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Abstract
A multi-objective optimization tool based on adjoint sensitivity analysis [1] to model a simplified electrolysis cell is proposed. One major design
challenge for membrane-less electrolyzers is achieving a high hydrogen purity while maintaining its efficiency, representing contradictory object-
ives for the optimization. By modelling the topology of the simplified electrolysis cell with the Immersed Boundary Method (IBM), it is used as
the design variable for the adjoint method. The multiphase system is modeled using a single-fluid approach, considering mixture fluid properties.

The Adjoint Method
gradient based

design variable: distance 𝛹 → indicator 𝛷

sensitive to inital conditions

based on penalty methods

unknown derivatives → adjoint operator ℒ*:∫︁
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∫︁
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Application
Optimization of electrolysis cell for

increased efficiency → high mixing
increased hydrogen (H2) purity

Formulation of objective functions
indicator functions for evaluations
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Experimental setup of membrane-less electrolyzer [3]

Primal Set-up
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multiphase system
mixture fluid properties
depending on 𝛼k

solid
solid indicator 𝛷
represented by IBM

inlet/outlet
periodic boundaries
sources mv ,i and wk

Sensitivities for adjoint optimization
Iniltialization

Solving primal system of equations

Solving adjoint system of equations

Calculation of the sensitivities

Updating the geometry
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Adjoint Set-up
Lagrange Equation with Adjoint variables

based on time averages

L = J +
m∑︁
j=1
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Objective Functions
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Results
Velocity
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higher velocity at cathode compared to anode
main channel provides the electrolyte
steady recirculation areas
no convective flow from the outer to the inner channel

Mixture diffusivity
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mixture diffusivity results from void fractions:
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Void fractions
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constant void fraction at the catalysts
low gas transport to the inner channel
accumulation at the catalysts

→ high purity, low efficieny

Conclusion and Outlook
simulation of the electrochemical system with simplified equations
derivation of an adjoint framework for multi-objective optimization

validation of the simplified model with experimental results
optimization of the simplified model with weighted objectives
extension of the adjoint framework for more complex models
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