
Research Article Vol. 31, No. 24 / 20 Nov 2023 / Optics Express 40366

Analysis of the optical response of reptile
tissues in the visible and UV applying the KKR
method
CHRISTIAN N. D’AMBROSIO,1 GONZALO URQUÍA,1

HENDRIK HÖLSCHER,2,4 MARINA INCHAUSSANDAGUE,1,3

AND DIANA SKIGIN1,3,5

1Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Grupo
de Electromagnetismo Aplicado, Argentina
2Institute of Microstructure Technology, Karlsruhe Institute of Technology, Campus North,
Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
3CONICET - Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Argentina
4hendrik.hoelscher@kit.edu
5dcs@df.uba.ar

Abstract: Structural colors in nature are frequently produced by the ordered arrangement of
nanoparticles. Interesting examples include reptiles and birds utilizing lattice-like formation of
nanoparticles to produce a variety of colors. A famous example is the panther chameleon which
is even able to change its color by actively varying the distance between guanine nanocrystals
in its skin. Here, we demonstrate that the application of rigorous electromagnetic methods is
important to determine the actual optical response of such biological systems. By applying the
Korringa-Kohn-Rostoker (KKR) method we calculate the efficiencies of the reflected diffraction
orders that can be viewed from directions other than the specular. Our results reveal that important
characteristics of the reflectance spectra, especially within the ultraviolet (UV) and short visible
wavelengths region, cannot be predicted by approximate models like the often-applied Maxwell-
Garnett approach. Additionally, we show that the KKR method can be employed for the design
of multi-layer structures with a desired optical response in the UV regime.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

It is known for a long time that colors in nature are essentially produced in two different ways.
Pigments contain molecules which absorb and/or transmit light to produce a color [1]. Structural
colors, on the other hand, originate from nano- and microstructures that interfere with light [2].
Many interference and/or scatter effects have been discovered in the last century and eventually
they led to the development of technical surfaces with fascinating optical features [3–8].

Understanding the actual optical principle of a structural color effect under review can be
puzzling, especially, if the observed structure is more complex than a simple layered structure
[9]. Consequently, most studies apply optical simulations to reveal the physical principle behind
the observed optical effect. As the phenomenon to be uncovered is typically unexplored at the
beginning of such studies, the best theory to describe it properly is unknown, too. Therefore,
many simulation projects start with a simple approach like the Maxwell-Garnett theory [10] and
combine it with the transfer matrix method [11]. Actually, this multi-layer technique works well
in many practical cases (see, e.g., Refs. [12–16]) but not all, and important effects might be
missed.

Consequently, advanced optical simulation methods are crucial for the analysis of lattice-like
arrangements of nanoparticles because they might feature optical effects as observed in photonic
crystals [17]. Such nanostructures are frequently found in nature and typically they consist of
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nanoparticles or air-voids in a surrounding matrix. Several birds, for example, have colorful
feathers which are known to produce bright reflection through the lattice-like arrangement of
nanoparticles [18–22]. The male peacock is a prominent case. It produces its colorful tail
feathers with the help of 2D photonic crystals made of melanin rods connected by keratin, which
are incorporated into the barbule [15,23].

Some reptiles utilize the principle of photonic crystals, too [24–27]. The most prominent one
is, most likely, the male panther chameleon (Furcifer pardalis) which is famous for its ability to
change its color. Teyssier and collaborators [26] showed that this famous dynamic color variation
is caused by the change of distance between guanine crystals which are immersed in a cytoplasm
matrix in the upper layer of the chameleon’s skin. In this way, it can change its color from blue
to red by increasing the distance between the crystals. Another example are Phelsuma lizards
[27]. These geckos feature skin colors which are generated via different physical origins. For
example, the white or blue colors are caused by ordered arrangements of guanine nanocrystals in
iridophores in the epidermis. Depending on the actual structure of the crystal, different colors are
generated. Green skin is produced, either by structural green or by the interaction of structural
blue with yellow pigments. Other colors, such as dark brown, are due to melanophores observed
in the upper layers of the dermis.

Here, we show that the utilization of a rigorous electromagnetic approach like the Kor-
ringa–Kohn–Rostoker (KKR) method is well-suited to simulate and model the reflectance of
such biological structures. In previous work, the KKR method has been successfully applied to
study the color response of birds’ feathers [20,21]. This approach is inspired by the works of
Korringa [28] as well as Kohn and Rostoker [29] which were originally intended for calculations
in solid state physics. However, more than two decades ago, Stefanou et al. [30,31] introduced
the software MULTEM allowing the straightforward optical simulation of photonic crystals based
on the KKR method. Later, various extensions were developed to include coated spheres [32,33],
quasi-periodic structures [34], non-spherical scatterers [35], and hybrid systems comprising
metallic spheres [36], among others.

In this work we use the KKR method and its numerical implementation (MULTEM) to
investigate the electromagnetic response of the skin of the panther chameleon [26] and of
Phelsuma lizards [27] by proposing a simplified structure that captures the most relevant
geometric characteristics of the tissue. We calculate the total reflectance and the efficiencies of
the reflected diffraction orders that can be viewed from directions other than the specular. The
KKR results reveal some features in the ultra-violet (UV) and short visible wavelengths region
that might be overseen by less rigorous methods.

2. KKR method

The KKR method is an efficient rigorous formalism for the calculation of the reflectance,
transmittance, and band structure of 3D photonic crystals. In particular, it permits to compute
the individual efficiencies of the diffraction orders (defined as the power carried by each order
normalized to the incident power) that propagate in directions other than the specular.

The photonic crystal can have a finite (in the z-direction) slab consisting of a number of unit
slices (unit supercells), embedded in a homogeneous medium characterized by a real dielectric
function and a real magnetic permeability. The unit slice consists of a number of different
components, each of which can be either a homogeneous plate, or a multilayer of identical
spherical particles in a homogeneous host medium. The multilayer is a stack of identical layers,
each of which consists, in general, of a number of different planes of spheres with the same
2D periodicity with a particular type of arrangement, such as triangular or square, for instance.
The dielectric function of the spheres is, in general, a complex function of the frequency, and
therefore, either dielectric or metallic spheres can be considered. There is no restriction either on
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the size of the nanoparticles, nor on the filling fraction of the system, as long as the spheres do
not overlap.

To solve the electromagnetic problem, the multiple scattering between spheres of each single
layer is calculated first. Then, the scattered response of multiple layers is determined by using
a transfer matrix approach, a procedure similar to the one used to calculate the reflection and
transmission properties of stratified media with planar interfaces.

The details of the KKR method and of its numerical implementation MULTEM can be found
in [30,31]. During the last years, we added several extensions to the original MULTEM program.
For this study, we emphasize the new option to calculate the individual efficiencies of the
diffracted orders. The code is available from the authors on a reasonable request.

Finally, it is important to mention that the computing times of the method are quite moderate.
For example, we used a Linux machine with an Intel Core i3-6100U CPU @ 2.30 GHz with 12
Gb RAM, 4 cores and 8 threads. The calculations for 1001 wavelengths between 200 nm and
1200 nm need less than 5 minutes considering 37 reciprocal vectors. Since the results for each
wavelength are independent, the calculations are straightforward to parallelize. However, the
simulations become more elaborate when several curves have to be averaged and might take
some hours.

3. Diffracted orders of nanocrystal lattices

As mentioned above, the KKR permits to compute the individual efficiencies of the diffraction
orders. For shorter wavelengths, the number of diffraction channels increases, and therefore, it is
interesting not only to estimate the total reflectance but also to calculate the power carried by the
non-specular orders, which might significantly contribute to the optical response of the structure,
mainly within the UV. This could have biological implications in how reptiles are seen by other
animals, like birds for instance [37]. In this section, we use an analytical approach to calculate the
condition for the appearance of diffraction orders and show when higher order channels open up.

When a regular arrangement is illuminated by a linearly polarized plane wave of wavelength
λ and wavevector k⃗i (see Fig. 1), diffraction orders other than the specular can arise [38]. This
implies that, in general, the total reflectance (transmittance) includes the contribution of the
efficiencies associated to all propagating orders. The number of propagating orders depends on
the characteristics of the incident wave as well as on the geometrical parameters of the lattice.

Since the complete structure is formed by a stack of identical Bravais lattices, in order to
analyze how many reflected and/or transmitted orders propagate, it is sufficient to consider the
arrangement of scatterers in a single plane. It is known that the primitive vectors of an arbitrary
two-dimensional lattice can be written as a⃗1 = sx̂ and a⃗2 = b cos γ x̂ + b sin γ ŷ, with b being the
length of a⃗2, s the spacing between first neighbors (lattice constant), and γ the angle between a⃗1
and a⃗2. The two unit vectors x̂ and ŷ are orthogonal to each other and to the stacking direction.
The reciprocal vectors of such a two-dimensional lattice are b⃗1 =

2π
s

(︂
x̂ − cosγ

sinγ ŷ
)︂

and b⃗2 =
2π

b sinγ ŷ,

which satisfy the orthogonality condition a⃗i · b⃗j = 2πδij. Now, every vector g⃗ of the reciprocal
lattice can be written as g⃗ = p b⃗1 + q b⃗2, where p and q are integers. Therefore, g⃗ can be expressed
as

g⃗ =
2πp

s
x̂ +

(︃
2πq

b sin γ
−

2πp cos γ
s sin γ

)︃
ŷ, (1)

and the wave vectors associated to the diffracted orders can be written as

K⃗±

g⃗ = g⃗ + k⃗∥ ±
√︂

k2 − |g⃗ + k⃗∥ |2ẑ . (2)

Here the +(–) sign corresponds to a transmitted (reflected) wave, respectively, while k is the
magnitude of the incident wave vector and k⃗∥ is its projection along the incidence plane [30]. In
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Fig. 1. (A) Scheme of a generic system of a single layer of spheres indicating the incident
wave vector k⃗i and the angles θ and ϕ; θ is the angle between k⃗i and the z axis and ϕ is the
angle between the x axis and the projection of k⃗i on the x − y plane. The inset shows an
example of a two-dimensional Bravais lattice with primitive vectors a⃗1 and a⃗2, of length s
and b, respectively, and γ is the angle between them. (B) Scheme illustrating the diffraction
orders.

spherical coordinates k⃗∥ can be written as

k⃗∥ = k sin θ cos ϕ x̂ + k sin θ sin ϕ ŷ . (3)

As already pointed out in Ref. [30], only wave vectors K⃗±

g⃗ with real z component represent
propagating diffraction orders. An inspection of Eq. (2) shows that this condition is satisfied
for k2 ≥ |g⃗ + k⃗∥ |2. Using Eqs. (1) and (3), this inequality can be used to calculate the cut-off
wavelength in vacuum λcut for a respective diffraction order (p, q) from

cos2 θ

(︃
ns
λcut

)︃2
− 2 sin θ (p cos ϕ + ξ sin ϕ)

(︃
ns
λcut

)︃
− (p2 + ξ2) = 0, (4)

where n is the refractive index of the medium in which the wave propagates and ξ = q s
b sinγ −p cosγ

sinγ .
Given the incidence angles (θ, ϕ), and for a particular two-dimensional lattice, this quadratic
equation for

(︂
ns
λcut

)︂
can be easily solved to calculate λcut for each diffraction order (p, q), meaning

that for λ<λcut the order (p, q) is propagating.

4. Numerical simulations

Now, we present our numerical simulations based on the KKR method and investigate the optical
response of the skin of two reptile species which are well known for their respective structural
coloration. As mentioned in the introduction, the male panther chameleon (Furcifer pardalis) is
famous for its ability to change its color [26]. Structural colors are also observed in the tropical
geckos of the genus Phelsuma [27]. In both cases, the electromagnetic response originates
from structures composed of guanine nanocrystals (refraction index ng = 1.83) immersed in a
cytoplasm matrix (nc = 1.33). We examined these two well-documented cases and applied the
KKR approach to calculate the optical response of the reptiles’ skin.
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4.1. Male panther chameleon

To study the mechanisms of structural color generation in the skin of a typical panther chameleon,
we consider the structure schematized in Fig. 2, which is composed of a stack of identical
parallel layers of regularly distributed spheres of radius r that represent the guanine nanocrystals
(ng = 1.83) immersed in a cytoplasm matrix (nc = 1.33). The whole structure is surrounded by
air.

Fig. 2. (A) Artistic view of a chameleon on a tree branch. The lower inset shows two
transmission electron microscopy (TEM) images of the guanine crystal in the epidermis
of the skin of a male panther chameleon in the artificially relaxed and excited state (scale
bar 200 nm) [26]. Male panther chameleons are able to change their color in the respective
part of the skin from bluish in the relaxed state to red in the excited state. (B) Model of
the chameleon’s skin consisting of guanine spheres immersed in a cytoplasm matrix. The
spheres have radius r and the distance between nearest spheres is s. The distance between
adjacent layers of spheres is Z and d indicates the distance between the cytoplasm-air
interface and the centers of the spheres of the first and bottom layers. The drawing of the
chameleon was obtained from [39] https://freesvg.org/chameleon-129790. The TEM images
are reproduced from Fig. 2a in Ref. [26] (Creative Commons CC BY license).

In the particular case of the chameleon’s structure, each layer is a 2D triangular lattice, i.e.,
b = s and γ = 60◦. Therefore, the distance between adjacent layers is Z = (

√
3/2) s. The layers

are stacked in an ABC sequence so that for an infinite number of layers (N → ∞) the structure
becomes an FCC (photonic crystal) with stacking direction (111). We fixed the distance from the
air-cytoplasm interface to the centers of the spheres of the top and bottom layer to half of the
particle spacing, i.e., d = 0.5s. In this way, we guarantee that the guanine spheres are completely
immersed in the cytoplasm. We assumed values of 170 nm < s < 340 nm and 46 nm < r <
82 nm for the spacing and radius of the guanine spheres. With this choice the value range of s
is slightly larger than that reported for averaged values in Ref. [26]. Taking into account the
thickness of 50 µm of the ordered iridophores, the number of layers can be estimated by dividing
this value by the distance between the layers (Z =

√
3/2 s). For 170 nm < s < 340 nm this gives

the range 169.81 < N < 339.61 for the number of layers. In the following, we chose N = 130
for our simulations, taking into account that for N ≥ 130 the spectral position and width of the
main peak in the visible, which are the main characteristics that determine the observed color, do
not change. However, it is important to mention that N is not a convergence parameter for the
KKR approach. As it increases, the total thickness of the structure increases, and this produces
changes both in the periodicity of the Fabry-Perot oscillations at both sides of the main peak and
in the fine details of the spectra within the UV region.
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To analyze the electromagnetic response and study the influence of the relevant parameters on
the reflectance, we consider that the system is illuminated by a linearly polarized plane wave. To
simulate natural light illumination conditions, the total reflectance, the specular reflectance and
the efficiencies of the diffracted orders were obtained by averaging the corresponding results for
transverse electric and transverse magnetic linearly polarized incident light.

4.1.1. Normal incidence

First, we study the influence of the radius and the spacing between spheres on the specular
reflectance at normal incidence (θ = 0◦). In Fig. 3(A) we plot the specular reflectance as a
function of the wavelength λ for the spacing values s = 170, 255, and 340 nm for a fixed sphere
radius r = 64 nm. The calculated spectra exhibit a response typical for photonic crystals. The
wide peaks correspond to photonic band gaps. It can be noticed that the respective main peaks are
very sensitive to spacing variations. As the spacing s increases, the peak redshifts and becomes
narrower, see, e.g., the wide gap for wavelengths close to 450 nm for s = 170 nm and the much
smaller gap for s = 340 nm for wavelengths around 800 nm. It is important to note that in addition
to the main peak observed in the visible, an intensified reflectance is found in the near-UV region,
which also redshifts as the spacing increases. The highly oscillating behavior observed at the
right of each main peak, can be associated with Fabry-Perot resonances of the whole structure.

The above described shift of gap position and width becomes clearer if we plot the optical
response as color maps. In Figs. 3(B)-(C) we display the simulated specular reflectance at normal
incidence as a function of the wavelength λ, for varying s (r = 64 nm) (B) and r (s = 255 nm) (C).
In these maps, the ranges of spacing s and radius r were chosen according to experimental values
reported in [26]. As observed in Fig. 3(B), the reflectance peak redshifts from 400 to 800 nm as
the spacing s increases from 170 to 340 nm. The intensified zone in the UV region, on the other
hand, moves from 200 to 400 nm.

It is now interesting to compare this result with the color map in Fig. 3(C). Here, the spacing is
fixed while the radius of the spheres is increased. In this case, the main peak becomes broader as
the radius increases from 46 to 82 nm, but no significant shift is observed. The same observation
holds for the intensified UV region. The sharp peak stays at 300 nm, although the radius is
nearly doubled. These calculations demonstrate that the color response of these photonic crystals
depends mainly on the spacing between the spheres while their radius is less important.

4.1.2. Different angles of incidence

In the following we explore the dependency of the reflectance on the incidence conditions.
Figure 4(A) displays the specular reflectance for a structure with radius r = 64 nm, spacing
s = 340 nm, and θ = 0◦. Plotting three values of θ = 0◦, 30◦, and 40◦ we observe that the main
peaks of the specular reflectance blueshift as θ increases.

In Fig. 4(B) we show the specular and total reflectance for the same structure, for θ = 40◦ and
ϕ = 0◦. As can be observed, the total reflectance coincides with the specular for wavelengths
larger than λcut = 443 nm (calculated using Eq. (4) and indicated with a vertical blue dashed
line). For λ<443 nm other diffracted orders start propagating. It can be observed that not only
the specular order (magenta) contributes to the total reflectance (black), but also other diffraction
orders such as the (-1,0) (red) and the (-1,-1) (cyan) give significant efficiency. It is important to
mention that, for clarity, the efficiencies of other reflected orders activated for λ<443 nm are
not shown. However, in order to allow for a better comparison of the different spectra, in (C)
we show a zoom of Fig. 4(B) for wavelengths at the left of λcut, where non-specular orders are
activated, i.e., for 200 nm<λ<443 nm.

Here, it is important to mention that all peaks shift to the left for smaller spacing values and
λcut decreases, too. For s = 255 nm, for example, the cut-off wavelength is λcut = 332 nm and
non-specular orders appear in the UV (see Fig. S1 in Supplement 1). Although the UV range is

https://doi.org/10.6084/m9.figshare.24449746
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Fig. 3. (A) Specular reflectance at normal incidence as a function of the wavelength λ for
different spacing values s for a sphere radius r = 64 nm. (B) Color map of the specular
reflectance as a function of λ and the spacing s for a fixed radius r = 64 nm. The color
coding ranges from blue (low) to red (high). The bright vertical red stripe in the middle of
the map represents the movement of the gap which shifts from about 400 nm to 800 nm as
the spacing s increases from 170 nm to 340 nm. The left vertical red stripe corresponds to
the intensified UV zone that redshifts, too. (C) Color map of the specular reflectance as a
function of λ and the radius r for a fixed spacing s = 255 nm. In this case the width of the
gap (red stripe) close to 600 nm increases with r. Its position, however, does not change
significantly. The UV intensified zone (left vertical red stripe) does not alter, too.
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Fig. 4. Reflectance spectra calculated for a regular structure with radius r = 64 nm and
s = 340 nm. (A) Specular reflectance obtained for a fixed value of ϕ = 0◦, for three different
incidence angles: θ = 0◦, 30◦, and 40◦. (B) Reflectance calculated for θ = 40◦ and ϕ = 0◦.
The total and specular reflectance and the efficiencies of the diffracted orders (−1, 0) and
(−1,−1) are shown for comparison. The cut-off wavelength λcut = 443 nm is indicated as a
vertical blue dashed line. (C) Zoom into the plot shown in (B) for 200 nm<λ<443 nm, i.e.,
the range in which the non-specular orders (−1, 0) and (−1,−1) propagate.



Research Article Vol. 31, No. 24 / 20 Nov 2023 / Optics Express 40374

hardly visible for humans, it is well-known that several reptiles, birds, and insects are able to
detect also this range of the electromagnetic spectrum and therefore, this characteristic could have
biological implications in how chameleons are seen by other animals, like birds for instance [37].
It is worth noting that the reflectance spectra for different values of ϕ do not exhibit significant
differences in the visible region (see Fig. S2 in Supplement 1).

We are interested in investigating the ranges of values of θ and ϕ that produce non-specular
propagating diffraction orders within the visible and UV regions, which can be perceived by
several animals, i.e., λcut>200 nm. We, therefore, utilize Eq. (4) to calculate λcut for different
propagating orders. As an example, we plot in Fig. 5(A) a color scale map of the cut-off
wavelength λcut for the order (p, q) = (−1, 0) as a function of θ and ϕ for a structure with s = 340
nm. When 50◦<ϕ<250◦, λcut decreases as θ increases. For other values of ϕ, λcut increases with
increasing θ, so it is more likely to get significant non-specular contributions of this order to
the total reflectance. The limit value λcut = 200 nm is indicated with a black line. In the region
enclosed by this line, the order (−1, 0) is not activated for any value of λ in the range of interest.
It is important to mention that the color maps obtained for the other first orders (not shown) are
translations in ϕ of the map shown in Fig. 5(A) due to the symmetry of the lattice. This implies
that depending on the incident conditions, some of these orders may or may not propagate.

Fig. 5. (A) λcut vs. θ and ϕ for the diffraction order (p, q) = (−1, 0) and for s = 340 nm; (B)
λMcut vs. θ and s for the same diffraction order.

For a given structure, λcut of a given order (p, q) is a function of s, θ and ϕ (Eq. (4)). If we fix
s and θ, it is possible to find a value of ϕ which produces the largest achievable value of λcut,
λMcut. However, it can be demonstrated that this value of ϕ, ϕ(λMcut), does not depend on θ, i.e,
is a function of s only. For the parameters considered in Fig. 5(A), ϕ(λMcut) = 330◦, as can be
appreciated in this figure.

https://doi.org/10.6084/m9.figshare.24449746
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In Fig. 5(B) we plot λMcut vs θ and s for the order (−1, 0). Note that for fixed θ (s), as s (θ)
increases, λMcut also increases. In the figure, the curves for four values of λMcut (200 nm, 300
nm, 400 nm, and 500 nm) are drawn as contour lines. Within the parameters’ region above each
of these curves, diffraction orders other than the specular are activated for λ<λMcut. Therefore,
in the region shaded with red tones, that is, the one with the largest values of s and θ, non
specular orders propagate both in the visible and in the UV region. Contrarily, for s<230 nm and
θ<20◦ (region below the curve λMcut = 200 nm), only the specular order propagates for incident
wavelengths within the spectral region of interest.

The region at the top right of Fig. 5(B) has the largest λMcut = 500 nm. Therefore, as
non-specular diffracted orders appear in this region, diffracted orders take place in the near UV
and partially in the visible. It is important to remark that the efficiency of these orders cannot be
deduced neither from the diagram nor from Eq. 4. In order to analyze the relative relevance of
non-specular orders in the UV, it is necessary to calculate their respective efficiencies.

4.1.3. Color impression for humans

It is known from experimental studies that in the top layer of the chameleon skin, the guanine
arrangements are more or less randomly oriented [26]. Therefore, one possibility to simulate
the color observed by humans is to perform an average of the reflectance for different incidence
conditions. In Fig. 6, we plot the average specular reflectance for five values of s. Taking into
account the symmetry of the hexagonal lattice used in the simulations and considering typical
illumination conditions that occur in a natural environment, each reflectance spectrum was
obtained considering 0◦<ϕ<55◦ and 0◦<θ<40◦. To calculate the observed color from the human
perspective, we obtain the three standard tristimulus values X, Y and Z [40]. In the bar at the
right of Fig. 6 we show the calculated color for each value of s. As already reported by Teyssier
et al. [26] the color strongly depends on the lattice parameter s. Our results show that, as the
spacing s increases, the resulting color impression for humans goes from blue over green to red
as already reported in Ref. [26] (see the Fig. S3 chromaticity diagram in Supplement 1).

Fig. 6. Averaged specular reflectance for different spacing values s. The right bar shows the
calculated color for each value of s as it would appear to the human eye.

4.2. Phelsuma lizards

As second example, we analyze the structural color produced in the skin of Phelsuma lizards.
Again, arrangements of guanine nanocrystals within the iridophores located in the epidermis

https://doi.org/10.6084/m9.figshare.24449746
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cause interesting color effects [27]. A first approach to investigate the response of this structure
was already presented by Saenko et al. [27]. In this study, it was assumed that the ordered
microstructure is composed of stacks of layers of disks of guanine in cytoplasm, as schematized
in Fig. 7. Based on this assumption the structure was modelled as a multilayered arrangement of
32 alternating layers of cytoplasm and layers with an effective medium (cytoplasm and guanine).
The effective permittivity (ϵeff) was obtained using the Maxwell-Garnett formula [10], with a
filling fraction of 60%, which yields a value of ϵeff = 2.63. The homogeneous layers had the
same thickness dc = 97 ± 12 nm while the composite ones had a thickness dg = 83 ± 11 nm.
Mean values and standard deviations of these parameters were obtained from Ref. [27] from a
statistical analysis of several microscopy images of a Phelsuma laticauda specimen. The whole
structure is immersed in air. To calculate the electromagnetic response of the multilayer system,
we employ the transfer matrix method [11] utilizing the parameters and procedures described in
[27]. A scheme of this structure is shown in Fig. 8(A).

Fig. 7. (A) Sketch of a lizard. The lower inset shows a TEM image of the longitudinal
section of the guanine crystals in the epidermis of the lizard’s skin (scale bar, 1 µm). (B)
Microstructure model of lizard’s skin of Saenko et al. [27]. The structure is assumed to be
composed of a regular arrangement of guanine disks (ng = 1.83) immersed in cytoplasm
(nc = 1.33). The relevant geometrical parameters are indicated by black arrows. The drawing
of the lizard was obtained from [41] https://freesvg.org/lizard-silhouette-118766. The TEM
image in (A) is reproduced from Fig. S3c in Ref. [27] (Creative Commons Attribution
License 4.0).

To get a more detailed insight into the optical response of this structure, we apply the KKR
method. Each layer of disks is modeled as a layer of spheres whose diameter matches the height
of the disks. We consider 32 alternating layers of cytoplasm and layers of spheres centered at the
nodes of a triangular lattice with s = 89 nm and a filling fraction f ≈ 60% (Fig. 8 (B)). There is
no lateral displacement between the spheres of different layers.

In Fig. 8 (C) we compare the reflectance obtained by using the two models considering normal
incidence and the mean values of the thicknesses. Both curves exhibit a typical photonic crystal
behavior with a bandgap between 500 and 550 nm. However, in addition to this peak, the KKR
curve exhibits an enhancement in the UV region near λ = 250 nm, which is not present in the
reflectance calculated by the MG approach. This peak is the result of multipolar interactions of
higher order that occur at short wavelengths, which are not taken into account within the MG
formulation [42]. This comparison evidences the importance of using a rigorous electromagnetic
method which takes into account higher order multipolar interactions, such as the KKR.

As previously stated, the measured thicknesses of the layers present variations throughout the
sample. For this reason, in order to make a more precise estimation of the reflectance which could
be comparable to experimental measurements, we applied an averaging method in both the MG



Research Article Vol. 31, No. 24 / 20 Nov 2023 / Optics Express 40377

Fig. 8. Direct comparison of the Maxwell-Garnett (MG) approach and the KKR method. (A)
The MG approach of Saenko et al. [27] assumes a multilayered arrangement of alternating
layers of cytoplasm and of an effective medium comprising cytoplasm and guanine. (B) The
KKR method, on the other hand, considers alternating layers of cytoplasm and of guanine
spheres immersed in cytoplasm. (C) Simulated reflectance obtained with the KKR method
(solid orange line) and with the MG method (dashed blue line) for dc = 97 nm and dg = 83
nm. As observed, the MG method correctly predicts the band gap around 550 nm, but fails to
calculate the secondary peak in the UV. (D) Averaged reflectance for both methods utilizing
an averaging procedure described in the text.

and the KKR approaches, to obtain the curves in Fig. 8 (D). We employed the procedure followed
in Ref. [27] to perform the averages. First, we fixed dg = 83 nm and obtained the reflectance as
the weighted average for 100 equally spaced values of dc in the range 97 ± 24 nm. Second, the
same procedure was repeated for the averages over dg in the range 83 ± 22 nm and considering
dc = 97 nm. Finally, the reflectance was calculated as the arithmetic mean of both averaged
reflectances. In Fig. 8 (D) we compare the averaged reflectances obtained with the MG and the
KKR methods. In comparison with Fig. 8 (C), notice that the oscillations smooth out as a result
of the averaging procedure. Both spectra in Fig. 8 (D) are practically identical for λ>400 nm,
with a main peak at ≈ 525 nm. The KKR curve, however, features an additional secondary peak
in the UV that is not predicted by the MG method. This additional peak is the result of multipolar
interactions of higher order and evidences the need of rigorous electromagnetic methods to
accurately simulate the optical response of nanostructured biological tissues. And indeed, there
are significant additional peaks in the UV reported in Fig. 3(a) of Saenko et al. [27] . However,
to perform a detailed comparison with their experimental results, additional characteristics of the
structure (presence of pigments, irregularities in inclusions’ shape and distribution, curvature,
etc.) have to be taken into account.

5. Conclusions

To conclude, we analyzed the optical response of reptiles’ skins that exhibit structural color by
the example of the male panther chameleon and Phelsuma lizards. In both cases, we rigorously
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modelled the microstructure responsible of the color response as a quasi-regular arrangement
of guanine spheres immersed in cytoplasm. By applying the KKR method, we analyzed their
reflectance response for various cases. Since several animals have a larger visibility range
than humans, we explicitly considered the visible and near UV regions. We investigated the
dependency of the reflectance on the geometrical parameters and on the angle of incidence,
and performed a detailed analysis of the generation of diffraction orders. The application of
a method such as the KKR permitted us to predict important characteristics of the reflectance
spectra, especially within the UV and short visible wavelengths region, that cannot be explained
by approximate models like the often applied transfer matrix approach. Our study highlights the
importance of employing rigorous electromagnetic methods to simulate the optical response of
biological systems, especially for structures that act like photonic crystals.
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