.63 9.42 12.58 17.05 68.98
MEXCLM+NearestByRoute 12.72 3.87 8.65 11.45 15.16 35.23
MEXCLM+NearestByRoute:aC 12.63 4.00 8.64 11.23 15.06 33.76

not worst cases

NearestByDistance 13.50 1.54 8.91 12.14 16.32 53.83
NearestByRoute 13.26 1.59 8.91 12.01 16.18 40.78
MaxCoveringByZones 21.40 2.08 12.37 19.06 24.02 234.15
MEXCLM:aC 16.42 3.38 10.41 14.16 18.94 83.66
MEXCLM+NearestByRoute 16.43 1.97 10.13 13.98 19.04 95.12
MEXCLM+NearestByRoute:aC 16.39 1.96 10.12 14.01 19.03 87.43

Table 6.2. Average values of statistics for the response time over 40 instances
of Coordination Center North. P25, P50 and P75 mean percentile 25, 50
and 75 respectively.

In Tables 6.1 and 6.3, we present numerical results for both Coordination Cen-
ters. These results are the average value for each indicator presented in the Tables.
Furthermore, we highlight the best and the worst values for Mean, P50, and Max in-
dicators. Since the results in these Tables are statistical values for the response time,
we understand the smallest value as the best of all strategies for a particular indicator.
Subsequently, the worst value is the greatest of them.

In this context, NearestByRoute is the best performer when we do not consider
the severity of calls. However, mixed strategies (MEXCLM+NearestByRoute for CC
Karlsruhe and MEXCLM+NearestByRoute:aC for CC North) are the best performers
when the life-threatening calls are prioritized. Furthermore, we find the best average
maximum response time in these strategies (23.52 [min] for CC Karlsruhe and 33.76
[min] for CC North), which confirms that mixed strategies ensure a better system
response in those cases when a rapid response is critical. From our point of view, the
cost of implementing a mixed strategy is minimal since the worsening of performance
for the not worst cases is about 3 minutes or less in both regions for at least 75% of
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the cases.
Sometimes average values could not be representative enough for describing phe-

nomena. In Appendix B, we include Tables B.1 and B.2, which contain the median
values (P50) of statistics for the response time. These results confirm the analysis
presented in this section for the average values.

6.4.2 Covering

In Figure 6.5, we present the results for the average emergency calls covering. Covering
is measured in this work using the following formula based on Daskin [1983]:

Covi = (1 − p)k· 1τLoc(x),i≤T (Cov.1)

Where p is the busy fraction, k is the number of idle ambulances covering the
emergency call i. Cov.1 assets the covering of the emergency call from the available
ambulances under a threshold time T . In Germany, each state defines by law the time
T . and is different according to each state. In CC North the threshold response time
is 12 minutes, as presented by the Landesregierung Schlewig-Holstein [2021] and FASP
Finck Sigl und Partner [2021a]. This time is measured from the moment the rescue team
is alarmed until the rescue team arrives at the emergency place. In CC Karlsruhe, this
time should be no more than 10, at most 15 minutes, according to the Statistisches
Landesamt Baden-Württemberg [2021a] and FASP Finck Sigl und Partner [2021b].
However, the measure definition is different: from the moment when the call enters
into the system until the rescue team is at the emergency place. Although the time
T is generally defined according to the patient’s severity, in both regions is defined
the same T for all cases. Then, these parameters are a benchmark in terms of quality
assessment of pre-hospital services for both CCs. This work considers 12 minutes as
the threshold time for both regions to compare results. The time is measured between
the entry into the system until the rescue team achieves the patient.

For the CC North, MEXCLM+NearestByRoute:aC is the strategy with the best
performance in terms of covering since this strategy considers the unattended calls and
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Figure 6.5. Dispatch strategy counting distribution for average emergency
calls covering.

the emergencies that were attended to and are still in the system. This dominance
is more significant for life-threatening calls. We consider this approach an advantage
in terms of covering since we understand that the more inhabitants in a specific area,
the more possibility for new emergencies coming from this area. Figures 4.4b and 6.1b
support this idea through concentrations of emergency calls related to cities or towns.
Hence, considering the attended calls in the system improve the emergency covering,
which we consider more related to this context than the area covering.

For CC Karlsruhe, there is no clear differentiation in the strategy performance as
in CC North. Nevertheless, we identify a slight dominance of the MEXCLM -based
strategies.

For a more in-depth analysis, we shall necessarily analyze the results under the
findings of Chapter 5 since we are aware that the capacity of the system and the amount
of emergency calls plays an essential role in emergency dispatch strategy performance.

Considering this, we understand that CC North and CC Karlsruhe are system’ sit-
uations that are somewhere between “Version 4+2” and “Version 5+2”, both presented
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in Section 5.4. This conclusion is based on the situation presented for CC Karlsruhe in
Figure 6.3: The performance for worst cases is similar between strategies, and they are
also compact, as presented in Figure 5.5 for “Version 4+2”. This scenario means that
the strategy families are in the same performance region, mixed, with slight perfor-
mance differences but slightly dominance by the MEXCLM+NearestByRoute strategy,
which combines both families. For calls without worst cases, the situation is similar
to “Version 5+2”, with a clear dominance of the Distance/Route-based strategies over
the Covering-based strategies. For CC North, the situation is similar to CC Karlsruhe.
There is a substantial similarity to “Version 5+2” in Figure 5.5 since there is a clear
dominance from the Distance/Route-based strategies over the MEXCLM -based strate-
gies, for all and calls and the non-worst case calls. We believe the main reason for this
is the greater capacity of the system in CC North in comparison with CC Karlsruhe,
as we tested in Chapter 5. The performance is significantly similar in CC North and
stays almost in the same region for all calls without the worst cases and life-threatening
calls. Meanwhile, in CC Karlsruhe, there is a notorious performance difference in each
group of calls.

From the covering point of view, it seems to be that the region extension plays
an important role in the results. That explains the difference between both Regions
for worst cases since the performance of the strategies seems to be similar to “Ver-
sion 4+2” or “Version 5+2” of Figure 5.8 for CC North, and “Version 5+2” for CC
Karlsruhe. Following this idea, we could conclude that CC Karlsruhe has a better ca-
pacity to attend the region since the strategy performance is similar to “Version 5+3”
in Figure 5.8. Nevertheless, this interpretation does not consider that the simulation
model includes re-dispatching, which is clearly present in CC Karlsruhe since there is a
difference in performance between calls without worst cases and life-threatening calls.
After our analysis, MEXCLM+NearestByRoute seems to be the best dispatch strategy
for several reasons: (i) despite not having the best performance for non-life-threatening
emergencies, it is the best performer for the worst cases in terms of response time. We
understand that the benefits for life-threatening cases could justify the cost in terms
of time for the other calls. (ii) the dispatch algorithm performance seems to be quite
robust and predictable. There are almost no performance differences in Figure 5.5
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and Figure 6.3 for worst cases. We consider this a strong argument because we are in
an emergency context, and significant disruptions can occur in the system, which we
cannot accurately predict. Reliable and predictable performances are desirable.

Call group Algorithm CDF [%] Covering[%]
(15 min) Mean Min P25 P50 P75 Max

All

NearestByDistance 69.77 84.53 0.00 88.05 98.94 99.79 100.00
NearestByRoute 70.99 84.06 0.00 88.24 98.92 99.79 100.00
MaxCoveringByZones 39.97 88.67 0.00 92.16 99.45 99.80 100.00
MEXCLM:aC 58.76 93.72 3.35 96.23 99.59 99.80 100.00
MEXCLM+NearestByRoute 62.09 90.51 1.68 94.35 99.45 99.80 100.00
MEXCLM+NearestByRoute:aC 62.43 90.55 0.00 94.47 99.45 99.80 100.00

worst cases

NearestByDistance 73.54 86.03 0.00 89.78 99.18 99.88 100.00
NearestByRoute 74.76 85.31 0.00 88.31 98.99 99.88 100.00
MaxCoveringByZones 51.21 90.75 10.05 94.11 99.44 99.92 100.00
MEXCLM:aC 65.51 94.62 22.33 96.96 99.65 99.92 100.00
MEXCLM+NearestByRoute 74.19 85.67 3.90 89.27 98.96 99.88 100.00
MEXCLM+NearestByRoute:aC 75.16 85.44 0.00 90.80 99.10 99.88 100.00

not worst cases

NearestByDistance 68.02 83.79 0.00 87.26 99.03 99.91 100.00
NearestByRoute 69.23 83.44 0.00 86.52 98.96 99.91 100.00
MaxCoveringByZones 34.74 87.68 1.68 90.19 99.32 99.93 100.00
MEXCLM:aC 55.43 93.25 6.70 95.83 99.62 99.93 100.00
MEXCLM+NearestByRoute 56.24 92.82 5.03 95.70 99.59 99.93 100.00
MEXCLM+NearestByRoute:aC 56.37 93.00 3.35 95.69 99.58 99.93 100.00

Table 6.3. Average values of statistics for covering over 40 instances of Co-
ordination Center North. P25, P50 and P75 mean percentile 25, 50 and 75
respectively.

In Tables 6.3 and 6.4, we present the average values of statistic indicators for both
Coordination Centers. Furthermore, we present the average for the cumulative distri-
bution function call covering under 15 minutes of response time. The results show that
dynamic covering outperforms distance-based dispatch strategies for CC North and CC
Karlsruhe. However, the dynamic covering does not ensure better system response, but
it helps to achieve it for the worst cases by penalizing the system response for the not
worst cases. This effect is indeed presented in Table 6.4 since the best strategy for not
worst cases under the CDF indicator is the worst in covering.

In appendix B, Tables B.3 and B.4 resume the results for the median values to
confirm the finding related to average values.
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Call Group Algorithm CDF [%] Covering [%]
(15min) Mean Min P25 P50 P75 Max

All

NearestByDistance 47.47 83.93 0.00 87.94 99.48 99.80 100.00
NearestByRoute 48.01 83.65 0.00 87.41 99.55 99.80 100.00
MaxCoveringByZones 35.40 85.05 0.00 89.89 99.46 99.80 100.00
MEXCLM:aC 31.86 85.55 0.00 91.34 99.53 99.80 100.00
MEXCLM+NearestByRoute 35.42 85.38 0.00 89.87 99.44 99.80 100.00
MEXCLM+NearestByRoute:aC 33.46 85.11 0.00 90.06 99.48 99.80 100.00

worst cases

NearestByDistance 82.09 95.83 48.58 98.87 99.86 99.93 100.00
NearestByRoute 82.78 96.31 48.37 98.55 99.88 99.93 100.00
MaxCoveringByZones 77.61 94.66 34.04 98.34 99.87 99.93 100.00
MEXCLM:aC 75.15 96.34 50.79 99.03 99.89 99.93 100.00
MEXCLM+NearestByRoute 84.74 96.60 52.12 99.01 99.90 99.93 100.00
MEXCLM+NearestByRoute:aC 83.36 95.46 39.86 98.94 99.88 99.93 100.00

not worst cases

NearestByDistance 40.86 81.62 0.00 82.55 99.34 99.92 100.00
NearestByRoute 41.41 81.24 0.00 80.24 99.41 99.93 100.00
MaxCoveringByZones 27.45 83.24 0.00 86.64 99.51 99.93 100.00
MEXCLM:aC 23.33 83.42 0.00 85.59 99.48 99.93 100.00
MEXCLM+NearestByRoute 25.84 83.21 0.00 84.99 99.40 99.92 100.00
MEXCLM+NearestByRoute:aC 24.16 83.16 0.00 87.37 99.38 99.92 100.00

Table 6.4. Average values of statistics for covering over 40 instances of Co-
ordination Center Karlsruhe. P25, P50 and P75 mean percentile 25, 50
and 75 respectively.

6.4.3 Resource utilization

We define Resource Utilization in this work as the ratio between the amount of time
when the resource is busy over the time when the resource is available. This indicator
is critical to defining a resource’s available probability for serving an emergency. As
expressed by Aboueljinane et al. [2013], A low utilization rate is essential to ensure that
the rescue team will be available to attend a particular emergency call. Furthermore,
around 30-35% is the average utilization rate worldwide, according to Erkut et al.
[2008] and Jánoš́ıková et al. [2021]. Above this value, the system could be considered
under stress and below this mark, there is free capacity to attend more emergencies
than in the covered area.

In Table 6.5, we present the average value of the utilization ratio for the ambulances
in the emergency system: In this context, the NearestByRoute dispatch strategy is the
one that promotes the smallest ambulance utilization, and the MaxCoveringByZones
strategy promotes the most considerable ambulance utilization.

Distance-based strategies are clearly less stressful for the system since the travel
distances are shorter than other strategies. In the same manner, static-covering strate-
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Coordination Center Algorithm Utilization [%]

North

NearestByDistance 15.98
NearestByRoute 15.87
MaxCoveringByZones 17.26
MEXCLM:aC 16.08
MEXCLM+NearestByRoute 15.95
MEXCLM+NearestByRoute:aC 16.15

Karlsruhe

NearestByDistance 31.44
NearestByRoute 31.30
MaxCoveringByZones 32.99
MEXCLM:aC 32.31
MEXCLM+NearestByRoute 32.11
MEXCLM+NearestByRoute:aC 32.06

Table 6.5. Summary the average utilization for ambulances after 40 instances
in each coordination center.

gies (e.g., MaxCoveringByZones) do not take into account the distance and changes in
the position of ambulances “in real-time”, which means that the covered area by an
ambulance at the moment of selecting it could be incorrect

6.5 Conclusions and future work

This chapter, we presents a comparison of realistic ambulance dispatch strategies in
a real-world context. We implement this through a simulation-online optimization
approach. The simulation model is validated and is a real-world representation based
on the German emergency medical system. It is essential to point out that the dispatch
strategies are implemented under an online optimization approach, which we consider
the most realistic approach under real-world conditions.

Furthermore, we applied these strategies to two real case studies (located in the
North and the South of Germany, respectively), both characterized by curated data.

We summarize our findings into the following ideas:

• The relation between resource capacity vs. demand affects the performance of
the strategies and is critical for concluding which strategy is the best performer.

• Mixed dispatch strategies seem to be better than the “pure” strategies. Our
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work shows that the nearest idle ambulance for the life-threatening cases com-
bined with a MEXCLM-based strategy for the non-life-threatening cases performs
better than any other strategy. Hence, this strategy performs the rapid response
required for the first ones but is supported by the second ones, improving the
performance in those cases where time responses are critical.

• Dynamic covering-based dispatch strategies are more stable and robust to changes
in demand or capacity compared to static covering-based strategies or the classic
nearest idle ambulance. This robustness becomes more critical when disruptions
such as terrorist attacks or natural disasters, among others, take place.

However, our findings are analyzed under the comparison with the classical idea
of the faster, the better, which is one of the most important quality standards for
EMS according to the Department of Quality Assurance of Emergency Medical Ser-
vices in Baden Wuerttemberg [Stelle zur trägerübergreifenden Qualitätssicherung im
Rettungsdienst Baden-Württemberg, 2021]. We consider that performance indicators
could be improved to encompass more particularities, for instance, those related to
patient wellness, EMS available resources, and orography. We are aware that both
Regions have a configuration with one high population density city and countryside.
Hence, we consider that a study including a big urban area could present interesting
results since there are other parameters such as rush hours.

Furthermore, a comparison between EMS under the two main philosophies, such
as the Franco-German and the Anglo-American, could also present results to improve
the patients’ service quality and survivability.
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Chapter 7

Conclusions and future research

Emergency medical systems are complex in such a way that it is hard to enhance the
performance of these systems using only optimization models. This context presents
challenges related to integrating a number of methods, such as analytics, simulation
and optimization research methods, with the aim of achieving a more profound under-
standing and enhancing these systems.

In this dissertation, we address the emergency ambulance dispatching problem and
its complexity from the operational point of view. It includes the following character-
istics and elements:

• the establishment of a general emergency medical system (EMS) process;

• the proposition of a hybrid EMS simulation model associated with the EMS
process;

• the proposition of a machine learning approach for ambulance travel speed pre-
diction;

• the study and establishment of the interrelation between emergency resources;

• the proposition of an evaluation methodology for ambulance dispatch strategies;
and,

• the inclusion of essential characteristics such as orography, re-dispatch (re-routing),
patient categorization, and land and urban areas simultaneously.
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The items presented in the above list show the complexity of addressing the am-
bulance dispatch problem and to model it in a proper way, with the aim of obtaining
answers applicable to the real world.

By addressing the described list, we determine that the number of ambulances in
the system directly affects the performance of a particular dispatch strategy compared
to others. It means, that the change in the ambulance availability or the variation
of ambulance resource in comparison to the demand, does not affect in the same way
the dispatch performance associated with each dispatch strategy. In this context, the
covering-based strategies show a more stable and predictable performance in opposition
to the classical “nearest ambulance” strategy. Nevertheless, we establish the conditions,
cases and scenarios where the nearest ambulance strategy is the best performer under
the well-known response time indicator.

We also found that the best all-rounder approach is a combination of strategies
based on which type of emergency call the system should attend. In this context, we
believe that emergency categorization is fundamental to correctly evaluate the EMS
performance. Is a matter of fact that each patient needs different levels of care, which
depends on the emergency severity. Since the modern EMS is prepare for each emer-
gency type by categorizing patients and presenting a “tailor-made” response for each
of them, we believe that the same approach should be considered for the performance
evaluation of these systems.

Furthermore, we verify that several publications exist in the EMS context, but
almost none of them are based in the German EMS. We consider this system as one
of the most significant worldwide. Hence, we believe that more research based on
the German EMS should be done since it is one of the foundations of the Franco-
German philosophy. Following this idea, we consider as future research the possibility
of testing the results of this work under accurate data coming from one Anglo-American
philosophy-based system. Such comparison has not been performed so far in a realistic
context, which presents the possibility of the following results and possible research:
(i) an unified dispatch strategy approach, which works for both philosophies; (ii) a real
comparison where is possible to define which situations one philosophy is better than
the other in; and (iii) the definition of an optimal integration level of both philosophies

David Olave-Rojas



since several EMSs worldwide are a mix between them.

Our hypothesis is that such comparison could lead to confirm the results presented
in this work, but it is clear that there exist some challenges in order to perform this
comparison property. We recognize at least the following challenges: (i) to define a
common comparison indicator, in such a way that this should be fair enough for both
philosophies; (ii) to determine which characteristics should be included for addressing
the particularities of both systems, in order to perform the comparison property; (iii) to
define which emergencies are presented in both systems since they make the comparison
plausible; and, (iv) to determine the countries where lifestyle and traditions are similar
with the aim of do not bias the results.

We also visualize the need for a general emergency demand prediction model. We
are aware that exists some research in this field [see Grekousis and Liu, 2019, Martin
et al., 2021, as examples of studies addressing this topic]. However, we consider that
the applicability of the actual artificial intelligence (AI) techniques, such as neuronal
networks, could lead to including characteristics that are not being enclosed so far
in realistic approaches, such as dispatch strategies with lookahead, with the aim of
establishing a general model for different scenarios. Our best effort in this work is the
inclusion of the emergency calls, which are already in the system for the MEXCLM -
based strategies, as places where the possibility for an emergency call in the future is
higher because of population density.

We are also aware that there are challenges in implementing AI techniques since they
require a considerable amount of good quality data. The access to data remains as one
of the most critical challenges in this area. This point was an important issue to develop
and refine the methodology presented in this thesis. In this context the partnership
with the Coordination Center North [Leitstelle Nord, 2021] and the SQR-BW [Stelle
zur trägerübergreifenden Qualitätssicherung im Rettungsdienst Baden-Württemberg,
2021] was invaluable for this work.

The access to reliable data was also an issue in order to study profoundly the
call-taker-dispatcher interaction or the process presented in the coordination center,
since in most of the cases, these data does not exist. Coordination centers deal with
emergencies, the coordination of services, support activities for the emergency team
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and hospitals, and if necessary, the coordination with firefighters, police, rescue teams,
etc. This presents the need of a deep study and analysis of the process since efficiency
is critical in this unit. We believe that the existing methods today could improve
the findings presented in Liston et al. [2017], Van Buuren et al. [2015], if there exist
timestamps for the entire internal process in the coordination center.

Another important topic is the fact that mean emergency response time is still the
most important indicator for evaluating the service quality of an EMS. This occurs not
only in the literature but also in the praxis. Since the complexity of EMS is a matter
of fact, more key performance indicators are needed, in such a way that they can grasp
important characteristics such as survivability, patient satisfaction, fair access to the
service, patient and illness categories, among others. Again, one of the main challenges
in this topic is reliable data. Some studies modeling survivability for heart attacks
exist in the literature, but they are not actualized nor generalized. In this case, these
studies should include more diseases and more characteristics as described above in
order to define the predictive parameters for these characteristics.

The integration and connection of different methods is an interesting future re-
search topic. This means the development of tool and models based on AI-Simulation-
Optimization approaches since the computing capacity allow us to address real size
problems. EMS systems’ complexity could be addressed by these approaches, pro-
moting more exact and representative solutions. We consider this work as an effort
in this line after including a machine learning model for predicting the travel speed
with the simulation model and the online optimization models, but we are aware that
this is not enough. Following this idea, we believe that the inclusion of neuronal net-
works presents big possibilities for improving the performance of online optimization
approaches. Since neuronal networks are able to take as input several parameters and
to establish a relation with the outputs if there these relation exists. A neuronal net-
work could be trained by means of the offline solution, using complete information.
Then, the trained neuronal network could solve the online problem, by the pattern
recognition in the historical data. Our hypothesis is that this approach could at least
outperforms the online approaches presented in the literature, but is complete unclear
by how much and how similar these performance to the offline approach is.
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An interesting topic is also the system response under stress in the long term. This
kind of study presents two advantages: (i) they allow us to know the system’s limits
and which conditions or resources are critical for those variables that are structural and
affect the system in the long term, such as climate change; and (ii) the policymakers
can develop protocols and define the best practices and decisions for accidents, natural
disasters, terrorism, among others. We understand that this kind of studies could
be difficult to generalize and scale the results to others areas since every region has
particularities. Nevertheless, we believe this could be possible after our experience
dealing with data from two very different regions.

Finally, we understand the importance of cooperation between academia and prac-
titioners. The bigger the cooperation is, the better the results and integration of
operations research techniques into Health Care Systems. This cooperation should be
based on understanding processes in EMS and Operation Research methods for both
parts.
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Statistisches Landesamt Baden-Württemberg. Gesetz über den Rettungsdi-
enst (Rettungsdienstgesetz - RDG). https://im.baden-wuerttemberg.de/

fileadmin/redaktion/m-im/intern/dateien/pdf/Rettungsdienstgesetz_

Stand_30122015.pdf, 2021a. Online; visited 2021-09-24.
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Appendix A

Graphs corresponding to the results
of Chapter 5

Figure A.1. Dispatch strategy counting distribution for average emergency
response time: Cross scenario.
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Chapter A. Graphs corresponding to the results of Chapter 5

Figure A.2. Dispatch strategy counting distribution for average emergency
response time: Big Rhombus scenario.

Figure A.3. Dispatch strategy counting distribution for average emergency
calls covering: Rhombus scenario.
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Figure A.4. Dispatch strategy counting distribution for average emergency
calls covering: Big Cross scenario.
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Appendix B

Tables corresponding to the results
of Chapter 6

Call Group Algorithm Response Time [min]
Mean Min P25 P50 P75 Max

All

NearestByDistance 13.43 1.45 8.75 11.85 15.91 60.66
NearestByRoute 13.01 1.50 8.82 11.79 15.68 38.66
MaxCoveringByZones 19.57 1.92 11.46 17.66 22.98 185.75
MEXCLM:aC 15.77 2.86 9.91 13.57 18.12 91.49
MEXCLM+NearestByRoute 14.84 1.76 9.41 12.98 17.70 86.77
MEXCLM+NearestByRoute:aC 15.00 1.79 9.38 12.84 17.60 79.41

worst cases

NearestByDistance 13.43 3.82 8.72 11.72 15.12 39.53
NearestByRoute 12.76 4.07 8.62 11.36 15.25 32.01
MaxCoveringByZones 16.16 4.46 10.14 14.82 20.70 40.39
MEXCLM:aC 14.99 3.66 9.25 12.32 16.94 70.72
MEXCLM+NearestByRoute 12.62 3.91 8.75 11.43 15.09 32.83
MEXCLM+NearestByRoute:aC 12.66 3.90 8.65 11.10 14.89 32.76

not worst cases

NearestByDistance 13.38 1.45 8.95 12.25 16.24 42.52
NearestByRoute 13.35 1.50 8.88 12.02 15.88 38.02
MaxCoveringByZones 20.91 1.92 11.95 19.08 23.90 185.75
MEXCLM:aC 16.20 3.32 10.14 14.13 18.69 81.17
MEXCLM+NearestByRoute 15.99 1.76 9.94 14.07 19.18 86.77
MEXCLM+NearestByRoute:aC 16.21 1.79 9.97 13.97 19.11 79.41

Table B.1. Median values (P50) of statistics for the response time over 40 in-
stances of Coordination Center North. P25, P50 and P75 mean percentile
25, 50 and 75 respectively.
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Chapter B. Tables corresponding to the results of Chapter 6

Call Group Algorithm Response Time [min]
Mean Min P25 P50 P75 Max

All

NearestByDistance 18.11 3.49 11.13 15.48 22.71 51.96
NearestByRoute 17.99 3.57 11.19 15.52 22.61 51.29
MaxCoveringByZones 20.88 4.26 12.68 18.36 27.23 56.03
MEXCLM:aC 20.95 3.74 13.80 17.89 24.86 82.43
MEXCLM+NearestByRoute 20.51 3.55 12.98 17.50 24.26 81.46
MEXCLM+NearestByRoute:aC 20.65 3.79 13.27 17.89 24.26 91.33

worst cases

NearestByDistance 11.67 4.77 8.79 11.16 13.74 25.42
NearestByRoute 11.93 5.10 8.95 11.36 13.80 25.19
MaxCoveringByZones 12.44 5.18 9.18 11.82 14.63 23.67
MEXCLM:aC 12.88 5.55 9.71 12.25 14.73 28.69
MEXCLM+NearestByRoute 11.38 4.86 8.72 10.77 13.67 21.54
MEXCLM+NearestByRoute:aC 11.50 5.06 8.85 11.10 13.70 24.66

not worst cases

NearestByDistance 19.19 3.75 12.18 16.67 24.56 51.96
NearestByRoute 19.16 3.80 11.95 16.71 24.26 51.29
MaxCoveringByZones 22.42 4.78 14.23 20.37 29.44 56.01
MEXCLM:aC 22.36 5.34 15.15 19.11 26.37 82.43
MEXCLM+NearestByRoute 22.25 4.03 14.69 19.05 26.04 81.46
MEXCLM+NearestByRoute:aC 22.23 4.51 15.22 19.21 26.31 91.33

Table B.2. Median values (P50) of statistics for the response time over 40
instances of Coordination Center Karlsruhe. P25, P50 and P75 mean
percentile 25, 50 and 75 respectively.

Call Group Algorithm CDF [%] Covering [%]
(15 min) Mean Min P25 P50 P75 Max

All

NearestByDistance 69.61 84.70 0.00 89.00 98.70 99.80 100.00
NearestByRoute 71.91 84.45 0.00 89.00 98.70 99.80 100.00
MaxCoveringByZones 39.54 88.73 0.00 89.00 99.50 99.80 100.00
MEXCLM:aC 59.35 94.11 0.00 96.30 99.60 99.80 100.00
MEXCLM+NearestByRoute 63.04 91.11 0.00 96.30 99.50 99.80 100.00
MEXCLM+NearestByRoute:aC 63.63 90.82 0.00 96.30 99.50 99.80 100.00

worst cases

NearestByDistance 74.14 86.40 0.00 89.05 99.55 99.93 100.00
NearestByRoute 73.15 85.60 0.00 89.05 99.16 99.93 100.00
MaxCoveringByZones 51.54 90.83 0.00 96.36 99.55 99.93 100.00
MEXCLM:aC 64.70 94.35 0.00 96.36 99.55 99.93 100.00
MEXCLM+NearestByRoute 74.83 85.65 0.00 89.05 98.78 99.91 100.00
MEXCLM+NearestByRoute:aC 75.20 85.22 0.00 89.05 98.78 99.93 100.00

not worst cases

NearestByDistance 67.45 84.04 0.00 89.05 98.78 99.93 100.00
NearestByRoute 68.31 83.30 0.00 89.05 98.78 99.93 100.00
MaxCoveringByZones 34.78 87.76 0.00 89.05 99.55 99.93 100.00
MEXCLM:aC 56.45 93.39 0.00 96.36 99.55 99.93 100.00
MEXCLM+NearestByRoute 56.38 93.00 0.00 96.36 99.55 99.93 100.00
MEXCLM+NearestByRoute:aC 57.14 92.94 0.00 96.36 99.55 99.93 100.00

Table B.3. Median values (P50) of statistics for covering over 40 instances of
Coordination Center North. P25, P50 and P75 mean percentile 25, 50 and
75 respectively.
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Call Group Algorithm CDF [%] Covering [%]
(15 min) Mean Min P25 P50 P75 Max

All

NearestByDistance 47.31 84.37 0.00 89.00 99.70 99.80 100.00
NearestByRoute 47.48 84.21 0.00 89.00 99.70 99.80 100.00
MaxCoveringByZones 35.21 85.58 0.00 89.00 99.70 99.80 100.00
MEXCLM:aC 31.55 86.59 0.00 96.30 99.70 99.80 100.00
MEXCLM+NearestByRoute 35.69 86.12 0.00 89.00 99.70 99.80 100.00
MEXCLM+NearestByRoute:aC 33.00 86.04 0.00 89.00 99.70 99.80 100.00

worst cases

NearestByDistance 83.13 96.61 67.00 99.55 99.93 99.93 100.00
NearestByRoute 84.29 97.19 67.00 99.55 99.93 99.93 100.00
MaxCoveringByZones 76.46 95.14 0.00 99.55 99.93 99.93 100.00
MEXCLM:aC 76.17 97.31 67.00 99.55 99.93 99.93 100.00
MEXCLM+NearestByRoute 85.24 97.38 67.00 99.55 99.93 99.93 100.00
MEXCLM+NearestByRoute:aC 84.62 96.56 67.00 99.55 99.93 99.93 100.00

not worst cases

NearestByDistance 40.91 81.79 0.00 89.05 99.83 99.93 100.00
NearestByRoute 41.03 81.52 0.00 89.05 99.55 99.93 100.00
MaxCoveringByZones 27.16 83.59 0.00 89.05 99.83 99.93 100.00
MEXCLM:aC 22.99 84.45 0.00 89.05 99.83 99.93 100.00
MEXCLM+NearestByRoute 26.61 84.03 0.00 89.05 99.55 99.93 100.00
MEXCLM+NearestByRoute:aC 23.63 83.98 0.00 89.05 99.83 99.93 100.00

Table B.4. Median values (P50) of statistics for covering over 40 instances of
Coordination Center Karlsruhe. P25, P50 and P75 mean percentile 25, 50
and 75 respectively.

C. Center Algorithm Utilization [%]
ALS NEF Call-Taker

North

NearestByDistance 16.20 23.25 14.46
NearestByRoute 16.24 22.56 14.26
MaxCoveringByZones 17.38 22.74 14.00
MEXCLM:aC 16.08 23.21 14.07
MEXCLM+NearestByRoute 16.26 22.67 14.85
MEXCLM+NearestByRoute:aC 16.17 23.05 14.40

Karlsruhe

NearestByDistance 30.84 19.77 8.18
NearestByRoute 30.47 19.02 8.09
MaxCoveringByZones 32.40 20.20 8.47
MEXCLM:aC 31.70 20.14 8.03
MEXCLM+NearestByRoute 31.57 19.28 7.87
MEXCLM+NearestByRoute:aC 31.30 18.34 7.80

Table B.5. Summary of the median (P50) utilization for each resource after
40 instances. (ALS: ambulance, NEF: emergency doctor)
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