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Abstract

In this dissertation, we propose a novel day-ahead load forecasting method that can be applied
without manual setup on any building and is more accurate than currently existing methods for
predicting low-voltage loads. Day-ahead predictions allow a smart grid to mitigate the volatility of
decentralized renewable generators locally, by using demand flexibilities of the buildings located in
the area. Historically, power system operators forecast low-voltage demand for the upcoming day
using standard load profiles. While this basic method is effective for large consumer aggregations,
it lacks accuracy when applied on smaller loads and the flexibility to consider modern energy
equipment in the buildings. More advanced forecasting methods that exist for the high-voltage
level, rely on manual fine-tuning and can be used only in singular cases. Our aim is to develop a
method that can replace standard load profiles for predicting low-voltage loads on a wide scale –
a method that can be applied on numerous individual buildings of different size and type without
any explicit knowledge of them.

We formulate the wide-scale day-ahead load forecasting problem in low-voltage domain studying
various loads and their characteristics. Considering time-series nature of the data and its nonsta-
tionarity, we combine nonparametric functional data analysis with the theory of statistical learning
to introduce a univariate autoregressive functional neighbor model with corresponding forecasting
algorithm. Additionally, we present an extension that allows to consider exogenous variables
which can affect the consumption of a given building. We evaluate the model on an extensive,
publicly available dataset of loads and use inferential statistics comparing our model to numerous
references.

The main result of this work is a load forecaster that can be universally applied in a distribution
grid using historic load measurements and, optionally, further inputs. Statistical analysis shows
that our model can be expected to be significantly more accurate than standard load profiles and
more sophisticated approaches based on classical time series analysis and machine learning. Even
for the largest loads, our method can be expected to be at least 39% more accurate than standard
load profiles that were designed to predict larger aggregations of end-consumers. Therefore, given
mass adoption of smart meters, the proposed functional neighbor model can replace standard load
profiles that were used in power systems since their inception. Improved accuracy and flexibility of
the proposed method facilitates various smart grid applications that can increase the efficiency of
the existing distribution system infrastructure and aid accommodating renewable energy generators.
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Introduction
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Electric power grid is one of the largest interconnected systems on the planet. It currently
undergoes a major transformation striving to reduce its ecological imprint and cover the
ever-growing consumption more efficiently. What persists, is its fundamental operating
principle of maintaining the equilibrium between energy supply and demand. Unlike
other resources and despite considerable research efforts, electricity can be stored only to
a limited extent. The balance has to be maintained through a robust control where supply
and demand forecasts play an essential role.

The power system transformation affects, both, supply and demand side of the European
grid. A rising share of renewable generation in the EU is partly referable to the installa-
tion of numerous decentralized energy generators. However, the existing power system
infrastructure was originally designed for a steady and projectable supply by a relatively
small number of large centralized power plants. On the demand side, the consumers be-
come more divers following increasing adoption of batteries, electric mobility, and smart
buildings capable of adjusting their consumption.

These developments impose new challenges on the distribution network infrastructure
that hosts decentralized energy generators and a vast number of end-consumers. The
distribution network was engineered for a unidirectional power flow from the bulk high-
voltage transmission system to the low- and mid-voltage end-consumers. The possibility
of congestion was minimized by design, given only basic monitoring. Following the
transformation of the European power system, the resulting energy-flows will require
active local control to avoid cost-prohibitive re-dimensioning of the existing infrastructure.

The concept of a smart grid aims to improve controllability of the distribution system
and allows to use the existing infrastructure more efficiently. Installation of advanced
information and communication technology allows system operators to anticipate local
congestions on a daily basis. Predicting the generation and demand day-ahead and at the
level of single buildings in a given area allows to take control measures widely discussed
under the term demand response [Sia14].

We initiate our study motivating the development of a wide-scale day-ahead building load
forecasting method – a method that can be applied on numerous individual buildings of
different size and type without any explicit knowledge of them (Chapter 1). We place
this work within the context of power engineering focusing on the smart grid notion and
highlight several use-cases for such forecasting method (Chapter 2). Concluding the first
part of the thesis, we highlight themain contributions and provide an outline of the research
presented in this work (Chapter 3).
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1 Motivation

Until recently, there was a limited interest in short-term1 building load forecasting. Power
engineers assumed the consumption to be uncontrollable and to follow a steady pattern
defined in advance. Forecasting was done globally, at the high-voltage level, where only
large aggregations of the consumers are considered given limited information about them.
In the future, we will need to balance the increasing share of decentralized renewable
energy supply locally – predicting building power demand in a given area.

The wide-scale introduction of smart metering is on the way and provides new possibilities
for load forecasting in a distribution system. In 2024, 77% of the consumers in the EU
will be equipped with a smart meter [ET20]. This device delivers a daily load curve of
the consumer with a subhourly resolution. While in the past, only a general information
about the consumer (e.g., type, annual consumption) was available to the power system
operators, smart-meter data analysis is becoming a separate research field of which load
forecasting is one of the main applications [WCHK18].

To accommodate decentralized energy generators and consider eminent changes in the
nature of demand, power engineers need to develop and install new equipment and elaborate
on the corresponding control mechanisms. Many of the proposed demand response
concepts rely on a local load-forecast down to the level of single buildings [MK10].
However, currently existing models are inadequate for a wide-scale application – i.e.,
forecasting the disaggregated load of numerous individual buildings of different type and
size without any manual setup. The problems discussed in this section motivate the
development of a novel technique for predicting building loads on a wide scale using
smart-meter data.

1 While there is no clear definition for the short-term horizon, in the load forecasting literature, short-term
is regarded as a horizon from one to several hours up to one to several days ahead [MTAR15,RK15].
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1 Motivation

1.1 Problem – Accuracy of the Forecast

At present, power engineers assume that the end-consumer load follows a predefined pattern
named standard load profile (SLP) common for its general type (enterprise, residential,
office, etc.) and scaled by its annual consumption [Bun82]. Such profiles represent a
daily average load curve typical for the given region and consumer type. Using only basic
data about the consumers, SLPs deliver accurate predictions in a traditional grid for large
aggregations of loads.

However, there are several reasons why SLPs are defective in predicting the consumption
of individual buildings. Though accurate for aggregations of hundreds of loads2, they only
rudimentary reflect the diversity and highly stochastic nature of the demand of a single
building – especially one of a smaller size (Figure 1.1). At the same time, the general
consumer type, for which an SLP is assigned, cannot always be unambiguously identified.

An inapt forecast can cause critical problems in the distribution system. A substantial
prediction error can lead to a significant performance loss of predictive control. When
applied to numerous buildings, a forecast improvement of a single per cent can lead to
sizable cost savings [SSM16]. With increasing share of distributed generation and storage,
a congestion can occur at any moment, which makes accurate short-term load forecasts
fundamental for the operation of smart buildings and distribution systems.

1.2 Problem – Change in Load Characteristics

Building loads are becomingmore intermittent and diverse. Until now, facilities were often
thermally heated and consumed electricity according to a steady occupancy pattern mod-
eled by few standard profiles. Following the EU decarbonization strategy, we increasingly
see buildings equipped with electrical heating, ventilation, and air-conditioning (HVAC),
photovoltaic (PV) panels and storages [Eur18]. In the future, the load profile of a building
will vary notably depending on the day and installed equipment.

Power demand of new and retrofitted facilities can often be linked to exogenous variables
such as weather or a control signal. For instance, solar irradiation affects the net load
of a building with a PV-panel. A dramatic temperature change can affect the daily curve
given electrical HVAC-equipment. More generally, a smart building can adjust its net
consumption following a control signal that is related to weather or an input from a
demand response application. These variables need to be considered by the load model of
such building.

2 We can expect a 10% forecast error for aggregations that include over 400 low-voltage end-consumers
[Ber00].
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1.3 Problem – Forecasting on Wide Scale

Surging installations of PV-panels, electrical HVAC and other energy equipment change
the consumption characteristics at lower levels of aggregation. As a result, building loads
are no longer reflected by few standard profiles. Increasingly, distribution system operators
need a more versatile model that can consider the increasing building load diversity and
possible dependency on external inputs.

1.3 Problem – Forecasting on Wide Scale

Forecasting building loads on a wide scale implies predicting the disaggregated power
demand of numerous individual buildings without any explicit knowledge of them. This
restricts the usage of many established time series forecasting techniques. A building
load forecaster for a wide-scale application cannot rely on any manual setup and has
to work with limited data. Moreover, the model has to reflect the diversity, volatility
and nonstationarity of the time series representing electricity consumption of buildings
connected to the distribution grid. Until now, standard profiles is the only approach used
to predict the loads in a distribution system on a wide scale.

In contrast, short-term load forecasting at the transmission system level is considered
a solved problem. There exist myriad models accurate within a single percent margin
[FGSC19]. Naturally, a transmission system operator has only one model that needs to be
set up andmaintained. Suchmodel, often considers numerous variables, years of historical
data and relies on manual setup and fine-tuning.

Similar methods can also be accurate predicting intraday load of a specific building.
Numerous applications of sophisticated time series and machine learning techniques have
been used to do so [BZN+19]. As on the transmission system level, they are set up
manually and often applied to larger buildings with a steady consumption pattern.

However, when the same models are applied to more volatile, nonstationary loads (e.g.
smaller buildings, single homes and enterprises), they fail to reflect the volatility of
consumption. As a result, even simple heuristic models including the SLPs can, still, be
more accurate than sophisticated machine learning approaches [HGP15,VKS20]. Further,
years of training data and different inputs might not be available for each building in the
distribution system.
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1 Motivation

Figure 1.1: Electricity consumption at various levels of load aggregation. The number in parenthesis denotes
the number of aggregated residential buildings taken from a public smart-meter dataset [Arc16].
Time series were normalized individually by their peak value. Observe that larger aggregations
follow a steady pattern that is approximated well by a standard load profile. At the same time, the
electricity consumption becomesmore volatile with the decreasing aggregation size. For smaller
aggregations, the standard load profile does not reflect the volatility of the power demand. For
instance, the weekly pattern of single family home ([1]) is hard to identify and, consequently,
the forecasting becomes more challenging.
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2 Aim and Scope

This work aims to create a model for predicting day-ahead electrical load curves of build-
ings on a wide scale1 using smart-meter data. The aforementioned problems motivate the
development of a novel method for predicting local loads2 in the electricity distribution
system. The challenge is to develop a model that we can apply, with no manual config-
uration and adjustment, on a wide range of old and newly commissioned buildings. The
model has to work with scarce training data, because abundant historical measurements
might not be available for each building. An example of such model is the currently used
standard load profiles approach that requires only minimal knowledge about the buildings.
Accordingly, we formulate the following aim of our study.

Research aim. Provide an alternative to the standard load profiles for the day-ahead
forecasting of local loads on a wide scale.

For this study, we assume that smart-meter data with hourly resolution is available for
each building and focus on deterministic day-ahead load curve prediction for individual
buildings and their aggregations. Day-ahead load forecast is the key component for
operation of a smart grid – an electricity supply network that uses digital communication
technology to detect and react to local changes in usage. Within the notion of demand
response, there are different concepts that use smart-grid infrastructure and rely on a
day-ahead prediction to improve power system efficiency. In this work, we focus on the
following use cases.

1 In this study, wide-scale forecast implies the prediction of numerous disaggregated loads of different
type and size (Definition 7.2.1). Note that we only consider a disaggregation down to the level of
an individual building. Further disaggregation to the level of single electrical devices common for
nonintrusive load monitoring research field is beyond the scope of this thesis.

2 In this study, we use the term local load for the loads connected to the distribution system and that
include only few end-consumers located in the same geographical area such as buildings (Definition
7.2.2). Though local loads include, but are not limited to, buildings, the terms local load and building
load are used interchangeably in this thesis.
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2 Aim and Scope

2.1 Use Case – Building Energy Management

An accurate forecast is fundamental for the operation of a building energy management
system (BEMS) and consumption optimization of the facility. Anticipating the load day-
ahead allows to reduce energy costs by scheduling storage capacity [CZAS12,KCBG13,
MDRH+18]. Further, such prediction allows to quantify the available flexibility that
can be sold on a day-ahead market over an aggregator as it was often demonstrated
[Asp, OLM+18]. On a global scale, scheduling of building load flexibilities facilitates
far-reaching demand management concepts such as the usage of variable electricity prices
[YOHS18].

2.2 Use Case – Virtual Power Plants

Smart grids, combined with market liberalization ongoing in the EU, allow new business
models for the electricity market [NA16]. Those are often based on pooling smaller3 con-
sumers and producers into a single unit named virtual power plant (VPP). The aggregated
load flexibility of the resulting entity can be sold, among other options, on a day-ahead
market [CSVM16]. The VPP-operators rely on the day-ahead predictions of the consumers
and producers in the pool to optimize the cost of supply, anticipate energy purchases and
estimate the amount of flexibility which they can monetize [NHG17,YFLL19].

2.3 Use Case – Microgrids and Energy Communities

Microgrid is another concept within the smart grid notion that relies on day-ahead fore-
casts [NL14]. Instead of maintaining the power balance globally, through a wholesale
market, the energy can be managed within the local energy community [Dira, Dirb]. A
microgrid central controller is responsible for maintaining the power balance, dispatch-
ing generation and load flexibility as well as managing the power exchange with the
distribution grid [PKG14b,PKG14a]. At present, there exist numerous microgrids demon-
strating the concept [MBC16]. For operational purposes, the controller has to forecast
the output of decentralized energy generators and the load which often consists of the
few buildings within the microgrid. Moreover, anticipating power surplus and load flex-
ibility allows a microgrid to participate on the day-ahead market either directly or via a
VPP [LXT16,YHAG19, FCDM+16]. Therefore, an accurate day-ahead forecast directly
benefits microgrid operators and the energy communities.

3 Load size can be expressed in terms of annual consumption and is linked to the number of aggregated
end-consumers.
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3 Research Overview

Adoption of smart metering provides new opportunities for predicting building power
demand in distribution systems. Following the motivation and scope of this thesis, we
formulate the research question:

Research question. How can we use smart-meter data to predict day-ahead electricity
consumption of individual buildings and their aggregations on a wide scale?

With our research, we aim to provide an alternative to the standard load profiles that are
currently used for day-ahead load forecasting in absence of any detailed knowledge about
the buildings. Towards this objective, we provide three contributions to the field of power
engineering and applied statistics as described in the next section. Moreover, we made
several publications over the course of our study which we list subsequently. We conclude
this chapter by providing an outline of the dissertation.

3.1 Contributions

In this work, we propose and validate a novel method for predicting the day-ahead load
curves of buildings. Our method can be applied to any building without any manual setup
requirements and is more accurate than currently existing techniques for predicting local
loads. Moreover, our method can consider external inputs which we expect to affect the
load of a given building. While developing the method that answers the research question,
we make the following contributions.

Contribution 1. Establish the wide-scale day-ahead local load forecasting as an area of
research in distribution system operation.

Motivated by the outlined use-cases, we formulate the wide-scale day-ahead local load
forecasting problem – the problem of predicting the load curves for the upcoming day
on numerous individual buildings using a before-the-meter approach. We provide a
unified view on load forecasting in the distribution systems combining the perspectives
of statistical learning theory, classical and functional time series analyses. Herewith, we
provide a classification of the existing building load forecasting methods and their critical
review placing them into the context of a wide-scale application.
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3 Research Overview

Contribution 2. Evaluate existing data-driven models in context of wide-scale day-ahead
local load forecasting.

We formulate and apply a methodology to evaluate and compare forecasting models
for a wide-scale application to local loads. For evaluation, we use a scale-independent
error notion specialized for quantifying the forecast accuracy for a volatile daily load
curve, and we consider the error distribution with appropriate descriptive statistics. For
model comparison, we apply inferential statistics with appropriate statistical tests. We
demonstrate the methodology evaluating most common forecasting models on a public
smart-meter dataset. To simulate a wide-scale application, we compute hundreds of
thousands daily load forecasts with each model, predicting the power demand of individual
buildings and their aggregations. The quantity of predictions allows us to draw statistically
significant conclusions about several common data-driven models applied for wide-scale
day-ahead local load forecasting.

Contribution 3. Propose a novel forecastingmethodology for predicting day-ahead build-
ing load curves on a wide scale.

We combine nonparametric regression with functional data analysis creating a novel mod-
ular approach for data-driven multistep autoregressive prediction (functional neighbor
model). We propose a corresponding forecasting algorithm that can be applied on a wide
scale as it uses minimal data and requires no manual setup1. Moreover, we provide an ex-
tension that allows to consider exogenous variables. We evaluate our algorithm computing
hundreds of thousands of daily forecasts and compare it to numerous reference models.
The results indicate that our forecaster is significantly more accurate than the common
reference models predicting building loads of any size. Even for the largest loads, our
method can be expected to be at least 39% more accurate than standard load profiles that
were designed to predict larger aggregations of end-consumers.

3.2 Publications

To some extent, the content of this thesis echoes our previously published work. In this
section, we list the peer-reviewed publications that can be related to this thesis. These
works were referenced accordingly in the text.

1 The proposed algorithm requires three months of the most recent historical load measurements and
requires neither any information about the building nor manual fine-tuning of the model parameters.
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3.2 Publications

3.2.1 Journal Articles

• [VKS20] Oleg Valgaev, Friederich Kupzog, and Hartmut Schmeck. "Adequacy of
neural networks for wide-scale day-ahead load forecasts on buildings and distri-
bution systems using smart-meter data." Energy Informatics 3.1 (2020): 1-17. In
this article, we investigated the usage of neural-network methodology for predicting
the day-ahead load curves of local loads and evaluated its performance on a sample
of single family homes and residential aggregations. The setup of the neural net-
work architectures used as reference models in this thesis (Section 9.2.2.2) can be
attributed to this article.

• [VKS17a] Oleg Valgaev, Friederich Kupzog, and Hartmut Schmeck. "Building
power demand forecasting using K-nearest neighbors model – practical application
in Smart-City-Demo Aspern project." CIRED-Open Access Proceedings Journal
2017.1 (2017): 1601-1604. In this article, we applied the K-nearest neighbors
forecaster on the buildings from the Smart-City-Demo Aspern project, investigating
the need to account for external inputs when predicting the load of smart buildings.

• [VK16a] Oleg Valgaev and Friederich Kupzog. "Building power demand forecast-
ing." it-Information Technology 58.1 (2016): 37-43. In this article, we proposed the
general forecasting methodology for power demand forecasting of smart buildings
that considers scheduled demand response and the predicted PV-generation. How-
ever, over the course of our study, the initial proposal was substantially changed and
restructured.

3.2.2 Conference contributions

• [VKS17c] Oleg Valgaev, Friederich Kupzog, and Hartmut Schmeck. "Outlining
ensemble K-nearest neighbors approach for low-voltage power demand forecast-
ing." Proceedings of the Eighth International Conference on Future Energy Systems
(e-Energy). ACM, 2017. In this publication, we outlined the improvement of the
merging step (Section 8.2.3) within the K-nearest neighbors forecasting method-
ology. In particular, we proposed the, so called, ensemble merger which we did
not include into the current study but will investigate in more detail in our future
research.

• [VKS17b] Oleg Valgaev, Friederich Kupzog, and Hartmut Schmeck. "Designing
K-nearest neighbors model for low-voltage load forecasting." 2017 IEEE Power &
Energy Society General Meeting. IEEE, 2017. In this publication, we investigated
the usage of the k-fold cross-validation for model setup and the permutation merger
discussed in Section 8.2.3.2.
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• [VKS16] Oleg Valgaev, Friedrich Kupzog, and Hartmut Schmeck. "Low-voltage
power demand forecasting using K-nearest neighbors approach." 2016 IEEE Inno-
vative Smart Grid Technologies-Asia (ISGT-Asia). IEEE, 2016. In this publication,
we applied the multivariate K-nearest neighbor approach and investigated the effect
of the bandwidth choice for computing the day-ahead load forecasts on a small
sample of local loads of different type and size.

• [VK16b] Oleg Valgaev and Friederich Kupzog. "Building power demand fore-
casting using k-nearest neighbors model – initial approach." 2016 IEEE PES Asia-
Pacific Power and Energy Engineering Conference (APPEEC). IEEE, 2016. In
our first publication, we proposed the usage of the multivariate K-nearest neighbor
model for predicting the day-ahead loads of individual buildings.

3.3 Thesis Outline

The dissertation contains twelve consecutive chapters and is structured into four parts.
After concluding the introduction, Part II locates our research on the intersection of power
engineering and applied statistics. We describe and classify existing time series prediction
approaches (Chapter 4) providing the necessary background for the critical review of
the existing load forecasting models (Chapter 5). Moreover, we provide the necessary
context on smart buildings and grids where these models are to be applied (Chapter 6).
We dedicate the subsequent Part III to the methods we use for answering the research
question. To formulate the wide-scale day-ahead local load forecasting problem (Chapter
7), we describe the characteristics of building loads and multistep forecasts. Additionally,
we present a methodology for assessing forecast accuracy in a wide-scale application.
Subsequently, we provide a solution for the forecasting problem developing a forecaster
that is based on a novel functional neighbor approach for predicting day-ahead building
load curves (Chapter 8). Finishing the methodological part, we describe how our model
is evaluated together with the common reference models from the literature and detail the
corresponding simulation of wide-scale building load forecasting (Chapter 9). Finally,
Part IV presents (Chapter 10) and discusses (Chapter 11) the simulation results before
concluding the dissertation (Chapter 12).
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Part II

Background
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Throughout the second part of the thesis, we provide a theoretical background for our study.
In the most general sense, a time series is a sequence of data and accurately forecasting its
future values can be a grand challenge depending on the application field. We begin this
part with some formal definitions and an introduction to time series forecasting describing
theoretical concepts and approaches for this task (Chapter 4). Next, we describe the
applications to short-term load forecasting, drawing the line between different domains of
a power system and focusing on building load forecasting for which we review the relevant
literature (Chapter 5). We conclude this part by providing some context on smart buildings
including those that provided a platform for our study (Chapter 6).
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4 Time Series Forecasting

A time series is a sequenced collection of observations indexed by time. It can be
defined and modeled using the notions of random variables and stochastic processes.
Subsequently, we introduce the necessary statistical concepts and provide corresponding
formal definitions1. Further in this chapter, we present various time series modeling
approaches and describe some common forecasting methods that we relate to throughout
this study.

Definition 4.0.1. Probability space is a triple (Ω, A,P) where sample space Ω is a set of
possible outcomes or realizations of an experiment, A is a set of subsets of Ω called events
and P is a probability measure2

P : A → [0; 1]

A 7→ P
[
A
]

that assigns a probability to an event A ∈ A.

Definition 4.0.2. Random variable x is a measurable function

x : Ω → S
ω 7→ x(ω)

that assigns each realization in Ω to an element in a measurable space S . Such an element
is named observation.

A random variable x can be described by its expectation, variance and the probability
density function. For now, we focus on the case of a real-valued, continuous variable (i.e.,
S = R) and define such a variable by writing x ∈ R for simplicity.

1 For our purposes, we adopt general concepts from the standard mathematical literature sometimes
discarding the nuances that are not relevant in our application. For more a detailed explanation on
statistics and probability theory see [Was04] and [HPS] where we source the definitions found in this
chapter.

2 In fact, A is a so called σ-algebra and P underlies some further restrictions that are not relevant in our
case.
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4 Time Series Forecasting

Definition 4.0.3. Probability of an event x(ω) ≤ a denoted as P
[
x ≤ a

]
can be described

for all x, a ∈ R as
P
[
x ≤ a

]
:=
∫ a

−∞
fx(x)dx, (4.1)

where fx (x) is the probability density function.

Definition 4.0.4. Probability density function (PDF) fx (x) is a function that is given for
a random variable x and satisfies the following

1. fx (x) ≥ 0 for all x

2.
∫∞

−∞ fx (x) dx = 1

3. P
[
a ≤ x ≤ b

]
=
∫ b

a fx (x) dx for any a, b ∈ R.

Definition 4.0.5. Expectation of a random variable x is defined as the mean

E
[
x
]

:= µx =
∫ ∞

−∞
xfx (x) dx (4.2)

of its unconditional PDF and is also often called population mean.

Definition 4.0.6. Variance of a random variable x is defined as

σx := E
[
(x − µx)2

]
=
∫ ∞

−∞
(x − µx)2fx (x) dx (4.3)

and corresponds to the expected deviation from the population mean.

In our study, it is important to distinguish between population parameters describing a
PDF and sample statistics that describe the given data.

Definition 4.0.7. Sample mean or uniform average of a sample X = [x1, . . . , xn] is
calculated as

Avg[X] = 1
n

n∑
i=1

xi (4.4)

while the sample variance is calculated as

Var[X] = 1
n − 1

n∑
i=1

(xi − Avg[X])2 (4.5)

Dependencies within sequential data are essential for time series. Wewill use the following
concepts which describe the relationships between two (or more) random variables.
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4 Time Series Forecasting

Definition 4.0.8. Conditional probability density function (CPDF) is defined for the
random variables x, y and observations x, y ∈ S as

fx|y (x|y) = P
[
x = x | y = y

]
=

P
[
x = x, y = y

]
P
[
y = y

] = fx,y (x, y)
fy (y) (4.6)

for fy (y) > 0 and fx,y (x, y) being their joint PDF.

Definition 4.0.9. Covariance between random variable x and y is defined as

Cov(x, y) := σx,y = E
[
(x − µx)(y − µy)

]
. (4.7)

Definition 4.0.10. Correlation between random variables x and y is defined as

Corr(x, y) := ρx,y = σx,y√
σx

√
σy

. (4.8)

Definition 4.0.11. Stochastic processY = {yt : t ∈ T0} is a collection of randomvariables
defined in a probability space (Ω, A,P). Set T0 is called index set representing the time.
A process is said to be stationary3 if:

• E
[
y(t)

]
= µY

• Cov(y(t), y(t − s)) = γs

where µY is a constant for all t and the covariance γs between different observations only
depends on their separation in time s and not on t.

The concepts introduced above allow us to formally define a time series and discuss notions
from the time series analysis – a research area concerned with describing, summarizing
and drawing conclusions from sequential data about the underlying stochastic process and
creating its model for studying the dependencies and forecasting [BD91,Ham95].

Definition 4.0.12. Time series {yt}t∈Ts is a realization of a stochastic process Y with
Ts ⊆ T0 represented by a sequenced collection of observations indexed by time t.

The time series is said to be discrete if Ts is a discrete set of time points at which
observations were made and we denote such time series with a subindex Yt. Otherwise, a
time series is said to be continuous or functional and we denote such time series as Y (t).

3 Statisticians distinguish between weakly and strict stationarity. In this work, however, we use the term
stationary meaning weakly stationary in statistical sense as is often done in the literature [Ham95].
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4 Time Series Forecasting

In practice, time series are often discrete and given by an array Y where its t’th element
can be seen as an observation of a corresponding random variable yt. Further on, unless
specified differently, when using the attributes of a time series, such as stationarity, we
relate to the attributes of the underlying stochastic process.

Process-driven modeling is a traditional approach to time series forecasting based on
time series analysis4. This field of study includes various methods that were developed
throughout the last century having numerous applications in econometrics, finance and
others [BD91,Ham95]. The main focus of time series analysis lies on the autocorrelation
within the data as well as statistical integrity and consistency5 of themodels. Stationarity is
a central assumption for a large part of the theory, whichmight not be given for a real-world
time series6. The aim of the analysis lies on transforming and decomposing the series into
a deterministic and stochastic part such as it is done through classical decomposition

Yt = Tt + St + It, (4.9)

where Tt represents a deterministic trend, deterministic periodic function St describes
patterns occurring at a fixed frequency named seasonality and irregularity It corresponds
to a stochastic part of the time series that can be reasonably modeled as a realization of a
stationary process.

The decomposition is usually done manually using the a priori knowledge about the
process such as its physics, in an iterative procedure, where a researcher inspects various
time series graphs7. The stochastic part It is often modeled applying a set of rules and
heuristics knownunderBox-Jenkinsmethodology [BJRL15] resulting in anARIMA-model
that is used to forecast the Yt as described later in the text8.

Data-driven modeling is an alternative approach to predicting future values of Yt that is
based on a recently developed theory of statistical learningwhich has its main applications
in the fields of machine learning and computer science [FHT08, Vap10]. This theory
focuses on inferring the relation between an input and the output of an unknown system
given a set of data. It includes various methods for supervised learning that allow to
formulate and solve the forecasting task as a regression problem defined as follows.

4 Process-driven forecast are also, sometimes, named model-based because they require an explicit time
series model. In this study we purposely avoid such a name.

5 See Definition 4.2.3.
6 There is a considerable ongoing effort to model non stationary processes [CSB+15].
7 There are some attempts to automatically estimate trend and seasonality. See [HA18] and references

therein.
8 With ARIMA and variants thereof being the most common, there is a myriad of other time series models

many of which are described in detail in [BD91,Ham95].
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4 Time Series Forecasting

Definition 4.0.13. Regression Problem. Let X ∈ Rq be a vector of random variables
named inputs9 and let y ∈ R be a random variable named output10 related to X through a
fixed but unknown CPDF fy|X(y|X). Given

• a set of functions rα(X) indexed by α ∈ Λ, where Λ is a set of parameters

• a training set T := {(Xi, yi) | 1 ≤ i ≤ m} where (Xi, yi), for i = 1, . . . , m, are
the pairs of observations obtained according to their joint PDF fX,y(X, y)

• loss function L(y, rα(X)) ≥ 0 for all X, y

and assuming that X and y are related through the regression equation

y = r(X) + ϵ, (4.10)

where ϵ represents a random error term independent of X , estimate a regression function11

r(X), minimizing the expected prediction error (EPE)12

EPE(α) = E
[
L(y, rα(X))

]
. (4.11)

In the equation (4.10), the systematic information that X provides about y is modeled by
r(X). Since y might not only depend onX , error ϵ represents all the uncaptured influences
that are independent of X (e.g., measurement errors). Hence, an observation yi can be
seen as a sum of a deterministic model r(X) and a stochastic error ϵ.

There are numerous regression methods and techniques to calculate a regression estimate
r̂(X) that is a fit of the true relation r(X). In fact, modern statistics extends the regression
problem beyond multivariate analysis (MVA) to more abstract objects (e.g., continuous
curves) [MA14,WCM16]. We provide the following general classification13 of regression
methods that we will explore in this study.

Definition 4.0.14. Model Classification. Let r : X → Y be an operator between some
spaces X,Y. A regression method (model) for the estimation of r describes a condition of
the form

r ∈ M ⊆ Q(X,Y), (4.12)

where model class M is a subset of all operators Q(X,Y) that map elements of X to
Y. We call the model (4.12) parametric14 if M has a finite number of elements and

9 Depending on the field, these are also called predictors, regressors, independent variables or features.
10 Depending on the field, these are also called responses or dependent variables.
11 Depending on the context, regression function is sometimes called regression model or simply model.
12 Also named risk as in [Vap10].
13 In accordance with the generalization provided in [FV03,FR11].
14 We provide examples of parametric models in Section 4.1.
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nonparametric15 otherwise. Further, we call a model univariate if X = R, multivariate if
X = Rq and functional if X is an infinite-dimensional space of functions16.

It might be difficult to draw the a sharp line between the approaches for time series
forecasting since, in practice, we follow similar steps to, first, create a model and, then,
use it for predicting future values of Yt. We summarize these steps as follows.

1. Model setup: We consider time-series representations (e.g., various plots) and de-
scriptive statistics to identify trends, seasonality and dependencies between the
variables. Such insights help us to select an appropriate model type, and set its
hyperparameters17.

2. Model training: Once a model is selected, we use a training algorithm18 on the
available training data to estimate r.

3. Model evaluation: Graphs, error notions and statistical tests are used to accessmodel
accuracy, determine the amount and type of information not captured by the model
and validate the initially made assumptions.

In this context, process-driven modeling focuses on describing the underlying process that
generates the data. Having an explicit process model, we can analytically forecast Yt

with various horizons and corresponding confidence bounds. Alternatively, data-driven
modeling focuses on estimating the deterministic input-output relation that is valid for
unseen data.

However, for both approaches, given a model r̂ and using the squared error loss

L(y, r(X)) = (y − r(X))2, (4.13)

we can be show that, for a given input query X∗, the best forecast ŷt is

ŷt = r(X) = E
[
yt | X∗

]
. (4.14)

15 We provide examples of nonparametric models in Section 4.2.
16 If we have more than one functional predictor, such problems are some times called multi-functional

and are yet to be researched [FV03].
17 Parameters of a model that cannot be learned directly from the data and are often tuned manually.
18 Depending on the context, this step can be called model estimation. as in Box-Jenkins methodology

or model fitting as common in statistical literature. The corresponding algorithm is called accordingly
curve fitting, estimation or learning algorithm.
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4.1 Parametric Regression

This also applies for time series19 after an embedding step where X is defined such that it
considers up to p most recent observations of Yt

X∗ = [yt−1, . . . , yt−p]. (4.15)

In context of forecasting, the terms parametric and nonparametric are used to indicate that
a parametric model assumes an existing global relationship between the input and output.
Nonparametric model is the one that is estimated locally for the given X∗. Further in the
text we contrast both model families and describe the most common techniques for each
type. At the end of this chapter we describe functional regression – an alternative view on
forecasting that we will apply in our study.

4.1 Parametric Regression

Parametric regression methods assume that X and y have a globally valid relation and
r(X) has a predefined form fully described by a set of parameters. All parametric models
have in common that the model has to be determined by learning those parameters from
the historical data before predicting yt for a given X∗.

To explicate the parametric forecasting approach, we use the most prominent example of
multiple linear regression (MLR) model where r(X) is assumed to be a linear function of
X , so that the output is modeled following (4.10) as

y = X∗W T + ϵ, (4.16)

where X = [1, x1, . . . , xp] is the input and W = [w0, . . . , wp] contains linear regression
coefficients determining r(X).

Training data mentioned in the Definition 4.0.13 is given by the historical observations
of the time series which are transformed using (4.15) into a set of input/output (I/O)
observations (Xj, yj) with j = 1, . . . , m. We use this set to calculate W , so that the
estimated curve r̂(X) best-matches the observed values of Yt. For this purpose an ordinary
least squares technique is commonly applied under the assumption that the data (Xj, yj)
is independently and identically distributed (IID) [FHT08].

Having found best possible fit r̂(X), we calculate the forecast with (4.14) as

ŷ = X∗W. (4.17)

19 For ease of exposition, we restrict ourself to uniform (i.e., yt ∈ R) time series.
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As in our example and in general, a parametric model assumes that yt will always be
somewhere close to the fit r̂(X). This is true as long as the assumption about the
underlying form of r (e.g. linear) is correct.

Parametric regression models all have in common that the model r is fully determined by a
set of parameters before computing ŷ for a given X∗. These models numerous applications
such in finance, manufacturing systems, health informatics and energy grids among other
fields [CSB+15]. They are also standard for load forecasting purposes forwhichwe provide
examples further in the text. Next, we describe two parametric regression methodologies:
autoregressive integrated moving average and artificial neural network. They are the most
common regression methodologies in the load forecasting literature (Chapter 5) and we
will use them to create reference models for our study.

4.1.1 Autoregressive Integrated Moving Average

Autoregressive integrated moving average (ARIMA) methodology is a general form of a
linear autoregressive model that was originally developed specifically for time series. The
acronym ARIMA captures the main parts of of a time series model that are discussed
below.

An ARIMA-model interpolates between autoregressive, integrated and moving average
parts and can be written as

ŷ
(d)
t = c + wAR

1 y
(d)
t−1 + . . . + wAR

p y
(d)
t−p + ϵt + wMA

1 ϵ
(d)
t−1 + . . . + wMA

q ϵ
(d)
t−q (4.18)

while often denoted as ARIMA(p,d,q) with the following hyperparameters:

• p ... order of the autoregressive part

• d ... order of differencing

• q ... order of the moving average part

Once properly set up, anARIMA-model can deliver reliable forecasts, however it has strong
assumptions on the predicted time series and requires substantial amount of historical data
for training. Moreover, the selection of the hyperparameters p, d, q for a given time series
can be challenging. For this task, researchers would often try out (either manually or
automatically) different settings and choose the ones that yield the most accurate forecast
on a validation dataset. Each parameter corresponds to one of the model parts described
below.
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4.1 Parametric Regression

4.1.1.1 Autoregression (AR)

The autoregressive (AR) part models the time series observation yt as a linear combination
of past values of the variable. Therefore, AR-model model assumes a linear relationship
between an observation yj and p lagged observations yj−1, . . . , yj−p named lags. An
AR-model of order p, describes a time series as

ŷAR
t = cAR + wAR

1 yt−1 + wAR
2 yt−2 + . . . + wAR

p yt−p + ϵt, (4.19)

where cAR is a constant, ϵt is an error term that is often assumed to be the white noise
while wAR

1 , . . . , wAR
p are the model parameters that have to be found during model training.

4.1.1.2 Integration (I)

Linear autoregression requires the time series to be stationary after removing an eventually
present trend component. To fulfill this assumption, we can differentiate the time series
d times before modeling and forecasting it. Thereby, we regard the original time series
is regarded as the integral of the stationary time series. Note that we can differentiate a
discrete time series Yt by subtracting an observation from an observation at the previous
time step.

4.1.1.3 Moving Average (MA)

A moving average (MA) model represents the time series as a moving average of lagged
residual error observations that are assumed to be normally distributed. Consequently, an
MA-model of order q can be expressed as

ŷMA
t = cMA + ϵt + wMA

1 ϵt−1 + wMA
2 ϵt−2 + . . . + wMA

q ϵt−q, (4.20)

where cMA is a constant, ϵt is a white noise error, and wMA
1 , . . . , wMA

q are the model
parameters that have to be found during the training. In contrast to the AR-model, a time
series is modeled using as a weighted sum of historical errors ϵt−1, . . . , ϵt−q rather than its
historical values yj−1, . . . , yj−p.

4.1.1.4 Other Variants of ARIMA

There are also other variants of an ARIMA-model. To consider implicit seasonality of a
time series, seasonal ARIMA (SARIMA) was proposed in [BJRL15]. Another common
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Figure 4.1: Mathematical model of an artificial neuron. Description is provided in the text.

extension is the ARIMA with exogenous variable (ARIMAX) that allows to consider exoge-
nous inputs [BJRL15]. A model denoted as ARIMAX(p, d, q, β) model adds the covariate
observation xt to an ARIMA model such that

ŷ
(d)
t = βx

(d)
t + c + wAR

1 y
(d)
t−1 + . . . + wAR

p y
(d)
t−p + ϵt + wMA

1 ϵ
(d)
t−1 + . . . + wMA

q y
(d)
t−q. (4.21)

Observe that the covariate coefficient β is not the direct effect of the change in xt on yt.
Instead, we have to interpret it considering the past values of yt. However, the model (4.21)
can be reformulated as a transfer function model which simplifies its interpretation [?].

4.1.2 Artificial Neural Network

Artificial neural network (ANN) methodology is a group of techniques for parametric
regression often used in machine learning applications. With this methodology, we can
model almost any nonlinear relation between multiple inputs and outputs. Assuming such
relation exists, its form does not have to be determined in advance since it is self-learned
from the available historical data using a specialized training algorithm. Due to this fact,
ANN became a common approach for solving the regression problem with numerous
applications.

A neural network is an interconnection of single elements called artificial neurons. Their
mathematical model loosely resembles the function of a neuron in a human brain (Figure
4.1). A neuron can haven ∈ N inputs withn correspondingweightswi where i = 1, . . . , n.
Weighted inputs are summed and processed by an activation function a(x) that determines
the unit output y ∈ R. While the weights are calculated during the training phase, a(x) has
to be defined a priori. There exist many activation functions (Table 4.1) and, in practice, we
intend to use a function that resembles the expected output characteristics (e.g., bounded,
smooth, positive range etc.).
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4.1 Parametric Regression

Table 4.1: Activation function examples.

Name a(u) Range

ReLu max(0, x) [0; ∞)
Log-Sigmoid 1

1+exp(−x) [0; 1]
Tanh-Sigmoid 2

1+exp(−2x) − 1 [−1; 1]

Figure 4.2: An interconnection of artificial neurons constituting a feedforward neural network (multilayer
perceptron). In this example, the input layer contains three neurons, two hidden layers contain
four neurons each and the output layer contains two neurons. The input data x1, x2, x3 traverse
the network from the input layer towards the outputs y1, y2.

If several artificial neurons are interconnected into a network, almost any nonlinear rela-
tionship can be approximated. The units are organized in layers creating different network
architectures. The computation traverses the network from the input layer, to the output
layer, passing through some neurons in the hidden layers one or several times (Figure 4.2).

We formalize a neural network model as follows. Let N be a neural network with nx

inputs, ny outputs, and nw interconnections between the neurons. The network is fully
defined by its architecture and a set of weights W = [w1, . . . , wnw ] ∈ Rnw . We describe
it as a regression function

Y = rN (X, W ) (4.22)

that maps an input X ∈ Rnx to the output Y ∈ Rny . In the following, we restrict ourselves
to the case where X ∈ Rnx , y ∈ R though the extension to a multivariate output Y ∈ Rny

is straightforward as described in [FHT08].
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4 Time Series Forecasting

To predict a time series using ANN-methodology, we proceed as follows. First, we select
a network architecture and hyperparameters20, which we consider the most appropriate for
a given task. Next, we train the model on the available historical data calculating W that
fully determines rN . At last, trained network yields the forecast

ŷ = rN (X∗), (4.23)

given an input X∗.

4.1.2.1 Network Architecture

A network architecture includes inputs, network type, number of neurons in the layers,
and their hierarchy. Probably, the most common network type is a feedforward network
(Figure 4.2). Another common type is a recurrent ANN that allows to feed back the output
to create autoregressive models. Extensive overview of existing architectures of both types
contrasting the differences can be found in [RK15].

Feedforward neural network is the type where, starting at the input, the data traverses
the network through hidden layers to the output without any cycles or loops. The most
prominent architecture of this type is the multilayer perceptron (MLP)21. It includes at
least one hidden layer where each neuron has a nonlinear activation function.

As stated by the universal approximation theory, a MLP with only one hidden layer and
a finite number of neurons can approximate any function r on a compact subset of Rnx ,
when given appropriate weights [Cyb89]. However, this does not consider the algorithmic
learnability of those weights. The hidden layer may be impractically large and the network
may fail to learn and perform well in a practical setting. For this reason, there exist many
other architectures.

Recurrent neural networks is a type of network with feedback loops that allow data to
traverse the network both ways. In this case, the connections between the neurons form
a directed graph and, unlike the feedforward type, a recurrent network has a dynamic
internal state. An architecture where past output values are fed back can be particularly
useful for time series modeling and prediction.

20 Hyperparameters are settings that, unlike weights, cannot be calculated directly from the training data
and have to be set a priori (e.g., a(u)).

21 In fact, the terms feedforward neural network and multilayer perceptron are often used interchangeably.
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4.1 Parametric Regression

For univariate time series, we can use a recurrent network to create a nonlinear autore-
gressive model (NAR)22 with p lags defined as

ŷi = rN (yi−1, . . . , yi−p) , (4.24)

where prediction ŷi is a function of the p preceding values yi−1, . . . , yi−p of the time series
y.

Formultivariate time series, we can create a nonlinear autoregressivemodelwith exogenous
inputs (NARX) that considers external inputs:

ŷi = rN (yi−1, . . . , yi−p, Xi) . (4.25)

Here, a prediction ŷi is calculated as a function of its p lags yi−1, . . . , yi−p and an exogenous
input Xi.

Deep neural networks (DNN) are the state of the art in machine learning research. These
architectures have two or more hidden layers combined with a complex topology for which
there have been remarkable applications in image and speech recognition [GBC16]. There
are DNN architectures of recurrent type such as restricted Boltzmann machine (RBM) and
long short-term memory (LSTM) networks and of feedforward type such as convolutional
neural networks (CNN). Increasing the number of layers and neurons can improve the
accuracy but, also elevates the complexity of the network which increases the training time
and amount of historical data that is needed to train the network.

4.1.2.2 Network Training

In the training phase, we estimate r finding a set of weights W so that rN yields the lowest
error on a given training data and is expected to generalizewell – i.e., be accurate predicting
unseen data. Theweights are initialized randomly and calculatedwith a supervised training
algorithm23 often using a back-propagation (BP) of training error [RHW86] combinedwith
different optimization methods.

A training algorithm calculates theweights seeking tominimize EPE (4.11) on the available
training data. It is common to use squared error loss (4.13) as a cost function for which
finding the weights becomes a nonlinear least squares fitting problem formulated as
follows. Given a network N with nx inputs and a training set with m IID observations

22 An example of such model is provided in Section 9.2.2.2.
23 In some contexts, a supervised training algorithm is often called learning algorithm.
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(Xj, yj) where j = 1, . . . , m and m ≫ nx, minimize the mean of squared errors finding
optimal weights W ∗ as:

W ∗ = arg min
W

 1
m

m∑
j=1

(yj − f(Xi, W ))2

 . (4.26)

This problem can be solved using an iterative procedure based on gradient descent opti-
mization. Starting with a randomly initialized vector W0, during each step s, the weights
Ws are updated in the direction of the negative gradient:

Ws+1 = Ws − γJTEPE(W ), (4.27)

where learning rate24 γ is another hyperparameter defined in advance. The Jakobian
matrix J contains first order partial derivatives of the inputs and can be calculated by
back-propagating EPE to the outputs of individual neurons [RHW86]. Related approaches
are also often called back-propagation algorithm in context of neural networks [RB93,
KW52,KB17].

To speed up the computation, we can use Levenberg-Marquardt (LM) algorithm originally
introduced in [Mor78] and adopted to train feedforward networks in [HM94]. It applies
the approximation of the Hessian matrix

H = JTJ, (4.28)

so that the weights are updated as

Ws+1 = Ws −
[
JTJ + γI

]−1
JTEPE(W ). (4.29)

The LM-algorithm interpolates between gradient descent and Gauss-Newton algorithm
depending on the dynamically chosen learning rate [DFH97a]. While for small learning
rate γ, (4.29) resembles Gauss-Newton algorithm, for a large γ, it corresponds to gradient
descend (4.27).

In practice, advanced algorithms combining gradient descent and back-propagation ap-
proaches such as stochastic gradient descent [KW52], resilient backpropagation [RB93]
and others [KB17] are often used for large neural networks (e.g., DNNs). Alternatively,
the LM-algorithm is much faster than gradient descent for moderate-sized networks with
up to several hundred weights, which suffices for many applications [HM94].

24 In some contexts, learning rate is also called damping factor.
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4.1.2.3 Network Settings

The choice of a training algorithm and other settings such as activation function, learning
rate and the architecture itself significantly affects the training result and the prediction
accuracy of the network. The settings must be known before learning the weights from the
available training data. They are often chosen and fine-tuned manually relying on problem
knowledge, researcher experience and intuition.

Nevertheless, there have been attempts to automate the choice. Automated model setup
approaches require training numerous networks and the implementation can be challenging
and even unpractical. Given a large space of settings, (grid-) search based methods can
become prohibitively time-consuming. Despite the increasing interest, the development
of fully automated models based on ANN is in a preliminary stage [HKV19]. As of
today, the well-performing network architecture presented in the results is usually found
manually through a trial and error process and requires large amounts of historical data
and computational resources.

Finding the best settings, together with the ANN training often requires a vast amount of
historical data, and it is hard to interpret the weights of the resulting network. Nonetheless,
for some applications where a considerable amount of data is available, computation time
is not an issue and there is an extensive domain knowledge allowing manual fine-tuning,
ANN-model can be very accurate. Therefore, in the recent past, neural networks were
used in many propositions for the load forecasting as we discuss further in the text.

4.1.3 Parametric Model Setup

The hyperparameters of a parametricmodel25 need to be known before learning theweights
from the available training data. Those hyperparameters are often manually estimated and
iteratively fine-tuned given an in-depth knowledge of the forecasting problem.

Setting hyperparameters can also be automated based on a grid search, random search
or Bayesian optimization procedure which might often become very computationally
expensive [KH88, TMA16, ?]. For such purpose, the available historical data is divided
into training and validation sets. Different models with different hyperparameters (grid
search) are evaluated on the validation set and the best one is selected.

Having determined the hyperparameters, all historical data is used for training. The trained
model is, then, used to obtain a forecast for unseen new data, assuming that the statistical

25 For instance, the hyperparameters p, d, q of an ARIMA-model need to be set before learning the weights
from the available data.
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properties of the process generating new data are the same as of the process that provided
the historical observations.

For this reason, once trained, parametric models do not adapt to the abrupt changes in
data which can be often encountered in a practical situation such as load forecasting of
low-voltage end-consumers. For this matter, sliding window or other adaptive learning
approaches are the subject of ongoing research [HKV19].

4.2 Nonparametric Regression

Nonparametric regression assumes that similar input are likely to have similar outputs. It
is often associated with the most common method family called locally weighted learning.
There are tasks, where it is hard to assume that there exists a globally (i.e., ∀X ∈ Rq)
valid relation between X and y. Even if such relation exists, it might be very complex and
we might not have any a priori knowledge about it to anticipate any predefined form of
the regression function. In contrast to the global learning methods (parametric models)
where a model is trained to fit all the data, local learning fits the data only in the region
around the given input query X∗. For every X∗, a new local model is built26 avoiding
any assumptions about the form of r(X). Instead, the r(X) is approximated locally, in
the vicinity of X∗, only requiring that r(X) is smooth in a mathematical sense. There
is no pretraining necessary, as the model is determined online for a given X∗. As a
result, a nonparametric model predicts the output as a combination of the historical output
observations in that region.

Kernel regression is one of the most prominent methods for locally weighted learning. The
main idea of this method is to use historical observations y1, . . . , ym according to their
relevance for a given input X∗. Such relevance is measured using a predefined distance
measure between X∗ and historical inputs X1, . . . , Xm. Kernel regression is a flexible
technique that can capture even a very complex behavior of r(X). However, its accuracy
deteriorates quickly with the growing input dimension q. This effect named curse of
dimensionality is one of the main limitations of a nonparametric model.

Consequently, nonparametric models are not as common as parametric models, but for
the applications where q ≪ m, nonparametric methods are valued for their simplicity,
intuitiveness and flexibility for predicting complex nonlinear behavior. There are several
areas of application27 with some propositions for the load forecasting which we discuss

26 This approach is also known as lazy or memory based learning.
27 Among other fields, nonparametric models were applied in finance [BCO18,ANHS13,CCL04,Dia09],

electricity price forecasting [BSRP08, LSS+02b, LSS+02a, LSE+07], traffic flow forecasting [SC08,
SWKO02,ZL15,HC15] and human behavioral sciences [BBK+14].
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in detail further in the text (Chapter 5). A recent review on theoretical advances on
nonparametric methods can be found in [CSB+15] and references therein.

Subsequently, we describe kernel density estimator (Section 4.2.1) that provides theo-
retical foundation for kernel regression (Section 4.2.2), before focusing on the common
nonparametric models in more detail and discussing the curse of dimensionality (Section
4.2.3). Later in the text, we introduce functional regression developed to circumvent this
substantial limitation of nonparametric models.

4.2.1 Kernel Density Estimator

Kernel density estimator (KDE) provides a way to estimate a PDF from a set of observa-
tions. Given a dependency between two random variables x, y ∈ R, with the correspond-
ing marginal PDF fx (x) and fy (y), we can describe their relationship by the joint PDF
fx,y (x, y). Hence, knowing the marginal and joint PDFs we can obtain the forecast (4.14)
with CPDF fx|y (x|y) using (4.6) and (4.14).

Starting with a one-dimensional example, imagine we have an IID sample of random
variable x represented as a vector

Xs = [x1, · · · , xm] ∈ Rm, (4.30)

and we want to estimate its PDF. Such estimate f̂(x) can be obtained using KDE as
[HWMS04]

f̂(x) = 1
b

· 1
m

m∑
j=1

, θ(x − xj

b
), (4.31)

where parameter b is called bandwidth and θ is a kernel defined as follows28.

Definition 4.2.1. Kernel θ(z) is a function θ : R → R with following properties:

1. θ(z) = θ(−z)

2.
∫

θ(z)dz = 1

3. maxz∈R θ(z) = θ(0)

4. piece-wise smooth29

We provide some of the commonly used kernels in Table 4.2 and illustrate them in Figure
4.3.

28 The exact definition of a kernel depends on the application and can be very broad. There exists a large
variety of kernels in the statistical literature [GRW79].

29 In practice, piece-wise smooth means a function that is differentiable except on a discrete set of points.
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Table 4.2: Common kernels illustrated in Figure 4.3.

Kernel Function
Uniform 1(|z| ≤ 1)
Epanechnikov 3

2(1 − z2)1(|z| ≤ 1)
Gaussian 2√

2π
exp(−1

2z2)

Figure 4.3: Kernels defined in Table 4.2.

While there exist numerous different kernels30, we can show that almost identical estimates
can be obtained using different kernels accordingly adjusting the bandwidth. For any
kernel, KDE is asymptotically consistent and the estimated PDF converges towards the
actual density [AMS97,HWMS04].

4.2.1.1 Estimator Bias

Having estimated the f̂(x) using (4.31), we consider some of its properties. The expected
value of the estimation error is defined as bias

bias[f̂(x)] = E
[
f̂(x) − fx (x)

]
= E

[
f̂(x)

]
− fx (x) (4.32)

and represents the difference between the expected value of the estimator and the actual
value. For the estimator defined in (4.31) statisticians showed that31

bias[f̂(x)] ∝ b2, (4.33)

bias[f̂(x)] ∝ |f ′′
x(x)|. (4.34)

Increasing b, will have the kernel density estimator consider more of the values from the
sample which will result in a greater bias. Moreover, a volatile PDF with a large number

30 Additional examples can be found in [HWMS04].
31 For the equations we used the proportionality symbol ∝. See [HWMS04] for a detailed derivation.
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of sharp peaks reflected in its curvature |f ′′
x(x)| will also results in a larger bias. With

increasing b our estimator will not be able to reflect the volatility of the actual PDF.

4.2.1.2 Estimator Variance

Another aspect of the estimated PDF is its variance (Definition 4.0.6). It can be expressed
as squared sampling deviations:

σ2(f̂(x)) := E
[
(f̂(x) − E

[
f̂(x)

]
)2
]

= E
[
f̂(x)2

]
− E

[
f̂(x)

]2
. (4.35)

The variance reflects the dispersion of the estimate and hence the volatility of the approxi-
mated PDF f̂(x). For the estimator defined in (4.31) statisticians showed that [HWMS04]

σ(f̂(x)) ∝ 1
mb

. (4.36)

In this case, increasing the bandwidth reduces the variance yielding us an f̂(x) that is less
volatile. Hence, b determines the smoothness of the estimated PDF and is, for this fact,
sometimes regarded as smoothing parameter.

4.2.1.3 Bias-Variance Dilemma

The goodness of the estimator f̂(x) can be assessed using mean squared error (MSE)
expressed using expected value as

MSE(f̂(x)) := E
[
(fx (x) − f̂(x))2

]
. (4.37)

Given the above definitions of bias (4.32) and variance (4.35) MSE, can be rewritten as

MSE(f̂(x)) = σ2(f̂(x)) + (bias[f̂(x)])2. (4.38)

Considering this equation, we can try to reduce the MSE by decreasing the bandwidth
(4.33) while considering a smaller number of values for our estimator. Decreasing the
bandwidth, at the same time, increases the variance (4.36) which adds to MSE. This
trade-off between variance and bias is known as bias-variance dilemma.

4.2.1.4 Optimal Bandwidth

Searching for the optimal bandwidth bopt, we note that MSE also depends on fx (x) and
f ′′
x(x) which are both unknown in the practice since fx (x) is the PDF we are estimating.
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Thus, it is only be possible to find an approximation b̂opt using substitutes for fx (x) and
f ′′
x(x).

One way to do so is to apply a so called rule of thumb32 assuming that fx has a certain
form for which we can derive an analytical expression used as an approximation b̂opt for
the optimal bandwidth. Such approximation of the bandwidth is as good as the estimated
PDF resembles the assumed form of the actual PDF fx (x).

For example, Bowman et al., approximate the optimal bandwidth assuming a normal
distribution of x obtaining [BA97]:

b̂opt = σ̂2 ∗ ( 4
3m

)1/5, (4.39)

with
σ̂2 = median[|Xs − median(Xs)|]

0.6745 . (4.40)

being a robust estimate of the variance of the assumed normal PDF.

Alternatively, we can approximate the optimal bandwidth calculating the integrated
squared error (ISE)

ISE(b) =
∫ ∞

−∞
(f̂(x) − fx (x))dx =

∫
f̂2(x)dx − 2

∫
(f̂ · fx)(x)dx +

∫
f2
x(x)dx (4.41)

and try to find an approximate solution for bopt that minimizes it.

Note that the term
∫

f2
xdx does not depend on b and

∫
f̂dx can be calculated for a given

data sample. Hence, we focus on the term
∫
(f̂ · fx)(x)dx that corresponds to the expected

value of f̂ and can be approximated using a leave-one-out-estimator defined as

f̂−j(x) = 1
b(m − 1)

m∑
l=1,l ̸=j

θ(xl − xj

b
), (4.42)

with an expected value estimate

Ê[f̂(x)] = 1
m

m∑
j=1

f̂−j(xj), (4.43)

where x, xj, xl ∈ RUsing the expected value estimate (4.43), we can formulate a so called
leave-one-out cross-validation criterion [HWMS04]:

CV(b) = 1
b

· 1
m2

m∑
j=1

m∑
l=1

θ ⊛ θ(xl − xj

b
) − 1

b
· 2

m(m − 1)

m∑
j=1

m∑
l ̸=j

θ(xl − xj

b
), (4.44)

32 Rule-of-thumb method is also known as plug-in method.
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where θ ⊛ θ(u) is a convolution operation defined as

θ ⊛ θ(u) =
∫

θ(u − v)θ(v)dv with u, v ∈ R. (4.45)

Finding the optimal bandwidth using the leave-one-out estimator (4.44), the solution b̂opt

depends on the data sampleXs and, hence, adapts to the smoothness of the underlying PDF
fx (x). In contrast, with the rule-of-thumb approximation (4.39) the obtained bandwidth
depends on the sample variance of Xs.

4.2.1.5 Multivariate Density Estimation

We need to extend kernel density estimator to a multivariate case in order to use it for
regression. Let

Xs = [X1, . . . , Xm]T ∈ Rm×n (4.46)

be a sample ofm observations of a randomn-dimensional variableX = [x1, . . . , xn] ∈ Rn,
from which we estimate the joint PDF fX (X) = f (x1, . . . , xn). We denote the i’th
dimension of the j’th observation as x

(j)
i with i = 1, ..., n and j = 1, ..., m.

One dimensional kernel density estimator (4.31) can be generalized to a multivariate case
as:

f̂(X) = 1
det(B)

1
m

m∑
j=1

θ(B−1(X − Xj)), (4.47)

where θ : Rn → R is a multiplicative kernel of the form

θ(Z) = θ(z1) · . . . · θ(zn), for Z = [z1, . . . , zn] ∈ Rn (4.48)

and a symmetrical and positive definite (n, n) matrix B is known as bandwidth matrix. If
we restrict ourselves to diagonal matrices B = diag(b1, . . . , bn), we obtain

f̂(X) = 1
b1 . . . bn

· 1
m

m∑
j=1

θ(x1 − x
(j)
1

b1
, . . . ,

xn − x(j)
n

bn

). (4.49)

Herewith, we can estimate a multivariate PDF f̂(X) as

f̂(X) = 1
b1 . . . bn

· 1
m

m∑
j=1

 n∏
i=1

θ

xi − x
(j)
i

bi

 . (4.50)
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4.2.2 Kernel Regression

Multivariate KDE provides a foundation for nonparametric methods for solving the regres-
sion problem (Definition 4.0.13). For ease of exposition, we focus on the case where we are
given a set of observations Xs = [x1, . . . , xm] and Ys = [y1, . . . , ym] of a one-dimensional
input x ∈ R and output y ∈ R constituting a training set

T := {(xj, yj) | 1 ≤ j ≤ m} with xj, yj ∈ R. (4.51)

Previously introduced multivariate KDE (4.50) allows us to directly obtain a model for the
expectation (4.14) which, together with (4.6) can be written as

r(x) = E
[
y | x

]
=
∫

y′ f(x, y′)
fx(x) dy′. (4.52)

Here, f(x, y) is a two-dimensional joint PDF and fx(x) is the marginal PDF calculated as

fx(x) =
∫

f(x, y′)dy′. (4.53)

We can estimate the joint PDF using (4.50) as

f̂(x, y) = 1
bxby

· 1
m

m∑
j=1

θ

x(i) − x
(i)
j

bx

 θ

y(i) − y
(i)
j

by

 . (4.54)

Further, if θ is symmetrical and integrates to zero, we can approximate the marginal PDF
as

f̂x(x) = 1
bxby

· 1
m

m∑
j=1

θ

x(i) − x
(i)
j

bx

 . (4.55)

Introducing equations (4.54) and (4.55) into (4.52) and considering the aforementioned
properties of θ, we can estimate the regression function as [Wat64,Nad64]

r̂(x) =
∑m

j=1 θ
(

x−xj

bx

)
yj∑m

j=1 θ
(

x−xj

bx

) . (4.56)

Kernel regression approach allows to create flexible nonparametric models such as
Nadaraya-Watson estimator and K-nearest neighbors that we discuss subsequently.
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4.2.2.1 Nadaraya-Watson Estimator

The regression function estimate (4.56) is also known as Nadaraya-Watson estimator
(NWE) and it can be rewritten as a locally weighted average

r̂(x) =
m∑

j=1
θj(x)yj, (4.57)

where

θj(x) =
θ
(

x−xj

b

)
∑m

j=1 θ
(

x−xj

b

) (4.58)

are the weights which for
0 ≤ θj(x) ≤ 1, ∀x ∈ R (4.59)

ensure that the observations are considered depending on their distance to x. This is the
reason why the model (4.56) is also called locally weighted estimator.

The weights θj not only depend on x but also on the chosen bandwidth b. Similar to
KDE, the bandwidth determines the smoothness of r̂ and hence of the forecast curve. For
b → ∞, every weight becomes θj = 1/m and the forecast is the sample average of Ys.
At the same time, b → 0 leads to ŷ = yj with j = 1, . . . , m for x∗ = xj and undefined
elsewhere.

Therefore, if bandwidth is too small to include any xj in the vicinity of x the estimate ŷ is
not defined. For a fixed and given b, this can occur in the regions of sparse data which can
be the case if we are forecasting a volatile curve and do not have numerous observations –
e.g., due to curse of dimensionality discussed later in the text.

Again, choosing appropriate bandwidth becomes a fundamental problem. Similar to the
one-dimensional KDE we can either use a rule of thumb such as in (4.39) or some error
based criteria such as (4.44) to estimate the optimal bandwidth.

4.2.2.2 K-Nearest Neighbors

In any case, if the bandwidth is fixed and calculated either with a rule of thumb or cross-
validation, the weighting function has constant radius of action. The outcome depends
largely on the neighborhood of x and on if there are many data-points that will get a
considerable weight in its vicinity or not.

An alternative is to use a variable bandwidth. The bandwidth b = bK is set, for a
given x, so that for every prediction the model considers only K points assigning them
a notable weight in the average. In particular, the bandwidth b in the equation (4.56)
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becomes variable depending on the input x and its vicinity. This means, that for a given
x, bandwidth bK(x) is set as:

bK = |x − gK |, (4.60)

where gK is the K’th nearest neighbor of x.

Setting the bandwidth in such way, together with (4.56), results in a nonparametric regres-
sion model that is a locally weighted average of K-nearest neighbors (KNN)

r̂K(x) =
∑m

j=1 θ
(

x−xj

bK(x)

)
yj∑m

j=1 θ
(

x−xj

bK(x)

) . (4.61)

Depending on x, it might happen that the neighbors of x are rather far away so that bK in
the equation (4.56) will be set large and the other way around. In this sense, K becomes
the smoothing parameter of the estimator, since its increase makes the estimate ŷ smoother.

Note that in practice, bandwidth bK is defined in such a way that the K’th nearest neighbor
is still considered. This means that if there are several neighbors with the same distance
d = |x∗ − gK |, they all will be considered equally in the weighted average (4.61).

4.2.3 Multivariate Nonparametric Model

We can generalize univariate nonparametric models discussed above to a multivariate
case, where we observe a q-dimensional input variable X . In particular, Nadaraya-Watson
estimator (4.57) can be generalized for such situation introducing a multivariate kernel33

defined as follows.

Definition 4.2.2. Multivariate kernel is a function θm : Rq → R defined as θm(Z) =
θ(|Z|2), ∀Z ∈ Rq with the ℓ2-norm |Z|2 =

√
ZT · Z and a univariate kernel function θ(·)

WithX ∈ Rq and y ∈ R, we define themultivariate Nadaraya-Watson estimator (MNWE)
as [HWMS04]

r̂K(X) =
∑m

j=1 θm
(

X−Xj

b

)
yj∑m

j=1 θm
(

X−Xj

b

) =
∑m

j=1 θ
(

d0(X,Xj)
b

)
yj∑m

j=1 θ
(

d0(X,Xj)
b

) , (4.62)

where

d0(X, Xj) = |X − Xj|2 =

√√√√ q∑
i=1

(
X(i) − X

(i)
j

)2
(4.63)

33 Multivariate kernels are also named spherical or radial-symmetric [HWMS04].
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is referred to as Euclidean distance. As in the univariate case, we calculate the prediction
using the locally weighted average of the output observations. The bandwidth can be
variable in which case such model is referred to as multivariate K-nearest neighbors
(MKNN).

There are other nonparametric models such as local polynomial regression, smoothing
splines, decision trees and state vector regression. However, the models based on kernel
regression, discussed above, are the most common [FHT08]. Therefore, MNWE or
MKNN are often simply referred to as the nonparametric model.

4.2.3.1 Model Consistency

Several researchers studied nonparametric models focusing on model consistency and its
asymptotic properties [ČS20, HLC+97a]. In fact, the nonparametric models discussed
above are consistent [HWMS04]. Statisticians often express theoretic performance of
a model in terms of rate of convergence. Proceeding the discussion on nonparametric
models, we introduce following definitions.

Definition 4.2.3. The model is consistent if and only if it provides an estimate rm obtained
using m observations for which applies

p-lim
m→∞

r̂m = r, (4.64)

i.e., the estimated regression function converges in probability towards the true regression
function as number of observations grows.

Definition 4.2.4. Given a consistent estimate r̂m(X) obtained on a set of m observations,
its rate of convergence (ROC) is defined as

ROC = |r̂m(X) − r(X)|, (4.65)

that can be described asymptotically for m → ∞.

Bias and variance of a prediction obtained through kernel regression are bounded de-
pending on the neighborhood size that is determined by the bandwidth [HWMS04] as
follows:

bias[r̂(X)] = O
(
b2
)

, (4.66)

Var[r̂(X)] = O
( 1

mbq

)
. (4.67)
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Figure 4.4: Space of a uniformly distributed two-dimensional random variable X = [x1, x2]. A square
with edge length b can be expected to capture v-share of all observations in such space.

Herewith, the model (4.62) is consistent point-wise under the following asymptotic condi-
tions [HWMS04]

lim
m→∞

b = 0 (4.68)

lim
m→∞

mbq = ∞ (4.69)

For r̂(X) to converge towards r(X) in each point X , its neighborhood that we view as
local must be as small as possible (b → 0). To this end, we can reduce the bias (4.66)
considering only the data in the close vicinity to X . At the same time, we need a large
number of observations in that neighborhood (mbq → ∞) to reduce the variance (4.67).

The result of such trade-off is that a nonparametric regression function estimate, underlying
some technical smoothness conditions, has its fastest [Sto82]

ROC = O

( log m

m

) s
2s+q

 , (4.70)

with s representing the smoothness34 of r. The ROC decreases with the number of inputs
q which is a major limitation and a manifestation of a phenomena that we describe next.

4.2.3.2 Curse of Dimensionality

In a multivariate setting X ∈ Rq, the performance of a nonparametric model is limited by
the curse of dimensionality phenomena. Given a fixed sample size m, the q-dimensional
observation space becomes increasingly sparse with growing dimensionality which under-
mines the principle of local learning. We illustrate this phenomenon subsequently.

34 While in traditional multivariate analysis s represents how often r is differentiable, in a more general
case, s can come from Lipschitz type of regularity of r. Both definitions are important for theoretical
investigations while sufficient degree of smoothness is often given in practice.
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Figure 4.5: Volume share of a hypercube in a q-dimensional space Rq depending on the edge length
(bandwidth).

Figure 4.6: Space volume in a q-dimensional space: (a) volume of a hypersphere (unit diameter) within a
unit cube relative to the volume of the cube; (b) volume of a boundary region found between
two hyperspheres of diameter 0.9 and 1 respectively.

Consider a two-dimensional random variable Xr = [x1, x2] that includes two uniformly
distributed scalar random variables x1, x2 ∈ [0, 1]. For X∗ = [0, 0], the neighborhood
that we expect to include a share v of all observations is a square with edge length b

(bandwidth) and area v = b2 (Figure 4.4). In a q-dimensional spaceRq, such neighborhood
is a hypercube with volume

vq(b) = V cube
q (b) = bq. (4.71)

For instance, in a 10-dimensional case, a bandwidth that is half the available range has a
volume of only v10(0.5) = 0.0098 i.e. it includes less than 1% of all observations. The
neighborhood of the same size includes less and less space and data with growing q (Figure
4.5). Put differently, the neighborhood size has to be expanded to include the same amount
of observations.

At the same time, data are mostly located at the boundary of a high dimensional space.
Consider the aforementioned hypercube as such space. We consider the largest hypersphere
that we can fit within as the inner region. Complementary, we consider the space that does
not belong to the inner region as the outer region.
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4 Time Series Forecasting

Figure 4.7: Minimal and average distance between the points in a q-dimensional space relative to the
maximal distance. For a given dimensionality, distances were calculated for 10000 points that
were sampled from a uniform distribution. Distances become indistinguishable as minimal and
average distances converge towards the maximal distance.

In a q-dimensional space, a ball with a diameter b has a volume

V sphere
q (b) = (b/2)q 2πq/2

Γ(q/2 + 1) , (4.72)

where Γ is the gamma function35. Herewith, the share of inner region

V sphere
q (1)

V cube(1) = 0.5q 2πq/2

Γ(q/2 + 1) . (4.73)

vanishes as dimensionality grows towards infinity (Figure 4.6 (a)). On the other hand, the
outer region expands at its cost and takes over the entire space already for few dimensions.
We observe, same counterintuitive behavior considering two embedded spheres. The
relative volume of a thin boundary located between those spheres expressed as

V boundary
q =

V sphere
q (1) − V sphere

q (0.9)
V sphere

q (1)
(4.74)

quickly expands (Figure 4.6 (b)). Therefore, the most of uniformly distributed q-
dimensional data is found in the boundary of the space where we no longer can consider
it as a local neighborhood of X∗.

The uniformly distributed observations quickly become scarce and equidistant in high
dimensional spaces. Given a fixed number of data, the average distance between the
points grows unconstrained with dimensionality [ABDM76]. Increasingly, a query has
less and less observations in its vicinity which undermines the very idea of local learning.

35 Gamma function Γ(n) is a generalization of the factorial function for real and complex numbers. In
particular, Γ(n) = (n − 1)! when n is a positive integer. Computing the volume of a hypersphere is
only one of many applications of the Gamma function in mathematics [Gam].
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Moreover, common distance notions (e.g., ℓp-norms) loose their discriminative capacity.
Relative differences between distances vanish as the nearest and farthest points have almost
the same distance (Figure 4.7). Under such circumstances, the concepts of similarity and
neighborhood are no longer meaningful since for any query all points appear equally far
away.

Consequently, curse of dimensionality impairs the accuracy of a nonparametric model36.
As the data become scarce, random variation and noise within the data obscure the
important features. As the variance of distances becomes negligible we may even get
numerical precision problems choosing thresholds, weights, ordering and so on.

4.2.3.3 Data Sparsity in High-Dimensional Space

Data sparsity has a negative effect on the theoretical performance of a multivariate non-
parametric model. In practice, data distribution in the space is seldom uniform. However,
the effective number of observations m′

X used by a local model at X is

m′
X = mV sphere

q (b) f (X) (4.75)

which is, for some PDF f (X), bounded away from zero. For a nonparametric model to be
consistent, the number of observations

m′
X ∼ mbq (4.76)

must grow sufficiently fast towards the infinity with b → 0 according to (4.72). This
becomes increasingly difficult with growing dimensionality which limits the ROC to
(4.70).

As a result, theoretical accuracy of a nonparametric model deteriorates with a growing
number of inputs (4.70). Due to this limitation, kernel regression is pre-handicapped for
multivariate problems. Nevertheless, there has been a notable research effort to overcome
the curse of dimensionality by exploring some forms of dimension reduction [HWMS04].
A promising idea to approach data sparsity come from the functional data analysis and
regression methodology that we highlight next.

36 Generally, all models are affected by the curse of dimensionality to some extent. In practice, different
models approach high-dimensional tasks using some form of dimensionality reduction for which various
methods are available [GT18].
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4.3 Functional Regression

In the modern applied science, researchers increasingly the situations in where collected
data can be viewed as continuous37 rather than a set of discrete measurements38. While
the measurements are still discrete, the advances in measurement and computation meth-
ods allow to dramatically increase the sampling rate and apply sophisticated smoothing
techniques to a point where obtained curve can be regarded as a continuous function.
Though data acquisitions and smoothing techniques are still subject of ongoing research,
this motivates a parallel development of a novel data analysis methodology based on the
assumption that the underlying data is continuous.

Functional data analysis (FDA)39 is a young area of statistics and has been investigated
in-depth only recently. At the beginning of this century, different researchers provided
the first comprehensive FDA-theory focusing on functional parametric [RS02,RS05] and
nonparametric [FV06] regression methods. A recently published handbook unites both
perspectives and provides an extensive overview of the novel research field [FR11].

4.3.1 Functional Data

To describe functional data, we regard a given continuous curve ϕ as an observation of a
functional random variable (FRV)

Φ = {ϕ(t); t ∈ (tmin, tmax)} (4.77)

which takes values in an infinite-dimensional space of functions F endowed with a distance
notion defined as follows.

Definition 4.3.1. Distance notion d : F × F → R is a semimetric which ∀χ1, χ2 ∈ F has
the following properties:

1. d(χ1, χ2) ≥ 0,

2. d(χ1, χ1) = 0,

3. d(χ1, χ2) = d(χ2, χ1)

37 Given a very fine resolution, we can view a sampled curve as continuous. Note that this is just an
assumption while the data is still stored discreetly.

38 While, following the topic of this study, we restrict ourselves to curves, the notion of a functional
variable is not restricted to curves but can be extended to consider surfaces or any other more complex
mathematical objects.

39 The term functional data analysis was first introduced by Ramsay and Dalzell in 1991 [RD91].
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Additionally, a functional dataset

F := {ϕj | 1 ≤ j ≤ m} with ϕj ∈ F (4.78)

includes a collection of continuous observations of Φ.

We can model a functional variable with a regression equation

ϕ(t) = r(χ(t)) + ϵ(t), (4.79)

where the regression operator r is an element of the space R(F,H) of all correspondences
between F and H that is a measurable and separable Hilbert space40. Though if χ, ϕ can
be in the same space F, the setting F ̸= H is the most general for which the consistency of
regression models have been studied [FVKV12].

The regression problem is formulated similarly to the multivariate case (Definition 4.0.13).
Consider a sample of IID observations (χ1, ϕ1), . . . , (χm, ϕm) of the random pair (χ, ϕ)
valued in F × H. Herewith, the problem consists in estimating the operator

r(χ) = E
[
ϕ | χ

]
, (4.80)

that underlies some smoothness restrictions while, for the error term ϵ(t), we assume that
E
[
ϵ | χ

]
= 0.

A model for estimating r consists of introducing some constraints of the form

ϕ ∈ C (4.81)

and is called a functional parametric model if C is indexed by a finite number of elements
and functional nonparametric model otherwise (Definition 4.0.14). Historically, there
was a higher interest in nonparametric models, due to their flexibility and the lack of
graphical tools41 for representing and investigating parametric models [FR11]. Therefore,
we proceed describing functional version of the previously introduced nonparametric
model based on kernel regression.

40 Hilbert space is a space of infinite sequences of real numbers that are square summable and is endowed
with an inner product that defines the corresponding norm ∥·∥ = ⟨·,·⟩. Further, Hilbert space is called
separable if it has an orthonormal and countable basis [Mus14]. Hilbert space is also a generalization
of Rn. Euclidean space is a finite dimensional Hilbert space.

41 Graphical representation of data dependencies in form of scatter and various residual plots are common
aids for developing multivariate nonparametric models [HA18]. Such tools are inapplicable in infinite-
dimensional setting of functional data analysis.
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Figure 4.8: Functional kernels examples. The figure shows functional versions of uniform 1(0 ≤ z ≤ 1),
Epanechnikov 3

2 (1 − z2)1(0 ≤ z ≤ 1), and Gaussian 2√
2π

exp(− 1
2 z2)1(0 ≤ z) kernels.

4.3.2 Functional Nadaraya-Watson Estimator

Given a way to measure proximity between functional data-points using d, we adopt local
weighting idea for nonparametric regression of the functional data. The operator r(χ) can
be estimated with functional Nadaraya-Watson estimator (FNWE) using a similar kernel
regression approach as in the multivariate case [FV06]:

r̂(χ) =
∑m

j=1 θf
(

d(χ,χj)
b

)
ϕj∑m

j=1 θf
(

d(χ,χj)
b

) , (4.82)

where θf is a functional kernel defined as follows.

Definition 4.3.2. Functional kernel θf(z) is an operator θf : R → R that is Lipschitz42 for
z ∈ [0, 1) and supported43 on [0, 1] which ∀z ∈ R satisfies:

• θf(z) ≥ 0

•
∫

θf(z)dz = 1.

In contrast to the Definition 4.2.1 , functional kernel should be asymmetrical since
d(χ1, χ2) ≥ 0, ∀χ1, χ2 ∈ F and bandwidth b is positive. We provide some example
in Figure 4.8.

Instead of various restrictive assumptions on r (e.g., linearity), nonparametric approach
only assumes the regression operator to be sufficiently smooth. We express this assumption
through a Hölder condition, for some positive constant c:

∀s > 0, ∀(χ1, χ2) ∈ F × F, |r(χ1) − r(χ2)| ≤ c d(χ1, χ2)s. (4.83)

42 A Lipschitz function underlies some continuity conditions. In particular, a function is said to be
Lipschitz if its first derivative is bounded [Wei].

43 Support of θf is the domain where function is not equal to zero.
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The estimate (4.82) is consistent [FV06]. The studies of its asymptotic properties initially
focused on models with a scalar response [FV06]. It was only in the recent past that
the nonparametric estimate was shown to be consistent when both χ and ϕ are functions
[FVKV12].

Similar to the multivariate method (4.62), the estimate r̂(χ) is determined by the data
present in the vicinity of χ that we describe as a ball with radius b and center χ as

BF (χ, b) := {χ′ ∈ F | d(χ′, χ) ≤ b}. (4.84)

The behavior of the estimate depends on the number of data present in BF that we describe
with the small ball probability

PB(χ, b) = P
[
d(χ′, χ) ≤ b

]
= P

[
χ′ ∈ BF (χ, b)

]
. (4.85)

representing the local concentration of data in the vicinity of χ that satisfies the condition

∃c1, c2 ∈ R+, 0 < c1PB(χ, b) ≤ P
[
d(χ, χr) ≤ b

]
≤ c2PB(χ, b). (4.86)

This condition describes the density of uniformly distributed data in BF (χ, b) (e.g.,
PB(X, b) ∼ bq, ∀X ∈ Rq).

Under the conditions that connect PB(χ, b) to the bandwidth:

lim
m→∞

b = 0, (4.87)

lim
m→∞

mPB(χ, b)
log m

= ∞ (4.88)

the ROC of the FNWE (4.82) is [FV06]

ROCFNWE = O (bs) + O
(√

log m

mPB(χ, b)

)
. (4.89)

Here, the first term corresponds to the estimator bias and depends only on the smoothness
of r expressed through s. The second term corresponds to the variability of the prediction
and is determined by the local concentration PB.

Data concentration depends on the data generating process but also on the topology of the
observation space according to (4.85). We determine the topology through the distance
notion definition. For instance, having chosen d we call the data generating process of
fractal order τ if

PB(χ, b) ∼ Cbτ . (4.90)
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For such process, the functional nonparametric estimator converges at fastest with [FV06]

ROC = O

( log m

m

) s
2s+τ

 , (4.91)

which is comparable to the ROCMNWE in (4.70).

In fact, functional approach is a generalization of the multivariate nonparametric model.
We can show44 that, for F = Rq, Euclidean distance notion and a given PDF f (X), the
data concentration is of a form

PB(χ, b) = V sphere
q ∼ Cbq. (4.92)

Herewith, the estimator (4.82) corresponds to (4.62) and its ROC is given by (4.70).
Functional data analysis extends the nonparametric model theory to other processes and
cases where f (X) is not easily described.

Similar to the multivariate approach (4.62), the estimate r̂(χ) is determined by the data
present in the vicinity of χ. However, which and how many observations we encounter
in the neighborhood depends, not only on the ball size controlled by b (4.84), but also on
the choice of the semimetric d. Selected distance notion describes the similarity between
the curves, determines the topology of F and, thereby, affects the convergence rate of the
functional nonparametric estimator (4.89).

4.3.3 Data Sparsity in Infinite-Dimensional Space

In this section, we discuss the sparsity of infinite-dimensional data and its effect on
estimator performance in an infinite-dimensional space. Curse of dimensionality limits
the ROC of a multivariate nonparametric estimator (4.70). We have seen that observation
space becomes sparse with growing dimensionality of the input vector. In a functional
model, the input χ ∈ F is infinite-dimensional. Therefore, we need to discuss how sparsity
affects the performance of the functional nonparametric estimator.

If we directly apply the distance based on an ℓ2-norm to the functional nonparametric
estimation problem, we note that many of the continuous data generating processes that we
we encounter in practice are of exponential type45which for some constantsα1, α2, α3, C ∈
R+ have the associated concentration function of a following form:

PB(χ, b) ∼ C · exp
(

− 1
bα1

log 1
bα2

)
as b → 0. (4.93)

44 See Proposition 13.14 in [FV06].
45 For instance, research shows gaussian and diffusion processes are of exponential type [FLV06,LS01].
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For such processes the estimator performance is limited by [FV06]

ROCℓ2 = O
((

1
log m

)α3)
. (4.94)

Herewith, the ROC in infinite-dimensional setting is limited by some power of m which
is unsatisfactory from statistical point of view and is substantially slower than (4.70). For
a given X , there are too few observations in its vicinity in order for (4.82) to converge
fast. The reduced concentration measure of the process reduced the ROC. This effect is
sometimes regarded as curse of infinite dimensionality [FV03,FLV06,FV06,Gee11].

Further, for any d, the bias and variance of the estimator (4.82) are bounded [FMV07]:

bias[r̂(X)] = O (b) , (4.95)

Var[r̂(X)] = O
(

1
mPB(χ, b)

)
. (4.96)

Considering bias-variance dilemma, the small ball probability PB(χ, b) directly affects the
variance in of the estimator (4.96) and influences its ROC (4.89).

However, we can change the topological structure of the observation space by the choice
of d increasing concentration of the data. In fact, there always exists a distance notion
according to which data generating process is of fractal type [FV06]. With such distance
notion, we can achieve theoretical performance (ROC) that is better thanwith amultivariate
nonparametric model. In practice, we will use this observation developing our model in
Section 8.2.

Sparseness of data limiting the performance of the nonparametric model (curse of dimen-
sionality) can be addressed in the infinite space F by the choice of d.

It appears that, given appropriate choice of a semimetric d, the curse of dimensionality
is either partially canceled or has no significant effect on functional data given notable
correlation within the curves [FV06]. This holds to a variety of applications such as
price [Lie13,AVCMSR13,PMA17] and load forecasting in the transmission system which
we discuss next.
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Short-term load forecasts (STLF) allow to balance electricity generation and demand on
a daily basis and are fundamental for the power system operation and stability. These
forecasts are used for control and scheduling allowing grid operators to plan ahead and
adjust the production or, if possible, the consumption to avoid congestions and reduce the
operating costs. Forecast accuracy presents a large potential for cost savings, and it has
been addressed by numerous research works some of which are mentioned in this chapter.

While there is no clear definition for the short-term horizon, in the load forecasting
literature, short-term is regarded as a horizon from one to several hours up to one to several
days ahead [MTAR15,RK15]. Traditionally, there was a much larger interest in intraday
forecasts that are required for power system control [GAWY17]. Additionally, day-ahead
forecasts are computed for the entire upcoming day and are required for scheduling the
available production and consumption flexibilities.

In this chapter, we discuss the STLF-methods found in the power engineering literature.
Historically, balancing and control had to be done globally, nationwide, at the level of power
system and transmission grid. Therefore, most of the existing methods were developed for
forecasting the loads at the transmission system level (Section 5.1). The same methods
were among the first proposals for predicting the loads in the distribution system and
building domain (Section 5.2). At the end of this chapter, we summarize the insights from
the reviewed literature (Section 5.2) which we will use for developing a novel method for
wide-scale day-ahead building load forecasting.

5.1 Transmission System Load Forecasting

The literature on transmission system short-term load forecasting is extensive. In this
section, we highlight only some out of the numerous existing works. For a more
extensive survey of this field, the reader can consult comprehensive literature reviews
[SPS16,KMS+16a,GAWY17, FGSC19,AIJH21]. Transmission system load mostly de-
pends on hour, weekday and weather [AN02]. Consequently, researchers and practitioners
predominantly use parametric regressionmodels which presuppose an explicit dependency
on the exogenous variables.
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5.1.1 Parametric Models

There is a large variety of parametric models for intraday load forecasting in the existing
literature. The propositions are often based on statistical techniques from time series
analysis that explore correlation, trend and seasonal variation such as it is done bymultiple-
regression model [MR89], aforementioned ARIMA-model [CHC95,HCC95,?], as well as
SARIMA model [CPB09]. Another family of methods use machine learning techniques
such as ANNs as in [WNJ12,HPS01], fuzzy logic [BAB12] and support vector regression
(SVR)1 [CCL04]. With ARIMA and ANN being the most common approaches, a recent
and more extensive overview of parametric load forecasting models can be found in
[SS12,MTAR15,SPS16].

5.1.2 Nonparametric Models

With well known characteristics of the load time series, application of nonparametric
regression techniques at the transmission system level is much more rare. Charytoniuk
et al., were one of the first to propose nonparametric load model to be used for intraday
forecast [CCVO98]. They also extended the autoregressive kernel model to consider
the weather forecast. In a simulation, their model was compared with ANN obtaining
slightly lower accuracy. Though there have been further propositions to apply KNN
[AC13,TLRSR+04], nonparametric methods at the transmission system are mostly used
as benchmarks [FM07,TVM02].

5.1.3 Functional Models

Up to the present, there are only few propositions to apply functional regression for the
load forecasting. Most notably, recent theoretical advances in functional data analysis
reinforced the interest in nonparametric models. At first, research efforts focused on
intraday forecasts creating models with functional inputs and scalar response for which
the theory was already available [FV06]. More recently, the mathematicians extended the
theory and explored the asymptotic properties of the regression models where both input
and output are functional data [FVKV12]. These advances allowed to create day-ahead
load forecasting models.

While Ferraty andVieu [FV06] focused on theoretical foundations of a functional nonpara-
metric model, Antoniadis et al., [APS06] proposed a functional nonparametric forecaster
for the intraday load of Paris. In the corresponding simulation, the accuracy of the func-
tional forecast was comparable to that of a SARIMA model commonly used for power

1 The name support vector regression refers to the state vector machine adopted for the regression task.
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system load forecasting. Following the nonparametric methodology, Antoniadis et al.,
measured the distance between the curves with discrete wavelet decomposition and used
a fixed bandwidth found through cross-validation method, adopted for time series as de-
scribed in [Har96]. The authors also observed that, as with a multivariate nonparametric
model, the choice of the kernel function had only little influence on the accuracy.

Aneiros and Vieu extended the functional nonparametric approach (4.82) to the semi-
functional partially linear (SFPL) model that allows to consider linear dependencies on
exogenous multivariate inputs [AV06]. Further, they studied the theoretic and asymptotic
properties of the SFPL-model assuming independent data. In particular, they showed that
the rate of convergence of the nonparametric component is unaffected by the linear part of
the model. They generalized the conclusions to the case where the data underlies mixing
conditions (i.e. time series) in a subsequent publication [AV08].

Vilar et al., used these results to apply SFPL for predicting the day-ahead load of Spain
[VCA12]. They applied 24 separate models with scalar response and considered different
variants of the model including fixed bandwidth, variable bandwidth, various kernels and
distance notions. The SFPL-model achieved accuracy superior of a naive and comparable
to a SARIMA model. Aneiros et al., extended the SFPL-model to having functional
response [AVCMSR13, AVR16]. Their approach predicted the curve at once using a
single model, that required only few hyperparameters selected through cross-validation.
The authors observed a slight but statistically significant improvement over the former
proposition and overall accuracy comparable to the ARIMAX model.

Paproditis et al., proposed the functional similar shape forecaster — a different way to
consider exogenous variables when predicting system load using nonparametric method-
ology [PS13]. Given the prediction of the exogenous variables (e.g., weekday, weather),
the upcoming day was assigned to one of the precalculated reference curves. The forecast
is calculated with functional nonparametric regression (4.82) using the reference segment
as the query. The authors proved the weak consistency of such model, and demonstrated
its accuracy predicting the day-ahead load of Cyprus. The bandwidth of the model was
selected using empirical risk of prediction methodology previously introduced in [APS09].

Accuracy of the functional forecasters was compared in a series of studies with models
that rely on conventional multivariate approaches such as: ARIMA and NWE [SL15],
SARIMA [APS06, PS13,VCA12], MLP [PS13] and ARIMAX [AVR16]. Those studies
demonstrate that functional models can compete with the more traditional methods for
power system load forecasting. Nevertheless, model propositions based on functional
regression are very rare to this day.
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5.2 Building Load Forecasting

Until recently, most propositions for building load forecasting were focused on adopting
transmission system models for lower load aggregation levels. In contrast to the transmis-
sion system, forecasting of building power demand has various specifics. Building domain
includes a large variety of loads with different time-series characteristics which can be
highly volatile, nonstationary and affected by weather and workday calendar to a varying
extent, depending on the facility size and purpose. In general, it is easier to forecast large
aggregated loads present in high voltage domains [SR18]. Several models that can be very
accurate for a transmission system were found failing to reflect the volatility of building
electricity consumption where the aggregation is much smaller [JAW+12].

Building load forecasting literature widely discusses predicting intraday energy demand
(electrical and thermal) of a specific building or a group of buildings. Contrastingly, in
this section, we highlight the approaches for predicting total electricity consumption of a
building with hourly or subhourly resolution. A more extensive discussion on building
energy demand forecasting can be found in comprehensive reviews [ACGW18,MMA+22].

5.2.1 Parametric Models

As for the transmission system, the absolute majority of load forecasting models proposed
for buildings follow a parametric regression approach. In the recent years, several re-
searchers applied traditional statistical techniques such as multiple linear regression and
ARIMA. These multiple linear and autoregressive models are commonly set up using
in-depth time series analysis of the load curves. At the same time, machine learning
techniques (especially ANNs) became the most common methodology with numerous ap-
plications for building energy forecasting [RZ19]. However, many propositions focus on
forecasting heating and cooling power demand [YRZ05,MST02] or total daily consump-
tion [NF08,BRF16] and are not relevant for day-ahead load forecasting. In this section,
we review the parametric regression methodology applications for predicting building
electricity demand with hourly and subhourly resolution found in the literature.

5.2.1.1 The Multiple Linear Regression

The multiple linear regression (MLR) approaches focus on modeling explicit relation
between predicted load and explanatory variables. Such relation needs to be defined
manually including the choice of the variables the load is believed to depend upon.
For larger buildings, MLR-models can have a reasonable accuracy and are simple to
implement [IYIO14, HWVA13]. The major limitation is that those models cannot deal
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with nonlinearities that become apparent on smaller buildings [BZN+19]. Moreover, the
MLR-approach requires noncolinearity between the input variables which can be addressed
through a manual feature selection [FRS+13]. Further, this approach cannot model out-
of-sample and hence needs large amounts of data to capture all possible situations.

5.2.1.2 Autoregressive Models

Autoregressive models such as ARIMA, SARIMA and ARIMAX are standard in time
series modeling and are among the most common approaches used for building STFL
[BZN+19]. These models describe the time series as a linear combination of its past
values and require extensive manual setup. To this date, there is no systematic way to
set hyperparameters rather than through trial and error and an autoregressive models are
usually set up with manual fine-tuning [TB13, NB10]. While, the linearity assumption
appears to be too prohibitive for many building load forecasting applications, the statistical
autoregressive models were often used as benchmarks [FBP11,PBF11b,PBF11a].

5.2.1.3 Artificial Neural Networks

Several nonlinear parametric modeling methods were proposed for building load fore-
casting. Among various machine learning approaches discussed in the literature, artificial
neural networks (ANN) are themost intensively investigatedmethods [ACGW18,BZN+19,
VKS20]. Accuracy and the setup of a particular ANN-model primarily depend on the
characteristics of the forecast time-series and the complexity of the modeled relation-
ship [Bis94,LGT98]. Hence, we only consider the studies focusing on predicting building
total electricity consumption with hourly and subhourly resolution. Such time series are
often more volatile than the widely investigated thermal energy demand [KAS13].

We summarized the forecasting models based on an ANN-approach for predicting either
intraday or day-ahead overall load curve of a building in Table 5.1. The ANN-models we
found in the literature have several aspects in common (Table 5.1). Theywere developed for
a specific building or building type. The well-performing architecture was set up manually,
given explicit knowledge of the problem, researcher experience and intuition combined
with a trial and error process. Model inputs were related to historical load, calendar
features and, sometimes, daily weather. Further, the ANNs required large amounts of
historical data [CBWS16]. The majority of the publications applied a general black box
modeling approach with a feedforward neural network set up manually or using some
heuristics [RZ19].

Feedforward neural networks are the most common type among load forecasting appli-
cations [RZ19]. This approach allows to create a nonlinear model of the relationship
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Table 5.1: Publications on neural-network models for predicting intraday or day-ahead total electricity
consumption of buildings with hourly and subhourly resolution.

Reference Network Load
Dataset
(months)

Horizon Inputs Setup
Hidden
layers

Hidden
neurons

Training
algorithm

[BFS+15] MLP hospital 12 DALF load, calendar, weather manual 1 20 BP
[MHD+13] MLP aggregation 17 DALF load, weather manual 1 15 BP
[CSZ+15a] RNN edu. building 12 DALF load, calendar, weather manual 1 n/s LM
[MRCA14] RNN lab. building 18 1 h load, calendar, weather manual 1 10 LM
[POC+17] RNN hypermarket 12 1 h load, calendar, weather manual 1 var var
[MNGK16] RBM home 48 DALF load manual 1 10 LM
[MAM16a] LSTM home 48 60 h load, calendar manual 2 10 BP
[AMM17] CNN home 48 DALF load, calendar manual 2 20 BP
[SLW16] ESN office building 48 1 h load auto 1 50 n/s
[KDJ+17] LSTM 69 homes 48 6 h load, calendar manual 2 20 BP
[RNK16] RBM 40 enterprises 36 DALF load, calendar, weather manual 4 150 LM

between the forecast load and exogenous inputs that the electricity consumption is be-
lieved to depend upon. These inputs are frequently related to historical load, calendar and
weather.

Studying various reviews [RZ19, KAS13] and the references therein dedicated to the
feedforward neural networks for distribution system load forecasting, we notice that the
researchers often assume constant occupancy level for the building and focus on modeling
energy demand as a function of weather and calendar features. For instance, Bagnasco
et al., did so applying an MLP with one hidden layer containing 20 neurons to forecast
electricity consumption of a hospital complex in Italy [BFS+15].

While the occupancy can be assumed to follow a steady weekly pattern for larger buildings,
this is not the case for smaller, especially residential, buildings where user behavior is
one of the main consumption drivers. When Rodrigues et al., used a similar network
in terms of size and inputs and trained it to forecast intraday load of 93 homes, their
multilayer perceptron (MLP) was half as accurate [RCC14]. This illustrates that using
the same network on a different building type can result in significant difference in model
performance.

Indeed, there have been recent attempts to consider occupancy explicitly given a set of
sensors in a building as by Massana et al., [MPB+15]. The authors showed that using
occupancy made the prediction more accurate in their particular case. At the same
time, Wang et al., argue that it is impractical to rely on this data for a short-term load
forecasting on a wide scale where we might have numerous end-consumers and strict
privacy regulations [WCHK18].

Recurrent neural networks are an alternative approach to the feedforward architectures.
There are several applications of recurrent neural networks which consider the occupancy
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implicitly. In particular, these networks use the inherent structure of the load time series
to create nonlinear autoregressive models instead of relying exclusively on exogenous vari-
ables. While NAR-models are purely autoregressive, NARX-architectures, additionally,
allow to explicitly consider external inputs and are more common [RZ19].

For instance, Mena et al., proposed a NARX-model to predict the intraday load of a labo-
ratory building equipped with an air-conditioning and a photovoltaic module [MRCA14].
Consequently, the model considered workday calendar, weather and air-conditioning ac-
tuator signal along with the previous day load curve. The researchers trained the network
on one year of data with one minute resolution, while their study focused on finding the
best hyperparameters of the network by trial and error.

Likewise, Pirjan et al., empirically compared different learning algorithms, number of hid-
den neurons and lags for predicting the load of a commercial center in Romany [POC+17].
The authors used eleven months of one minute resolution data for training. A NAR-model
was contrasted with NARX using outside ambient temperature as an input on a one month
of test data.

Deep neural networks (DNN) are the state of the art in machine learning research, and there
have been remarkable applications in image and speech recognition [GBC16]. However,
for the building STLF there exist only few propositions because this type of networks
requires large amounts of training data which might not be available in the distribution
system even despite mass adoption of smart metering [BZN+19].

In fact, many DNN applications were demonstrated on the same research dataset that
contains the four years of one-minute resolution load measurements of a single household
and its separate rooms. Amarasinghe et al., applied a feedforward methodology with
the CNN-architecture. The network included two hidden layers with 20 neurons using
historical load, weather, and calendar as inputs. Recurrent-neural-network type was used
with Restricted Boltzmann machine (RBM) by Mocanu et al., [MNGK16] and long short-
term memory (LSTM) by Marino et al., [MAM16b]. All propositions used three years
of data for training and one year for the test. They all achieved comparable accuracy,
only slightly increasing the performance in comparison to a shallow feedforward neural
network and exposed some fundamental practical issues when applying DNNs.

As with all neural networks, model accuracy relies on an appropriate choice of hyperpa-
rameters [MNGK16]. However, the works mentioned above as well as others, using either
a similar architecture (RBM in [RNK16] and LSTM in [KDJ+17]) or another recurrent
neural networks named Eco State Network in [SLW16] – they all relied on a manual trial
and error process to find an adequate network setup.

Due to the size, training a DNN is a computationally demanding process and trying out
numerous networks can become impractical. At the same time, if numerous different loads

61



5 State-of-the-Art Load Forecasting

are to be forecast, it is senseless to manually set up each network as was also noted by
Kong et al., in [KDJ+17] forecasting 69 homes and forced to use some rules of thumb for
the setup.

Overfitting presents another limitation. Given a very complex function such as the load of
a small building or a single home, increasing the network size only improves the training
but not the test error [MAM16b]. Amarasinghe et al., came to the same conclusion for the
CNN where many hidden layers produced excellent training error but failed to generalize
on an unseen data [AMM17].

5.2.2 Nonparametric Models

Building load forecasters based on nonparametric methodology are scarce in the literature
and are mostly used as benchmarks [BM15b]. Nevertheless, there have been some rare
propositions that we highlight below.

Brown et al., propose multivariate KNN-model which they tested along-with a feedforward
ANN on four different office and educational buildings [BBB†12]. They concluded
that a KNN-model can be significantly more accurate than the evaluated ANNs, when
training data is scarce. The KNN-model considered weather variables, which the authors
showed to have different effect on the energy consumption depending on the building.
Paradoxically, the researchers observed better forecasting results on some buildings, when
weather information was disregarded. They also compared KNN with other models in a
forecasting competition [KH94] and found that their model was often the least accurate
comparing to the others.

Arora et al., applied a model based on kernel density estimation onto small buildings in
Ireland from awidely used public smart-meter dataset2 and compared the forecast accuracy
on houses and non-domestic buildings over the horizons of up to a week ahead [AT14].
Their approach was developed further by [AAD+17], where authors modeled the relation-
ship between the temperature and the load nonparametrically for five residential buildings
in Montreal. The model was based on adaptive conditional density estimation, extracting
the temperature-related component such as heating and air conditioning consumption from
the total electricity demand.

Chaouch presented a forecasting approach based on functional kernel regression [Cha14].
He combined unsupervised curve clustering [DFV06] with the functional wavelet kernel
approach [APS06], to predict the loads from the aforementioned Irish smart-meter dataset.

2 We used this dataset for the evaluation and discuss it in detail in Section 9.1.1.
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5.2.3 Heuristic Models

Currently, the distribution system operators predict building loads on a wide scale using
standard load profiles [ECo,Ber00]. In praxis, this heuristic approach, proved being simple
and effective technique that provides accurate forecasts for larger load aggregations. There
are other simple approaches based on profiling and persistence heuristics that can be as
effective as the more sophisticated models discussed above [STH+15].

It suggests itself to use building load measurement data obtained from smart meters for a
profiling-based forecasting approach. Baranek et al., proposed a methodology to enhance
the existing profiles creating, so called, individual load profiles (ILP) for each building
in [BPT13]. While KNN is rarely used for regression, it can be used to better classify the
low-voltage consumers creating a profiles for each identified class [MRRJ11].

Stephen et al. proposed a bottom-up3 profiling-based approach for the STLF in the distribu-
tion networks or buildings that include numerous end-consumers [STH+15]. Researchers
compared their approach to other reference models common such as persistence forecast,
feedforward ANN and ARIMA. Forecasting the load of an aggregation of 123 residen-
tial consumers, the profiling-based model and ARIMA were the most accurate showing
comparable results, while the proposed method was more computationally efficient.

Persistence heuristics are commonly used as benchmark models [DBW15, HGZA18,
HFS14]. Naive model takes most recent load curve as the forecast for the upcoming
day. Weekday persistence accounts for workday calendar using the most recent load curve
of the same weekday as a forecast. Haben et al. created a more advanced persistence
heuristic [HWVG+14]. To compute a baseline profile for each weekday, the authors used
a curve similarity notion particularly suited for volatile time series such as load curves
measured on small buildings and households.

Other Models

There are further approaches to building load forecasting, though these are less common
than ARIMA- and ANN-based methods [ACGW18]. Most notably, parametric state
vector regression (SVR) technique was often used for building load forecasting. For
instance, Dong et al., used SVRpredicting the energy demand of four commercial buildings
[DCL05]. Similar SVR-approach was used for other buildings equipped with numerous
sensors improving the accuracy in comparison to an ANN-forecast [JSCT14].

3 Given a load aggregation, a bottom-up forecast predicts each individual load separately and, then,
aggregates the forecasts to an overall prediction of the aggregated load.
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Forecast accuracy can be improved by incorporating several predictions done with different
techniques. The models combining multiple forecasts into one start to appear in the
literature and are often regarded as hybrid or ensemble models. For instance, an average
of different forecasts can, in some situations, be more accurate than individual predictions
[HA18, BM15a, Bur17]. Another approach is to select the best model from a cohort of
sub-models on the training data with a dedicated switching function [BM15b,REG15].

Subbayya et al., focused on selection criteria that can be used for hybrid models [SJW13].
Borges et al., also investigated combining different models and tested their approach on a
university campus [BPF11]. They concluded that hybrid model only improves the result
if no model is consistently better that the others.

Hybrid models usually combine several parametric models and, in some cases, were
shown to improve the forecast in comparison to the individual models [MHD+13,BM15a,
BM15b]. For instance, a combination of ANN and SVR approaches has been explored
obtaining better forecasting results than the individual models [JMC14,AHA+14]. At the
same time, hybrid models have in common that they are complex to implement as they
require to set up numerous sub-models, while the efficacy still has to be evaluated across
the building domain rather than on few single buildings.

5.3 Literature Summary

In this section, we summarize the insights from the reviewed literature (Section 5.2) in
terms of data requirements, model setup and comparison. We have observed, that it is
still an ongoing challenge to develop a widely applicable forecaster for predicting the
load across the building domain – i.e., a forecaster that is applicable on various different
buildings. Rather than developing a scalable day-ahead model for the entire domain, most
attempts focus on predicting intraday energy demand of a specific building.

In the reviews literature, model setup and input selection, usually required explicit domain
knowledge i.e., the specific building structure had to be explicitly considered in the model.
The well-performing model, presented in the results, for that building was often found
through manual trial and error process and required large amounts of historical data
and computational resources [CBWS16]. While such model can be very accurate on
the given building, the forecast can worsen if the same model is applied for another
building [FRS+13]. The comparison between the models is often difficult since those
are rarely evaluated on a large variety of buildings and subjected to a statistical analysis
accounting for the stochastic variability of the results.
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5.3.1 Data Inputs of the Forecasting Models

In the publications reviewed for this work (Section 5.2), model inputs were selected
from available data that are expected to influence the load curve. They were frequently
chosen manually relying on the problem knowledge (e.g. building with an installed
PV module is likely to depend on solar irradiation), researcher experience and intuition
[MRCA14,HP16,MHD+13] or an in-depth sensitivity analysis [LSPB+12]. Most often,
optimal choicewas found by training the samemodel using different inputs and selecting the
variant yielding the lowest validation error. For instance, it is the case in [RCC14,POC+17]
and all the DNN applications previously described.

It is widely recognized that local loads are autoregressive and underlie annual and weekly
seasonalities [AT14]. Indeed, most applications used inputs related to the calendar
(weekday, day-type, month) and historical load (previous day, week, historical mean,
etc.) [HWVA13]. For instance, a feedforward neural network can use the most recent
load curve as an input to account for the autoregression in the time series demonstrated
in [BFS+15,RCC14,MHD+13].

Despite a common preconception, researchers are ambiguous about using weather-related
inputs such as outside ambient temperature or solar irradiation. Some, researchers did
consider weather by modeling electrical heating and photovoltaics at the level of larger
buildings [POC+17,CSZ+15b]. In fact, an in-depth sensitivity analysis can highlight an
existing weather dependency [LSPB+12]. At the same time, other researchers observed
that the models that do not use any weather data can be more accurate for disaggregated
loads [HGP15,MHD+13,HBA+14]. In [BFS+15], authors test two ANN-models on the
same datasetwith andwithoutweather-related data. They observed no consistent advantage
for either model. Consequently, some researchers assumed that the instantaneous weather
changes do not affect the load significantly and considered only the month and the day
arguing that the temperature does not change substantially from day to day [HBA+14,
HGZA18].

To select themodel inputs, some researchers have proposed either frameworks [BFS+15] or
automated approaches [SLW16]. Alternatively, others proposed to quantify the influence
of each possible input and select only the variables whose influence exceeds a predefined
threshold [AKZ10,CSZ+15a].
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5.3.2 Setup of the Forecasting Models

Aside from the choice of inputs, forecaster setup includes the choice of amodel itself and its
hyperparemeters4 that have a major impact on the resulting accuracy [MRCA14,POC+17].
As we saw, and considering more general review studies on load forecasting [HWVA13,
RZ19], the models were usually set up and fine-tunedmanually, given problem knowledge,
researcher experience and intuition, using heuristics and, most often, though trial and error.

Alternatively, there are rare attempts to determine the model setup automatically formu-
lating an optimization problem of minimizing the validation set forecast error. There
have been attempts to do so using either grid search [HBA+14] or an optimizer based on
evolutionary algorithm [AKZ10]. Automated approaches require setting up and training
numerous models that can be challenging and even unpractical. Given a large space of
hyperparameters (grid-) search based methods can become prohibitively time-consuming.
At the same time, an optimizer can still be trapped in local minima [RZ19]. Despite the in-
creasing interest in fully automated machine learning it is in a preliminary stage [HKV19].
We are yet to see how it might apply to the building STLF.

Especially parametric models require large amounts of data for model training and setup.
For instance, various DNN models: CNN [AMM17], RBM [MNGK16,RNK16], LSTM
[MAM16a,KDJ+17] and ESN [SLW16] – all required years of data to set up and train the
network. Other models, including ARIMA and SVR, also often required over a year of
training data [TB13,MHD+13].

As of today, the load forecasting models rely on explicit a priori knowledge of the building
andmanual fine-tuning. The propositionsmentioned previously weremostly developed for
a specific building using additional inputs available for that building. The well-performing
model presented in the results was often found through a trial and error process which
required large amounts of historical data and computational resources.

5.3.3 Comparison of the Models

Despite numerous propositions of building load forecasters, a direct comparison of the
models from different publications is either not possible or often leads to contradictory
conclusions [FRS+13]. Usually, authors compare the proposed model to some other
models that they arbitrarily choose as a reference. The models are evaluated on a single
or a very small number of buildings with no statistical analysis of the forecast errors.
Therefore, the conclusions can rarely be extrapolated to further cases. Moreover, the

4 For instance, anANN-model has numerous hyperparameters such as the threshold for the input selection,
network size, training algorithm, activation function and other type-specific settings defining the model.
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datasets are often not published due to privacy, ethical or other concerns. For instance,
Sun et al., reviewed 105 studies concluding that only 17% of the models were tested
on public datasets [SHF20]. This makes it difficult to evaluate and improve the models
proposed in the literature.

When reviewing the works on building load forecasting, overall publication bias becomes
conspicuous. Usually, the proposed model is the most accurate among few reference
models whose setup is not validated. Given that the proposed model is often found
through trial and error with extensive manual fine-tuning, it is unclear whether the same
favorable comparison would hold if the same manual effort were applied to set up the
reference models.

For instance, consider [SXL18] where the authors proposed a sophisticated DNN-based
model. They demonstrated the 20% improvement against an ARIMA-model which they
believe to be the “state-of-the-art method”. However, in their setup the ARIMA-model did
not consider weekly seasonality in any form. While they did not provide any validation of
the reference model, we can see that the ARIMA-setup is inadequate because building load
considerably depends on the workday calendar [FBP11, PBF11b, PBF11a]. Additionally,
the authors only provided the mean error without any analysis of stochastic variability
of the forecasts. Unfortunately, publications with similar deficits are common [KC19,
KDJ+17,RZ19].

When comparing the models proposed in the literature, we often have to rely on case-based
reasoning with contradictory conclusions. Model accuracy can vary notably depending
on the precise setup, because buildings are very diverse and various facilities can have
very different consumption patterns. While some authors suggest that at low-voltage
level simple nonparametric approaches can be very effective [HGP15], the majority of
publications advocate the usage of advanced parametric methods based on statistical or
machine learning approaches.

For instance, Penya et al., observed that ARIMA-models could achieve accuracy com-
parable to the machine learning methods. They compared various statistical techniques
(ARIMA, MLR etc.) with machine learning methods (ANN and SVR) on several univer-
sity campus buildings and observed that including workday calendar addresses the major
nonlinearities of a nonresidential load. They also argued that none of the existing para-
metric models is broadly applicable on numerous buildings of different types and sizes,
and that statistical techniques might be more suitable for that application because they do
not need so much historical data to train the model [FBP11,PBF11b,PBF11a].

Other authors made similar observations [WVHA15], [MHD+13]. Even MLRwas shown
to be more accurate than SVR on small buildings, but no statistical analysis was provided
[HWVA13,ZLY19]. Zeng et al., [ZLY19] compared various data-drivenmodels predicting
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the load of six commercial buildings. The models were manually fine-tuned, yet neither
validation results nor enough details were provided to assess the adequacy of each model
setup. While authors observed MLR to provide the most accurate forecast, there was no
statistical analysis of the results.

At the same time, Massana et al., came to the opposing conclusions demonstrating that
the MLP and SVR are more accurate on a comparable set of buildings [MPB+15]. In
fact, several authors observed that machine learning approaches were more accurate than
statistical methods on various commercial facilities [YBDS17]. Cai et al., noted that DNN
models were more accurate than SARIMAX predicting the load of three institutional
buildings. Yet again, they drew this conclusion only comparing the average error without
any statistical analysis [CPR19]. Mynhoff et al., alsomade similar observations [MMG18].

Overall, it remains unclear when to use which forecasting methodology and why. Recent
reviews feature hundreds of propositions [ACGW18,BZN+19,RZ19,ZDZ+22] for building
load forecasting, yet no approach was shown superior on a large variety of buildings. A
comprehensive evaluation requires to test a model on an extensive and diverse set of
buildings. The comparison must go beyond evaluating the average forecast errors (e.g.
RMSE) because those underlie considerable stochastic variation among the buildings.
Instead, we need to test the difference for statistical significance as it is common in other
fields where the results are stochastic in their nature (e.g., biology). Such evaluation, on a
publicly available dataset, will make the quantitative comparisons of novel techniques to
the existing approaches more effective and improve the usability of data-driven models for
building load forecasting. In our study, we apply these insights when considering forecast
accuracy measure (Section 7.3) and evaluating various models later in the text.
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Fluctuating renewable energy generation is a challenge for the power system operators. In
the EU, a substantial part of the commissioned generators are PV-modules installed on
buildings and connected to the distribution grid [Eur20]. Their intermittent power supply
requires the operators to mitigate possible imbalances locally, using facilities located in
the area.

Buildings becoming both consumers and producers of electricity, can interact with the grid
contributing to its stability. Automation technologies can reinforce the power network
and increase its capacity for allocating renewable electricity generators. Advances in
information and communication technology allow the development of smart grids.

Definition 6.0.1. Smart grid is an electrical network that can automatically monitor energy
flows and adjust itself to the changes in energy supply and demand [EU14].

A smart grid manages the energy flow relying on specialized control equipment and
demand response.

Definition 6.0.2. Demand response relates to the changes in electrical load from the normal
consumption pattern in response to an external signal imposed by the power systemoperator
or another governing entity [Jor19].

Demand response canmake a smart girdmore robust, increase infrastructure efficiency and
provide the users with economic benefits (Section 6.1). For instance, variable electricity
price can reduce demand peaks and encourage the participants to store the excessive
generation. In fact, modern buildings connected to the distribution system can adjust their
net electricity demand without compromising on comfort of the users (Section 6.2). In
this chapter, we describe these ideas and their applications (Section 6.3).

6.1 Smart-Grid Applications

Electrical networks for unidirectional electricity distribution are evolving towards smart
grids that allow bidirectional power and information exchange between utilities and con-
sumers. The principal components of a smart gird are distributed energy generators,
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advanced metering and control infrastructure as well as data exchange with the users.
These components allow various demand response strategies and other automated control
measures on the local level providing following benefits for the grid [LBH+16]:

• reduction of peak load

• increase in transmission capacity

• reduction of stress on the equipment (e.g., sub-stations)

There exist numerous smart grid research and demonstration projects in Europe and across
the globe [EU14,YSP+14,AAH+20, DSKDSS15]. The value of a smart grid approach
can vary among distribution system operators depending on the region. In some cases,
primary objective is to facilitate the integration of fluctuating renewable power generators
[SGQ+19,AHU20]. In other cases, it may be peak load management [KC18,BTD+18].
In most cases, the advantages for the end-consumers are usually economic benefits with
minimal negative impact on the service [DSDSMS18].

Apart from the equipment, a smart-grid idea requires novel forecasting approaches con-
sidering the increasing penetration of the distributed energy generators and demand re-
sponse [KMS+16b]. Installations of the behind-the-meter generators change the electric-
ity consumption patterns and alter the corresponding net load profiles. For instance, a
PV-installation on the roof leads to a notable deviation from the standard load profile, de-
pending on the current solar irradiation in the area. Moreover, energy storage, commonly
used in a smart grid to mitigate renewable energy fluctuations, has a changing behavior that
is difficult to model and leads to further deviation from common consumption patterns.
Herewith, currently used standard load profiles become inadequate for a smart grid where
many applications rely on accurate load forecasts [WCHK18].

Overall, smart grids improve the flexibility in energy management and make the power
system more efficient. Local demand can be, at least partially, met with local generation
improving the efficiency of electricity transmission and distribution [WCHK18]. For
this purpose, smart grids require advanced data analysis methods for load forecasting,
anomaly detection, decision making and outage management [ZHB18,GDS19,VPLZ19].
Additionally, the equipment of buildings connected to the smart grid becomes important.
The facilities can provide their current status and respond to the requests by the grid
operator to adjust their power consumption following economic incentives (e.g. variable
electricity price) [EPC18]. As a result, smart buildings participating in demand response
can help to manage peak demand and possible congestions in a smart grid.
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6.2 Smart-Building Applications

Smart buildings can adjust their net electricity consumption and help integrate renewable
energy generators into the distribution system. This concept has been introduced to
improve stability and reduce the operating costs of the grid [ADDPAL20]. Such facilities,
consider demand response requests by the grid and optimize their energy consumption
using modern building automation technologies discussed in this section.

There are different definitions of a smart building, but its functionality must include
[GDPB+20]:

• automation of building operation

• facilitation of maintenance

• ability to adapt to the needs of the inhabitants

• enabling the users to directly control of their energy consumption

• ability to adjust the power demand following external signals

From the grid perspective, demand response is one of the most important features of a
smart building. Facility managers must balance demand response requests by the grid
operators with energy needs of the users, maintaining smooth building operation.

Energy equipment of a typical smart building (Figure 6.1) can include:

• PV-generator

• HVAC-systems

• automated lighting and shading

• thermal and electrical storage

• smart metering devices

In such a building, energy equipment is connected to a building energy management system
(BEMS)1 that combines software and hardware controlling the technical systems for:

• providing thermal and visual comfort

• improving energy efficiency

• minimizing operating costs of the building

1 Due to the lack of universal and standard terms, there exist several definitions of energy management
system. In the literature, the energy equipment controller is most commonly called building energyman-
agement system (BEMS) or building automation and control system (BACS) [ADDPAL20,GDPB+20].
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Figure 6.1: Simplified schematic representation of a smart building equipped with various energy equip-
ment: photovoltaic (PV) module, lighting, heating, ventilation and air-conditioning (HVAC),
energy storage and other. Building energy management system (BEMS) interconnects the
equipment and interfaces with the smart gird. The interface can be either through the two-way
communication smart metering (SM) device or over the internet.

• enabling interaction with the smart grid

To reach these objectives, an automated control strategy allows the building to respond to
external conditions such as weather and signals from the smart grid operator or the users.
At the same time, effective control reduces sizing of the equipment and its operating costs.

Traditional control approaches are inadequate for wide-scale application on smart build-
ings. Rule-based methods, that define the conditions to switch the equipment, have been
commonly applied, but lack systematic design methodology [SSM16]. Alternatively, ap-
proaches based on the proportional, integral and derivative control are also common for
operating the HVAC-systems. Though traditional controllers are easy to implement and
inexpensive, they are inapt to consider the external inputs that may come from building or
grid operators.

Advanced control strategies address the shortcomings of the traditional controllers. Ap-
proaches based on model predictive control and adaptive-predictive control can consider
the uncertainties caused by the external factors using predictions of the exogenous inputs
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and dynamic behavior of the building. A sophisticated controller can consider weather,
electricity price and load forecasts, users behavior, and other variables to determine op-
timal control strategy online. Authors of [GDPB+20] reviewed the applications of these
strategies. They observed substantial energy and cost savings when compared to the
traditional control approaches.

BEMS interfaces with the electric grid providing a demand response capability. In a
typical smart building, a PV-module operates as a local electricity generator, while the
batteries store excessive energy, optimizing total consumption. Moreover, the system can
shift electricity demand in time using high inertia of HVAC processes. Whether over a
smart meter or the internet, BEMS can exchange signals with the utility, and adjust its net
electricity consumption accordingly [CO17].

Smart buildings interact with the smart grid either directly or through an aggregator.
Grid operator can request the buildings in the area to adjust their demand in order to
mitigate local power imbalance and limit the stress on the distribution network [LGC+12].
Alternatively, an aggregator can translate global electricity market conditions into specific
control signals and incentivize the BEMS to use the available load flexibility accordingly
[GKS13]. In this context, variable electricity prices can be effective for balancing supply
and demand [LBH+16]. Therefore, integration of the smart grids and buildings is not only
a technical problem, but also an economic one that has been addressed in various research
projects such as the one described next.

6.3 Smart-City-Demo Aspern Project

Smart-City-Demo Aspern (SCDA) is a research project aiming to carry out a large-scale
demonstration of interoperability between smart grid and building domains as well as the
interaction with the end-consumers. Supported by the Austrian Energy Fund, the research
focuses on the usage of load flexibilities and testing the suitability for everyday usage of
the corresponding building technologies [Asp].

The project includes several smart buildings with demand response capabilities, as well
as corresponding grid and ICT-infrastructure that were erected in the newly build Aspern
district of Vienna. The facilities were constructed using the state-of-the-art building energy
equipment such as PV-generators, heat-pumps, solar thermal energy generators, thermal
and electrical storage units (Figure 6.2).

Each building participating in the project, has a BEMS optimizing the overall energy
consumption using storages. In every facility, the system has to predict the load and the
energy generation for which it incorporates the information on user habits, sensor data
and weather forecast. Moreover, BEMS enables the interoperability with the smart grid
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Figure 6.2: Smart buildings and their energy equipment located in the Aspern district of Vienna and that
participate in the SCDA project [Asp].

providing demand response capabilities that can either stabilize the local grid or be used
in a larger virtual power plant monetizing the available load flexibilities.

In the smart grid domain, the SCDA project uses a district-level network including 500
smart meters, twelve substations and 24 transformers of various types. The research in this
domain focuses on potential large-scale roll-out of the smart-grid technology and focuses
on: optimal sensor and data-stream configuration, increase of the grid capacity through
automation, minimization of investment and operating costs as well as improvement of
functionality and safety.

For this purpose, various sensors were installed to monitor the low-voltage grid status. A
specialized softwarewas developed tomaximize grid utilization capacity and automatically
mitigate possible overload by controlling the storages and smart buildings in the area. As
a result, the SCDA-project demonstrates an increase in the original grid capacity and
provides notable economical benefits for the end-consumers in the building.
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Methodology
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In the third part of the thesis, we describe and substantiate the methods that were used to
answer the research question. In particular, we discuss how to use the smart-meter data on
a wide scale to predict day-ahead electricity consumption of individual buildings and their
aggregations. We begin this part by considering the load forecasting problem (Chapter
7). After describing the characteristics of building power demand and its multistep
forecasts, we formulate the day-ahead building load forecasting problem and introduce a
methodology to evaluate the forecasts in a wide-scale building load forecasting application.
Subsequently, we provide a solution to the introduced problem developing a forecaster that
is based on a novel functional neighbor methodology for predicting day-ahead building
load curves (Chapter 8). Finishing the methodological part of the thesis, we describe how
we validated the proposed forecaster comparing it to the common reference models from
the literature and provide details on the corresponding simulations (Chapter 9).
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This study aims to develop a load forecasting method for a wide-scale application in
the building domain. The proposed forecaster has to be applicable on various different
buildings disregarding their type, size, or any knowledge of the installed appliances.
Moreover, the forecaster can only rely on the data that we expect to have for every building
in the distribution system. Given the wide-area installation of smart meters, the forecaster
has to predict the load before-the-meter requiring no manual setup or fine-tuning.

Building electricity demand can be represented as a sequence of measurements delivered
by a smart meter installed at the connection point to the distribution grid. Assuming
that the meter delivers the measurements equidistantly, every ∆t minutes, we model the
consumption using the notion of a stochastic process (Definition 4.0.11).

Y = {yt : t ∈ R}. (7.1)

The smart meter delivers a time series {y(t)}t∈In where In = {1, . . . , n} is a set of
discrete indices corresponding to the measurement time-points. Consequently, we denote
a discrete set of n data-points

Yt = {y(t); t ∈ (0; (n − 1)∆t)}. (7.2)

as load time-series or simply load. Naturally, building load depends on the behavior of
the inhabitants but can also be affected by a set of exogenous variables Z (e.g., weather)
which might have an effect on Yt.

Considering the nature of awide-scale application on buildings, we formulate the following
requirements for the load forecaster:

Requirement 7.0.1. The forecaster has to be applicable on the largest variety of buildings.
Building domain loads are diverse and include consumers of different size and type. The
characteristics of the corresponding loads can vary significantly depending on the building.

Requirement 7.0.2. The forecaster has to predict the time series that may be neither linear
nor stationary. To a varying extent, the load features trends, cycles, and seasonalities,
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depending on the building. Moreover, the statistical properties of the load might abruptly
or gradually change in an unpredictable way (i.e., concept change).

Requirement 7.0.3. The forecaster must be able to consider data inputs beyond histor-
ical load measurements. Depending on the building, the consumption might depend on
exogenous variables (e.g., weather, price, external control signals etc.).

In this chapter, we describe general characteristics of building loads and provide some
examples justifying the requirements listed above (Section 7.1). We formulate the day-
ahead forecasting problem (Section 7.2) and define the accuracy measures which we will
use to evaluate the models in a wide-scale day-ahead building load forecasting simulation
(Section 7.3), before developing the forecaster in the subsequent chapter.

7.1 Building Loads

Generalizing, there are buildings of two main types: residential and nonresidential. Resi-
dential buildings can comprise households as predominant end-consumers, while nonres-
idential buildings include offices, enterprises and community buildings for culture, sports,
leisure, education or medical care. Every building can either comprise a single (e.g.
household, enterprise) or multiple end-consumers (e.g. apartment/office block). At the
same time, a building of a certain size can often have a mixed purpose. For example, a
large building in a city can have some floors dedicated for shops and offices while others
are strictly residential.

In this section, we discuss the characteristics of building load time-series (Section 7.1.1),
highlight the differences among building types (Section 7.1.2) and discuss exogenous
variables that can affect the electricity consumption of a building (Section 7.1.3). To
exemplify the variety of buildings we use a public smart-meter dataset provided by Irish
Commission for Energy Regulation (ICER)1 [Arc16].

7.1.1 Load Measurement Time-Series

Subsequently, we discuss the characteristics of the time series representing the electric-
ity consumption of buildings. Depending on the building, load time-series often feature
cycles and various seasonalities. Moreover, building power demand is affected by the

1 We describe this dataset in detail in Section 9.1.1. In this section, we provide a four-digit ICER dataset
smart-meter ID in parenthesis (e.g., Household (1234)) to facilitate the further study for interested
readers. This dataset was collected in the Greater Dublin Area, where households correspond to the
single family homes. In this thesis, we use the both terms interchangeably.
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nonstationary end-consumer behavior that obstructs the modeling using traditional time
series analysis. We study the predictability of different load types considering the auto-
correlation of the time series and discuss various exogenous variables that can affect the
power demand of a modern building.

7.1.1.1 Annual Cycle

Electricity consumption of a building can follow an annual cycle related to the seasons of
the year. Generally, the inhabitants tend to spend more time in the building during the
colder months which results in higher average consumption during this period. Annual
cycle is particularly notable if a facility is equipped with electrical heating, ventilation, and
air-conditioning (HVAC) systems. In this case, the dependency on the outside temperature
is more pronounced than in a thermally heated building.

In contrast to the transmission system load, the dependency of the daily consumption on
the month varies among the buildings. In the electrically heated buildings, we can expect
a consumption peak during cold months where the monthly demand can be double as high
as in summer (Figure 7.1). Alternatively, buildings with active air-conditioning might have
the highest consumption during the warmer months (Figure 7.2).

However, it can be challenging to identify the annual cycle in a building load time-series
(Figure 7.3). We can often encounter buildings with no air-conditioning which are heated
thermally by a boiler or a district heating network while thermally cooled buildings are
also also becoming more common2. Moreover, the annual temperature cycle might change
depending on the arrival of the cold season which increasingly varies from year to year.

7.1.1.2 Seasonalities

Building electricity consumption features weekly and daily seasonalities. We study the
patterns in daily and weekly consumption considering load profiles for each day of the
week. For instance, a residential building often has distinguishable morning peaks on
each workday (Figure 7.4). The median load curves are similar among each other during
the week. During the weekend, the load profile is visibly different and exhibits higher
variance while its morning peak is broader.

The distinction between demand patterns during the week and on weekends can be more
notable for nonresidential buildings whose consumption is strongly dependent on the busi-
ness hours. Consider the load of a small enterprise in Figure 7.5. There, the dependency

2 In the future, district cooling network and passively cooled buildings can often be encountered [GFI18].
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is clear and follows the workday calendar. The pattern is more pronounced considering
hourly load distribution (Figure 7.6).

Business hours can be different for each enterprise and, thus, cannot be universally deter-
mined by the workday calendar of a country where the building is located. To illustrate
this, we consider another commercial building whose load we depict in Figure 7.7 and
highlight its daily pattern in Figure 7.8. This enterprise is allegedly open every evening
except on Tuesday. Such unusual business hours show that, depending on the particular
consumer, the load can, to a varying extent depend, on weekday and workday calendar.

Overall, statistical properties such as the mean and variance often depend on the weekday.
Therefore, weekly and daily seasonalities are the source of a nonstationarity that has to be
addressed by a building load model. The forecaster must be able to predict recurrent daily
pattern and seasonal weekly changes in consumption.
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Figure 7.1: Electricity consumption of an electrically heated single family home (Household (1176) from
the ICER-dataset [Arc16]). Subplots: (a) load time-series normalized by the maximal value;
(b) monthly consumption; (c) load time-series on a selected week in winter; (d) load time-series
on a selected week in summer. The power demand in winter is notably higher that in summer.
Presumably, the house is heated electrically which increases the load during the colder months.
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Figure 7.2: Electricity consumption of a single family home with an air-conditioning (Household (1539)
from the ICER-dataset [Arc16]). Subplots: (a) load time-series normalized by the maximal
value; (b) monthly consumption; (c) load time-series on a selected week in winter; (d) load
time-series on a selected week in summer. The power demand in summer is notably higher
that in winter. Presumably, the house is cooled actively by an air-conditioning system which
increases the load during the warmer months.
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Figure 7.3: Electricity consumption of a single family home (Household (3781) from the ICER-dataset
[Arc16]). Subplots: (a) load time-series normalized by the maximal value; (b) monthly
consumption; (c) load time-series on a selected week in winter; (d) load time-series on a
selected week in summer. There is no clear dependency between the load and the season of the
year. The slight demand difference between January and July can be explained by the habits of
the users which tend to spend more time indoors during the winter months.
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Figure 7.4: Daily load profile and hourly load distribution of a single family home (Household (1176) from
the ICER-dataset [Arc16]). For each hour, the distribution of load measurements is represented
by a compact box-plot (grey) including outliers (purple). The line interconnects the median
values for each hour representing the load profile (red). Each of the seven panels shows the load
profile for the corresponding day of the week. FromMonday to Friday there is a distinguishable
morning peak and the load profiles are similar among each other. During the weekends, the
profiles are visibly different, and the load exhibits higher variance while its morning peak is
notably broader.
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Figure 7.5: Electricity consumption of a commercial building (Enterprise (6520) from the ICER-dataset
[Arc16]). Subplots: (a) load time-series normalized by the maximal value; (b) monthly
consumption; (c) load time-series on a selected week in winter; (d) load time-series on a
selected week in summer. The electricity consumption pattern corresponds to the common
business hours following the workday calendar.
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Figure 7.6: Daily load profile and hourly load distribution of a commercial building (Enterprise (6520) from
the ICER-dataset [Arc16]). For each hour, the distribution of load measurements is represented
by a compact box-plot (grey) including outliers (purple). The line interconnects the median
values for each hour representing the load profile (red). Each of the seven panels shows the load
profile for the corresponding day of the week. The electricity consumption pattern corresponds
to the common business hours following the workday calendar.
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Figure 7.7: Electricity consumption of a commercial building (Enterprise (2916) from the ICER-dataset
[Arc16]). Subplots: (a) load time-series normalized by the maximal value; (b) monthly
consumption; (c) load time-series on a selected week in winter; (d) load time-series on a
selected week in summer. The electricity consumption does not follow the workday calendar.
Presumably, this enterprise opens every evening except on Tuesday.
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Figure 7.8: Daily load profile and hourly load distribution of a commercial building (Enterprise (2916) from
the ICER-dataset [Arc16]). For each hour, the distribution of load measurements is represented
by a compact box-plot (grey) including outliers (purple). The line interconnects the median
values for each hour representing the load profile (red). Each of the seven panels shows the load
profile for the corresponding day of the week. Load profiles indicate that this enterprise has
unusual business hours and is closed on Tuesday.
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7.1.1.3 Nonstationarity of Load Measurements

Building load measurements are nonstationary and change their statistical properties over
time. There is a gradual drift (i.e., concept drift) of the average daily consumption
following the annual cycle (Section 7.1.1.1). Moreover, mean and variance of the load
change depending on weekday and the time-of-day (Section 7.1.1.2). Apart from these
changes, we can expect the situations where low-voltage end-consumers abruptly switch
their behavioral pattern. In a small building, the few end-consumers can be suddenly
absent (e.g., vacation) or the business might temporally close for various reasons (Figure
7.9). Some equipment can operate only during certain periods of time (e.g., storage) or
is used only on particular days (e.g., additional heating). New equipment can be installed
or removed from the building. Most often, we can only presume why the change in
load characteristics happened. Generalizing, a building load can be highly nonstationary,
featuring predictable (cycles, seasonalities) and unpredictable changes of the statistical
properties. This needs to be considered by an appropriate choice of a model and its setup.

Figure 7.9: Examples of building load nonstationarity. The subplots show electricity consumption of
various buildings from the ICER smart-meter dataset [Arc16] that abruptly change their time-
series characteristics over the course of a year. For each residential (red) and commercial
(grey) building we provide the corresponding smart-meter dataset IDs in parenthesis. We can
see examples where the inhabitants of a building are suddenly absent (2803) or the business
remains temporary closed (1345). In some examples, we presume that a new piece of equipment
is installed or uninstalled, or that an additional electrical HVAC is switched on only on particular
days (3715, 2023, 514, 2488). At the same time, the installed equipment (e.g., storage) can
operate only during a certain period of the year (2488). Often, we do not know why certain
change in the consumption pattern happened (1525, 4730).
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7.1.2 Types of Building Loads

There are some general differences between the load of residential and nonresidential
buildings. While both types of loads often follow an annual cycle (Section 7.1.1), the elec-
tricity consumption of nonresidential buildings shows clearer distinction between working
and idle hours where the load is often minimal. In contrast, residential buildings can have
similar load profiles across different days of the week disregarding the day-type. Moreover,
residential consumption is much more volatile as it highly depends on the end-consumer
behavior which makes it harder to predict (Figure 7.1, 7.2 and 7.3).

The predictability of a time series can be studied using the notion of autocorrelation. To
do so, we compute the correlation (Definition 4.0.10) of a time-series observation yt with
the preceding observation yt−p using the autocorrelation coefficient3
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]) (7.3)

defined for each time-point t and lag p. Note that the autocorrelation coefficient varies
from γy,y(p) = 1 indicating ideal positive (yt = yt−p) and γy,y(p) = −1 indicating ideal
negative relationship (yt = −yt−p). Autocorrelation coefficient represents the strength
of a linear relationship and can be represented as an autocorrelation function (ACF) on
a correlogram where γy,y(p) is plotted against the lag p. In a time series with a strong
trend, the nearby observations have similar values. This is reflected in larger magnitude
of the ACF for smaller lags and its slow decay. Moreover, the ACF reflects the time series
seasonalities. In particular, the ACF has notable peaks for the lags corresponding to the
multiples of the repeating pattern frequencies.

We compare the correlograms for a residential and a commercial building (Figure 7.10).
Observe, that the ACF of a commercial building is notably higher which indicates that the
load curve is smoother and more regular. For both buildings, there is a visible increase
at the lags corresponding to the multiple of 24 hours and seven days indicating daily and
weekly seasonality. The latter is particularly strong for the commercial building.

Generalizing, it is easier to predict the load of a commercial building because it features
stronger weekly seasonality and a dependency on the work-day calendar (Figure 7.11). On
numerous buildings, we observed that the ACF of commercial loads tends to be higher

3 The derivation using the probability limit can be found in Chapter 3 of [Ham95]. Note that because
of the term

∑T
t=1
(
yt − E

[
yt

])2, autocorrelation coefficient is not defined for constant time series.
Further, the lagged time series is not defined for t < p + 1. In general, an autocorrelation coefficient
depends on time, since nonstationary series change their statistical properties over time such as the
expected value or variance. However, this dependency is often disregarded in practice.
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Figure 7.10: Autocorrelation function of a residential (Household (1176)) and a commercial (Enterprise
(2916)) building from the ICER smart-meter dataset ICER smart-meter dataset [Arc16]. The
panels at the bottom show the enlargement for smaller lags of the corresponding plots at the
top. There is a visible increase of the autocorrelation for the lags corresponding to 24 hours,
seven days and their multiples. This indicates the presence of a daily and weekly seasonality
in the load time-series. The commercial building has notably higher autocorrelation which
indicates that its load is more regular (i.e., autocorrelated) and might be easier to predict than
the load of the residential building.

compared to the residential loads. The increase of ACF at the lags corresponding to the
weekly patterns is also more substantial. Other researchers made similar observations
[AT14].

Disregarding the type of a building load, its predictability depends on its size (Figure
7.12). The load curve becomes visibly smoother (Figure 1.1) with the increase of level of
aggregation and load size. As a result, the autocorrelation of the load time-series increases
(Figure 7.12). In fact, load size is the most important factor for the forecast accuracy, as
we will see further in the text.
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Figure 7.11: Autocorrelation functions of 887 residential (top) and 175 commercial buildings from the
ICER smart-meter dataset ICER smart-meter dataset [Arc16]. For each lag, the multitude of
the autocorrelation function values is represented with percentiles (pct) and the median. There
is a visible increase of the lags that are a multiple of 24 hours. This increase indicates the
presence of the daily seasonality in the most loads within the dataset. There is also an increase
at the lags that are multiples of seven days that indicates to the weekly seasonality. This
increase is more notable for commercial loads that feature strong weekly patterns related to
their business hours. Moreover, the autocorrelation of the commercial loads is higher indicating
that these loads are, in general, more regular (i.e., autocorrelated) and easier to predict.
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Figure 7.12: Autocorrelation functions of residential aggregations of various sizes. Each building is rep-
resented by an aggregation of households from the ICER smart-meter dataset [Arc16]. The
magnitude of the autocorrelation function increases with aggregation size indicating the cor-
responding load curves are smoother (Figure 1.1) and easier to predict.
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7.1.3 Exogenous Variables

Electricity consumption of a building ismostly autoregressive but can depend on exogenous
variables such as weather4 or external control signals. The extent of such dependency
is case-specific. In general, building power demand depends mainly on human behavior
patterns and less on the short-termweather changeswhileweather becomesmore important
for larger load aggregations [FBP11, SR18]. However, considering exogenous variables
can improve the forecast of a building load in certain cases (Section 5.2). While univariate
autoregressive models can be sufficient for the most buildings, for some, a multivariate
model considering exogenous variables as external inputs can be more accurate.

For buildings with electrical HVAC-systems, there is an obvious dependency between
power consumption and the outside ambient temperature (OAT). The relation between
both variables is affected by the magnitude of the temperature [AKS14]. When it is cold
outside, there is a negative correlation as more electricity is required for heating. When
it is hot, the correlation is positive – the power required for cooling increases with the
temperature. Typically, there is also a temperature range where neither heating nor cooling
is required and the correlation is non-existent. The degree to which temperature and the
load are interrelated depends on the building, its insulation and installed appliances.

Increasingly, buildings become producers of electricity and participate in demand response
by interacting with external control signals (Chapter 6). The net consumption of a building
with a photovoltaic (PV) generator depends on intermittent solar irradiation and can be
increasingly volatile. Batteries can mitigate the volatility, yet overall consumption will
depend on the amount of insolation. At the same time, a storage can allow the building to
adjust its consumption following variable electricity prices or other external signals.

The extent to which exogenous variables affect the load depends on the given building
and its energy equipment. The probability to encounter a building with electrical HVAC,
PV-generator, or a battery depends on the country. Some countries have high penetration
of electrical heating (e.g., France) while in the others the buildings are, predominantly,
heated thermally (e.g., Germany) [ÜVCS+15]. Moreover, PV-panels on buildings are
more common in certain regions.

Considering exogenous variables as external inputs to a load forecastingmodel can improve
the accuracy in some cases, yet raises several issues when done for numerous different
buildings. For instance, weather-related inputs will not be available ex-ante, and require a
prediction. An uncertainty of a weather forecast can consume any potential advantage of

4 While there are various variables describing weather (outside temperature, windspeed, solar irradiation
and humidity), outside ambient temperature and solar irradiation are often the most important for
individual buildings [BZN+19].
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using it as an external input. At the same time, historical weather data required to train the
model might not be available for some sites. Despite a common preconception, various
researchers observed that the accuracy improvement of a forecasting model using weather
can be negligible or even negativewhen predicting smaller loads (Section 5.3.1). Moreover,
when considering external signals, we have to acknowledge that explicit measurements on
the appliances that are affected the most by those inputs might not be available.

Therefore, we should minimize the number of the external inputs that are considered by
default, when developing amodel to be applied on various different buildings. For instance,
we can often assume that the instantaneous weather changes do not substantially affect the
load of individual buildings5. Instead, we can consider the month and day arguing that
the temperature does not change considerably from hour to hour [HBA+14, HGZA18].
Ideally, we need a forecasting model that is autoregressive but can optionally consider
exogenous variables that might be important in some special cases.

7.2 Wide-Scale Day-Ahead Load Forecasting

Smart grids require wide-scale day-ahead forecasts for effective operation. Currently,
loads in the distribution system are predicted using standard load profiles. However,
the consumption patterns change following increasing adoption of smart buildings with
decentralized renewable energy generators and storages. This development requires novel
approaches for wide-scale building load forecasting (Section 7.2.1). Many of the proposed
methods were developed for the one-step ahead intraday forecasts. However, for a day-
ahead forecast, we need to predict several consecutive values at once (Section 7.2.2). We
formulate corresponding forecasting problem mathematically at the end of this section
(Section 7.2.3).

7.2.1 Local Load Forecasting in Smart Grids

The notion of a smart grid includes smart buildings that are equipped with renewable
energy generators and can adjust their consumption according to external inputs. Local
load forecasts at the level of single buildings allow the smart grid to apply demand
response locally (Chapter 6). When local demand can be met with local generation, the
energy transmission becomes more efficient. As this concept gets commonly applied in
modern distribution systems, the operators will require a method for wide-scale local load
forecasting. In this context, we introduce the following definitions.

5 In contrast, transmission-system-level loads are characterized by their seasonality, regularity, and sen-
sitivity to meteorological conditions (Section 5.1).
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Figure 7.13: Before-the-meter building load forecasting in a wide-scale application (Definition 7.2.1). In
this application, we might not have any explicit knowledge about the building Y or the data
from its internal sensors. Forecast ŷ(t + h) has to be computed relying on net electricity
demand measurements y(t) and the prediction Ẑ(t + h) of the exogenous variable Z(t).
Further discussion is provided in the text.

Definition 7.2.1. Wide-scale local load forecast is a before-the-meter prediction of the net
electricity demand on a large and diverse set of local loads connected to the distribution
system that is obtained without any explicit domain knowledge.

Definition 7.2.2. Local load is a load connected to the distribution system that includes
only few end-consumers located in the same geographical area (e.g., buildings).

Definition 7.2.3. Explicit domain knowledge in the context of load forecasting denotes
explicit knowledge about the predicted load such as its size, type, or installed equipment.

In the forecasting literature, researchers often use explicit domain knowledge to set up
and manually fine-tune their building load model (Chapter 5). If we intend to forecast
numerous local loads, we might not have any information about each building and its
appliances installed behind-the-meter. In our case, we can only use the net demand
measurements and commonly available exogenous variables as the inputs for our model6.

For a wide-scale forecast, each building load has to be predicted before-the-meter i.e.,
without any data from within the building (Figure 7.15). We can represent the building as
a stochastic process Y . Given multivariate input7 Z(t), the building responds with a net
electricity consumption y(t) that we predict with horizon h. To do so, the load forecaster
Fy uses historical observations of y(t), Z(t) and the input prediction Ẑ(t + h) computed
by a separate model Fz (e.g. weather forecast).

6 Following an area-wide introduction, smart meters will provide load measurements of each low-voltage
consumer. External inputs like calendar information or low resolution weather data are also available
on a wide scale.

7 Inputs may include weather and external control signals as discussed in Section 7.1.3.
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Figure 7.14: Strategies for multistep predictions: (a) recursive, (b) direct, (c) multi-out. Description is
provided in the text.

Table 7.1: Summary of multistep strategies and corresponding model architectures predicting n consecutive
time steps simultaneously. Themodels are denoted using following acronyms: single (S),multiple
(M), input (I), output(O). Forecast horizon of each individual model is denoted in parentheses.

Input Recursive strategy Direct strategy Multi-out strategy
univariate SISO(n) n × SISO(1) SIMO(1)
multivariate MISO(n) n × MISO(1) MIMO(1)

A forecasting model is said to be process-based8 if it is obtained using explicit knowledge
about the underlying stochastic process. Alternatively, data-driven9 models can be formu-
lated using onlymeasurements of inputs and outputs. In absence of any explicit information
about the load, for a wide-scale load forecasting application, we need a data-driven model
that does not require any manual setup or parametrization. Moreover, focusing on the
day-ahead prediction of the entire load curve, we have to extend the forecaster to calculate
several time steps at once, as we discuss next.

7.2.2 Multistep Prediction

Many of the existing load forecasting methods originate from the research where only
one-step ahead forecast is required or considered (Chapter 5). Such predictions mostly
correspond to the intraday load forecasting. When focusing on the day-ahead forecasting
we need to consider multistep predictions requiring us to predict n consecutive values at
once. To do so, there are several strategies to adjust a one-step ahead forecasting model
for a multistep prediction (Figure 7.14)10.

8 Process-based models are also called physical and are common for building simulations. Under the
name model-based approaches, they can also be found in other research fields such as econometrics.

9 Data-driven models are also called statistical in some contexts.
10 See [Tai14, BTBAS12] and references therein for an in-depth discussion on different strategies and

comparison of the strategies in terms of performance on different datasets.
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Recursive strategy implies forecasting one-step ahead and using the forecast value ŷt+1 as
the observation with which the forecast is done for t + 2 and so on. The fundamental
drawback of such strategy is the sensitivity to the forecast error in each step – the error
accumulates while advancing the multistep forecast.

Direct strategy requires to set up and train n individual models F (1)
y , . . . , F (n)

y – one for
each time step we are predicting. By doing so, we avoid the propagation of the error present
with the recursive strategy. However, direct strategy disregards any dependency between
the predicted time steps. Moreover, it is computationally expensive, since we have to train
n different models. This can become an issue for models with computationally intense
training phase such as many parametric models.

Multi-out strategy considers the dependencies between the predicted time steps. It avoids
the conditional independence assumption made by the direct strategy, but requires a
complex model with a vector output Y ∈ Rn.

Each of the strategies can be realized through one of the model architectures listed in Table
7.1 and presented in Figure 7.14. Given a univariate time series, a recursive multistep
forecaster with a set of internal delay elements results in a SIMO-model. Its prediction can
be accurate if we have a good model of the underlying process. The direct strategy requires
to set up and train n SISO-models, or, if several inputs are to be considered, n MISO-
models. Such approach is the most common for day-ahead load forecasting (Chapter 5).
To follow the multi-out strategy, we need to develop and train one MIMO-model with n

outputs corresponding to the points of the forecast curve. For example instead of training
n ANN-models, we can train a one, more complex network with n outputs.

7.2.3 Day-Ahead Building Load Forecasting Problem

We can now mathematically formulate the day-ahead building load forecasting problem.
The before-the meter prediction of building net electricity demand is illustrated in Figure
7.15.

For ease of exposition, and without restricting the generality, we assume that the forecast
has to be done shortly before midnight for the entire upcoming day11. The smart meter M
provides us with load measurements that we divide into daily load curves

Yj(t) = (y(t); t ∈ [(j − 1)∆st, j∆st] with j = 1, . . . , m) , (7.4)

11 Such approach is commonly used in the literature on day-ahead load forecasting [CPR19, AVR16,
APS06, PS13]. In praxis, the exact time at which we calculate the day-ahead forecast depends on the
particular application.
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Figure 7.15: Before-the-meter forecast of a building load. At the time t and for a given independent variable
zt (e.g., weather), a building represented by the stochastic process Y responds with a load yt.
Delays values of zt and yt are fed respectively into the forecasters V for external variables and
F for the yielding the forecasts ẑt and ŷt.

where ∆st = 24 hours and m is the number of observed days. Herewith, each curve Yj

corresponds to the load measured on the day j, whereby Ym is the observation of the most
recent 24 hours.

Each load curve can be represented by a set of time-discrete measurements

Yj = [Yj(t1), . . . , Yj(tn)], (7.5)

where Yj(ti) with i = 1, . . . , n denotes the measurement of the daily load curve Yj at the
time ti where n corresponds to the smart-meter resolution.

Given m daily load curve observations Y1, . . . , Ym, corresponding input observations
Z1, . . . , Zm, and the input forecast Ẑm+1 for the upcoming day, we need to find a prediction
Ŷm+1 of the next-day load curve:

Ym+1 = [Ym+1(t1), . . . , Ym+1(tn)], (7.6)

that will minimize the forecast error according to the measures we discuss in the next
section.

7.3 Forecast Evaluation Methodology

In this section, we discuss the forecast evaluationmethodology for assessing and comparing
predictive models in the context of wide-scale building load forecasting. We begin by
describing various traditional error notions to quantify the accuracy of a daily load curve
forecast. Additionally, we introduce an error notion that is more adequate for assessing
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low-voltage load forecasts than the traditional notions (Section 7.3.1). Afterwards, we
discuss how to compare the forecasts of different loads, considering the error scale and
stochastic variation (Section 7.3.2). We conclude this section summarizing the insights
and formulating the methodology for evaluating the building load forecasts in the context
of a wide-scale application (Section 7.3.3).

7.3.1 Daily Error Notion

Assessing forecast accuracy of a volatile and intermittent time series is not a trivial task.
In our case, building load can often be negligible or even zero over a considerable period
of time12. We might also encounter negative load in a case where energy production of a
building is larger than its consumption13. To evaluate a day-ahead building load forecast,
we need a primary error notion that can cope with the specifics of volatile low-voltage
load time-series and allows us to access the forecast accuracy on a daily basis. Below,
we consider several error notions that can be used to evaluate forecast accuracy of a given
daily load curve.

7.3.1.1 Point-Wise Error Notions

Traditionally, error notions used to evaluate the forecast accuracy quantify the point-wise
deviation between the actual and the forecast time series. Such notions, commonly found
in the literature, are based on the concept of a residual (error).

Definition 7.3.1. Residual
ϵi = Y (ti) − Ŷ (ti) (7.7)

is the deviation of the forecast value Ŷ (ti) from the actual value Y (ti) at the time point ti.

Studying the residual time series, ϵ = [ϵ1, . . . , ϵn], we can draw preliminary conclusions
about the goodness of a forecast and its possible bias. Moreover, we can define a daily
error notion that quantifies the forecast accuracy on a given day. Subsequently, we present
the most common traditional error notions for doing so.

Definition 7.3.2. Mean average percentage error (MAPE) is defined as:

MAPE = 100% · 1
n

n∑
i=1

| ϵi

yi

|. (7.8)

12 For example, a small enterprise can be closed for a vacation.
13 For example, a single family home with a large PV-installation might sometimes have negative net

electricity demand.

102



7.3 Forecast Evaluation Methodology

This error notion allows a scale-free comparison between the forecasts and is one of the
most widely used error notions found in the load forecasting literature (Chapter 5).

However, for several reasons, MAPE is inadequate to measure forecast accuracy on low-
voltage loads. In a situation where yi can be very small or even zero14, MAPE can
grow to infinity which can substantially distort the result. Moreover, this error notion
is not symmetrical since it has a bias favoring the underestimates of an actual value15.
Therefore, MAPE that is commonly used in the forecasting field can be a poor accuracy
measure for low-voltage load forecasts [Arm85,HGZA18]. Alternatively, there are various
symmetrical error notions that are also common.

Definition 7.3.3. Mean average error (MAE) is defined as:

MAE = 1
n

n∑
i=1

|ϵi|. (7.9)

The MAE measures the average magnitude of absolute differences between actual obser-
vations and their predictions with all residuals ϵi having an equal weight.

Definition 7.3.4. Root mean square error (RMSE) is defined as:

RMSE =
√√√√ 1

n

n∑
i=1

ϵ2
i . (7.10)

The RMSE measures the average magnitude of squared residuals.

Both, MAE and RMSE are absolute and negatively oriented16 notions measured in units
of the forecast variable. Both error notions are based on the ℓp-norm and are linked in
terms of the bounds derived with the Cauchy-Schwarz inequality:

MAE ≤ RMSE ≤
√

n ∗ MAE. (7.11)

However, there is also an important difference between the two notions. In case of MAE,
all residuals ϵi have the same weight when computing the average. In case of RMSE, the
errors ϵi are squared before averaging, which increases the emphasis on larger residuals.
On smaller loads where such residuals are often, there can be a notable deviation between
both notions (Figure 7.16). On larger loads, both errors are strongly correlated.

14 Consider previously discussed weekly patterns of individual buildings.
15 Consider an example where with y = 150 and ŷ = 100 we obtain MAPE = 33% while for y = 100 and

ŷ = 150 we obtain MAPE = 50%.
16 Negatively oriented means that a more accurate forecast corresponds to smaller MAE or RMSE.
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Figure 7.16: Comparison of the MAE and RMSE notions. We applied a naive model (Section 9.2.1.2) pre-
dicting the 300 loads in the validation dataset (Section 9.1.1.3) day-by-day for 100 consecutive
days. For each load, we evaluated the daily forecast accuracy computing the MAE (7.9) and
RMSE (7.10). In the figure, each panel shows the daily forecast errors obtained on individual
loads of the corresponding type. Additionally, we denoted the linear regression line (solid) and
the line representing the ideal correlation (dashed). We observed that both error notions are
strongly correlated. However, the RMSE emphasizes larger residuals which leads to a notable
deviation from the MAE on smaller loads (homes, enterprises) where such residuals occur
more often and larger forecast errors are to be expected.

In building load forecasting literature, RMSE appears to be more prominent. While MAE
tends to be less sensitive to the outliers [Arm01], RMSE is usually preferred, especially
when large residuals are particularly undesirable. This is often the case for the low-voltage
load forecasting where missing a large load spike can theoretically result in a damage of
the equipment [HSG16]. Moreover, RMSE plays an important role within the theory of
statistical learning. In many fields where optimization is applied, the cost function is often
defined as the mean of squared errors and many theoretical results were derived under
such definition [GZ05,CD14,Vap13,FHT08].

7.3.1.2 Permutation-Adjusted Error Notion

Point-wise error notions discussed above can lead to erroneous conclusionswhen evaluating
forecast accuracy on volatile and noisy time series such as low-voltage power demand.
Consider a situation where a model had accurately forecast a load peak in terms of size and
amplitude, but the prediction was slightly displaced in time, relative to the actual peak. If
we were to use a point-wise error notion to evaluate such a forecast, it would penalize the
deviation twice for:

1. missing the actual peak
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Figure 7.17: Example motivating the usage of a permutation-adjusted error notion. In the figure, each panel
shows a different forecast (black) of the same illustrative load curve (red). Four exemplary
forecasts – Ŷ1 (best), Ŷ2 (bad), Ŷ3 (good), Ŷ4 (flat) – were evaluated using different error notions
with the results summarized in Table 7.2. Further discussion is provided in the text.

Table 7.2: Forecast accuracy in the illustrative example (Figure 7.17). Four different forecasts – Ŷ1 (best),
Ŷ2 (bad), Ŷ3 (good), Ŷ4 (flat) – were evaluated with RMSE (7.10) and PRMSE (7.12) allowing
permutations of various range u.

Error notion Permutation range Ŷ1 Ŷ2 Ŷ3 Ŷ4

RMSE 0 0.24 1.4 0.83 0.81
PRMSE 1 0.24 1.4 0.61 0.81
PRMSE 2 0.24 1.4 0.61 0.81
PRMSE 3 0.24 1.4 0.24 0.81

2. forecasting the peak at the wrong point in time.

Under these circumstances, it can be difficult for a plausible prediction to outperform
even a flat forecast that is of little informative value. We demonstrate this on an example
adopted from [HWVG+14].

Figure 7.17 depicts an illustrative load curve Y with four different forecasts Ŷ1, Ŷ2, Ŷ3, Ŷ4.
In this example, Ŷ1 and Ŷ2 are the best and the worst forecasts respectively. Additionally,
for the most use cases, we regard Ŷ3 as superior to a simple flat forecast Ŷ4. Note that
RMSE is based on the ℓ2-norm (Euclidean distance) quantifying the point-wise distance
between the vectors (7.10). Therefore, the flat forecast Ŷ4 has lower RMSE than Ŷ3 (Table
7.2).

While time series can be represented as vectors, in context of forecast accuracy we are
interested in similarity of a forecast to the actual time series, rather than in a point-wise
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distance. As an alternative to a point-wise distance, Haben et al., propose a concept of
the permuted ℓp-semimetric17 which quantifies such similarity rather than a point-wise
distance [HWVG+14]. We use this semimetric to define the following error notion.

Definition 7.3.5. Permuted root mean squared error (PRMSE) is defined as:

PRMSE(Y, Ŷ ) :=

√√√√ 1
n

(
min

π∈P(u,n)

n∑
i=1

|Y (ti) − π(Ŷ )(ti)|2
)

, (7.12)

where P(u, n) is the set of all u-local permutations of n-points. A u-local permutation
rearranges the time series by moving each point forwards or backwards by up to u time-
units18.

Allowing permutations, we get a more adequate evaluation of the curve similarity. Over
the course of this studywe allow permutations up to one hour (independent of granularity).
For our illustrative example, the differences between RMSE and PRMSE can be seen in
Table 7.2. In practice, the difference between a permuted and a traditional error notion,
such as MAE and RMSE, only becomes notable on volatile loads such as single family
homes and small enterprises (Figure 7.18).

With the exception of MAPE, we observed strong correlation among all error notions.
Hence, as also noted by other researchers, it can be superfluous to present the results
in terms of several daily error notions [HGZA18]. Though both MAPE and RMSE are
ubiquitous in the literature, both can be inapt for evaluating forecast accuracy on small
loads. Therefore, unless stated differently, we will use PRMSE (7.12) as the primary error
notion for quantifying daily forecast error.

7.3.2 Forecast Comparison

We need to extend the forecast evaluation methodology beyond the daily error notion, in
order to compare different predictive models applied on various buildings. To compare the
forecasts computed for different loads, we need an error notion that is scale-independent.
Moreover, forecast errors underlie a considerable stochastic variation which requires to
consider their distribution and use appropriate descriptive and inferential statistics in order
to draw any general conclusions about the relative accuracy of different models. In this
section, we discuss how to compare the forecasting models that are to be applied to the
entire building domain rather than to an individual building load.

17 We will discuss the permuted ℓp-semimetric in detail in Section 8.2.2.3.
18 Note that with u = 0, the equation (7.12) corresponds to RMSE.
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Figure 7.18: Comparison of the RMSE and PRMSE notions. We applied a naive model (Section 9.2.1.2)
predicting the 300 loads in the validation dataset (Section 9.1.1.3) day-by-day for 100 con-
secutive days. For each load, we evaluated the daily forecast accuracy computing the RMSE
(7.10) and PRMSE (7.12). In the figure, each panel shows the daily forecast errors obtained
on individual loads of the corresponding type. Additionally, we denoted the linear regression
line (solid) and the line representing the ideal correlation (dashed). We observed that both
error notions are notably correlated. However, the difference between permuted (PRMSE) and
traditional (RMSE) error notion becomes notable on volatile loads such as homes and small
enterprises.

7.3.2.1 Scale-Independent Forecast Error

We need a scale-independent accuracy measure in order to evaluate and compare the
forecasts across the building domain. The absolute prediction error depends on the
magnitude of the time series and one of the main advantages of the ubiquitous MAPE-
notion is its scale-independence. In our context of low-voltage load forecasts, we quantify
the error E using the PRMSE (7.12) which we also make scale-independent by expressing
the forecast error in terms of the error coefficient of variation (ECV)

ECV = E

ȳ
. (7.13)

Herewith, we scale the daily errorE by the average load ȳ and allow a scale-free comparison
of the forecast accuracy. Since ȳ > 0, combining PRMSE with ECV provides a notion
that is less intermittent than MAPE. Though not as ubiquitous as MAPE, expressing the
error in terms of ECV is more adequate for comparing the forecasts of low-voltage loads
and was sometimes suggested in the literature [HGZA18].

Disregarding the notion, daily errors underlie a considerable stochastic variation as we
will see further in the text. This can reduce the sensitivity of an error notion, obstructing
parametrization and comparison between the models. For such case, we can define relative
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error notions. Hyndman et al., advocate the usage of such notions, suggesting to divide
the primary error E by the error of a benchmark model Eb [HK06]. For our study, we
define the improvement as

R = (1 − E

Eb
) · 100%, (7.14)

which quantifies the daily error reduction in % relative to a benchmark.

Researchers often use the naive model as the benchmark. However, in some situations,
this model can achieve very small errors (Figure 7.19) which obstructs an objective overall
evaluation19. Instead, for the evaluation (Chapter 10) we use standard load profiles forecast
as such benchmark since this approach has more consistent accuracy than the naive model.
For themodel parametrization (Chapter 8), the basic setup can be chosen as the benchmark.

When comparing several forecasts, the difference in terms of a daily error or improvement,
might not appear statistically significant at first. We encountered such situations when
assessing the effect of a single model-parameter on forecast accuracy as we do further in
the text. For such case, we can count the days where the model had the same or smaller
error than the benchmark [HGZA18]. Such situations occur when there is a large variation
among daily accuracy observations as we discuss subsequently.

7.3.2.2 Statistical Variation of Errors

Load curves vary substantially depending on the day and building. Consequently, fore-
cast errors underlie a notable stochastic variation depending on the predicted day and
load. Hence, we must consider statistical variation and error distribution when evaluating
forecast accuracy.

For a given load, we cannot expect daily errors to follow the commonly assumed normal
distribution. Forecast errors cannot be negative, hence, their distribution is not symmet-
rical. Further, there might be days of a sudden concept change (e.g., inhabitants leave on
holiday) where the forecast accuracy will drop. If anything, the approximate daily error
distribution is log-normal rather than normal (Figure 7.19).

Under this approximation, we can expect a considerable number of positive outliers and
right-skew of the daily error distribution. For such non-symmetrical and skewed distribu-
tion, summarizing the errors using the mean and variance can be misleading, despite the
common convention. Instead, daily errors should be reported in terms of a median and
the corresponding interquartile range (IQR).

19 Naive model (Section 9.2.1.2) can sometimes have very small errors. For instance, when the electricity
consumption a building is very low for a prolonged period of time.
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Figure 7.19: Daily error distribution shape of a naive model. We applied the naive model (Section 9.2.1.2)
predicting the 300 loads in the validation dataset (Section 9.1.1.3) day-by-day for 100 con-
secutive days. For every daily load forecast, we computed the PRMSE (7.12) expressed in
terms of coefficient of variation (7.13). Each panel shows the daily error distributions in form
of the probability density function (grey) of each load and the average distribution (red) in
the corresponding load group. We observed that daily forecast errors are often approximately
log-normally distributed. Further, the model often produced very small forecast errors since
the naive approach can deliver an almost perfect prediction when the building inhabitants are
absent for two or more days.
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In contrast, the distribution of improvement R can be approximated with a normal distri-
bution (Figure 7.20). The improvement can be both positive or negative. Moreover, the
skew is reduced since on the special days where a model performs poorly, the benchmark
is also likely to be deficient. Hence, we can summarize the improvement on a set of days
or loads using the mean and some notion of variability such as standard error (SE) or
confidence intervals (CI).

To quantify the overall forecast accuracy on a given load, we define the following secondary
error notion.

Definition 7.3.6. Expected daily error (EDE)

EDE = E
[
Ej

]
=
∑m

j Ej

m
(7.15)

is the average of m daily errors Ej obtained by a forecasting model predicting a given load.

Consider the distribution of EDE computed for a group of households, enterprises and
aggregations (Figure 7.21). The distribution is approximately normal for households, yet
is notably asymmetrical and skewed for the other two load types. Therefore, median is
a more appropriate statistic to summarize an EDE-distribution. To quantify the overall
forecast error obtained on a set of loads, we define an additional secondary error notion.

Definition 7.3.7. Total error (TE)

TE = median
[
EDE

]
(7.16)

is the median of expected daily errors obtained on a set of individual loads.

In the load forecasting literature, the results are often reported in terms of some summary
statistics (e.g., EDE, TE) and, if at all, a measure of variability for the given dataset
(Chapter 5). The models are evaluated on a single load or a group of loads and compared
in terms of the overall accuracy obtained on the given dataset.

Tomake general statements about the accuracy of amodel, we have to evaluate it on various
building loads of different type and size. In fact, there is a strong connection between the
load size and the forecast accuracy [HWVA13, SR14, SR18]. Sevlian et al., propose an
empirical scaling law that allows to estimate the forecast error that a model will obtain on
a load of a given size [SR14]. Applying this law, we define a secondary error notion that
allows to estimate model accuracy on the entire spectrum of buildings with all possible
sizes.
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Figure 7.20: Improvement distribution. We applied a naive model (Section 9.2.1.2) and the standard load
profiles (Section 9.2.1.1) predicting the 300 loads in the validation dataset (Section 9.1.1.3) day-
by-day for 100 consecutive days. For every daily load forecast, we computed the improvement
(7.14) relative to the SLP-forecast with the PRMSE (7.12) expressed in terms of coefficient
of variation (7.13). Each panel shows the improvement in form of the probability density
function (grey) of each load and the average distribution (red) in the corresponding load group.
We observed that daily relative forecast errors (e.g., improvement) are often approximately
normally distributed.
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Figure 7.21: Distribution of expected daily errors in different load groups. We applied a naive model
(Section 9.2.1.2) predicting the 300 loads in the validation dataset (Section 9.1.1.3) day-by-day
for 100 consecutive days. For each load, we computed the expected daily error (7.15). In
the figure, each panel represents the distribution in the corresponding load group. The top
panels show the distribution while the lower panels show the corresponding Q-Q-plots. We
observed that the distribution is approximately normal in case of households, yet is notably
asymmetrical and skewed for the enterprises and aggregations. Further discussion is provided
in the text.

Definition 7.3.8. Expected model error (EME)

EME(S) = E
[
ECV | S

]
=
√

α

Sp
+ β (7.17)

is the error that can be expected from a forecastingmodel applied on the load of a given size
S according to the empirical scaling law [SR14] with predetermined parameters p, α, β.

The EME is scale-independent and is related to the load size that we express in terms of
annual consumption (MWh). The relation is determined by the parameters p, α and β

that we compute for the evaluated forecasting model. Given a sample of forecast errors
collected on a set of loads of different sizes, we estimate the values of p, α, β applying a
nonlinear weighted regression technique. Herewith, for a given model and load size, we
can provide an out-of-sample estimation of the forecast accuracy on the loads that are not
part of the evaluated dataset.

As noted previously, larger loads are easier to forecast (Section 7.1) and we can expect
the scale-independent forecast error to decrease with growing building size (Figure 7.22).
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Figure 7.22: Expected model error (EME) of a forecast. The figure shows the 30000 daily errors (grey
dots) obtained by the standard load profile forecast (Algorithm 3) predicting the loads in the
validation dataset (Section 9.1.1.3). Having obtained a set of daily errors according to PRMSE
(7.12) expressed in terms of coefficient of variation (7.13), we computed the EME (7.17) (red
line) according to the empirical scaling law (7.17) using nonlinear weighted regression and
compared it to the ideal scaling (black line). Further discussion is provided in the text.

Indeed, when describing how EME scales with the load size S, we can identify two
regimes. For smaller loads, we have the reduction regime√

α

Sp
≫
√

β, (7.18)

where the EME decreases steeply with increasing load size and closely follows the ideal
error scaling

EME(S) ≈
√

α

Sp
, (7.19)

where parameters p and α determine how fast the error reduces with the size – i.e., slope of
the curve. However, as the load size increases past a certain point, we enter the saturation
regime √

β ≫
√

α

Sp
, (7.20)

where EME converges towards the irreducible error

EME(S) ≈ E0 =
√

β (7.21)
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beyond which the model accuracy will not improve. The size Scrit where the regime
changes, i.e., √

α

Sp
=
√

β, (7.22)

is called critical load size defined as

Scrit =
(

α

β

)1/p

. (7.23)

The secondary error notions (EDE, TE, EME) introduced above allow us to compare
forecasting models in terms of the expected error on a particular load or a group of loads
and estimate the accuracy on the loads which are not part of our dataset. The usual
comparisons of EDE and TE obtained on the loads of a particular type extend the analysis
preventing Simpson paradox and complement the computation of the EME. The EME
estimates the error that we can expect when forecasting a load of a given size. With these
secondary error notions, we can evaluate a forecasting model across the building domain
estimating its accuracy on the loads of different types and all possible sizes.

7.3.2.3 Statistical Tests

Regardless of the chosen notion, forecast errors underlie considerable stochastic variation.
For a given building, daily errors vary substantially depending on the day. Moreover,
overall error will also vary depending on the building. Hence, to compare different models
applied on a single or several buildings, we need to assess if the difference in forecast
accuracy is statistically significant.

Consequently, our evaluation methodology must include the hypothesis testing – a method
of making inferences from empirical evidence [Lav21]. We use samples of observations to
substantiate statements about the underlying population distributions and make the infer-
ences using statistical tests. Prior to conducting a test, we formulate twomutually exclusive
hypotheses about the population distribution. The null hypothesis (H0) is presumed true
until the test indicates otherwise. The alternative hypothesis (H1) can refute the H0 and
corresponds to the investigated question. By comparing the observed samples to what we
would expect if a hypothesis was true, we can draw substantiated conclusions about the
population distributions.

A statistical test can only provide evidence for the H1 with a certain significance level
which represents the probability of mistakenly rejecting the null hypothesis if it was true.
For instance, a commonly used significance level of 5%means that there is a 1 in 20 chance
of doing so. Alternatively, we can also report the p-value representing the probability of
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obtaining the evidence20 at least as extreme as ours if H0 was true. Usually, the results are
viewed as significant for p < 0.05 [Lav21].

There exist different statistical tests for various situations. The choice must depend on the
test assumptions and experiment setup. Imagine, we want to compare the accuracy of two
models predicting a set of load curves21. We collect two samples of daily error observations
and want to know if any of the two models can be expected to be more accurate than the
other. To compare the models, we can use different tests discussed below.

One way to make a statistically substantiated comparison, is to combine both samples into
one by computing the relative error R (7.14) for each predicted load curve. With a sample
of R, we can verify if the expected improvement is significantly larger than zero using the
following test.

Test 1: One-sided Independent t-Test Assuming that the observations are approx-
imately normally22 distributed, this parametric test verifies the following hypotheses:

H0 Population mean is not larger than zero.

H1 Population mean is larger than zero.

With this test, we can provide statistical evidence that a predictive model is significantly
more accurate than a benchmark. To do so, we collect a sample of improvement obser-
vations, conduct one-sided independent t-test and report the mean improvement, 95%-
confidence intervals together with the p-value.

Alternatively, we can test if the observed average difference inmodel accuracy is significant.
Note that the observations in the samples are paired since each model forecasts the same
load curve. Herewith, if an independent test does not provide evidence for statistical
significance, we can apply a paired test that is more sensitive.

Test 2: Paired t-Test This parametric test requires a sample of paired differences.
Assuming the difference observations are normally distributed and there are no extreme
outliers, we verify the following hypotheses:

H0 Population means are equal.

H1 Population means are different.

20 The evidence is commonly expressed in terms of a test statistic.
21 In our case, these curves can be daily load curves of a single building or a set of buildings.
22 In its original form (Student’s t-test), this test also assumes homoscedasticity. Alternatively, its modified

form (Welch’s t-test) can be used if homoscedasticity is not given.

115



7 Problem Formulation

With this test, we can make statistically founded pair-wise comparisons of predictive
models. To do so, we collect the observations of improvement relative to a common
benchmark (7.14), conduct the test for each pair of the models and report the differences
in the mean improvement, 95%-confidence intervals, together with the p-value.

In this case, the usage of a mean as a summary statistic is adequate since the improvement
observations are, disregarding eventual outliers, approximately normally distributed (Fig-
ure 7.20). At the same time, absolute forecast errors (e.g., EDE) are often not normally
distributed (Figure 7.19). To evaluate the differences in absolute forecast errors, we can
use the following nonparametric test that has much weaker assumptions on the sample
distribution.

Test 3: Paired Wilcoxon Signed Rank Test This test is a nonparametric equivalent
of the paired t-test. Unlike the t-test, paired difference distribution does not need to be
normal. Assuming that the distribution is symmetrical, we verify the following hypotheses:

H0 Medians of the population distributions are equal.

H1 Medians of the population distributions are different.

Given that the differences in forecast errors are often symmetrically distributed, we will
use this test to evaluate if the observed difference in median absolute forecast errors is
significant. For each model comparison, we report the median errors together with the
corresponding p-values.

Overall, statistical tests allow us to evaluate the accuracy despite the uncertainty in the
observed forecast errors. Parametric tests havemore power comparing to the nonparametric
tests but have strong assumptions about the sample distribution. We will use the tests
described above to compare forecasting models between each other as a part of our
evaluation methodology summarized subsequently.

7.3.3 Evaluating Models Across the Building Domain

In this chapter, we discussed the specialties of day-ahead building power demand forecast-
ing. We studied the diversity of the loads, which we encounter when applying a predictive
model in the building domain on a wide scale (Section 7.1). In the context of day-ahead
forecasts, we can expect the daily electricity consumption pattern to vary substantially
depending on the predicted day and load. Consequently, the forecast errors of a model
underlie considerable stochastic variation. In order to guide the solution of the wide-scale
day-ahead local load forecasting problem (Section 7.2), we introduce a methodology for
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evaluating predictive models on a diverse set of low-voltage loads that can be found across
the building domain (Section 7.3).

On volatile low-voltage loads, traditional point-wise accuracy measures such as MAPE
and RMSE, that are ubiquitous in the literature, can be deficient (Section 7.3.1.1). Further,
a single forecast error notion can be insufficient to evaluate the accuracy of a building load
forecasting model since building domain includes a large diversity of loads of different
type and size. For an adequate evaluation across the building domain, we need to apply
descriptive statistics considering the stochastic variation of the forecast errors (Section
7.3.2.2). Additionally, forecast accuracy of any predictive model depends on the size of
the predicted load. Therefore, we need to estimate the forecast error that we can expect on
a building of a given size, when considering a model for a wide-scale application across
the entire building domain. Moreover, we have to rely on inferential statistics such as
hypothesis testing to assess the significance of the results and avoid case-based reasoning
when comparing different models for the wide-scale day-ahead building load forecasting
application (Section 7.3.2.3).

For our study, we propose a methodology for evaluating predictive models across the entire
building domain. Focusing on volatile low-voltage loads, our methodology is based on
the scale-independent and unitless permuted root mean squared error (PRMSE) which
we use as the primary error notion for quantifying the daily forecast errors. We remove
the scale by expressing the error in terms of coefficient of variation which allows us to
compare the models that were applied to different loads. Additionally, our evaluation
methodology includes various secondary error notions (EDE, TE, EME) that quantify the
overall forecast accuracy obtained on a given load or a sample of loads and are based on
descriptive statistics adequate for the error samples collected within building domain load
forecasting. Given a sample of forecast errors obtained predicting the loads of various
size, we can apply the empirical scaling law estimating the error which we can expect
from the model when predicting a load of a given size. Therefore, the proposed evaluation
methodology allows to compare forecasting models in terms of the expected error on a
particular load or a group of loads and estimate the accuracy on loads that are not part of
the given dataset.

With our methodology, we evaluate a predictive model proceeding as follows:

1. We apply the model computing day-ahead load forecasts on a diverse smart-meter
dataset23 that includes buildings of different type and size.

2. For each forecast, we compute the daily error (7.12) expressed in terms of the
coefficient of variation (7.13).

23 An example of such dataset can be found in Section 9.1.1.
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3. For each load, we compute the EDE (7.15) obtaining a sample consisting of EDE-
observations.

4. Preventing Simpson’s paradox, we split the EDE-sample into load groups condition-
ing on the consumer type and size. For each group, we quantify the overall accuracy
computing TE and IQR (7.16).

5. If possible24, we use the daily error sample to estimate the parameters α, β, p for the
EME computation (7.17). With these parameters, we compute the critical load size
Scrit (7.23) and the irreducible error E0 (7.21).

Having followed these steps, we can compare different forecastingmodels using appropriate
statistical tests (Section 7.3.2.3). In particular, we can compare:

• EDE-distribution and its summary statistics (TE, IQR) in each load group

• improvement relative to a common benchmark forecast in each load group

• critical load size Scrit

• irreducible error E0.

The proposed forecast evaluation methodology allows to access and compare forecasting
models across the building domain estimating their accuracy on the loads of different types
and all possible sizes. In the subsequent chapters, we consider various predictive models
which we will evaluate applying the proposed methodology.

24 To estimate the parameters determining the error scaling (EME), smart-meter dataset must include the
loads of various size with larger loads exceeding 100 MWh of annual consumption.
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8 The Forecaster

In this chapter, we present the model that can be applied for a wide-scale day-ahead
building load forecasting. In this application, explicit knowledge about each building and
its physics is not available (Section 7.2.1). Hence, we focus on developing a data-driven
regression-based model. Subsequently, we solve the forecasting problem (Section 7.2.3)
using statistical learning theory1 and considering time-series nature of the data.

To outline the solution, we assume that x, y ∈ R, though same argumentation holds for
multidimensional spaces X ∈ Rq, Y ∈ Rn. Further, we consider each point of the time
series Yt as being generated by the regression model

y = r(x) + ϵ, (8.1)

where regression function r(x) describes the deterministic relationship between x and y.
A random additive error ϵ captures all other influences independent of x.

Given a set of functions rα(x), α ∈ Λ indexed by a parameter or a set of parameters α, we
intend to select rα using a sample of m input observations Xs and output observations Ys

combined into a training set

T := {(xj, yj) | 1 ≤ j ≤ m} with xj, yj ∈ R (8.2)

minimizing the expected prediction error (EPE)

EPE(r) = E
[
L(y, r(x))

]
, (8.3)

where L(y, r(x)) is a predefined loss function for which applies

L(y, r(x)) ≥ 0, ∀x, y ∈ R. (8.4)

For finding r, the following assumptions are common for the regressionmethods developed
within the theory of statistical learning [FHT08,Vap10]:

1 For more details, see comprehensive works by Vapnik [Vap10] and by Friedman et al., [FHT08].
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Assumption 1. Unbiased error i.e.,

E
[
ϵ
]

= 0. (8.5)

This assumption simplifies mathematical derivations and, once we have a prediction, we
can validate this assumption by examining the forecast error. An existing systematic error
E
[
ϵ
]

> 0 named bias should be considered by the model2.

Assumption 2. The data in T are sampled independently and identically distributed (IID)
from an unknown but constant distribution expressed through a joint PDF f(x, y).

Data-points are assumed to be uncorrelated and obtained from the same distribution.
This assumption is fundamental for large parts of the theory and is standard in machine
learning applications3. It implies that the data-points carry the same information about
Y , independently from each other. For a random set of points, there must be a common
generative mechanism that we intend to learn about4. Assuming T is IID simplifies the
underlying derivations and is necessary for many statistical inference methods5.

Assumption 3. Output values yj are observed following an unknown but constant condi-
tional distribution f(y|x = xj).

This assumption states the existence of a conditional PDF f(y|x) that we intend to learn.
In other words, for all j = 1, . . . , m, recorded data yj depends on j only through xj which
makes our model useful for prediction.

With the above assumptions, we expand EPE (4.2) to

EPE(r) = E
[
E
[
L(y, r(x)) | x

]
y|x

]
x

=
∫ ∞

−∞
E
[
L(y, r(x)) | x = x′

]
y|x

dx′, (8.6)

2 It is also common to assume that the error has a zero-mean Gaussian distribution. This assumption is
useful but not necessary for the consistency of the derived models as it was shown by [Hub64].

3 See [FHT08, JWHT13,Vap10,VS78] and the references therein.
4 If every data-point is generated by a different PDF, having a sample Xs = x1, . . . , xm is equivalent to

estimating an m-dimensional PDF using just one point in a training set – an infeasible task.
5 While IID assumption is very strong, theoretical results such as proofs of model consistency or error

bounds calculation – all rely on some kind of assumptions about f(x, y). Assuming IID is sufficient,
though, not always a required condition. In general, it is not required for some of the, so called,
discriminative models such as ANN, random forests and regression trees. Even if this assumption does
not hold, a method can still provide a sensible estimation of f(y|x). Further, this assumption can be
substituted by other, weaker assumptions, such as exchangeability, conditional independence, ergodic
data generating process or sufficiently fast mixing [KM].
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where (8.4) assures that the loss expectation is non-negative. Hence, a regression function
r0 that minimizes EPE(r) can be found as6

r0(x) = arg min
ra

E
[
L(y, ra(x′)) | x′ = x

]
y|x

. (8.7)

We can show that the theoretical best fit solution is [FHT08]

r0(x) = E
[
y | x′ = x

]
y

(8.8)

using the common squared error loss function

L(y, r(x)) = (y − r(x))2. (8.9)

In praxis, there are different regression methods that can find an approximately best
solution (Chapter 4). For our application, we are predicting nonstationary time series and
are confronted with the following situation:

• The data in T is not independent, but correlated in time.

• The data in T is not identical since the underlying PDF changes over time.

• Selecting a random subset of T disturbs the autocorrelated structure of the data.

• Once a good solution close to r0(x) is found, it remains valid only as long as the
expectation E

[
y | x

]
y
remains approximately constant.

Under these circumstances, the assumptions above might not hold. Therefore, using
traditional parametric regressionmethodsmight not be the best approach for our application
and we have to develop a novel, specialized method for the data-driven load forecasting.
Considering the differences between parametric and nonparametric models (Chapter 4),
we focus on developing a forecaster based on a nonparametric regression technique due to
the following reasons.

Reason 1. Nonparametric regression does not require the existence of a globally valid
relationship between inputs and outputs.

Building electricity consumption can notably depend on human behavior. Inhabitant
activities are difficult to model by a constant function f(y|x) that is valid for all inputs
(i.e., globally). However, assuming that such relationship exists is fundamental for the

6 This can also be formulated in terms of risk and empirical risk minimization (ERM) problem for a
discrete set T which is more common for the machine learning field of study [Vap91].
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parametric regression approach7 (Section 4.1). Alternatively, nonparametric techniques
model the input-output relationship only in the vicinity of a given x (i.e., locally) and do
not require any a priori knowledge about the underlying stochastic process (Section 4.2).

Reason 2. Nonparametric regression typically requires less data than parametric regres-
sion.

Training data can be scarce if a building is new or just underwent a retrofit that might
have considerably changed its energy consumption. A parametric model approximates the
regression function globally, while the number of parameters required to approximate such
function grows with its complexity8. Each parameter requires several training points for
its computation. In contrast, a nonparametric model approximates the regression function
locally while its form is given by the training data itself (Section 4.2). As a consequence,
load forecasting models based on nonparametric regression usually require less training
data (Chapter 5).

Reason 3. Nonparametric models require less computation.

Once trained, a parametric model remains valid for a short time due to the nonstationarity
of our data (Section 7.1.1.3). The model has to be retrained regularly, which further
increases computational burden. Alternatively, nonparametric regression is particularly
adequate for an online training, where the model is retrained after each step and where
new data is continuously added to the training set. Moreover, automatically setting
hyperparameters of a regression model often implies selecting among numerous variants
of the model (Section 4.1.3). Training various models becomes computationally expensive
when multiple hyperparameters have to be set.

These reasons qualify nonparametric regression models for the wide-scale building load
forecasting. Many practical problems feature nonstationary variable data with measure-
ment errors and missing values. The literature shows that the parametric models can be
effective for smooth load time-series encountered with larger buildings or in higher do-
mains of a power system. At the same time, even simple heuristic models have been shown
to outperform sophisticated parametric models on small disaggregated loads (Chapter 5).

In the rest of this chapter, we develop a forecaster based on the nonparametric regression
approach. We begin the exposition, presenting the general setup of a nonparametric model

7 For instance, commonly used ARIMA-model assumes linear relationship between the lags. A model
based on an ANN is more general about its assumptions allowing to model a nonlinear dependency.
However, the function form Λ is still given by the hyperparameters (number of neurons, layers, etc.),
though there is no systematic methodology for the ANN-design.

8 For instance, an ANN-based load forecasting model can have thousands of parameters that have to be
computed during the training phase (Table 9.1).
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that considers the seasonalities of the load and allows automated parametrization (Section
8.1). Subsequently, we introduce the functional neighbor methodology and propose a
load forecasting algorithm for predicting building power demand on a wide scale (Section
8.2). While the corresponding model is purely autoregressive, we conclude this chapter
by describing an extension that allows to explicitly consider exogenous variables that can
affect a given building load (Section 8.3).

8.1 Nonparametric Load Forecasting

In this section, we describe the general setup of a nonparametric model for wide-scale day-
ahead building load forecasting. In particular, we describe how to consider the inherent
seasonalities and trends of the load curves. Moreover, we discuss how to select model
hyperparameters adopting common cross-validation ideas for nonstationary time series.
The specialized model we propose for solving the day-ahead building load forecasting
problem will be described further in the text.

The idea of a nonparametric forecasting is simple. We find historical observations that
are relevant for the given situation and predict the output as a combination of historical
outputs. This approach does not require any model training or assumptions about the
regression function. Nonparametric regression only assumes that similar inputs are likely
to produce similar outputs.

For instance, a nonparametric model based on kernel regression predicts the output as an
average of the relevant historical output observations yj i.e.,

ŷ = r̂(x) = µ(yj). (8.10)

The relevant I/O-observations (xj, yj) are the ones where xj belongs to the neighborhood
of the current input x. Note that the model r̂(x) is determined on the go for a given x. It
approximates the best-fit solution r0(x) locally, in the vicinity of x. The approximation
converges towards the conditional expectation r0(x) = E[y|x′ = x]y according to (8.8) if
we are given a large amount of training data [FHT08].

We implement the nonparametric model using the K-nearest neighbors algorithm (Algo-
rithm 1). Following the procedure, the distance d = |x∗ − xj| quantifies the relevance of
historical observations. Variable bandwidth K determines the size of the relevant region
(neighborhood) around the input query x∗. Note that a fixed bandwidth could result in
undefined predictions when the training data is limited – for some x, the fixed-sized neigh-
borhood might have no data within it. The KNN algorithm is robust against such situations
and allows to capture even very complex behavior of the regression function r(x).
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Algorithm 1: K-nearest neighbors algorithm
Inputs: input query x∗ ∈ R
Outputs: ŷ ∈ R
Data: training set T := {(xj, yj) | 1 ≤ j ≤ m}
Parameters: number of nearest neighbors K

1 Sort T with respect to distance d = |x∗ − xj|.
2 Determine K closest historical inputs xj of the query x∗.
3 Average historical outputs yj obtaining the prediction ŷ = µ(y1, . . . , yK).

The intuition for nonparametric prediction of a univariate time series is as follows. Assume,
the data generating process shows observable patterns of behaviors which are repeated over
time. If we can find historical patterns similar to the current behavior of the series, then
the previously observed subsequent behavior can be predicative for the immediate future.

The nonstationarity of the load has to be reflected by the nonparametric model. We can
consider the inherent nonstationarities to a large extent by accounting for the seasonalities
and trends of the load (Section 8.1.1). Nonstationarity of the data also complicates the
usage of standard methods for model validation (Section 8.1.2) and selection (Section
8.1.3). Subsequently, we discuss these aspects of using the nonparametric modeling
approach for the load forecasting before presenting our model afterwards.

8.1.1 Seasonality and Annual Cycle

Building electricity consumption underlies weekly and daily seasonality at all levels of
load aggregation (Section 7.1.1.2). In other words, the load time-series notably depends on
weekday and intraday time point (e.g., hour). In this section, we describe how to consider
these dependencies with a nonparametric model.

8.1.1.1 Weekly Patterns

We saw that building power demand depends on the weekday to a varying extent (Section
7.1.1.2). A parametric model could account for this dependency explicitly by using
weekday as an input variable. In contrast, a univariate nonparametric model can consider
this dependency implicitly, as we explain through the following example.

Figure 8.1 shows the power demand of an enterprise and its forecast obtained by the
KNN-model (Algorithm 1). At the top panel, we see that a notable prediction error occurs
on Tuesday, where the enterprise remains closed. Evidently, the model considers historical
observations that are not relevant for the day we are forecasting.
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Figure 8.1: Forecast example illustrating weekly seasonality modeling of the load. Nonparametric forecast
(Algorithm 1) that considers all historical observations results in a notable forecast error on
Tuesday where the enterprise whose load we are predicting is supposedly closed (upper panel).
Using only the historical days of the correspondingweekday allows themodel to consider weekly
seasonality and avoid such error (lower panel). Further discussion is provided in the text.
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We can address weekly seasonality implicitly discarding any interday dependencies and
filtering the observations using one of the following approaches:

• filter by weekday (FbW),

• filter by day-type (FbD).

Herewith, we obtain several groups of observations9 and create a separate model for each
group. In our example, FbW results in a better forecast as we see in the lower panel of the
Figure 8.1.

Creating a separate model for each weekday considers any eventual weekly seasonality.
However, this approach has several drawbacks. First, the model can only notice any abrupt
change in the load characteristics after seven days. Imagine, if the discussed enterprise
closes for a holiday or, in case of a residential building, the inhabitants leave on a vacation
– the model filtering the historical observations by weekday will deliver erroneous forecast
for the entire week. Moreover, weekday filtering requires a large amount of historical data.
In order to consider 100 data-points in a model, we would require almost two years of
measurements. During this period, the load can change its characteristics several times
(Section 7.1.1.3). Additionally, there might be not much difference between business days
(Figure 7.4). Especially in residential buildings, it may be hard to identify a pattern during
the week, despite a notable difference between working and non-working days.

For these reasons, we can apply FbD instead. Rather than grouping by weekday, we create
only three different groups: business days, Saturdays and holidays (incl. Sundays). Such
approach is also followed by the standard load profiles which are commonly used for
predicting the electricity consumption in distribution grids [ECo,Zuo00].

Nonetheless, we acknowledge that for some loads, weekly seasonality may persist within
the business days (e.g. enterprise is closed every Tuesday). Therefore, we apply day-type
filtering first. Then, we consider further filtering of business days by weekday if we expect
this to reduce the forecast error even more10. The way to estimate this error is discussed
further in the text.

8.1.1.2 Daily Patterns

To account for the daily seasonality, the nonparametric load model has to consider daily
consumption patterns of a building. Traditionally, daily seasonality is modeled explicitly
introducing a time-related variable (e.g., hour) as a model input. Another possibility is to
consider the daily seasonality implicitly as described below.

9 As a result, we have one group of observations for each weekday or day-type.
10 Filtering by day-type and, then, by weekday will result in overall weekday filtering.
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We model the daily seasonality by applying the multi-out multistep strategy with the
nonparametric forecasting approach (Algorithm 2). This approach considers the intraday
dependencies between the load measurements and allows to model the daily consumption
patterns. Alternatively, having a separate model for each time-point (i.e., direct multistep
strategy) also considers the daily seasonality to some extent, but discards any intraday
dependencies.

In fact, the residuals of a KNN forecast using the direct strategy (Algorithm 1) are highly
autocorrelated which indicates that there is still a substantial information in the time series
that was not extracted by the model (Figure 8.2). In contrast, the residuals of a multi-out
KNN forecast (Algorithm 2) are notably less autocorrelated which allows us to expect
a more accurate forecast when we consider the daily seasonality implicitly by using the
multi-out multistep strategy.

Algorithm 2:Multivariate K-nearest neighbors algorithm
Inputs: input query X∗ ∈ Rn

Outputs: Ŷ ∈ Rn

Data: training set T := {(Xj, Yj) | 1 ≤ j ≤ m}
Parameters: number of nearest neighbors K

1 Sort T with respect to ℓ2 norm ℓ2(X∗, Xj).
2 Determine K closest historical inputs Xj of the query X∗.
3 Average historical outputs Yj obtaining the prediction Ŷ = µ(Y1, . . . , YK).

8.1.1.3 Annual Cycle

We account for the annual cycle of the load in the nonparametric model implicitly by
limiting the training data to 17 most recent observations. Consider the autocorrelation
function of the loads in the ICER smart-meter dataset (Figure 8.3). For the majority
of loads, we observed that there is a substantial correlation between the measurements
obtained within ten weeks. At the same time, the autocorrelation disappears after six
months (27-30 weeks) indicating that it might be counter-productive to include older data
into the training set. Neglecting the short-term weather changes, we can consider the
effect of the annual cycle on electricity consumption by limiting the history length to 17
weeks. This history length corresponds to the length of one season that is assumed for the
computation of a standard load profile [ECo,Zuo00] and other profiling heuristics [BPT13].

Alternatively, the annual cycle can be considered explicitly by introducing the related
time-variable (month, day) as a model input. This approach is often used in parametric
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Figure 8.2: Residuals autocorrelation with different multistep strategies considering daily seasonality. The
forecast of a residential building load was computed using the nearest neighbors model applying
the direct (Algorithm 1) and the multi-out (Algorithm 2) multistep strategy. The residuals
of the direct KNN forecast (left panel) are notably more autocorrelated than the residuals of
the multi-out KNN forecast (right panel). Autocorrelated residuals indicate that the multi-out
strategy allowed the KNN-model to extract more information from the time series and is better
for considering daily seasonality of the load.

load models (Section 5.2.1) and requires to have, at least, one year of data for training11.
However, we observed that the load autocorrelation is negligible for the corresponding
lags (52 weeks) and there might be no use to consider the observations that are older than
several months.

8.1.2 Validation Methods

Model validation relates to the estimation of the forecast error E which we can expect
when applying the model on the unseen data. The error has to be estimated using the
available historical data which constitutes our training set T . Given T , we are interested
in the error that our model is expected to obtain on a, previously unseen, test set U12.
In this section, we consider various validation methods for estimating the forecast error
(Table 8.1).

Out-of-sample (OOS) validation is a model validation method common in time series
analysis. Its idea is to withhold the most recent part of the historical data as a validation
set and evaluate the model on it in order to estimate the future model accuracy. Further,
this method assumes that the performance on the validation set will be similar to the

11 We would require historical observations of the same month as that of the day which we are forecasting.
12 In statistical learning theory such error is called generalization or test error.
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Figure 8.3: Autocorrelation function of the load measurements in the ICER smart-meter dataset. To exclude
the influence of the weekly and daily seasonality, we only computed the autocorrelation of the
time series consisting of the load measurements on a particular hour and weekday (Saturday,
8pm). At each lag, the multitude of the autocorrelation function values of the ICER-dataset
is represented with percentiles (pct) and the median. For the majority of residential (left)
and commercial (right) buildings, we see a substantial autocorrelation of the load to its recent
observations (<20 weeks old) that quickly decays and becomes negligible for older observations
(>30 weeks old). Therefore, older measurements might contain less information that can be
used by the load model.

performance on the unseen data. Given enough historical data, out-of-sample validation
can yield an accurate error estimate and is often used to validate time seriesmodels [BD10].

For our application, we do not have abundant data for training and validation. One year
of load measurements contains 52 daily load curves. Given that we only use few weeks of
data, our training and validation sets can be very small13. This is diminutive comparing to
orders of magnitude that amount which are used for validating machine learning models.
In our situation, we might need to estimate the anticipated model accuracy in-sample using
the data in the most effective way.

Cross-validation (CV) is a standard machine learning method for efficient sample re-
use [Sto74,AC10]. However, it relies on the Assumption 2 which does not hold for time
series. Nevertheless, cross-validation can be still used, at least for trend-stationary time
series, if the validated model delivers uncorrelated forecast errors [BHK18].

13 As previously discussed, we use 17 weeks of data to consider annual cycle and apply FbW or FbDwhich
leaves us with just 17 points in the training set in case of a Saturday or Sunday.
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To apply k-fold cross-validation on a given training set T we proceed as follows. At first,
we randomly split the training set T into k disjoint subsets Di named folds14 so that

T =
k⋃

i=1
Di. (8.11)

Next, we use each fold Di as a test set while training the model r̂−i on T \ Di. With |Di|
test samples, we compute the mean test error

EDi
(r̂−i) = 1

|Di|
∑

j∈Di

L(Yj, r̂−i(xj)). (8.12)

The overall error estimated by the CV is the average of errors obtained on all folds

ÊCV(r̂) = 1
k

k∑
i=1

EDi
(r̂−i). (8.13)

Though the k-fold cross-validation was originally developed for x, y ∈ R [Sto74], we can
expand it for a multidimensional case. With a training set T containing m observations
of X ∈ Rq and Y ∈ Rn we apply the regression equation (4.10) obtaining


y11 · · · y1n

... . . . ...
ym1 · · · ymn

 =


r(x11 · · · x1q)
... . . . ...

r(xm1 · · · xmq)

+


E1(ϵ11, · · · , ϵ1n)

...
Em(ϵm1, · · · , ϵmn)

 (8.14)

where each row corresponds to an observation of (Xj, Yj) ∈ T . Following the cross-
validation idea, we can interchange the rows as long as they are uncorrelated [BHK18].

A nonparametric model assumes that the most important information about Yj is contained
in the most recent observation Yj−1 = [yj1, · · · , yjn] which can be included into the input
Xj = [xj1, · · · , yjq]. The residuals ϵj1, · · · , ϵjn within a day j can be correlated among
them, but the daily errorsE1, · · · , Em have to be uncorrelated between each other allowing
to mix the rows of the above matrix applying the cross-validation approach.

We apply the validation methods discussed above and summarized in Table 8.1 to estimate
the forecast error of the nonparametric model (Algorithm 2). In particular, we use T
consisting of 17 most recent historical days to estimate the error for the upcoming days

14 For k = m such variant is called leave-one-out cross-validation (LOOCV) that we introduced previously.
A computationally efficient way to compute LOOCV-error is using PRESS-statistic as discussed in
[BBTLB13].
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Table 8.1: Validation methods overview.

Validation type Validation method Estimator name Reference

out-of-sample out-of-sample validation OOS [BD10,BHK18]
in-sample 5-fold cross-validation 5-CV [Sto74,AC10]
in-sample 10-fold cross-validation 10-CV [Sto74,AC10]
in-sample leave-one-out cross-validation LOOCV [Sto74,AC10]

obtaining a series of estimated errors Ê and actual daily prediction errors E presented in
Figure 8.4. Note that rather than estimating the E, all validation methods estimate the
expected daily error (7.15)

EDE = E
[
E
]
. (8.15)

Observing that the validation methods, if anything, only estimate the EDE, we define the
relative estimation bias (REB)

REB = Ê − EDE
EDE

· 100%. (8.16)

With this measure, we studied the extent to which a validation method can provide an
unbiased estimate of the forecast error that can be expected from a nonparametric model
predicting the load day-ahead.

We observed that an unbiased estimate was rarely achieved by any of the methods (Figure
8.5). For some weekdays, the average REB was up to 20%. The in-sample validation
method had a similar bias and provided no significant (p < 0.05) advantage compared to
the out-of-sample validation. In fact, out-of-sample validation was often the most accurate
estimating the EDE. At the same time, out-of-sample validation on a small dataset was
sensible to the outliers (special days)15. As a result, we saw the largest confidence interval
for this validation method. In contrast, leave-one-out cross-validation and 10-fold cross-
validation had the smallest variation since the training set did not change substantially
from day to day.

15 Same observation is confirmed by the previously discussed Figure 8.4.
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Figure 8.4: Forecast error estimation using various validation methods. In the figure, each panel shows the
actual daily prediction error E, average daily error (i.e., EDE (7.15)) and estimated daily error Ê
(red line) with its spread (red shadow) obtained by the corresponding validation method (Table
8.1). To collect the data, we applied the MKNN-model predicting the day-ahead load of a single
family home (ID 1176) from the ICER smart-meter dataset [Arc16] for one year (Algorithm
2 with K = 1, FbW, and 17 weeks of training data). Further, we applied different validation
methods (Table 8.1) to estimate the forecast error and compare the estimate to E. We observed
that all estimators, failed to estimate E and instead estimated the EDE. Further, all estimators
reliably estimated the spread, while its ripple could be explained by the filtering approach of the
model (FbW). Further discussion is provided in the text.
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8.1 Nonparametric Load Forecasting

Figure 8.5: Relative estimation bias (REB) with various validation methods. In the figure, each panes
shows the REB (8.16) observations of different validation methods that were collected on the
corresponding weekday. In each panel, their distribution is summarized with a box-plot where
the notch denotes the 95%-confidence interval of the median and the red dot represents the
average shown together with its 95%-confidence interval (red horizontal bar). To collect the
data, we applied the MKNN-model predicting the day-ahead load of a single family home (ID
1176) from the ICER smart-meter dataset [Arc16] for one year (Algorithm 2 with K = 1, FbW,
and 17 weeks of training data). Further, we applied different validation methods (Table 8.1)
to estimate the forecast error and computed the REB for each forecast day. We observed that
all validation methods rarely achieved an unbiased estimate. For some weekdays, the average
REB was up to 20%. The in-sample validation methods had similar average bias and provided
no significant (p < 0.05) advantage compared to the OOS-validation method. In fact, the
OOS-validation was often the most accurate estimating the EDE. Further discussion is provided
in the text.
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8.1.3 Model Selector

The error estimation bias becomes important when using the validation methods for
designing a model selector. In a model selection task, we are given a set of models
M := {M1, · · · , Md} where the subscript enumerates the candidates and need to select
the model Mα that minimizes the estimated error Ê that is determined by the previously
discussed error estimator (Table 8.1). To investigate how the REB affects the model
selection, we defined the model selector success rate (MSSR) as

MSSR = NBS
NHO

· 100%, (8.17)

which is as the number of best selections (NBS) relative to the total number of historical
observations (NHO) that were used for the model selection. Here, the NBS is the number
of occasions, where the model selector was able to determine the best model Mα = Mbest.
The MSSR represents the relative share of observations where the model selector chose
the best model from a set of candidates and reflects the quality of the model selector.

Nonstationarity of the low-voltage electricity consumption data is a challenge for the tradi-
tional validation methods andmodel selectors based upon them. In particular, we observed
that the model selectors based on the in-sample validation was usually worse than using
the out-of-sample validation (Figure 8.6). This indicates that for a nonparametric model
applied for the day-ahead local load forecasting, there is a notable remaining correlation
among the rows of (8.14). Hence, when selecting parameters of a nonparametric model, we
should rely on the out-of sample validation that is commonly used in time series analysis,
despite limited historical data [BD10,BHK18].
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8.1 Nonparametric Load Forecasting

Figure 8.6: Model selector success rate (MSSR) using different validation methods. The figure shows the
quality of model selection observed in a load forecasting experiment. In this experiment, we
applied the MKNN-model predicting the day-ahead load of a single family home (ID 1176)
from the ICER smart-meter dataset [Arc16] for one year (Algorithm 2, FbW and 17 weeks of
training data). For this model, we used different model selectors with corresponding validation
methods (Table 8.1) selecting the bandwidth K before each daily forecast. After the experiment,
we computed the MSSR (8.17) of each model selector and represented it on a bar-plot for all
forecast days (a), conditioned on day-type (b) and weekday (c). We observed that, on most days,
the best model was found using OOS and (less often) LOOCV estimators. Further discussion is
provided in the text.
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8.2 Functional Neighbor Model

We propose a model for a wide-scale day-ahead local load forecasting based on the
nonparametric approach (Figure 8.7). The proposed functional neighbor (FN) model is
a generalization of the previously discussed multivariate KNN-regression (Algorithm 2).
First, we use historical observations to create an object space

H := {Dj | 1 ≤ j ≤ h}, (8.18)

where each object
Dj := {Xj, Yj, Zj} (8.19)

corresponds to an observed day j and contains historical input Xj , output Yj and a general
set of features Zj that includes further information about the day (e.g., weekday, weather
etc.) as well as other exogenous variables16. With this data, we set up the model finding
its hyperparameters using previously discussed model validation methods (Section 8.1.2).
Next, given a query X∗, we find its K-nearest neighbors

G := {Gj | 1 ≤ j ≤ K} (8.20)

using a predefined distance notion (Section 8.2.2). At last, we combine historical outputs
of G to the forecast Ŷ (Section 8.2.3).

The main drawback of a nonparametric approach is that it is notably affected by the curse
of dimensionality17. Tomitigate this effect, we combine nonparametric modeling approach
with functional methodology discussed next.

8.2.1 Functional Methodology

We apply functional methodology18 to develop the load model. This methodology is an
extension of the traditional multivariate analysis which we considered so far (Section 8.1).
Functional methodology has several advantages for modeling the situations where the data
generating process is driven by human behavior, is nonstationary but exhibits repeated pat-
terns [BRXK02,RS02,LNVR07]. Moreover, functional methodology addresses the curse

16 In this section, we consider a univariate autoregressive model with X, Y ∈ Rn and no exogenous inputs.
Further in the text, we provide an extension that will allow our model to consider external inputs (Section
8.3).

17 We discussed this effect in Section 4.2.3.2.
18 We provided a short introduction to functional data analysis in Section 4.3.
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8.2 Functional Neighbor Model

Figure 8.7: Functional neighbor forecaster. Description is provided in the text.

of dimensionality – the major limitation of a nonparametric model (Section 4.2.3.2). Con-
sequently, functional load forecasts can be at least as accurate as conventional multivariate
models (Section 5.1.3).

The term functional stresses that there is an underlying continuous function from an
infinite-dimensional space of functions that produced the observed data. The main idea of
the functional approach is to consider observations as single entities rather than a sequence
of individual data-points. The developed theory is based on the functional data analysis
and exploits additional structure of the continuous data. The functional view is only
conceptual. The data is still measured on a finite discrete grid and processed digitally.
However, using appropriate smoothing techniques allows us to view the measurements as
a continuous curve, develop novel models and study their properties19.

19 In this section, we use Latin letters X, Y to denote time-discrete I/O observations and Greek letters χ, ϕ
to denote the corresponding continuous curves.
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8.2.1.1 Day-Ahead Load Forecasting in Functional Setting

We approach the day-ahead building load forecasting problem (Section 7.2.3) using func-
tional regression. The load curve y(t) is a continuous random variable generated by a
continuous stochastic process

Y = {y(t) | t ∈ [0, ∞)}. (8.21)

The observed realization ofY is a time series of discrete and sequenced loadmeasurements

yt := {y(t) | t ∈ T} (8.22)

with index set
T0 := {0, · · · , (nT − 1)∆t} (8.23)

consisting of the measurement time points with ∆t corresponding to the measurement
resolution.

In the context of building load forecasting (Section 7.1), we can assume thatY is a seasonal
process with the smallest season length ∆st. Considering daily seasonality of the demand,
we define the functional time series {ϕj}m

j=1 where

ϕj(t) = {y(t) | t ∈ [(j − 1)∆st, j∆st]} (8.24)

is a daily load curve. This functional series can be seen as a realization of a discrete
functional-valued stochastic process

Φ = {ϕj(t) | j ∈
{
1, · · · , m

}
}. (8.25)

For the given functional time series {χj}m
j=1, {ϕj}m

j=1, we assume a functional regression
model

ϕj = r(χj) + ϵ, (8.26)

where, analog to the multivariate approach, the output consists of deterministic relation
captured by the regression function r(χ) and uncaptured influences summarized in an
error term ϵ. In this model, functional input variable

χ ∈ (F, d) (8.27)
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lives in an infinite-dimensional space of functions F for which we will define a semimetric
d named distance notion (Definition 4.3.1). Functional output variable

ϕ ∈ (H, ∥·∥) (8.28)

lives in a measurable and separable Hilbert space H with a corresponding norm ∥·∥.
Further, E

[
ϵ | χ

]
= 0 and r(χ) underly the Hölder condition (4.83) that is usually fulfilled

in practice [FR11]. Even if χ, ϕ could be in the same space, we need to define a separate
space F ̸= H for χ. Otherwise we can only rely on semimetrics that have a corresponding
norm in H which appears limiting [FV06].

Each of the two structures endows the corresponding object space with a topology. In F,
we describe it defining a ball with a radius b and a center χ as

BF (χ, b) :=
{
χ′ ∈ F | d(χ′, χ) ≤ b

}
(8.29)

and the small ball probability

PB(χ, b) = P
[
d(χ′, χ) ≤ b

]
= P

[
χ′ ∈ BF (χ, b)

]
. (8.30)

For F = Rq and d0, the topology corresponds to the one of a Euclidean vector space. In
H, the ball definition is straightforward using the corresponding norm and includes the
case where H = Rn.

8.2.1.2 Smoothing

Theoretical studies within the functional data analysis operate with continuous functions
of time [FV06, FR11, FVKV12]. Yet in practice, we observe the curves χ(t), ϕ(t) at the
discrete times within the index set T :=

{
t1, · · · , tn

}
. Therefore, we might need to convert

discrete observations X, Y into continuous functions of time in order to use a functional
model. To do so, there is a wide range of smoothing techniques at our disposal.

A pre-processing smoothing step is required if:

• Time series is unbalanced – measured at non-equidistant time points20

• Time series is noisy – underly a substantial measurement error.

• Time series needs to be re-sampled – i.e., sampled on a different time-grid.

20 See [YMW05] for detailed discussion on the cases where data is sparse and unbalanced.
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• Forecaster relies on information not directly available in the original data (e.g.,
derivatives).

Smoothing technique s(X) converts discrete measurements to a functional observations
(smooth) of a form

χ(t) = s(X) =
l∑

h=1
chξh(t) (8.31)

computing the coefficients (expansion)

C = [c1, · · · , cl]T (8.32)

with respect to the chosen basis

S :=
{
ξh(t) | 1 ≤ h ≤ l

}
, (8.33)

that consists of l orthonormal functions ξh(t) pre-specified in advance. We need to choose
S considering the problem at hand for which common basis expansions are Fourier,
polynomial, splines and wavelets21.

Smoothing eventually results in a dimensionality reduction. It discards the original mea-
surements and, instead, stores only the coefficients ch for further processing. The number
l of these coefficients and corresponding basis functions ξh(t) should be chosen such that
χ(t) resembles the original data eliminating the obvious noise and outliers. While perfor-
mance of some functional methods can depend on l, most methods are rather insensitive
to it [HK12].

A general procedure to find the expansion C representing the curve χ(t) with respect to
the chosen basis S is as follows. Given a vector of measurement times T and values

X = [χ(t1), · · · , χ(tn)], (8.34)

we compute the basis matrix

A := (aih) ∈ Rn×l with aih = ξh(ti) (8.35)

such that every measured curve X is represented as

X = AC. (8.36)

21 For instance, if we are to use function derivatives and the data is known to be (near-) periodic, Fourier
basis might be an appropriate choice. Alternatively, a basis can also be a data-based orthonormal system
e.g., principal component analysis. Consider [RS05] for an extensive discussion on basis expansions in
context of functional data analysis and further references therein.
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We find C solving the least-squares problem

C = arg min
C′∈Rl

 n∑
i=1

(
χ(ti) −

l∑
h=1

c′
hξh(ti)

)2 (8.37)

and calculate C as
C = (ATA)−1ATXT. (8.38)

While often used in signal processing, smoothing with various basis expansions is widely
available within common statistical software [RHG09].

Practical applications of functional data analysis often rely on smoothing with a basis
expansion described above. This procedure converts the measured data into continuous
curves χ(t), ϕ(t). Analyzing continuous data allows to derive theoretical results and novel
forecastingmethods [FV06,FR11,FVKV12]. For instance, it allows to create novel models
such as the one we describe next.

8.2.1.3 Functional Nonparametric Model

The functional methodology is more general than the traditional multivariate analysis
(Section 4.2.3) since it includes the finite-dimensional techniques for Rn which is also
a Hilbert space. With a basis expansion, functional data analysis also includes the case
where F and H are infinite-dimensional functional spaces22 (Section 4.3). Subsequently,
we apply the functional methodology to predict ϕj+1(t)with a functional version of locally
weighted learning.

Functional nonparametric approach estimates the regression function r in (8.26). For a
given sample of curves

Tf :=
{
(χj, ϕj) | 1 ≤ j ≤ m

}
with χj, ϕj ∈ (F × Rn) (8.39)

drawn from a pair of functional valued random variables (χ′, ϕ′), we apply functional
nonparametric model to compute the estimate

r̂(χ) =
∑m

j=1 θf
(

d(χ,χj)
b

)
ϕj∑m

j=1 θf
(

d(χ,χj)
b

) (8.40)

of the regression function r using asymmetrical kernel θf (Definition 4.3.2).

22 For example, Lebesgue space, sequence space et cetera. [Mus14].
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Table 8.2: Differences between multivariate and functional methodologies on the example of a nonparamet-
ric model. Further description is provided in the text.

Multivariate Functional
Data vectors X ∈ Rq, Y ∈ Rn continuous curves χ(t) ∈ F, ϕ(t) ∈ H
Distance notion Euclidean distance d0 semimetric d
Kernel Definition 4.2.2 Definition 4.3.2
Topology B(Xc, b) := {X ∈ Rq : d0(Xc, X) ≤ b} BF (χc, b) := {χ ∈ F : d(χc, χ) ≤ b}
Training set T := {(Xj, Yj) | 1 ≤ j ≤ m} Tf := {(χj, ϕj) | 1 ≤ j ≤ m}

Model r̂(X) =
∑m

j=1 θ

(
,

d0(X,Xj )
b(X)

)
Yj∑m

j=1 θ

(
d0(X,Xj )

b(X)

) r̂(χ) =
∑m

j=1 θf

(
d(χ,χj )

b

)
ϕj∑m

j=1 θf

(
d(χ,χj )

b

)
Asymptotics [HWMS04] [FV06,FVKV12]

The estimate r̂(χ) is the average of the observed outputs ϕj for which the respective inputs
χj are in the neighborhood

Gχ :=
{
(χj, ϕj) | (χj, ϕj) ∈ Tf , χj ∈ BF (χ, b)

}
(8.41)

of the functional input χ. The neighborhood size is controlled by the bandwidth b, as
with a multivariate nonparametric model (Section 4.2). At the same time, neighborhood
shape is dependent on the topological structure of the space F, which is determined by the
distance notion d. The choice of the semimetric d affects the asymptotic behavior of r̂
through the topology described by BF and PB(χ)(b) [FV06].

For a wide range of semimetrics, the regression function estimate (8.40) is consistent
[FVKV12]. Distance notion becomes a tuning parameter of the model controlling the rate
at which r̂ converges to the true regression function r. Using the model (8.40), we can
now introduce a day-ahead load forecasting algorithm (Section 8.2.1.5). But before, we
contrast the differences between multivariate and functional nonparametric models.

8.2.1.4 Differences Between Multivariate and Functional Approaches

What are the fundamental differences between multivariate and functional forecasting
methodologies? Indeed, the computations are done with finite dimensional vectors in both
cases. To clarify the distinction, we summarize the differences between the nonparametric
models in Table 8.2.

The multivariate models are studied using calculus on finite dimensional vectors X ∈ Rq

that belong to the Euclidean space. Consequently, multivariate approach is limited to this
space and ignores the important information about the smoothness (in mathematical sense)
and a continuous behavior of the curve. It also suffers from issues associated with highly
correlated data within the vectors (Section 4.2.3).
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In contrast, functional approach considers objects in an abstract space F endowed with a
semimetric d and is more general reaching beyond Euclidean calculus. We view X as a
noisy representation of a continuous function χ(t) from an infinite-dimensional space F
and use smoothing together with functional data analysis to derive mathematical concepts
and tools (Section 4.3).

Indeed, we have to compute continuous curves given their discrete representationswhen ap-
plying a functional model. To do so, various smoothing techniques are available [RHG09].
Moreover, ϕ̂(t) has to be discretized for subsequent processing. In return, a func-
tional model can handle data that is unbalanced, has missing values and is corrupted
by noise [Fer11]. Having a functional prediction ϕ̂(t), we can re-sample it on a desired
time-grid.

Functional nonparametric model (8.40) is an extension of the multivariate nonparametric
model (4.62) that uses a generalized distance notion. The most tangible difference is that
the shape of the neighborhood is dependent on the topological structure introduced onto
functional space F through the semimetric d. The usage of an abstract distance notion d
instead of the Euclidean distance d0 is the main practical difference when developing the
forecasting algorithm we discuss next.

8.2.1.5 Functional Neighbors Forecasting Algorithm

Functional neighbors (FN) algorithm computes the forecast Ŷ using the discussed func-
tional nonparametric regression approach. We introduce an algorithm that applies the
functional model (8.40) to the day-ahead local load forecasting problem (Section 7.2.3).
For this problem, we are given a training set T of m time-discrete load observations.
An observation of a day j consists of the observed load curve Yj ∈ Rn (output) and its
historical predecessor Xj ∈ Rn (input). Moreover, input query X∗ ∈ Rn corresponds to
the most recently measured load curve23. With these data, we compute the forecast Ŷ of
the next-day load curve Ym+1 ∈ Rn. Subsequently, we describe each step of the proposed
algorithm (Algorithm 3).

Step 1 We apply the smoothing splines to obtain a continuous function from discrete
measurements as described in [RS05]. This method is flexible and particularly apt for
representing nonperiodic signals with strong local features of the curves (e.g., daily load

23 The extension to consider further input variables will be provided in Section 8.3.
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Algorithm 3: Functional neighbors (FN)
Inputs: most recent curve X∗ ∈ Rn

Outputs: forecast curve Ŷ ∈ Rn

Data: training set T := {(Xj, Yj) | 1 ≤ j ≤ m}
Parameters: distance notion d, number of nearest neighbors K

1 smooth time-discrete measurements: → Tf , χ∗

2 sort Tf by the distance d(χ∗, ·) from the query χ∗

3 find K-nearest neighbors of the query: → Gχ∗

4 merge historical outputs to a consensus representation of ϕj ∈ Gχ∗: → ϕ̂

5 re-sample ϕ̂: → Ŷ

peaks). To compute the continuous function that corresponds to a vector of measurements
X and Y (Figure 8.8), we expand it using the B-spline basis obtaining

χ ≈
n∑

i=1
c

(x)
i ξi = s(X), (8.42)

ϕ ≈
n∑

i=1
c

(y)
i ξi = s(Y ), (8.43)

which can be calculated very efficiently [DBDBM+78]. This step provides us with a
functional training set Tf and a query χ∗, that are continuous functions and can be subject
to the functional data analysis techniques.

Step 2 We compute the distances between χ∗ and all input observations in Tf to sort
them in ascending order accordingly. The distances are computed by a predefined distance
notion d that we discuss in detail in Section 8.2.2.

Step 3 To find the K-nearest neighbors of χ∗, we determine corresponding neighbor-
hood Gχ∗ by selecting the observations whose distance from χ∗ is within the variable
bandwidth

bK = d(χ∗, χK), (8.44)

that corresponds to the distance between χ∗ and its K’th nearest neighbor χK .

Step 4 We merge the outputs of historical observations located in Gχ∗ to a forecast ϕ̂.
For this step, we use a merger function discussed in Section 8.2.3.

Step 5 At last, we output a time-discrete prediction Ŷ ∈ Rn resampling ϕ̂ on the desired
time-grid.
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Figure 8.8: Computation of a smooth. Figure demonstrates the computation of a continuous function y(t)
from a series of load measurements using B-splines basis functions ξi(t) of different orders: (a)
step-wise splines – zero-order basis functions; (b) linear splines – first order basis functions; (c)
cubic splines – third order basis functions; (d) comparison of a daily load curve to the smoothed
curves which were calculated using splines of different order. Here, piecewise constant smooth
corresponds to the sample-and-hold technique using a step-wise function (zero-order splines).
Piecewise linear smooth corresponds to a simple interpolation joining the points of adjacent
observations (first-order splines). Cubic smooth is calculated with splines of the third-order that
are among the most commonly used [RS05].

In this study, we assume to have ideal load measurements24 and use B-splines of zero-order
for which the basis functions are given as

ξi(t) =

1 ti−1 ≤ t < ti

0 otherwise
for i = 1 ∈ [1, . . . , n]

With this step-function basis, the coefficients ci correspond to the measured values Y (i).
Herewith, the continuous curves χ∗, χj, ϕj are uniquely represented by the respective
vectors X∗, Xj, Yj that contain the load measurements. We proceed operating with these
unprocessed values, and notate model inputs and outputs, from now on, with X and Y

respectively. The disadvantage using zero-order splines is that we have to abstain from
using the derivatives in our computations.

24 Ideal load measurements imply small measurement errors and no missing data.
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More generally, we can use B-splines of higher order if any of the algorithm steps rely on
computing the derivatives of the smoothed curves25 or if the measurements are far from
being ideal. Using smoothing splines in our model facilitates its practical applications
where the data is often unbalanced and has substantial share of measurement errors or
missing values. The literature provides a detailed exposition on how a smooth can be
computed under these conditions [DBDBM+78, RS05]. While with step-wise splines
there is no additional computation required, the smooth of a higher order can be routinely
computed with a common statistical software [RHG09].

Additionally, variable bandwidth makes the model more robust when working with non-
stationary data. The fixed bandwidth alternative results in a fixed-sized neighborhood that
can become increasingly empty with growing dimensionality of the data (Section 4.2.3.2).
In the worst case, an empty neighborhood might result in an undefined prediction. More-
over, it is hard to find the optimal neighborhood size if it is determined by a continuous
variable b. In contrast, variable bandwidth bK , determined by the number of neighbors
K, allows the model to adapt to the data distribution, its heteroscedasticity as well as the
changes in smoothness or curvature of the regression function [FM94].

8.2.2 Finding Nearest Neighbors

In order to find the nearest neighbors of X∗ we have to calculate the distance between
X∗ and historical inputs in T according to a predefined distance notion d. The choice of
the semimetric can affect the asymptotic behavior of the model (8.40) in a notable way
(Section 4.3). Therefore, we have to investigate how such a choice will affect the quality
of the forecast provided by the Algorithm 3.

The role of d is related to the previously described curse of dimensionality (Section 4.2).
From a practical point of view, we can experience the dimensionality issue by the growing
sparsity of the data in the vicinity of X∗ with increasing vector dimension q. Evidently,
this problem must be addressed in the infinite-dimensional context of functional data. In
fact, research shows that it is possible to construct a semimetric26 so that the functional
nonparametric model has a similar or superior rate of convergence to the multivariate
model (4.61) if the data within the curves are correlated [FV06]. For a wide range of
semimetrics, curse of dimensionality can be effectively addressed.

25 For example, we can use a distance notion that considers the derivatives of χ as proposed in [FV06].
26 The usage of semimetrics instead of metric appears to be particularly important [FV06].
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8.2.2.1 Data Sparsity in the Load Curves Space

Performance of the functional neighbor model depends on the data concentration that
characterizes the stochastic process generating the data (Section 4.3.3). Assuming the
process is fixed, topology and with it the concentration properties of the observation space
can be altered changing d.

Multivariate models are often set up with uncorrelated explanatory variables (Chapter
5). For the MKNN in particular, curse of dimensionality is a major limitation that has
to be compensated by an un-proportionally increase of training data amount (4.76). At
the same time, correlated inputs allow a dimensionality reduction27. As we saw, having
less dimensions allows Euclidean distance to be more discriminative and improves the
performance of the model (4.70).

Alternatively, in a functional setting we can make the data denser by a wise choice of the
distance notion that explores the correlation within the curves. Researchers have observed
that the space of highly correlated curves can be made denser depending on the choice
of d to a point, where growing data sparsity connected to the curse of dimensionality is
partially or fully canceled [FV06].

Consider theEuclidean space (Rq, d0) of q-dimensional vectors that represent the daily load
curves which we can commonly encounter in our problem. We study the concentration,
counting the curves as a relative number of observations

N(q) = 100% · 1
m

m∑
j=1

1{ d(X̄,Xj )
maxj d(X̄,Xj ) <b

}, (8.45)

that indicates which percentage of the observed curves is encountered in the ball BF
(
X̄, b

)
that is centered around the average curve X̄ . Further, we define the autocorrelation
coefficient

a = γX,X(1) =
∑T

t=2

(
yt − E

[
yt

]) (
yt−1 − E

[
yt−1

])
∑T

t=1

(
yt − E

[
yt

])∑T
t=2

(
yt−1 − E

[
yt−1

]) , (8.46)

that expresses the extent to which the load time-series yt is correlated with itself.

In the Euclidean space, vectors with uncorrelated data rapidly become more sparse as we
increase their dimensionality (Figure 8.9). We observe this effect for the synthetic example
of a vector with uniformly distributed random variables (a = 0) which demonstrates
the curse of dimensionality (Section 4.2). In practice, the load curve of a large load

27 Most relevant inputs can either be selected manually or using an algorithm that finds the optimal linear
or nonlinear combination of original inputs.
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Figure 8.9: Load curve sparsity in a multidimensional Euclidean space. In this space, each point is a
q-dimensional vector that can represent a time series. For this example, we considered three dif-
ferent sets of time series represented by the vector in the Euclidean space: uniformly randomly-
generated time series, daily load curves of a single home, load curves of a larger residential
aggregation (400 homes). In each set, the time series feature a different degree of autocorrela-
tion expressed by the first autocorrelation function coefficient a. For each set, we computed the
average curve and counted the number of observations in a ball with radius b = 0.3 centered at
the vector corresponding to the average curve. Resampling the curves with various resolution,
we show how the sparsity of the observations varied with dimensionality of the space. Observe,
that for uncorrelated data, the sparsity rapidly decreases with the dimensionality. At the same
time, the density of the highly correlated data (400 homes aggregation) remained stable despite
the dimensionality increase.

aggregation is highly autocorrelated (e.g., 400 homes with a = 0.92 in Figure 8.9). In such
case, data density remains stable despite the dimensionality increase. Evidently, curse
of dimensionality becomes partially canceled. This explains why, despite dimensionality
issue, nonparametric models still yield acceptable results in various applications discussed
previously (Chapter 5).

Nevertheless, the sparsity is still notable for the load curves that are less correlated such as
those of a single home (a = 0.54). In this case, the performance of a nonparametric model
in terms of maximal ROC (4.70) deteriorates quickly with growing time-series resolution
(dimensionality). In practice, we can expect such model to yield less accurate prediction
for disaggregated loads when increasing smart-meter resolution.

More generally, the sparsity of data depends on the measure of closeness between the
observations (8.45). Intuitively, by an appropriate choice of such measure, we can increase
the data density and improve the rate of convergence of the model. Therefore, we proceed
discussing the choice of a distance notion for the functional neighbor model.

8.2.2.2 Distance Notion Design

The main idea of nonparametric learning is that similar inputs are likely to produce similar
outputs. Therefore, we are foremost interested in similarity between the curves rather than
a point-wise distance of the corresponding vectors. Consequently, we want to choose a
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distance notion that reveals more pertinent information of the curve. A suitable choice
of d can change the concentration property of F and improve the rate of convergence
addressing the curse of dimensionality.

Note that inRq there is an equivalence between all norms including the Euclidean distance
[FV06]. In a strict mathematical sense, the distance notion choice is not important for
the multivariate model, apart from some practical constraints (e.g., computation time). In
contrast, within an infinite-dimensional space F, the equivalence between the norms fails
and even the usage of a norm as a distance notion appears too restrictive [FV06]. The
usage of a semimetric and its choice becomes fundamental through the equations (4.86),
(4.87), and (4.88) which describe the fact that an estimation of a point χ ∈ F needs a
sufficiently large number of data around it (i.e., concentration).

We introduce the following corollary to justify the usage of distance notions other than the
Euclidean distance d0 (4.63) in an infinite-dimensional space.

Corollary 8.2.1. Consider an infinite-dimensional space of curves F with an infinite-
dimensional basis E := {ξi, i ∈ N+} so that

∀χ ∈ F, χ(t) ≈
q′∑

i=1
X(i)ξi =

q′∑
i=1

⟨χ(t), ξi⟩ξi, (8.47)

where the inner product

⟨χ1, χ2⟩ =
√∫

T
χ1(t)χ2(t)dt (8.48)

projects the curve χ onto E . The rate of convergence of the nonparametric model (8.40)
applied in such space is limited by

ROC = (log m

m
)

s
2s+q′ (8.49)

if the distance notion is defined as a semimetric of a form

d(χ1, χ2) =

√√√√ q′∑
i=1

⟨χ1 − χ2, ξi⟩2. (8.50)

Proof. The proof follows directly from Lemma 13.6 and Proposition 13.2 in [FV06].

Being itself a semimetric, such a projection-type of distance (8.50) returns the ℓ2-norm of
the projection of χ onto the q′-dimensional basis E . Therefore, we can view the d0 as a
distance notion projecting continuous curves onto a standard basis of q-dimensions with
ROC = ROCMNWE (4.70). If we can find a basis for our data that aptly uses only q′ < q
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dimensions to approximate the observations in F, we obtain functional nonparametric
model for whose maximal rate of convergence ROCFNWE holds the following:

ROCFNWE = (log m

m
)

s
2s+q′ > ROCMNWE. (8.51)

Therefore, finding a suitable basis to represent the observations and using the corresponding
semimetrics is an opportunity for improving our model and gives potential for further
developments of functional nonparametric models in general.

There are numerous widely known methods to compute a basis E for a set of curves such
as principle component analysis (PCA), polynomial basis, B-splines, wavelets, Fourier
transform etc. Given an expansion in E , we can always use a distance notion that truncates
the projection using fewer dimensions. However, this would also change the topology of F
such that the estimated regression operator might become less smooth, and the condition
(4.83) can only be satisfied with a smaller s. Therefore, there is a trade-off (8.49) between
reducing effective dimensionality q′ and smoothness s.

It is hard to find a suitable semimetric analytically for a problemat hand. Currently, research
suggests that the choice must be guided by practical considerations for the given task
[FV06,Gee11, FR11]. Some known aids to select the semimetric can be: parametrizing
some family of semimetrics (e.g., PCA) by an integer [FV04,FGV02] or using a functional
single index model (i.e., adaptive semimetric) [FPV03,AFKV08,FGSV13].

For our load forecasting problem:

• We want to choose a distance notion that reveals the most pertinent information of
the load curves – occurrence of peaks and their size.

• We are foremost interested in similarity between the curve shapes rather than a
point-wise distance.

• The time-series characteristics, in particular the degree of smoothness, can be very
different depending on load aggregation level.

For the functional neighbor model described in this chapter, we propose to use the distance
notion described below.

8.2.2.3 Permuted ℓ2
u Distance Notion

Following the same rationale as in the context of forecast evaluation (Section 7.3), we
define the ℓ2

u-distance with the same permuted ℓ2-semimetric that we described previously
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for evaluating the forecasts [HWVG+14]. Given that Xk and Xj are vectors representing
the daily curves, the distance

du(Xk, Xj) := min
π∈P(Xj ,u,q)

√√√√ q∑
i=1

∣∣∣πXj
(i) − Xk(i)

∣∣∣2 (8.52)

is calculated allowing small time-permutations πXj
(i) of each point i = 1, . . . , q of Xj ,

while comparing the time series and penalizing the amplitude differences using the ℓ2-
norm. Here, P(u, q) is the set of all u-local permutations on q-points of the vector Xj .
Such permutations are defined as follows.

Definition 8.2.1. A vector π ∈ P(X, u, q) is a u-local permutation of a vector X if it
was obtained rearranging the coordinates X(1), . . . , X(q) by moving each one forwards
or backwards28 by up to u-time units.

Out of all u-local permutations, a minimal cost local permutation πX solves the corre-
sponding combinatorial optimization problem defined as follows.

Definition 8.2.2. Minimal cost local permutation (MCLP) problem consists in finding a
permutation29 π ∈ P(X, u, q) that minimizes the cost function of a form

Cost(π) :=
q∑

i=1
C
(
i, π(i)

)
,

where C(i1, i2) is the cost of mapping the point at i1 to the point π(i).

We can solve the MCLP-problem using the graph-based method in O(q) time [CGS13a].
The MCLP-problem is a special case of the fundamental assignment problem that is com-
monly solved using Hungarian algorithm [JV86] in polynomial time O(q3) [HWVG+14].
The graph-based method reduces the assignment problem to computing the shortest path
in a directed acyclic graph.

In general, the ℓ2
u-distance is a semimetric since it does not fulfill the triangle inequality.

Nevertheless, it complies with the requirements on a distance notion (Definition 4.3.1).
Further, this distance notion is parametrized by u which allows for automated search of
the best distance notion for a given load time-series as we discuss further in the text. Note
that for u = 0, the equation (8.52) corresponds to the Euclidean distance (4.63) that is
commonly used with multivariate nonparametric models [AC13].

28 Every point can be moved only once so that it can be found at the maximum distance u from its original
location.

29 Note that the MCLP-problem allows for several solutions.
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The ℓ2
u-distance is of projection type. Allowing to permute single coordinates of each

vector reduces the dimensionality of the observation space. Increasing the range of
allowed permutations makes the space smaller and denser (Figure 8.10). At the same time,
the corresponding density function becomes less smooth. There is the aforementioned
trade-off between the effective dimensionality q′ and the smoothness s determining the
rate of convergence of the model (8.49).

In practice, increasing permutation range of the distance notion applied with the functional
neighbor model results in a growing spread of the daily forecast errors (Figure 8.11). The
forecaster becomes less consistent in its accuracy. With increasing u, we see more outliers,
which leads to a lower overall improvement relative to the Euclidean distance. This is
particularly notable for homes and aggregations.

Empirically, we have found that limiting allowed permutations to one hour (i.e., u = 1
given hourly resolution), results in the largest accuracy improvement (Figure 8.12). On
the vast majority of days, the du=1-notion results in a more accurate forecast than with the
d0-notion. It does so, on the larger percentage of forecast days than the distance notions
with larger permutation range.

Nevertheless, we cannot generalize assuming that du=1 is a better distance notion for
the functional neighbors forecaster30. If we directly compare the EDE obtained with d0

and du=1 distance notions, we see that only about half of the loads were predicted more
accurately with du=1-notion (Figure 8.13). This indicates that for some loads and days,
du=1-notion was inadequate to quantify the similarity. Hence, if we choose the distance
notion depending on the load and weekday, we can notably improve the forecast (Figure
8.13). Therefore, the best distance notion choice for the forecaster depends on the load
and day-type we predict.

30 In our case, we consider the time series with the hourly resolution. For other resolutions, different
values of u might be advisable.
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8.2 Functional Neighbor Model

Figure 8.10: Change in data-sparsity in (F, du). The space of daily load curves (F, du) includes 153
observations collected for a single family home (ICER dataset discussed in Section 9.1) and is
endowed with a distance notion du based on the permuted ℓ2-semimetric (8.52). To quantify
data-sparsity, we computed the average curve X̄ and counted the curves located in the ball
BF
(
X̄, b

)
centered at X̄ . On the figure, we denote the % of the curves whose distance from

X̄ was less than b = 0.3. Resampling the curves with various resolutions, we show how the
observation sparsity in F varies with dimensionality of the vectors that would represent the
time series in a Euclidean space. Additionally, the sparseness depends on the dimensionality
of the basis E which changes depending on the permutation range u of the du-distance notion.
Observe, that the sparsity decreases with permutation range at every dimensionality. Therefore,
by increasing the permutation range, we can make reduce the sparsity of the observation space.
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Figure 8.11: Forecast improvement with the ℓ2
u-distance. In a validation experiment (Section 9.3.1.1), we

applied the functional neighbor forecaster (Algorithm 3) using the du-distance notion (8.52)
to predict the 300 loads of different groups obtaining a sample of 30000 daily forecast errors.
For the distance notion, we used different permutation ranges (1 hour to 6 hours, given hourly
resolution of the time series). Additionally, we applied the functional neighbor forecaster with
ℓ2-distance to predict the same loads and used these results as a benchmark. Relative to this
benchmark, we computed the forecast improvement (7.14) for each predicted daily load curve.
In the figure, every panel presents the sampling distribution of the mean improvement for each
load (rugs at the top), expected improvement in the load group (dotted vertical line) with the
95%-confidence interval (horizontal bar), and the zero-improvement mark (red vertical line).
Notably, increasing the permutation range resulted in a growing spread of the improvement
observations. Numerous outliers lowered the overall improvement which was particularly
notable for homes and aggregations.
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Figure 8.12: Selecting the permutation range for thedu-distance notion. In a validation experiment (Section
9.3.1.1), we applied the functional neighbor model (Algorithm 3) using the du-distance notion
(8.52) with various permutation ranges (1 hour to 6 hours, given hourly resolution of the time
series) to predict the 300 loads of different groups obtaining a sample of 30000 daily forecast
errors for each model variant. Additionally, we predicted the same loads using the same model
with the ℓ2-distance considering the results as a benchmark. Relative to this benchmark, we
computed the forecast improvement (7.14) for each predicted daily load curve. Conditioned on
load group and day-type, each panel shows the percentage of predicted daily load curves where
the usage of ℓ2

u-distance resulted in a forecast at least as accurate as when using the ℓ2-distance.
In each panel, the distribution is summarized with a box-plot where the notch denotes the
95%-confidence interval of the median and red dotted line denotes the 50% improvement
frequency mark. On average, du=1-distance notion improved the forecast with the ℓ2-distance
on more days than any other distance notion with larger permutation range.

155



8 The Forecaster
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Figure 8.13: Distance notion comparison by load. In a validation experiment (Section 9.3.1.1), we applied
the functional neighbor model (Algorithm 3) using the Euclidean (4.63) distance (no permuta-
tions) and the du=1-distance notion (1 hour permutation range according to (8.52)) to predict
the 300 loads of different groups. Conditioning on load type (panel row) and weekday (panel
column), we represent each individual load by a square filled depending on the model that
provided the smallest expected daily error (7.15) on the days of the corresponding weekday.
Notably, there was a similar number of loads where each of the notions delivered the most
accurate forecast.
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Figure 8.14: Comparison of the distance notion with auto-selected permutation range. In a validation
experiment (Section 9.3.1.1), we applied the functional neighbor model (Algorithm 3) using
the ℓ2-distance (no permutations) and ℓ2

u-distance to predict the 300 loads of different groups.
The permutation range (u ∈ {0, 1}) for the ℓ2

u-distance was selected automatically for the
given load using leave-one-out cross-validation prior to the forecast. Conditioning on load
type (panel row) and weekday (panel column), we represent each individual load by a square
filled depending on the distance notion that provided the smallest expected daily error (7.15)
on the days of the corresponding weekday. Notably, the ℓ2

u-distance notion provided the most
accurate forecast for the vast majority of loads.
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8.2.3 Merging Historical Outputs

Local learning provides a forecast merging historical observations to a consensus repre-
sentation. Such a representation can be seen as the center among the observations with
respect to the chosen distance notion. Generalizing, the concept of a center, we introduce
the following definition.

Definition 8.2.3. Center of a set of curves F is a curve

Yc = arg min
v

∑
Yj∈F

θj [d(v, Yj, )]2, (8.53)

that minimizes the weighted sum of squared distances (SSD)

SSD(y) =
K∑

j=1
θj

(
d(Yj, y)

)2
(8.54)

to other curves in F .

For instance, nonparametric models commonly find the center of the vectors in GX∗ by
computing their (weighted) average [HLC+97b]. Using the Euclidean distance notion d0

(4.63), a weighted average of the curves in F corresponds to the center of F according to
the Definition 8.2.3. In the context of functional neighbor forecasting methodology, we
view the average computation as an example of a merger defined as follows.

Definition 8.2.4. Merger is a function mc : H × · · · × H → Rn that finds the center of a
functional dataset F with respect to a distance notion d.

Applying a distance notion, beyond the Euclidean distance, allows to compute the forecast
Ŷ = Yc (Step 4 in Algorithm 3) with various mergers discussed in this section31. We begin
considering the standard average-based mergers (Section 8.2.3.1) that find the center with
respect to d0 (ℓ2-distance). With these mergers, we compute the forecast as a weighted
average of historical observations assigning the weights according to a predefined kernel
function. Subsequently, we discuss the permutation merger (Section 8.2.3.2) that finds
the center with respect to du but does not weight the observations. At last, we propose
the weighted permutation merger (Section 8.2.3.3) and compare it to the aforementioned
approaches when used with the functional neighbor model predicting the load curves
day-ahead.

31 For what follows, we are given a set of K vectors Yj ∈ Rn, j ∈ {1, . . . , K} representing load curves
and, following the nonparametric approach (Algorithm 3), we compute the forecast as Ŷ = Yc as the
center among relevant historical outputs Yj .
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8.2.3.1 Average-Based Merger

Average-based mergers are standard for the conventional nonparametric models used in
load forecasting [AC13]. The observations in GX∗ are merged computing the average that
corresponds to the center ofGX∗ with respect to theEuclidean distance (4.63). Additionally,
the observations can be assigned individual weights θj such that

K∑
j=1

θj = 1 with θj ≥ 0 for j ∈ {1, . . . , K}.

The weighted average of the curves in GX∗ minimizes the weighted SSD as we demonstrate
by the following theorem.

Theorem 8.2.1. Weighted average

Ȳθ =
K∑

j=1
θjYj (8.55)

is the center (Definition 8.2.3) with respect to the ℓ2-distance (d0 distance notion).

Proof. We begin by expressing ℓ2-distance in terms of inner-product and use its properties:

Ŷ = arg min
v∈Rn

K∑
j=1

θj

(
d0(Yj, v)

)2
= arg min

v∈Rn

K∑
j=1

θj⟨Yj − v, Yj − v⟩

= arg min
v∈Rn

K∑
j=1

θj

[
⟨Yj, Yj⟩ − 2⟨Yj, v⟩ + ⟨v, v⟩

]

= arg min
v∈Rn

[ K∑
j=1

θj⟨Yj, Yj⟩ − 2
K∑

j=1
θj⟨Yj, v⟩ +

K∑
j=1

θj⟨v, v⟩
]
.

Note that∑K
j=1 θj⟨Yj, Yj⟩ is a constant term and does not affect the solution. Thus, Ŷ can

be computed as:

Ŷ = arg min
v∈Rn

[ K∑
j=1

θj⟨v, v⟩ − 2
K∑

j=1
θj⟨Yj, v⟩

]

= arg min
v∈Rn

[ K∑
j=1

θj⟨v, v⟩ − 2⟨
K∑

j=1
θjYj, v⟩

]
= arg min

v∈Rn

[
⟨v, v⟩ − 2⟨Ȳθ, v⟩

]
.
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Figure 8.15: Kernel functions defined in Table 8.3.

We denote the weighted average (8.55) as Ȳθ and add a constant term ⟨Ȳθ, Ȳθ⟩ into the
minimized expression. Herewith,

Ŷ = arg min
v∈Rn

[
⟨v, v⟩ − 2⟨Ȳθ, v⟩ + ⟨Ȳθ, Ȳθ⟩

]
= arg min

v∈Rn
⟨v − Ȳθ, v − Ȳθ⟩

= arg min
v∈Rn

d0(v, Ȳθ),

for which v = Ȳθ is the solution.

Calculating the average curve is trivial and uniform or weighted averaging are the standard
mergers for nonparametric models [AC13]. Weighting the observations depending on their
distance can significantly improve the nonparametric forecast as we will see further in the
text. While the weights are usually calculated using Gaussian kernel, any kernel function
(Definition 4.3.2) can be used for this purpose.

Some of the most common kernels that we have encountered in statistical literature
[AMS97, HWMS04] are summarized in Table 8.3 and illustrated in Figure 8.15. We
can distinguish between two types of kernels:

• Closed kernels only consider observations within the bandwidth to which they assign
weights θ > 0 while discarding (θ = 0) the observations elsewhere.
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Table 8.3: Asymmetrical kernel functions.

Kernel Function

Uniform 1(0 ≤ z ≤ 1)
Gaussian (closed) 1.37 1√

2π
exp(−1

2z2)1(0 ≤ z ≤ 1)
Epanechnikov 3

2(1 − z2)1(0 ≤ z ≤ 1)
Triangular 2(1 − |z|)1(0 ≤ z ≤ 1)
Biweight 15

8 (1 − z2)2
1(0 ≤ z ≤ 1)

Triweight 35
16(1 − |z|3)3

1(0 ≤ z ≤ 1)

Gaussian 2√
2π

exp(−1
2z2)1(0 ≤ z)

Exponential 3.46 exp(−z)1(0 ≤ z)

• Open kernels do not discard the observations outside of bandwidth and instead
assign very small weights to them.

We observed that the nonparametric models using closed kernels were significantly more
accurate than when using the open kernels (Figure 8.16). In theory, when considering
asymptotic properties of the models (i.e., assuming infinite observations), all kernels
are almost equivalent [HWMS04]. In practice, indeed, models with closed kernels had
comparable accuracy among them. At the same time, there was a notable difference
between open and closed kernel types. For some loads, the recency of observations
used for the forecast notably affects the accuracy. Consequently, the difference between
the kernel types was particularly notable on the loads with a pronounced annual cycle
(enterprises, aggregations) that often feature a strong concept drift (Section 7.1.1.1). A
model with an open kernel assigns small weights to the observations outside of GX∗ instead
of discarding them. As a result, nonparametric models with closed kernel, considering
only the most relevant observations located in GX∗ were significantly more accurate.

Consider the improvement of the functional neighbor model through using triangular
and Gaussian kernels relative to the uniform average (Figure 8.17). We observed that
the Gaussian kernel, not only provided no improvement against the uniform average, but
reduced the accuracy (on average down to 30%). This is somewhat surprising since (open)
Gaussian kernel is the most common kernel for the nonparametric models (Chapter 5).
Though often applied without any justification in related works, we observed that the
Gaussian kernel might not be the best choice for our nonparametric model. Alternatively,
triangular kernel appears to be a better choice. It corresponds to weighting observations
proportionally to their distance to the query and results in a significantly (p < 0.05) more
accurate forecast.
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Figure 8.16: Kernel function comparison. Multivariate nonparametric model (Algorithm 2) using average-
based merger with various kernel functions to determine the weights of historical observations
predicted 300 loads in a validation experiment (Section 9.3.1.1). Each panel shows the expected
daily error (7.15) distribution in the corresponding load group. The distribution of expected
daily errors for each load (dots) is summarized by a box-plot where the notch denotes the
95%-confidence interval of the median.
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Figure 8.17: Forecast improvement through kernel weighting. In a validation experiment (Section 9.3.1.1),
we applied the functional neighbor model (Algorithm 3) using an average-based merger with
Gaussian and triangular kernels weighting historical observations to predict 300 loads of differ-
ent groups and obtaining a sample of 30000 daily forecast errors. Additionally, we predicted the
same loads with the uniform-average-based merger using the results as a benchmark. Relative
to the benchmark, we computed the forecast improvement (7.14) for each predicted daily load
curve. In the figure, every panel presents the sampling distribution of the mean improvement
for each load (rugs), expected improvement in the load group (dotted vertical line) with the
95%-confidence interval (horizontal bar) obtained by the functional neighbor forecaster using
the denoted kernel function in the corresponding day-type (panel column) and load group
(panel row). Notably, Gaussian kernel provided no improvement against uniform average, but
reduced the accuracy (on average down to 30%). At the same time, triangular kernel often
resulted in a significantly (p < 0.05) more accurate forecast than when using the uniform
kernel.
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8.2.3.2 Permutation Merger

Permutation merger (PM) is a merger that can improve the forecast accuracy by calculating
the center Ŷ with respect to the ℓ2

u-distance. We saw that ℓ2
u-distance used to quantifying

the similarity between the curves instead of the ℓ2-distance can lead to a more accurate
forecast. To further improve the forecast of the functional neighbor model, we consider
finding the center of GY by using the ℓ2

u-distance finding the center of historical output
observations.

Permutation merger provides a consensus representation of historical outputs in GY al-
lowing for small permutations within the load curves. The center load curve Ŷ can be
expressed as:

Ŷ = arg min
v∈Rn

K∑
j=1

[
du(Yj, v)

]2
. (8.56)

To find Ŷ we must solve a K-MCLP-problem defined as follows [CGS13a,CGS13b].

Definition 8.2.5. K-dimensional minimal cost local permutation (K-MCLP) problem
consists of finding a set of u-local permutations32 π1, . . . , πK ∈ P(X, u, q) of the curves
Y1, . . . , YK which minimize the cost function of a form

Cost(π) :=
q∑

i=1
C
(
i, π1(i), . . . , πK(i)

)
,

whereC
(
i, π1(i), . . . , πK(i)

)
is the cost ofmapping the point at i to the pointsπ1(i), . . . , πK(i).

Note that there might exist several solutions for a K-MCLP-problem. This problem can
be effectively solved in O(nuK4Ku) time using a graph-based approach as described
in [CGS13a,CGS13b].

We contrast the differences between the permutation merger and a uniform average. Imag-
ine, an artificial example where we are merging two curves Y1, Y2 – both with a pronounced
peak of a similar size, yet at a slightly different time (Figure 8.18). Merging with uniform
average, results in a curve that features both peaks but with reduced amplitude. Permu-
tation merger returns a curve that has one peak in between the peaks of the Y1 and Y2.
Assuming that Y1, Y2 represent load curves with a pronounced peak, we need merger to
provide a consensus representation of the curves that also features a single peak.

In practice, a load curve of a typical household often features a morning and an evening
peak that is slightly shifted from day to day (Figure 8.19). Again, we combine two curves
Y1, Y2 ∈ GY comparing the uniform average with the permutation merger allowing to

32 Several solutions are possible.
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Figure 8.18: Contrasting uniformaverage and a permutationmerger on an artificial example. In this example,
we applied uniform average and permutation merger to compute a consensus representation
of {Y1, Y2}. The curves Y1, Y2 have a distinctive peak of the same magnitude but slightly
shifted in time (a). Uniform average provided a curve that features the peaks of both curves
with reduced amplitude (b). In contrast, permutation merger provides the curve with one peak
between the original peaks (c).

permute each point by one hour (i.e., u = 1). Both Y1 and Y2 have a visible morning and
evening peak – each occurring at slightly different time. The forecast using the uniform
average features both peaks with a reduced amplitude. On the other hand, the forecast
using the permutation merger finds a better consensus representation. Same as the original
curves, the merge has one peak, which is located in-between the original peaks of Y1 and
Y2.

Allowing small permutations significantly improves the functional-neighbor forecast com-
paring to the uniform-average-based merger (Figure 8.20). Nevertheless, it is hard to
imagine that permutations of more than one hour are adequate for the wide-scale day-
ahead building load forecasting application. We observed that the forecast accuracy of the
functional neighbor model using the permutation merger with u = 1 was the most accurate
variant on the majority of forecast loads (Figure 8.21). Allowing permutations beyond one
hour (i.e., u > 1 for our example)might be too permissive and perjudicate the forecast accu-
racy. For instance, u = 2 allows to match the points that are four hours away33. Four hours
can already make a difference between an evening and an afternoon activity. Additionally,
it is computationally expensive to increase permutation range [CGS13a,CGS13b].

33 As mentioned previously, we consider hourly resolution of the time series in this study.
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Figure 8.19: Demonstration of different mergers finding the consensus representation of two daily load
curves with an hourly resolution: (a) uniform average; (b) permutation merger with one hour
range; (c) permutation merger with a two hour range. Detailed description is provided in the
text.
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Figure 8.20: Forecast improvement with the permutation merger. In a validation experiment (Section
9.3.1.1), we applied the functional neighbor model (Algorithm 3) with a one-hour permutation
merger (u = 1) to predict the 300 loads of different groups obtaining a sample of 30000
daily forecast errors. We used various bandwidths K determining the number of curves to
be merged. Additionally, we applied the functional neighbor forecaster with uniform-average-
based merger to predict the same loads and used these results as a benchmark. Relative to the
benchmark, we computed the forecast improvement (7.14) for each predicted daily load curve.
In the figure, every panel presents the sampling distribution of the mean improvement for
each load (rugs at the top), expected improvement in the load group (dotted vertical line) with
the 95%-confidence interval (horizontal bar) obtained by the functional neighbor forecaster
with the specified bandwidth K (panel column) on the loads of the corresponding group
(panel row). We observed that the permutation merger significantly (p < 0.05) improved the
functional neighbor forecast. The average improvement depended on the chosen bandwidth.
The improvement becomes more notable with larger K that requires more load curves to be
merged. Further, we provided the results obtained by the model with an ideal model selector
choosing the best possible bandwidth (Section 9.3.1.1). These results show that we can expect
a significant forecast improvement when using the permutation merger instead of the uniform
average for the functional neighbor model.
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Figure 8.21: Selecting permutation range for the merger. In a validation experiment (Section 9.3.1.1), we
applied the functional three-neighbor model (Algorithm 3 with K = 3) using the permutation
merger with various ranges to predict the 300 loads of different groups obtaining a sample
of 30000 daily forecast errors. Conditioning on weekday and load group, for each load, we
counted the days where a model variant provided the smallest daily forecast error among
other permutation merger variants predicting the same load. Each panel presents these day
counts (dots). For the corresponding load group (panel row) and weekday (panel column),
the distributions of individual load day counts are summarized by box-plots where the notch
represents the 95%-confidence interval of the median and the dotted horizontal line represents
the corresponding average count for the panel. Notably, one-hour permutation merger provided
a significantly (p < 0.05) more accurate forecast in the majority of cases.
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8.2.3.3 Weighted Permutation Merger

We observed how weighting the observations based on their distance to the query X∗ can
improve the accuracy (Section 8.2.3.1). Further, we saw that allowing permutations when
merging the curves also improves the forecast comparing to the simple average (Section
8.2.3.2). In this section, we combine these insights introducing weighted permutation
merger that modifies the original permutation-merger method allowing to weight the
observations using a kernel function.

We begin extending the original theorem [CGS13b] through the introduction of the weights
θj .

Theorem 8.2.2. A vector Ŷ ∈ Rn with

Ŷ (i) := arg min
y∈R

K∑
j=1

θj

[
y − πj(i)

]2
(8.57)

is the center (Definition 8.2.3) of G = { Yj | j ∈ {1, . . . , K } with respect to the ℓ2
u

distance if permutations π1, . . . , πK solve the K-MCLP-problem (Definition 8.2.5 ) with

C(i, i1, . . . iK) := min
v∈R

K∑
j=1

θj

[
v − πj(ij)

]2
. (8.58)

Proof. The proof is similar to the original line of argument that authors of the permutation
merger provide in [CGS13b]. We extend it introducing the weights θj and prove theorem
using Lemmas 8.2.1, 8.2.2, 8.2.3 presented further in the text.

Suppose there exists a curve Y ′ ∈ Rn such that

SSD(Y ′) ≤ SSD(Ŷ ) (8.59)

with another set of permutations π′
1, . . . , π′

K solving the K-MCLP-problem which can
have multiple solutions.

Using the ℓ2
u-distance definition (8.52) we can write:

SSD(Y ′) =
K∑

j=1
θj

(
du(Yj, Y ′)

)2
=

K∑
j=1

θj min
v∈R

n∑
i=1

[
v − π′

j(i)
]2

. (8.60)
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Given that v = Y ′(i) minimizes the SSD on the right hand side of (8.59)) and introducing
(8.60) on the left hand side, we obtain

K∑
j=1

θj

n∑
i=1

[
Y ′(i) − π′

j(i)
]2

<
K∑

j=1
θj

(
du(Yj, Ŷ )

)2
. (8.61)

With Lemma 8.2.1 (presented subsequently)

Cost
(
π′

1, . . . , π′
K

)
≤

n∑
i=1

K∑
j=1

θj

[
Y ′(i) − π′

j(i)
]2

. (8.62)

Linearity of the inner sum with θj allows us to rewrite (8.61) to

Cost
(
π′

1, . . . , π′
K

)
<

K∑
j=1

θj

(
du(Yj, Ŷ )

)2
.

By Lemma 8.2.2 (presented subsequently)

K∑
j=1

θj

(
du(Yj, Ŷ )

)2
≤ Cost

(
π1, . . . , πK

)
,

we get
Cost

(
π′

1, . . . , π′
K

)
< Cost

(
π1, . . . , πK

)
,

which contradicts the fact that π1, . . . , πK solves the K-MCLP-problem and, therefore,
the Cost

(
π1, . . . , πK

)
must be the minimal cost.

We complete the proof of Theorem 8.2.2 deriving the aforementioned lemmas. Same
as previously, for j ∈ {1, . . . , K}, Yj are the curves to be merged with corresponding
weights θj and πj are the minimal cost permutations that solve K-MCLP-problem with
C(i, i1, . . . , iK) defined in (8.58).

Lemma 8.2.1.

Cost
(
π1, . . . , πK

)
≤

n∑
i=1

K∑
j=1

θj

[
Ŷ (i) − πj(i)

]2
.

Proof. Using the cost definition (8.58) we expand the left hand side to

Cost
(
π1, . . . , πK

)
=

n∑
i=1

C(i, i1, . . . iK) =
n∑

i=1
min
v∈R

K∑
j=1

θj

[
v − πj(i)

]2
.
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Therefore,
n∑

i=1
min
v∈R

K∑
j=1

θj

[
v − πj(ij)

]2
≤

n∑
i=1

K∑
j=1

θj

[
Ŷ (i) − πj(i)

]2
,

which is true for all Ŷ ∈ Rn.

Lemma 8.2.2.
K∑

j=1
θj

(
du(Yj, Ŷ )

)2
≤ C(π1, . . . , πK)

Proof. We begin by expanding the left hand side using the ℓ2
u-distance definition (8.52)

and considering the fact that πj is the solution to the MCLP-problem:

K∑
j=1

θj

(
du(Yj, Ŷ )

)2
=

K∑
j=1

min
π′

j∈P(Yj ,u,n)

√√√√ n∑
i=1

∣∣∣π′
j(i) − Ŷ (i)

∣∣∣2

=
K∑

j=1

n∑
i=1

θj

∣∣∣πj − Ŷ (i)
∣∣∣2.

On the right hand side of the Lemma 8.2.2, we apply Lemma 8.2.3 presented subsequently:

Cost
(
π1, . . . , πK

)
=

n∑
i=1

K∑
j=1

θj

[
Ŷ (i) − πYj

(i)
]2

=
K∑

j=1

n∑
i=1

θj

[
Ŷ (i) − πYj

(i)
]2

.

Hence,
K∑

j=1

n∑
i=1

θj

∣∣∣πj − Ŷ (i)
∣∣∣2 ≤

K∑
j=1

n∑
i=1

θj

[
Ŷ (i) − πYj

(i)
]2

,

which holds for any πj, Ŷ ∈ Rn.

Lemma 8.2.3.

Cost
(
π1, . . . , πK

)
=

n∑
i=1

K∑
j=1

θj

[
Ŷ (i) − πYj

(i)
]2

.

Proof. By definition

Cost
(
π1, . . . , πK

)
=

n∑
i=1

C(i, π1(i), . . . , πK(i)),

for which with (8.58) we get

Cost
(
π1, . . . , πK

)
=

n∑
i=1

min
v∈R

K∑
j=1

θj

[
Ŷ (i) − πYj

(i)
]2

.
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This equality is true since, according to (8.57), since the vector Ŷ does minimize the
expression on right hand side.

Weighted permutationmerger allows us toweight the observations depending ondu(X, X∗)
as we did previously with a kernel function (Section 8.2.3.1). Consider illustrative example
(Figure 8.22) where we intend to merge three curves Y1, Y2, Y3 to which we assign corre-
sponding weights θ1, θ2, θ3. Imagine, Y3 represents the least relevant observation which
is reflected by θ3 ≪ θ1 and θ3 ≪ θ2. Despite that, uniform average and permutation
merger will consider Y3 to a full extent. In contrast, weighted average will suppress the
irrelevant observation but the resulting forecast will suffer under the same problem as
uniform average in the previously discussed example (Figure 8.18): both peaks of Y1

and Y2 will appear with reduced amplitude. Weighted permutation merge combines the
weighting and permutation resulting in the merge that features only one peak.

We expect the weighting to improve the quality of the permutation merger and, thereby,
the accuracy of the forecast. Indeed, on the validation dataset, we observed a significant
improvement in comparison to the original permutation merger (Figure 8.23). As with
other mergers discussed in this chapter, the improvement of the merger became more
notable when merging more curves (i.e., a larger K). Further, the largest improvement was
observed for enterprises and aggregations where annual cycle is more prominent. Using
the weighting helps to consider the annual cycle to which larger loads are often subject to.
Overall, it appears that weighting does improve the accuracy of the permutation merger.

To conclude the discussion on the mergers, we make an overall comparison (Figure 8.24).
We observed that the permutation-based mergers and, in particular, weighted permutation
merger were the most accurate on the majority of the forecast days. As a result, weighted
permutation merger was the best merger on the majority of loads (Figure 8.25). Using
it instead of the kernel function, we can expect a notable improvement of the forecast
provided by our functional neighbor model.
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Figure 8.22: Demonstration of different mergers computing consensus representation of the illustrative
curves Y1, Y2, Y3. Detailed description is provided in the text.
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Figure 8.23: Permutation merger improvement through weighting. In a validation experiment (Section
9.3.1.1), we applied the functional neighbor forecaster (Algorithm 3) with a one-hour weighted
permutation merger (u = 1) to predict the 300 loads of different groups obtaining a sample of
30000 daily forecast errors. We used various bandwidths K determining the number of curves
to be merged. Additionally, we applied the functional neighbor forecaster with the (uniform)
permutation merger to predict the same loads and used these results as a benchmark. Relative
to the benchmark, we computed the forecast improvement (7.14) for each predicted daily load
curve. In the figure, every panel presents the sampling distribution of the mean improvement
for each load (rugs at the top) and the expected improvement in the load group (dotted vertical
line) with the 95%-confidence interval (horizontal bar) obtained by the functional neighbor
forecaster with the specified bandwidth K (panel column) on the loads of the corresponding
group (panel row). We observed that weighting the observations significantly (p < 0.05)
improved the functional neighbor forecast. The average improvement depended on the chosen
bandwidth. The improvement becomes more notable with larger K that requires more load
curves to be merged. Further, we provided the results obtained by the model with an ideal
model selector choosing the best possible bandwidth (Section 9.3.1.1). These results show that
we can expect a significant forecast improvement when using the weighted permutation merger
instead of the original permutation merger.
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Figure 8.24: Comparison of different mergers. In a validation experiment (Section 9.3.1.1), we applied the
functional neighbor forecaster (Algorithm 3) using various average-based mergers (uniform,
Gaussian and triangular kernel functions), permutation merger (u = 1) and weighted permuta-
tion merger (u = 1) to predict 300 loads of different groups obtaining a sample of 30000 daily
forecast errors. Conditioning on weekday and load group, for each load, we counted the days
where a model variant provided the smallest daily forecast error among other merger variants
predicting the same load. Each panel presents these day counts (dots). For the corresponding
load group (panel row) and weekday (panel column) the distributions of individual load day
counts are summarized by box-plots where the notch represents the 95%-confidence interval
of the median and the dotted horizontal line represents the corresponding average count for
the panel. Notably, the weighted permutation merger provided a significantly (p < 0.05) more
accurate forecast than other mergers in the majority of cases.
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Figure 8.25: Comparison of different mergers by load. In a validation experiment (Section 9.3.1.1), we
applied the functional neighbor forecaster (Algorithm 3) using the selected average-based
mergers (uniform, triangular kernel functions), permutation merger (u = 1) and weighted
permutation merger (u = 1) to predict 300 loads of different groups obtaining a sample of
30000 daily forecast errors. Moreover, we used various bandwidths K determining the number
of curves to be merged. Conditioning on load type (panel row) and bandwidth (panel column),
we represent each individual load by a square filled depending on the multistep strategy that
provided the smallest expected daily error (7.15) on the days of the corresponding weekday
and bandwidth. Notably, the model using the weighted permutation merger provided a more
accurate forecast on the vast majority of loads. The dominance becomes more notable with
larger K that requires more load curves to be merged. Further, we provided the results
obtained by the model with an ideal model selector choosing the best possible bandwidth
(Section 9.3.1.1). These results show that we can expect a significant forecast improvement
when using the weighted permutation merger.
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8.3 Functional Neighbor Extension

In this section, we extend the functional neighbor methodology to consider external
inputs in the load forecasting model. As we noted previously, building power demand
mostly depends on behavioral patterns of the inhabitants (Section 7.1). Nevertheless,
power demand forecast, for some buildings can be improved by incorporating exogenous
variables into the model (Section 7.1.3). The previously introduced functional neighbor
forecaster (Algorithm 3) considers the behavioral patterns implicitly but disregards any
exogenous variables. However, our forecastingmethodology allows to extend the forecaster
to consider external inputs that might affect the electricity consumption of a building.

The functional neighbor forecaster proposed above is based on the univariate autoregressive
functional nonparametric load model and can ignore some of the available information
about the predicted day. The basic assumption of the model is that all relevant information
about the predicted load curve Yj is contained in the load curve of the preceding day Xj .
This assumption ignores any additional information about the predicted day. In general,
however, the load can depend in an unknown way on several qualitative (e.g., weekday)
and quantitative (e.g., solar irradiation) variables that characterize the predicted day. This
information is not included in Xj and, in some cases, the model can be improved if it
considers such information as a set of external inputs Zj .

8.3.1 Existing Approaches

There are two general approaches for modeling the dependency on the external inputs.
Process-based models assume an explicit dependency, and the input-output relationship
form needs to be assumed a priori (e.g., linear, quadratic, etc.). As a result, such models
can extrapolate with non-observed covariates. The most common example is a linear
model that extrapolates assuming linear dependency. However, the output often depends
on external variables in an unknown way which makes it hard to make an adequate
assumption about the dependency form. Alternatively, data-driven models, such as the
ones considered in this study (Chapter 5), rely on interpolation of historical data. Making
a prediction, these models interpolate the outputs for the previously observed covariates.
They rely on weaker assumptions34 but cannot extrapolate for inputs that were not observed
previously (e.g. temperature on an extraordinarily hot day).

At the moment, we are aware of only two functional nonparametric load forecasting ap-
proaches that allow to consider external inputs. Aneiros and Vieu extended the functional
nonparametric approach (4.82) to a semi-functional partially linear (SFPL) model that

34 For instance, an ANN-model only has to assume that such dependency exists without specifying its
form.
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allows to consider linear dependencies on exogenous multivariate inputs [AV06]. In a
series of publications, the authors generalized functional nonparametric approach incor-
porating linear component into the regression function. First, the model was proposed for
scalar inputs [AV06] and then extended to functional inputs in the subsequent publica-
tions [AVCMSR13,AVR16].

The SFPL model can extrapolate for non-observed covariates but assumes linear depen-
dency on the input and can only consider exogenous variables with a linear effect on the
load. For instance, to model the nonlinear effect of the temperature on the consumption,
the authors use a transformation to linearize this dependency [AVR16]. In practice, the
dependency of the load on various external inputs (e.g., weather and external demand
response incentives) can often be nonlinear. Further, the same behavior of the input can
lead to a different response. In particular, the reaction of the daily load can depend not
only on temperature but also on some qualitative variables (e.g., weekday). Moreover, the
SFPL-model relies on accurate next-day forecasts of the inputs. While available for the
temperature, this might not be the case for solar irradiation or other exogenous variables
that are more volatile.

Alternatively, a functional similar shape forecaster presents a different way to consider
external inputs when predicting the load with a nonparametric approach [PS13]. Using
the prediction of the exogenous variables (e.g., weekday, weather), the upcoming day is
assigned to one of the precalculated reference curves. The forecast is computed with
functional nonparametric regression (4.82) using the assigned reference curve as a query.
In theory, the implementation of this method is straightforward. However in practice, its
accuracy depends on the availability of the required time-series data while this method is
highly susceptible to the curse of dimensionality — with every additional input we need
exponentially more historical data (Section 4.2.3.2).

8.3.2 Functional Neighbor Extension Model

Functional neighbor forecasting methodology (Section 8.2) allows to extend the univariate
forecaster enabling it to consider external inputs (features). Recall that the relevance of
the historical days constituting the object space

H := {Dj | 1 ≤ j ≤ h} with Dj := {Xj, Yj, Zj}, (8.63)

for the predicted day Dj+1, is evaluated using an abstract distance notion that quantifies the
similarity between the most recently observed load curve X∗ and historical predecessor
load curves X1, . . . , Xh. Beyond the load curve, each day j can include several qualitative
and quantitative variables that characterize it (e.g., weather measurements, day-type etc.).
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Therefore, we define the extended query

D∗ := {X∗, Ẑ∗}, (8.64)

where X∗ is the most recently observed load curve (as in Section 8.2) and Ẑ∗ is a set
containing the predictions of v exogenous variables obtained by an independent forecaster
Fz for the upcoming day (Figure 7.13). historical days in H can be viewed as points in a
v + 1 dimensional space where the coordinates correspond to the v + 1 distances between
the corresponding variables.

Figure 8.26: Two-dimensional demonstration of relevance computation based on triangulation. The rele-
vance l(D∗, Dj) of the historical day Dj = {Xj , Z

(j)
1 } to the extended query D∗ = {X∗, Z∗

1 }
can be computed as the square root of the sum of the squares of distances between individual
features of the day applying the Pythagorean theorem (8.65). Further discussion is provided in
the text.

Consequently, the relevance of a historical day Dj , for a given D∗, can be calculated as a
distance using triangulation (Figure 8.26):

l(D∗, Dj) :=
√

w0d0(X∗, Xj)2 + w1d1(Z∗
1 , Z

(j)
1 )2 + . . . + wvdv(Z∗

v , Z
(j)
v )2. (8.65)

The feature weights w0, . . . , wv allow to account for the fact that different features can
have different influence on the load curve.

The weights can be defined manually or determined by a separate feature selector module.
For instance, the importance of an individual feature can be related to the correlation
with the electricity consumption. In the future, we will develop an automated feature
selector module, facilitating a wide-scale application of the proposed model extension.

179



8 The Forecaster

For this study, we manually select the most relevant features of the simulated smart
building (Section 9.1.2). Note that a manual input selection does not impede a practical
application of the FNX-model, since a larger energy equipment (e.g., a PV-generator) has
to be registered by the grid operator.

8.3.3 Functional Neighbor Extension Algorithm

Functional neighbor extension (FNX) model described above allows to create a load
forecasting algorithm that considers exogenous variables for predicting the day-ahead
power demand of a building (Algorithm 4). The algorithm consists of the following steps.

Algorithm 4: Functional neighbor extension (FNX)
Inputs: extended query D∗

Outputs: forecast curve Ŷ ∈ Rn

Data: historical daily observations H := {Dj | 1 ≤ j ≤ h}
Parameters: number of nearest neighbors K, distance notions d0, . . . , dv,

feature weights w0, . . . , wv

1 smooth time-discrete measurements of the quantitative inputs: → Hf , χ∗, Ẑ∗
f

2 compute the distances between the features using corresponding distance notions:
→ d0(χ∗, χj), d1(ζ̂∗, ζ

(j)
1 ), . . . , dv(ζ̂∗, ζ(j)

v )
3 compute the relevance of the historical days to D∗ with (8.65)
4 sort Hf by the relevance to the query D∗

5 find K-nearest neighbors of D∗: → GD∗

6 merge historical outputs to a consensus representation of ϕj ∈ GD∗: → ϕ̂

7 re-sample ϕ̂: → Ŷ

Step 1 Where necessary for the distance computation, we apply smoothing splines
[RS05], to obtain continuous functions χ, ζ from time-discrete measurements X, Z rep-
resenting the corresponding quantitative features35.

Step 2 For each quantitative feature of a historical day j, we compute the distance to
the prediction of the corresponding feature contained in D∗. Each distance is computed
with the corresponding distance notion36 that was defined specifically for that feature.

35 This step is similar to the Step 1 in Algorithm 3.
36 Distance notions were discussed in Section 8.2.2.2.
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Step 3 We compute the relevance of each historical day with respect to the given
extended query D∗ using (8.65).

Step 4 We sort historical days by the relevance in a descending order.

Step 5 To find the K-nearest neighbors of D∗, we determine corresponding neighbor-
hood GD∗ by selecting the observations whose relevance from D∗ is within the variable
bandwidth

bK = l(D∗, DK), (8.66)

which corresponds to the distance between D∗ and its K’th nearest neighbor DK .

Step 6 We merge the historical output observations ϕj in GD∗ to a forecast ϕ̂37.

Step 7 At last, we compute a time-discrete prediction Ŷ ∈ Rn resampling ϕ̂ on the
desired sampling grid38.

In order to validate the FNX-model, we apply it on the existing smart building within the
Smart-City-Demo Aspern project (Section 9.1.2). In particular, we simulated the load
forecasting of a student dorm facility whose net electricity demand substantially depends
on the solar irradiation due to a large PV-installation on the roof. The results are presented
further in the text (Section 10.3).

37 This step is similar to Step 4 in Algorithm 3. Merger functions were discussed in Section 8.2.3.
38 This step is similar to Step 5 in Algorithm 3.
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In this chapter, we describe the evaluation of the functional neighbor forecasting method-
ology introduced previously. To validate the functional neighbor forecaster (Algorithm
3), we conducted a wide-scale day-ahead building load forecasting simulation (Section
9.1). In particular, we simulated a day-by-day forecast of numerous loads of different
size and type using a public smart-meter dataset. Additionally, we applied our model on
the buildings in Aspern validating the extension (Algorithm 4) of the functional neighbor
forecaster that can be used on smart buildings where the consumption notably depends
on external inputs. Moreover, we compared the accuracy of our forecaster with several
reference models that can be often found in the load forecasting literature (Section 9.2).
The simulations are summarized at the end of the chapter (Section 9.3).

9.1 Simulations

In this section, we describe the simulations that were used to validate the functional
neighbor forecasting methodology. In particular, we evaluated the functional neighbor
forecaster (Algorithm 3) in a wide-scale day-ahead building load forecasting simulation
using an extensive smart-meter dataset (Section 9.1.1). Additionally, we validated the
extension for considering external variables (Algorithm 4) on a smart building from the
Smart-City-Demo Aspern Project (Section 9.1.2). Concluding this section, we provide the
details on the performed computations and tools that we used for our study (Section 9.1.3).

9.1.1 Wide-Scale Building Load Forecasting Simulation

We predicted numerous loads of different size and type simulating the day-ahead building
load forecasting on a wide scale. Simulated loads included individual buildings and their
aggregations from the public smart-meter dataset provided by Irish Commission for Energy
Regulation (ICER) [Arc16]. The data was collected for a variable electricity tariff trial
in the Great Dublin Area (Ireland) and includes load time-series measured by 6445 smart
meters installed on various households and enterprises. For the vast majority of buildings,
the load was measured from 15th July 2009 to 31st December 2010 with a 30-minute
resolution.
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After the preparation, we split the data into a validation and evaluation datasets as described
below. We used the validation dataset including themeasurements of 300 loads over twelve
months for the problem formulation (Chapter 7), for the design of the functional neighbor
forecaster (Chapter 8) and the pre-selection referencemodels (Chapter 9.3). The evaluation
dataset consisting of 1851 loads and extending over five months was used only for the final
evaluation whose results we describe in the next part of the thesis.

9.1.1.1 Data Preparation

The original ICER-dataset required data preparation described in this section. Most
importantly, we selected only the loads from the control group (1126 loads) that were not
subject to the variable tariffs. Further, we discarded any load time-series that had more
than 1% of measurements equal to zero or were otherwise obviously corrupted.

The time series in this dataset use sample and hold forward sampling. A value at 00:00
indicates the amount of energy in kWh consumed between 00:00 and 00:30. Further, the
original load curves include daylight saving time. The load curve on the winter time fall
back day (25th of October 2009 and 31st of October 2010) contains 50 points. The load
curve on the summer time spring forward day (28th of March 2010) has only 46 points.
To simplify the computation, for each load we discard the extra hour on the winter fall
back days, and interpolate for the missing hour on the spring forward day. Moreover, we
re-sampled each load time-series equidistantly with a 60-minute resolution and normalized
it by its maximum value to facilitate the comparison between the loads and demonstration.
After down-sampling and mitigating the daylight saving time unbalances, each daily load
curve contained exactly 24 points.

Using the remaining 1062 loads, we created 789 aggregations to evaluate the forecasts also
on larger loads representing larger buildings. In particular, we aggregated the households
and enterprises to residential, commercial, andmixed aggregations of different size. Mixed
aggregations contain 80% of households and 20% of enterprises which corresponds to the
ratio commonly found at the transformers in the distribution grid. For each aggregation
size, the loads were selected randomly from the correspondent group without replacement.

As a result, the extended smart-meter dataset that we used in this study contained:

• 887 single family homes (households)

• 175 small and middle enterprises (enterprises)

• 360 residential aggregations

• 67 commercial aggregations

• 362 mixed aggregations
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Figure 9.1: Loads of the extended ICER smart-meter dataset that were used for the wide-scale building load
day-ahead forecasting simulation. Homes, enterprises and aggregations are denoted according
to their size (annual consumption) and variability (coefficient of variation). The distribution of
the size and variability within each load group is denoted alongside the main plot with the same
color.

For each of these 1851 loads, we had complete data from 15th of July 2009 to 31st of
December 2010 with no missing values at the 60-minute resolution.

The dataset is represented in Figure 9.1 where we denote each household, enterprise and
aggregation in terms of its size (annual consumption) and variability expressed through
the coefficient of variation (CV)

CV(y) = σ(y)
µ(y) . (9.1)

Observing the distributions of the loads, we noted that the households and enterprises had,
on average, different annual consumption but similar CV. In each group, the loads were
log-normally distributed in terms of size (logarithmic x axis). Enterprises tended to have
higher consumption and were more diverse, having a wider range of CV. Aggregations had
the largest range in terms of size but the smallest in terms of variability (both average and
spread). Therefore, they were the most consistent group in terms of variability.

We split the extended dataset into validation and evaluation datasets as described subse-
quently.
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Figure 9.2: Residential load groups included in the extended ICER smart-meter dataset that were used
for the wide-scale building load day-ahead forecasting simulation. Single family homes (A),
residential aggregations (B) and large residential aggregations (C) are denoted according to their
size (annual consumption) and variability (coefficient of variation). The distribution of the size
and variability within each load group is denoted alongside the main plot with the same color.

9.1.1.2 Evaluation Dataset

The evaluation dataset consisted of 1851 load time-series from 1st of August 2010 to
31st of December 2010 (five months). We defined the following separate residential and
commercial load groups summarized in Table 9.3.

(A) single family homes – as encountered in the ICER-dataset

(B) residential aggregations – first two quartiles of all residential aggregations

(C) large residential aggregations – last two quartiles of all residential aggregations

(D) single enterprises – as encountered in the ICER-dataset

(E) commercial aggregations – first two quartiles of the commercial aggregations

(F) large commercial aggregations – last two quartiles of commercial aggregations

The distribution of the loads in terms of size and variability in the residential groups A,
B, and C is presented in Figure 9.2. Notably, there is an overlap between the groups in
terms of annual consumption. At the same time, the variability drops with aggregations
size. While for single households it can reach over 250%, for larger aggregations it drops
under 50%.
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Figure 9.3: Commercial load groups included in the extended ICER smart-meter dataset that were used
for the wide-scale building load day-ahead forecasting simulation. Single enterprises (D),
commercial aggregations (E) and large commercial aggregations (F) are denoted according to
their size (annual consumption) and variability (coefficient of variation). The distribution of
the size and variability within each load group is denoted alongside the main plot with the
corresponding color.

The distribution of the loads in the commercial groups D, E, and F in terms of size
and variability is presented in Figure 9.3. There are much fewer commercial loads in
our dataset. However, the distribution in terms of annual consumption and variability
is similar to the residential groups. Again, there is a small overlap between the groups
in terms of annual consumption. The variability was substantial for enterprises and
smaller commercial aggregations but dropped with the increasing load size. Notably,
the variability of average-sized loads (around 100 MWh) was more substantial than for
residential consumers of similar size.

9.1.1.3 Validation Dataset

For the validation dataset, we selected 300 loads and used the measurements from 1st of
August 2009 to 31st of July 2010 (twelve months). In particular, we defined three load
groups of different type:

• single family homes (residential)

• enterprises (commercial)

• mixed aggregations (mixed)
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Figure 9.4: Loads from the extended ICER smart-meter dataset that were included in the validation dataset.
For each of the three load groups (single family homes, enterprises, mixed aggregations), we
selected 100 loads that were closes to the average annual consumption among the corresponding
group in the extended ICER smart-meter dataset.

For each group, we selected 100 loads of each type that had annual consumption closest
to the average among the loads of same type in the extended ICER smart-meter dataset.

The selection is presented in Figure 9.4 and summarized in Table 9.4. We see that the
three groups do not overlap in terms of size. Again, the enterprises are the most diverse
group in terms of variability. Aggregations is the most consistent group with the smallest
variability average and spread.

9.1.2 Smart-Building Load Forecasting Simulation

In this section, we describe the smart-building load forecasting simulation that we used to
validate the FNX-model – the extension of the functional neighbor model that can consider
external inputs (Section 8.3). We simulated a smart building from the Smart-City-Demo
Aspern project (Section 6.3) which we describe below.

The smart building is a student home constructed to the highest sustainability standards.
It accommodates over 300 students on 7000 m2 and features modern energy equipment
(Figure 9.5). The building has a photovoltaic (PV) electricity generator (221 kWp) on the
roof, electrical battery (150 kWh) and a building energy management system connecting
all the energy equipment. The facility is heated thermally by the district heating network
[Asp].
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Figure 9.5: Smart building from the Smart-City-Demo Aspern project [Asp]. The student home accom-
modates over 300 students on 7000 m2 and features various energy equipment denoted on the
figure.

For this smart building, we obtained one year of load measurements1 that we re-sampled
equidistantly with a 60-minute resolution. The average load curves computed for each
season show that the highest load occurs in winter, despite the fact that the building is
heated thermally (Figure 9.6). In every season, we observed pronounced load peaks during
early afternoon and late evening, on each day of the week. The evening peak occurred
after 20:00 and was, probably, due to the habits of the students as well as possible peak
shifting operation of the battery. Notably, the smallest load occurred in the first half of
the day where the PV-generator can produce power. Moreover, in summer, the inhabitants
tended to spend more time outside and leave on vacation. At the same time, there is an
abundant solar irradiation to fully supply the building with power during several hours and
charge the battery. As a result, the net consumption in the first half of the day was often
negligible and the evening peak was reduced.

We used this building to demonstrate the FNX-model considering weather-related exoge-
nous variables. For this building, the standard profile is a poor representation of the load

1 The data contains the net electricity consumption measured from 1st of July 2016 to 30th of June 2017.
Of the available twelve months of data, we used three months (1st of January 2017 – 31st of March
2017) as a validation dataset while preserving the last three months (1st of April 2017 – 31st of June
2017) for the evaluation.
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Figure 9.6: Average daily load curves of the smart building (Figure 9.5). In winter, there is a distinct
consumption peak in the afternoon and evening. In summer and during the warmer months, the
consumption is notably lower due to the installed photovoltaic generator.

Figure 9.7: Net electricity consumption and standard load profile of the smart building (Figure 9.5). The
standard profile appears to be a poor representation of the load due to an unusual consumption
pattern that can be affiliated to the large photovoltaic and battery installation in the building.

190



9.1 Simulations

Figure 9.8: Electricity consumption of the smart building (Figure 9.5), outside ambient temperature and
global solar irradiationmeasured at the neighboringweather station (7 km). The time series were
normalized by the maximal values and resampled synchronously with 60-minute resolution.

due to the large PV and battery installation resulting in a net load pattern unusual for a
residential building (Figure 9.7). For our study, we acquired the weather data from the
neighboring weather station2 [Zen]. In particular, we obtained the measurements of the
outside ambient temperature and global solar irradiation which we also re-sampled with
60-minute resolution with the same sampling grid as the load time-series3 (Figure 9.8).

We studied the dependency of electricity consumption on the outside ambient temperature
and solar irradiation (Figure 9.9). The dependency on the outside temperature was small
and can be explained by seasonal behavioral changes of the inhabitants. This modern
building is heated thermally and is well-insulated which reduced the effect of daily tem-
perature changes on its power demand. More notably, daily electricity consumption was
affected by the solar irradiation. Therefore, we could expect the daily load curve to depend
on solar irradiation and should consider it in our model. For the simulation, we assumed
to have an ideal global solar irradiation forecast for the upcoming day, while in practice
we would have to rely on a weather forecast4.

2 Weather station "Donaufeld" is located approximately 7 km away.
3 Temperature was simply re-sampled, while for the GSI we computed the cumulative sum.
4 This is a common assumption for a load forecasting simulation. Temperature forecasts can be very

precise and we do not expect any loss of generality, similar to other researchers [CHL16,AVCMSR13,
AVR16,ACV11,VCA12].
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Figure 9.9: Dependency of total daily electricity consumption of the smart building (Figure 9.5) on the
weather-related variables. The dependency on the outside ambient temperature was weak due
to the thermal heating and insulation. At the same time, the dependency on the daily solar
irradiation was more pronounced due to the large photovoltaic installation on the roof.

9.1.3 Computation Details

We simulated the loads using the MATLAB-software. On each load, the day-ahead load
curve was predicted day after day on a rolling basis. The wide-scale building load fore-
casting simulation included the prediction of multiple local loads over numerous days and
required considerable computation resources. Therefore, the computation was parallelized
and run on the servers of Austrian Institute of Technology. The hyperparameters of the
parametric models described in the next section that are not mentioned explicitly were left
to MATLAB defaults. Data analysis was conducted with RStudio IDE.

Overall, the wide-scale day-ahead building load forecasting simulation included 283,203
daily forecasts5 computedwith eachmodel that were evaluated in Chapter 10. Additionally,
for the validation of each model we computed 30,000 daily forecasts. In particular, we
validated the design decisions discussed in Section 8.2. Moreover, we used the validation
dataset to parametrize various reference models discussed next.

5 We computed 153 daily load curve forecasts for each of the 1851 loads of the extended smart meter
dataset.
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9.2 Reference Models

In this section, we describe the setup and validation of the existing models that we
evaluated in the wide-scale day-ahead building load forecasting simulation. In particular,
we selected various reference models that can be commonly encountered in the load
forecasting literature (Chapter 5). Further, we used the validation dataset (Section 9.1.1.3)
to find the most accurate setups and manually fine-tune these models before evaluating
them together with the proposed functional neighbor forecaster. In this study, we compared
the functional neighbor model described in the last chapter to various common approaches
considering three families of models: heuristic (Section 9.2.1), parametric (Section 9.2.2),
nonparametric (Section 9.2.3). Subsequently, we describe these reference models and use
the validation dataset to pre-select the most accurate approaches. Further, we manually
fine-tune their parameters and setups before applying them to the evaluation dataset for
which the results are presented in the next chapter.

9.2.1 Heuristic Models

There are several load modeling heuristics that can be effective for predicting building
loads. These models are often used as benchmarks, yet they can be sometimes more
accurate even than more sophisticated approaches [HGZA18].

9.2.1.1 Profiling Heuristics

Standard Load Profile (SLP) Predicting power consumption using standard profiles
is the method that is currently used for load forecasting in the distribution systems. It one
of the oldest approaches that has been used since the establishment of wide-scale power
systems. This method is remarkably accurate for larger aggregations, yet often ignored by
the modern load forecasting literature.

The standard profiles are defined by the corresponding national entities. We provide some
examples in Figure 9.10. The definition includes profiles for different consumer groups
with the annual consumption of 1000 kWh. This method allows to predict the load in a
distribution system for which we have to know its consumer group and annual consumption
of the individual consumers. When given a load aggregation, the SLPs of individual loads
are aggregated accordingly (e.g., 70 households, and 30 SMEs)6.

6 For our purposes, we normalized the SLPs by the maximum value of the corresponding load. Further,
SLPs are scaled by the predicted annual consumption for the upcoming year. We assume that this
prediction is ideal taking the actual annual consumption (i.e. using test set to calculate it).
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Figure 9.10: Standard load profiles of various end-consumers as defined by the national entities in Austria
[Syn] and Ireland [Iri14]. The profiles are presented for the last week in July 2010 and were
defined for the loads with 1000 kWh of annual consumption.

Individual Load Profile (ILP) Wide-scale introduction of smart meters allows for a
trivial improvement on the SLP-heuristic by creating individual profiles for each consumer
[BPT13]. Similar to the SLP-approach, after collecting historical data of the consumer,
we group daily load curves by season (summer, winter, Transition) and day-type (workday,
Saturday and holiday). For each group, we compute the average curve obtaining 9 ILPs for
the consumer (Figure 9.11). The load is forecast by the ILP corresponding to the upcoming
day.

Validation: Profiling Heuristics Forecast accuracy can be significantly improved at
each level of aggregation if instead of SLPs we use the individually created profiles (Figure
9.12). Consumers can exhibit load curves that do not fit the standard load profiles. For
instance, we can often find businesses that have unusual opening hours that do not follow
the workday calendar. Though such deviations can be considered to some extent by
defining numerous standard profiles7, individual profiles are better at accounting for such
specialties.

7 For instance, Austrian Power Clearing and Settlement organization defines 27 profiles [Syn].
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Figure 9.11: Individual load profiles computed for a commercial (top) and a residential building from the
ICER smart-meter dataset [Arc16]. Each profile was calculated by averaging the historical
daily load curves of the corresponding season and day-type.

9.2.1.2 Persistence Heuristics

Naive Model (D-1) With this heuristic, we take themost recent load curve as a forecast.
Naive forecast is often denoted as D-1 model and is one of the most common benchmarks
used in the literature [ACGW18,FRS+13].

Weekly Persistence (D-7) Assuming ideal weekly persistence of the load, we predict
the consumption using the most recent observations of the same weekday. This simple
method can be very effective for commercial loads as it considers weekly seasonality. Such
forecast is often denoted as D-7 model and is another common benchmark together with
D-1 [ACGW18,FRS+13].

Validation: Persistence Heuristics We compare naive (D-1) and weekly persistence
(D-7) forecasts in Figure 9.13. Naturally, the latter is more accurate for larger loads that
have stronger weekly seasonality. For enterprises and aggregations, the improvement can
be substantial on Mondays, Fridays, Saturdays and Sundays. At the same time, there is
little difference among the heuristics if applied in the middle of the week.
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Figure 9.12: Comparison of profiling heuristic models. Standard and individual load profiles (Section
9.2.1.1) predicted the 300 loads in the validation dataset (Section 9.1.1.3) day-by-day for 100
consecutive days. For each day-type, we computed the expected daily errors (EDE) according
to (7.15). The figure shows the 900 EDE-observations confounded on day and load type
(grey dots), including the outliers (black dots). Violin and box-plots summarize the EDE-
distributions in each groups. The average EDE of the model in each group (red dot) is shown
together with 95%-confidence interval (red bar). We see that the individual load profile forecast
was, on average, significantly (p < 0.05) more accurate for each type of loads and days.

9.2.2 Parametric Models

We applied various common parametric models as a reference in the wide-scale day-
ahead building load forecasting simulation. Parametric regression is the most widely used
approach as it includes the majority of the state-of-the-art models proposed for load fore-
casting (Chapter 5). There is a myriad of different parametric forecasting methodologies
and for our evaluation we selected two that are the most common [ACGW18]: ARIMA
and artificial neural networks (ANN). In this section, we describe the reference models
based on these methodologies and validate their setups for the day-ahead building load
forecasting.

Parametric models require a preliminary training step which we repeat every month on the
rolling basis to account for the concept change [SK12]. Model training is more efficient
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Figure 9.13: Comparison of the persistence heuristic forecasts. We applied the naive (D-1) and the weekly
(D-7) persistence heuristic models (Section 9.2.1.2) to predict the 300 loads of the validation
dataset (Section 9.1.1.3). Each loadwas predicted day-ahead for 100 consecutive days (23April
2010 – 31 July 2010). Conditioning on load type (panel row) and weekday (panel column),
we represent each individual load by a square filled depending on the model that provided the
smallest expected daily error (7.15) on the days of the corresponding load type and weekday.
Notably, there is a smaller difference in forecast accuracy between the heuristics in the middle
of the week (Wednesday, Thursday) since the end-consumers often follow similar behavioral
patterns during the week. The difference becomes more apparent around the weekend (Sunday,
Monday) where the weekly seasonality becomes particularly prominent. Moreover, the weekly
persistence heuristics was notably more accurate on the loads with stronger weekly seasonality
(enterprises, aggregations).

with normalized inputs [DFH97b]. Following a standard practice, we apply minmax-
normalization as follows. Each separate input x(j), with j ∈ [1, · · · , nx] is transformed
to

x̃(j) =
2
(
x(j) − x(j)

min

)
x

(j)
max − x

(j)
min

− 1, (9.2)

where the smallest input value x(j)
min corresponds to x̃(j) = −1 and the largest input x(j)

max

corresponds to x̃(j) = 1. Herewith, every normalized training input lies in the range of
[−1; 1]. We use the same normalization constants x(j)

min, x(j)
max for the evaluation.

Subsequently, model output must be transformed back to the range of original data. Hence,
we provide the models with a pre-processing and a post-processing block (Figure 9.14).
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Figure 9.14: Input-output processing for parametric models.

Additionally, for recursive models8, post-processing includes a hold and release unit. In
their case, the output ŷ is a scalar prediction for a single time step. For such models,
post-processing allows to output the entire forecast curve at once.

9.2.2.1 Autoregressive Integrated Moving Average (ARIMA)

At higher load aggregation levels, ARIMA-models are among the most common9. We
applied the methodology described in Section 4.1.1 to create ARIMA-models that were
used as a reference. The setup of two different ARIMA-models is described in this section.

In general, ARIMA is a univariate autoregressive model that considers historical load
observations as the only input. We account for the annual temperature cycle by using
only two most recent months of training data. Further, we considered weekly seasonality
implicitly by predicting each weekday separately. To predict the entire load curve day-
ahead, we applied two different multistep strategies.

ARIMA-D Using the direct multistep strategy, a separate ARIMAwas trained to predict
each point of Yd+1. For ease of exposition, we set up each single-step model with the same
hyperparameters p, d, q described further in the text. The training output data was split
into n separate series y(1), · · · , y(n), so that the n’th model had different weights after the
training. The forecast output by the model consisted of n separate predictions in

Ŷd+1 =
[
r(1) (Xd+1) , . . . , r(n) (Xd+1)

]
. (9.3)

We selected the three hyperparameters p = 1, d = 1, q = 1 through trial and error (Figure
9.15). In particular, we observed that the smallest model with p = 1was the most accurate.
This is consistent to the setups found in the literature (Chapter 5).

8 In out study, recursive models include NAR, NARX, and ARIMA-R that are described further in the
text.

9 This also included the variants such as SARIMA, ARIMAX etc. See the discussion in Chapter 5.
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Figure 9.15: Forecast errors of different ARIMA-D-model variants. Each model variant with a different
value of the parameter p (Section 9.2.2.1) predicted the 300 loads in the validation dataset
(Section 9.1.1.3) day-by-day for 100 consecutive days. For each day-type, we computed the
expected daily errors (EDE) according to (7.15). The figure shows the 900 EDE-observations
confounded on day and load type (grey dots) including the outliers (black dots). Violin and
box-plots summarize the error distribution in each of the groups. The average EDE of the
model in each group (red dot) is shown together with 95%-confidence interval (red bar). We
observed that the variant with p = 1 was significantly (p < 0.05) more accurate than other
variants.

ARIMA-R Additionally, we set up a recursive ARIMA-model (ARIMA-R). It predicts
the daily curve step by step while past output values are fed back to the input that considers
up to p lags so that a prediction

ŷi = r (yi−1, . . . , yi−p) (9.4)

is a function of the p preceding values yi−1, . . . , yi−p of the time series y.

Again, we selected the three hyperparameters p = 24, d = 1, q = 1 through trial and error.
In particular, we observed that the most accurate model had to consider only one or two
days of observations – i.e., ARIMA-R achieved the best accuracy either with p = 24 or
p = 48 (Figure 9.16). This is consistent to the setups found in the literature (Chapter 5).
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Figure 9.16: Forecast errors of the different ARIMA-R-model variants. Each model variant with a different
value of the parameter p (Section 9.2.2.1) predicted the 300 loads in the validation dataset
(Section 9.1.1.3) day-by-day for 100 consecutive days. For each day-type, we computed the
expected daily errors (EDE) according to (7.15). The figure shows the 900 EDE-observations
confounded on day and load type (grey dots), including the outliers (black dots). Violin and
box-plots summarize the EDE-distributions in each of the groups. The average EDE of the
model in each group (red dot) is shown together with 95%-confidence interval (red bar). We
observed that the variant with p = 24 and p = 48 was significantly (p < 0.05) more accurate
than other variants.

Models larger than p = 72 tended to overfit, especially when applied on larger and more
regular loads.

Validation: ARIMA Multistep Strategy Comparing both ARIMA-models on the
validation dataset, we found that ARIMA-R was significantly (p < 0.05) more accurate
than the direct ARIMA for all load groups (Figure 9.17). Nevertheless, we used both
models as a reference in the wide-scale day-ahead building load forecasting simulation.
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Figure 9.17: Comparison of the ARIMA-models using direct and recursive multistep strategies. The
ARIMA-model (Section 9.2.2.1) using either direct (ARIMA-D) or recursive (ARIMA-R)
strategy predicted the 300 loads in the validation dataset (Section 9.1.1.3) day-by-day for 100
consecutive days. For each day and load type, we computed the expected daily errors (EDE)
according to (7.15). The figure shows the 900 EDE-observations confounded on day and
load type (grey dots), including the outliers (black dots). Violin and box-plots summarize the
EDE-distributions in each of the groups. The average EDE of the model in each group (red
dot) is shown together with 95%-confidence interval (red bar). We observed that the recursive
strategy was significantly (p < 0.05) more accurate than the direct multistep strategy.

9.2.2.2 Artificial Neural Networks (MLP, NARX, NAR)

Neural-network-based models became a popular parametric regression application for the
load forecasting in recent years. Currently, there exist numerous different approaches in the
forecasting literature (Chapter 5). Nevertheless, we have not seen any fundamental reason
why any of the networks is superior for all or certain types of loads, given appropriate
setup and vigor at manual fine-tuning [BZN+19]. Moreover, many of the proposed
building load forecasting models appear unpractical for a wide-scale local load forecasting
problem [VKS20]. In particular, we abstained from using network architectures that
rely on abundant historical data or information from specific sensorial equipment (e.g.
occupancy) since these data might not be widely available.
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Figure 9.18: Network architectures for the day-ahead prediction. (a) MLP-Dmodel using direct strategy; (b)
MLP-M model using multi-out strategy; (c) NARX-model with external input using recursive
strategy. Further description is provided in the text.

We used various network architectures10 to create two feedforward, two recurrent and two
deep neural networks for the day-ahead load forecasting (Table 9.1). In the rest of this
section we discuss the choice and setup of the reference models based on neural network
methodology. In particular, we used variousMLP-networks to compare different multistep
strategies and NAR-network to evaluate implicit seasonality modeling. These networks
are discussed below.

Multi-Layer Perceptron (MLP) The feedforward network presented in Figure 4.2
is, by far, the most common architecture among numerous load forecasting applications
(Chapter 5). It can theoretically model any complexity (Section 4.1.2.1) and we evaluated
if it has enough modeling capacity or if we have to use more sophisticated architectures
for the local load forecasting application. Since an MLP can be extended to become a
recurrent network, we also used it to compare different multistep strategies (Figure 9.18).

Multilayer perceptron (MLP) is a feedforward network which can forecast the day-ahead
load curve adopting either direct or multi-out strategy. Given the input

X = {x(1), · · · , x(nx)} and Xd+1 = [x1, · · · , xnx ], (9.5)

we defined the following multivariate forecasting models:

1. MLP-D (direct multistep strategy)

2. MLP-M (multi-out multistep strategy)

In the first case, a separate MISO MLP was trained to predict each point of Yd+1 (Figure
9.18.a) – just as we did with ARIMA-D-model. For ease of exposition, we set up each

10 General neural network methodology, model types and architectures were discussed in Section 4.1.2.1.
We discuss the setup of neural-network-based models for a wide-scale day-ahead local forecasting in
our previous publication [VKS20].
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network with same inputs and hyperparameters described further in the text. The training
output data was split into n separate series y(1), · · · , y(n), so that the n networks had
different weights after the training. The forecast output by the model consisted of n

separate predictions constituting the curve

Ŷd+1 =
[
r(1)

N (Xd+1) , . . . , r(n)
N (Xd+1)

]
. (9.6)

In the second case, we trained one multi-out feedforward network with nx inputs and n

outputs. For a given Xd+1, the multivariate forecast was obtained as

Ŷd+1 = rN (Xd+1) (9.7)

with one MLP rN that we had to train (Figure 9.18.b).

Nonlinear Autoregressive Model with Exogenous Input (NARX) The concept
of a recurrent network, where past output values are fed back, allows to create nonlinear
autoregressive time series models. In fact, an MLP-architecture can be used to set up a
network that presents a multivariate nonlinear autoregressive model with exogenous inputs
(NARX) denoted as follows:

ŷi = rN (yi−1, . . . , yi−p, Xi) . (9.8)

Here, a prediction ŷi is calculated as a function of its p lags yi−1, . . . , yi−p and an exogenous
input Xi (Figure 9.18.d). Note that the NARX-model corresponds to an MLP combined
with recursive multistep strategy computing the day-ahead forecast.

Nonlinear Autoregressive Model (NAR) We applied another recurrent network ar-
chitecture to create a univariate nonlinear autoregressive model (NAR) that we used as a
reference in the wide-scale day-ahead building load forecasting simulation. The univariate
time series model computes the prediction

ŷi = rN (yi−1, . . . , yi−p) (9.9)

as a function of the p preceding values yi−1, . . . , yi−p (lags) of the time series y (Figure
9.19). In contrast to NARX, this model cannot consider exogenous variables and has to
model the seasonality implicitly, as we explain further in the text.

Deep Neural Networks (DNN) Deep neural networks (DNN) are considered as the
state of the art in machine learning research and include neural network architectures that
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Figure 9.19: NAR-model. Further description is provided in the text.

Table 9.1: Reference models based on neural-network methodology.

MLP-D MLP-M NAR NARX DNN-2 DNN-3

Type feedforward feedforward recurrent recurrent feedforward feedforward
Multistep strategy direct multi-out recursive recursive multi-out multi-out
Num. inputs 28 28 168 28 28 28
Num. outputs 1 24 1 1 24 24
Hidden layers 1 1 1 1 2 3
Hidden neurons 15 15 15 15 30 45
Num. weights 79 424 2703 463 1033 1258
Num. training data 365 365 60 365 365 365

have two or more hidden layers that might be combined with a complex topology [GBC16].
We applied two deep-neural-networkmodels with two (DNN-2) and three (DNN-3) hidden
layers that are based on the MLP architecture with multi-out strategy.

Setup of Neural-Network-Based Models In Table 9.1, we summarized the networks
used in this study with corresponding number of inputs, outputs, training data (historical
daily load curves) and degrees of freedom (total number of weights). Subsequently, we
describe their setup and the choice of hyperparameters.

Each network modeled the daily seasonality implicitly. For the feedforward architectures
(MLP-D, MLP-M, DNN-2, DNN-3), we input the load curve of the previous day. With
the recursive architectures (NARX, NAR), we used 24 and more lags to learn the daily
patterns from the historical data.

The multivariate networks (MLP-D, MLP-M, DNN-2, DNN-3, NARX), modeled the
weekly seasonality and the annual cycle explicitly. The weekly seasonality was considered
with aweekday number and a (boolean) public holiday variables used as inputs. Moreover,
we had discovered that the annual temperature cycle can be modeled as a function ofmonth
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and day number [VKS20]. We used these variables as the network inputs and assumed
that the short-term weather changes did not impact the daily load notably as it was done
in [HBA+14].

Alternatively, the univariate network (NAR) modeled the weekly seasonality implicitly
by considering one week of lags (p = 168). The annual cycle was accounted for also
implicitly, retraining the model every month using only the most recent 60 days of data.

Training data might be limited in our application. Therefore, for a wide-scale prediction
of local loads it is important to rely on the smallest viable amount of historical data. In
addition to the availability issue, time series can constantly alter their regime with old
data becoming irrelevant (inhabitants change, new equipment is installed). Multivariate
networks required at least one year of data to learn the dependency on themonth. Currently
used SLPs also require total consumption over a year to scale the profile. In contrast, the
NAR-model was trained only on the most recent 60 days of preceding data.

Training algorithm for each network combined the Levenberg-Marquardt algorithm with
Bayesian regularization [DFH97b]. The Levenberg-Marquardt algorithm appears to
be much faster than backpropagation-based approaches for moderately-sized networks
[HM94]. Bayesian regularization does not keep some of the limited training data as a
validation dataset in contrast to the commonly used early stopping technique [FHT08].
At the same time, it is effective preventing overfitting and improving generalization of
moderately over-sized networks [DAM03]. On each load, and with each architecture, ten
networks were trained and their outputs were averaged to a single forecast mitigating the
stochastic nature of the training results. We retrained the networks every month using the
preceding historical data for training on a rolling basis.

Activation function of the neurons must correspond to the applied normalization. With
x(j) ∈ [−1; 1], each layer should have ϕ(u) with the same domain and range. Unfor-
tunately, the majority of related works (Table 5.1) do not specify the activation func-
tion [MHD+13, AKZ10, HBA+14, MNGK16, POC+17, HP16, MAM16b]. Among the
rest, the most common functions are linear [RNK16,AMM17,LSPB+12,MRCA14] and
tanh-sigmoid [BFS+15,SLW16,KDJ+17] defined as

ϕ(u) = 2
1 + exp(−2u) − 1 (9.10)

and which we used in this study since ϕ(u) ∈ [−1; 1], ∀u ∈ R.

Network size determines the predictive capacity of an ANN-model. In this study, we used
the networks where each hidden layer consisted of 15 neurons. The choice is consistent
with other building load forecasting applications where ANN-models often had one hidden
layer with a similar number of neurons (Table 5.1). The optimal number of hidden layers
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and neurons depends on the task and there is no theoretical methodology to determine
these hyperparameters. It is a common practice, to choose the network size according to
the experience in comparable problems and, then, to manually fine-tune the setup on a
validation dataset.

Validation: Neural Network Size The NAR-model using only 60 days of data for
training allowed to validate the choice of network size. This autoregressive model requires
an increased complexity as it considers 168 lags, however, we observed that 15 neurons
were enough to do so (Figure 9.20). Larger network variants (25 and 30 neurons) tended
to overfit on aggregations that had a more regular electricity consumption time series. In
contrast, the network with 15 neurons was among the most accurate in every load group.
Ideally, number of neurons and other hyperparameters should be set automatically for each
individual load. However, if we were to have an excessive modeling capacity, the Baysian
regularization would prevent overfitting to a large extent. Therefore we can assume 15
neurons to be an adequate size for our application.

9.2.3 Nonparametric Models

We applied various common nonparametric models as a reference in the wide-scale day-
ahead building load forecasting simulation. Nonparametric models such as Nadaraya-
Watson estimator or K-nearest neighbors are often used as benchmarks in the load fore-
casting literature (Chapter 5). In this section, we describe the reference models based on
nonparametric regressionmethodology and validate their setups for the day-ahead building
load forecasting.

9.2.3.1 Nadaraya-Watson Estimator (NWE)

Nadaraya-Watson estimator (NWE) is the canonical nonparametric regressionmodel (Sec-
tion 4.2.2.1). We applied this model predicting the load curve as a weighted average of
historical observations. For this reference model, we used Gaussian kernel11 and consid-
ered the annual cycle by limiting the historical data to the 17 most recent weeks12. We
modeled the weekly seasonality implicitly filtering historical observations by weekday.
To model the daily seasonality, we applied the direct multistep strategy – the load curve
consisting of q points was predicted by q separate univariate estimators. Therefore, each

11 Gaussian kernel is a common choice in the relevant literature (Chapter 5).
12 We chose this history length because ILP use the same amount of data to compute the profile of the

corresponding season [BPT13]. This choice will also allow us to compare ILP with UA and NWE.
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Figure 9.20: Forecast errors of the different NAR-models of different size. Eachmodel variant with different
size of the hidden layer (Section 9.2.2.2) predicted the 300 loads in the validation dataset
(Section 9.1.1.3) day-by-day for 100 consecutive days. For each day-type, we computed the
expected daily error (EDE) according to (7.15). The figure shows the 900 EDE-observations
confounded on day and load type (grey dots), including the outliers (black dots). Violin and
box-plots summarize the EDE-distributions in each of the groups. The average EDE of the
model in each group (red dot) is shown together with 95%-confidence interval (red bar). We
observed that the network with 15 hidden neurons delivered one of the best forecasts in each
group.

model predicted a single point of the curve with its own fixed bandwidth bi according to
(4.57). The bandwidth was computed using (4.39).

Validation: Fixed Bandwidth Search For each model, we used Bowman’s plug-in
method (4.39) to select the bandwidth bi. This commonmethod provides an approximation
for the optimal bandwidth choice. We observed that the models which set the bandwidth
minimizing the leave-one-out criterion (4.44) were as accurate as those relying on the
plug-in method (Figure 9.21). At the same time, the plug-in method required substantially
less computation which is advantageous for a wide-scale simulation.
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Figure 9.21: Forecast errors of the NWE-models with bandwidth found using either Bowman’s plug-in
method or minimizing the leave-one-out cross-validation criterion (4.44). Each model variant
(Section 9.2.3.1) predicted the 300 loads in the validation dataset (Section 9.1.1.3) day-by-day
for 100 consecutive days. For each day-type, we computed the EDE according to (7.15). The
figure shows the 900 EDE-observations confounded on day and load type (grey dots). Violin
and box-plots summarize the EDE-distributions in each of the groups. Outliers did not affect
any qualitative conclusions and were removed to provide the figure panels with similar axis
limits. The average EDE of the model in each group (red dot) is shown together with 95%-
confidence interval (red bar). Note that both NWE-variants resulted in comparable accuracy.

Validation: Multistep Strategy We observed that the direct multistep strategy re-
sulted in a more accurate forecast on the majority of loads in the validation dataset (Figure
9.22). We compared the direct strategy predicting the load curve by q separate models
(4.57) and the multi-out strategy predicting the entire load curve with a single multivariate
NWE-model that considered all q points of X∗ as q inputs (4.62). In contrast to the previ-
ously discussed parametric models (ANN, ARIMA), the multi-out approach was inferior
due to the curse of dimensionality that commonly occurs with nonparametric models.

Fixed bandwidth models (NWE, MNWE) were sometimes unable to forecast the load.
In some cases, the local neighborhood of the query whose size is determined by the
bandwidth contained no observations. This happened particularly often on households
whose load is markedly volatile. In such cases, the prediction with NWE was undefined,
and we relied on the D-1 heuristic instead. Alternatively, we applied the nonparametric
model with variable bandwidth as a reference that avoids such situations and is described
next.
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Figure 9.22: Comparison of the multistep strategies for an NWE-model with fixed bandwidth. We applied
the NWE-model (Section 9.2.3.1) using direct and multi-out strategies to predict the loads in
the validation dataset (Section 9.1.1.3). Each load was predicted day-ahead for 100 consecutive
days (23 April 2010 – 31 July 2010). Conditioning on load type (panel row) and weekday
(panel column), we represent each individual load by a square filled depending on the multistep
strategy that provided the smallest expected daily error (7.15) on the days of the corresponding
load type and weekday. Notably, the direct multistep strategy provided a more accurate forecast
on the majority of loads.

9.2.3.2 Multivariate K-Nearest Neighbors (MKNN)

Multivariate K-nearest neighbors (MKNN) approach is a special case of the NWE where
the bandwidth is variable, and the size of the local neighborhood is determined depending
on the query (Section 4.2.2.2). We applied this approach creating another nonparametric
model that we used as a reference in the wide-scale day-ahead building load forecasting
simulation. As with the NWE-model, we used Gaussian kernel and considered the annual
cycle by restricting the historical data to the 17most recent weeks. Once again, wemodeled
the weekly seasonality implicitly, filtering the observations by weekday. To consider the
daily seasonality, we applied the multi-out multistep strategy. Therefore, the load curve
was predicted using a single MKNN-model (4.62) with variable bandwidth K that was
found automatically for each day through leave-one-out cross-validation (4.44).

Validation: Variable Bandwidth Search The best choice of the variable bandwidth
K depends on the forecast load and day (Figure 9.23). Notably, higher bias of the
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Figure 9.23: Forecast errors of MKNN-model variants with different variable bandwidth K. Each model
variant (Section 9.2.3.2) predicted the 300 loads in the validation dataset (Section 9.1.1.3)
day-by-day for 100 consecutive days. For each day-type, we computed the expected daily error
(EDE) according to (7.15). The figure shows the 900 EDE-observations confounded on day
and load type (grey dots), including the outliers (black dots). Violin and box-plots summarize
the EDE-distributions in each of the groups. The average EDE of the model in each group
(red dot) is shown together with 95%-confidence interval (red bar). We see that setting the
bandwidth automatically using leave-one-out cross-validation (LOOCV) often resulted in the
most accurate forecast. Here, we showed the workdays (Monday – Friday) together, but similar
results can be observed when considering each workday individually.

model (i.e., K > 1) was preferable on single family homes due to high volatility of the
load. In contrast, model variants with large bandwidth were preferred on more regular
loads (enterprises, aggregations). Determining an analytical relationship between the load
characteristics and optimalK is beyond the scope of this thesis. Nevertheless, we observed
that finding K by minimizing the leave-one-out cross-validation criterion (4.44) prior to
the forecast day made the MKNN-model more accurate on a large variety of loads.

Validation: Multistep Strategy In contrast to the NWE-model, we observed that
the multi-out strategy resulted in a more accurate forecast on the majority of loads in the
validation dataset (Figure 9.24). We compared it to the direct multistep strategy with which
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Figure 9.24: Comparison of the multistep strategies for a nonparametric model with variable bandwidth.
We applied the KNN-model (Section 9.2.3.2) using direct and multi-out strategies to predict
the loads in the validation dataset (Section 9.1.1.3). Each load was predicted day-ahead for
100 consecutive days (23 April 2010 – 31 July 2010). Conditioning on load type (panel row)
and weekday (panel column), we represent each individual load by a square filled depending
on the multistep strategy that provided the smallest expected daily error (7.15) on the days of
the corresponding load type and weekday. Notably, the multi-out strategy resulted in a more
accurate forecast on the vast majority of loads.

we predicted each of the q points of the load curve by a separate univariate KNN-model.
Variable bandwidth excludes the possibility of an undefined forecast which substantially
reduced the accuracy of the NWE-model using multi-out strategy and fixed bandwidth. As
a result, we can now see that the multi-out multistep strategy considering the dependencies
between the points of a daily load curve is more accurate than the direct multistep strategy.

9.2.3.3 Uniform Average (UA)

Uniform average (UA) of historical observations is a common heuristic prediction method
which can also be seen as the simplest form of a nonparametric forecast13. We used this
method as a reference model predicting the electricity consumption for the upcoming day
as an average of three most recent daily load curves. As with the other nonparametric
models described above, we modeled the weekly seasonality implicitly by considering

13 Uniform average of m historical load curves corresponds to the MKNN-model with uniform kernel and
K = m.
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Figure 9.25: Comparison of the nonparametric reference models. The models described in Section 9.2.3
predicted the 300 loads in the validation dataset (Section 9.1.1.3). Each load was predicted
day-ahead for 100 consecutive days (23 April 2010 – 31 July 2010). Conditioning on load type
(panel row) and weekday (panel column), we represent each individual load by a square filled
depending on the multistep strategy that provided the smallest expected daily error (7.15) on
the days of the corresponding load type and weekday. Notably, the uniform average forecast
had comparable accuracy to the NWE and MKNN forecasts. In fact, it was often the most
accurate forecast.

only historical observations of the same weekday. We observed that the uniform average
forecast had accuracy comparable to other nonparametric models (Figure 9.25). In fact,
the uniform average was often the most accurate forecast particularly on aggregations and
enterprises. As discussed previously, these loads often features a stronger annual cycle
with which the recency of observations appears to be more relevant for the forecast rather
than the ℓ2-distance from the query that is fundamental for the other nonparametricmodels.

Validation: History Length We can average the load curves of same weekday or
day-type. During the validation, we observed that computing the average for the days
of the same day-type was often more accurate than averaging over the same weekday
(Figure 9.26). In the latter case, we obtained the most accurate forecast when considering
only three to five most recent observations. Therefore, it might be counter-productive to
consider the observations that are older than five weeks old because of the concept change
(e.g., annual cycle).
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Figure 9.26: Forecast errors of the uniform averagemodel variants using different filtering and history length.
Each variant of the uniform average model (Section 9.2.3.3) predicted the load averaging over
various number of historical load curve observations (panel row) of the same day-type (red) or
weekday (grey). Each model variant variant predicted the 300 loads in the validation dataset
(Section 9.1.1.3) day-by-day for 100 consecutive days. For each load, we computed the expected
daily error (EDE) according to (7.15). The figure shows the 900 EDE-observations (grey dots)
confounded on load type (panel column) and the number of averaged curves (panel row). Violin
and box-plots summarize the EDE-distributions in each of the groups. The average EDE of
the model (red dot) is shown together with 95%-confidence interval (red bar). Outliers did not
affect any qualitative conclusions and were removed to provide the figure panels with similar
axis limits. The figure considers only the daily errors obtained onworkdays, since both filtering
schemes provide the same forecast on weekends. Notably, computing the average for the days
of the same day-type was in many cases significantly more accurate than averaging over the
same weekday. Moreover, filtering by weekday, the most accurate forecast was obtained when
averaging the load curves that are three to five weeks old.
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9.3 Experiment Overview

Concluding the methodological part of the thesis, we summarize the experiments carried
out in our study. Answering the research question, we conducted various simulations
(Section 9.3.1). We relied on these simulations developing and evaluating the functional
neighbor methodology that we are proposing for the wide-scale day-ahead building load
forecasting in smart grids. In particular, we compared the corresponding functional
neighbor (FN) and functional neighbor extension (FNX) forecasters to various reference
models (Section 9.3.2) and assessed their accuracy with the evaluation methodology that
we developed specifically for the wide-scale day-ahead building load forecasting problem
considered in this work (Section 9.3.3).

9.3.1 Simulation Overview

During this study, we relied on various simulations in order to validate the design decisions
for the functional neighbor forecaster and to set up the reference models (Section 9.3.1.1).
Having designed the forecaster and determined an adequate setup of the reference models,
we conducted a simulation evaluating the models in context of the wide-scale day-ahead
building load forecasting (Section 9.3.1.2). Moreover, we conducted the smart-building
load forecasting simulation (Section 9.3.1.3) validating the extension of the functional
neighbor forecaster that allows to consider exogenous variables. In all load forecasting
simulations conducted for this study, we used the smart-meter data with a 60-minute
resolution. Further, every day-ahead forecast was done at midnight predicting at once the
24 points constituting the load curve of the upcoming day.

9.3.1.1 Validation Experiments

We conducted various validation experiments to design the functional neighbor model
(Section 8.2) and to set up reference models (Section 9.2) that were compared to it. In
every validation experiment, we predicted the 300 loads from three different groups (Table
9.4) constituting the validation dataset (Section 9.1.1.3). Each load was predicted day-
ahead during 100 consecutive days (23rd of April 2010 – 31st of July 2010). Below, we
provide the details necessary to replicate these experiments.

Distance Notion Setup In Section 8.2.2, we studied the usage of various distance
notions for the functional nonparametric forecasting approach. In the corresponding
simulations, we applied the functional nearest neighbor model using 17 weeks of historical
data filtered by weekday (FbW). Considering only the nearest neighbor allowed to eliminate
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the uncertainty of the bandwidth and merger choice while focusing on the effect that the
distance notion had on the forecast accuracy (Algorithm 3 with K = 1 and FbW).

Merger Setup In Section 8.2.3, we studied the usage of various mergers for the func-
tional nonparametric forecasting approach. In the corresponding simulations, we applied
the functional neighbor model using 17 weeks of historical data filtered by weekday. We
eliminated the uncertainty of the bandwidth search by finding the optimal K among a set
of variants14 using an ideal model selector15 (Algorithm 3 with du=1-distance and FbW).

Reference Model Setup In Section 9.2, we set up and manually fine-tuned numerous
referencemodels using the validation dataset. In each family, we selected themost accurate
models that we subsequently evaluated together with the functional neighbor model in the
wide-scale day-ahead building load forecasting simulation.

9.3.1.2 Wide-Scale Day-Ahead Building Load Forecasting

We simulated a wide-scale day-ahead building load forecasting using the measurements
from the ICER smart-meter dataset (Section 9.1.1). The data included the power demand
of hundreds residential and commercial buildings that we resampled with a 60-minute
resolution. Using the original dataset, we created various load aggregations representing
larger buildings (Section 9.1.1.2) and defined several residential and commercial load
groups (Table 9.3). In total, our evaluation dataset consisted of 1851 local loads with
power-demand time series extending from 1st of August 2010 to 31st of December 2010
(153 days in total). In this dataset, we predicted each load day-by-day applying the FN-
forecaster (Algorithm 3) and various reference models (Table 9.5). For each evaluated
model, the wide-scale day-ahead building load forecasting simulation provided a sample
of 283,203 daily forecast errors that we analyze in the final part of the thesis.

9.3.1.3 Smart-Building Load Forecasting

We applied the functional neighbor methodology on the existing smart building within
the Smart-City-Demo Aspern project (Section 9.1.2). In order to validate the FNX-
model (Section 8.3), we simulated the load forecasting of a student dorm facility whose
net electricity demand substantially depends on the solar irradiation due to a large PV-
installation on the roof. For this smart building, we predicted the day-ahead power demand

14 The bandwidth K was selected from the set of candidates {3, 5, 7, 9, 11, 13, 15, 17}.
15 We used the notion of an ideal model selector as a benchmark selecting the best model variant knowing

the actual error that each variant would produce – i.e., looking into the future. Hence the name ideal.
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using the FNX-forecaster (Algorithm 4), that considered global solar irradiation as an
exogenous variable, together with various reference models applied on the same building.
The models predicted the day-ahead net electricity demand day-by-day on a rolling basis.
Of the available twelve months of data, we used three months (1st of January 2017 – 31st

of March 2017) as a validation dataset while preserving the last three months (1st of April
2017 – 31st of June 2017) for the evaluation.

9.3.2 Models

Studying how to use smart-meter data to predict day-ahead electricity consumption of
individual buildings and their aggregations on a wide scale, we considered numerous data-
driven models. These included the reference models that can be commonly found in the
literature (Chapter 5) as well as the proposed FN- and FNX-models. The reference models
for the simulations were pre-selected on a separate validation dataset and are summarized
in Tables 9.5 and 9.6. Using the validation dataset, we set up those models16 manually, to
the best of our abilities, in various experiments (Section 9.3.1.1). The hyperparameters of
the FN- and FNX-models were determined automatically using cross-validation ideas that
are common for data-driven forecasting models [AVR16,SL15].

In the wide-scale day-ahead building load forecasting simulation (Section 9.1.1), we eval-
uated the reference models summarized in Table 9.5 together with the FN-forecaster (Al-
gorithm 3). For this forecaster, we used the weighted permutation merger with triangular
kernel determining the weights following the design discussion in Section 8.2.3. Fur-
ther hyperparameters were set automatically for each predicted load using cross-validation
(Section 8.1.2). In particular, prior to predicting the load, we used the historical data
applying the leave-one-out-cross-validation approach to select the best distance notion
(d0 or du=1) and the filtering approach. Further, we applied the out-of-sample-validation
approach on the training data (17 weeks), for each forecast day, determining the best value
of the bandwidth K on a daily basis.

In the smart-building load forecasting simulation, we applied the FNX-forecaster (Algo-
rithm 4) on a smart building for which we manually selected the global solar irradiation
as the most relevant feature (Section 9.1.2). The hyperparameters of the FNX-forecaster
were set the same way as those of the previously discussed FN-forecaster. For comparison,
we applied several reference models that we set up manually to the best of our abilities on
a separate validation dataset. Next to the standard load profiles used as a benchmark in

16 Parametric models were retrained monthly to account for the nonstationarity of the load. Moreover,
the forecast of a neural-network-based model corresponded to the average prediction obtained by an
ensemble of ten networks of the same architecture in order to mitigate the dispersion obtained due to
the random weight initialization during the network training [VKS20].
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Table 9.2: Error notions overview.

Error notion Definition Formula

PRMSE (7.12) E(Y, Ŷ ) :=
√

1
24

(
minπ∈P(1,24)

∑2 4i=1|Y (ti) − π(Ŷ )(ti)|2
)

ECV (7.13) ECV = E
ȳ

∗ 100%
Improvement (7.14) R = (1 − E

Eb
) ∗ 100%

EDE (7.15) EDE = E
[
E
]

=
∑m

j
Ej

m

TE (7.16) TE = median
[
EDE

]
EME (7.17) EME(S) =

√
α

Sp + β

our study, we applied the individual load profiles since it was the best performing heuristic
approach in the wide-scale day-ahead building load forecasting simulation. Moreover, we
applied multivariate parametric reference models that considered global solar irradiation
as an external input. In particular, we applied the ARIMAXmodel which is an extension of
the ARIMA-model that can consider external variables (Section 4.1.1). Additionally, we
applied a DNN-architecture with three hidden layers as a reference model. The reference
models for the smart-building load forecasting simulation are summarized in Table 9.6.

9.3.3 Forecast Evaluation

The forecast errors provided by the simulations underlay a substantial stochastic variation.
When evaluating forecasts on a large and diverse set of buildings, we had to consider
the distribution of the errors and rely on inferential statistics rather than simply quantify
the average accuracy. Therefore, we analyzed the results using the forecast evaluation
methodology introduced in Section 7.3 and relying on various error notions (Table 9.2).

9.3.3.1 Error Notions

Throughout our study, we used the permuted root mean squared error (PRMSE) as the
primary error notion for quantifying the daily forecast errors (7.12). Further, we expressed
the daily errors in terms of the coefficient of variation that is scale-independent and unitless
(7.13). We often observed a strong correlation between different error notions and it can
be superfluous to present the results in terms of several daily error notions [HGZA18].
At the same time, common notions such as MAPE and RMSE, that are ubiquitous in
the literature, can be inapt for evaluating forecast accuracy on smaller loads. Therefore,
unless stated differently, the daily forecast error is measured in terms of PRMSE allowing
permutations of up to one hour (i.e., u = 1 for the hourly time-series resolution) and
expressing the error in terms of the unitless coefficient of variation (Section 7.3.1).
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Moreover, we defined various secondary error notions to quantify the overall forecast
accuracy obtained on a given load or a sample of loads (Section 7.3.2). First, we defined
the expected daily error (EDE) that corresponds to the average daily forecast error obtained
on a given load (7.15). Second, we defined the total error (TE) quantifying the forecast
error obtained in a load group (7.16). At last, predicting the loads of different size allowed
us to compute the expected model error (EME) based on the empirical scaling law (7.17).
This error notion estimates the EDE that we can expect forecasting a load of a given size
(i.e., annual consumption in MWh). Herewith, we were able to evaluate a forecasting
model across the building domain estimating its accuracy on the loads of all possible sizes.

A considerable variation of daily errors can reduce the sensitivity of the chosen accuracy
measure, obstructing parametrization and comparison between the models. For such
case, we used the relative error notion dividing the primary error E by the error of a
benchmark model Eb as suggested by Hyndman et al., [HK06]. In particular, we defined
the improvement (%) that quantifies the error reduction comparing to a benchmark (7.14).
As such benchmark, we used either the basic configuration of the forecaster for functional
neighbor model design (Chapter 8) or the SLP-forecast for the final model evaluation
(Chapter 10). Since the improvement is normally distributed, we can summarize it in
terms of mean and confidence intervals.

9.3.3.2 Statistical Tests

As a part of our evaluation methodology, we relied on various statistical tests that allowed
to evaluate the prediction accuracy despite the uncertainty in the observed forecast errors.
To compare different models applied on a single or several buildings, we assessed if the
difference in forecast accuracy was statistically significant using the following tests:

• Unpaired one-sided independent t-test – provided statistical evidence verifying
if a model was significantly more accurate than a benchmark using a sample of
improvement observations.

• Paired t−test – allowed pair-wise comparisons of the models verifying if the average
difference in improvement obtained by each model relative to a common benchmark
was statistically significant.

• Paired Wilcoxon signed rank test – allowed pair-wise comparisons of the models
verifying if the observed difference in median forecast errors was significant.

For each test, we reported the corresponding p-value and considered the results to be
statistically significant for p < 0.05 as it is common in the statistical literature [Lav21].
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9.3 Experiment Overview

Table 9.5: Reference forecasting models evaluated in the wide-scale day-ahead building load forecasting
simulation (Section 9.1.1).

Model Description Family Multistep strategy Reference

SLP standard load profile heuristic multi-out [Ber00]
ILP individual load profile heuristic multi-out [BPT13]
D-1 naive forecast heuristic multi-out [ACGW18]
D-7 weekly persistence forecast heuristic multi-out [HP16]
ARIMA-D ARIMA using direct multistep strategy parametric direct [?]
ARIMA-R ARIMA using recursive multistep strategy parametric recursive [?]
MLP-D multilayer perceptron neural network (direct) parametric direct [EÁBRA11]
MLP-M multilayer perceptron neural network (multi-out) parametric multi-out [ZLY19]
NAR univariate autoregressive neural network parametric recursive [POC+17]
NARX autoregressive neural network with exogenous inputs parametric recursive [HP16]
DNN-2 deep neural network (MLP) with two hidden layers parametric multi-out [BZN+19]
DNN-3 deep neural network (MLP) with three hidden layers parametric multi-out [BZN+19]
UA uniform average of three historical observations nonparametric multi-out [CGS13a]
NWE Nadaraya-Watson estimator nonparametric direct [SL15]
MKNN multivariate K-nearest neighbors nonparametric multi-out [BBB†12]

Table 9.6: Reference models evaluated in the smart-building load forecasting simulation (Section 9.1.2).

Model Description Family Parameters Reference

SLP standard load profile heuristic n/a [Ber00]
ILP individual load profile heuristic n/a [BPT13]
ARIMAX ARIMA(1, 1, 1) model with exogenous input parametric β = −2 [AVR16]
DNN deep neural network (MLP-M with 3 hidden layers) parametric nh = 5 [WCHK18]
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Part IV

Results
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In the final part of the thesis, we provide the results relating them to the research question
and contributions that were stated in the introduction to this work. In particular, we
use the results of the conducted simulations to evaluate the proposed functional neighbor
forecasting methodology for predicting building power demand on a wide scale (Chapter
10). Proceeding, we interpret the findings discussing their relevance and implications for
the wide-scale day-ahead local load forecasting in smart grids (Chapter 11). Based on this
discussion, we formulate the conclusion of our study (Chapter 12).
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10 Simulation Results

In this chapter, we present the results of conducted simulation experiments1. For each
model evaluated in the wide-scale day-ahead building load forecasting simulation, we
obtained a sample of 283,203 daily forecast errors. We provide a statistical analysis of the
results using the previously introduced evaluation methodology (Section 7.3) that relies on
various error notions (Table 9.2). In particular, we summarize the daily forecast errors in
terms of expected model error (Table 10.1), total error (Table 10.2) and the improvement
relative to a forecast with a standard load profile (Table 10.3).

In a wide-scale day-ahead building load forecasting simulation, we evaluated 15 reference
models of various families (Section 10.1) as well as the proposed functional neighbor
model (Section 10.2). Additionally, in a smart-building load forecasting simulation, we
evaluated the proposed functional neighbor model extension that considers exogenous
variables on the facilities of the Smart-City-Demo-Aspern project and compared it to the
best-performing reference models (Section 10.3). Subsequently, we present the simulation
results before discussing them in the next chapter.

1 We described the simulations conducted for this study in Section 9.1. In the wide-scale day-ahead
building load forecasting simulation (Section 9.1.1), we forecast 1851 low-voltage loads of different
size and type, on the rolling basis for 153 consecutive days. In the smart-building load forecasting
simulation (Section 9.1.2), we predicted the load of a single smart building for 91 consecutive days. The
simulations, the forecasting models and the evaluation methodology were summarized in Section 9.3.

227



10 Simulation Results

Table 10.1: Expected model error of the evaluated models. The table presents the estimated parameters
p, α, β for computing the forecast error that can be expected on a load of a given size according
to the empirical scaling law (7.17). Further, we used the estimated parameters to compute the
irreducible error E0 (7.21) and the critical load size Scrit (7.23). The parameters were estimated
using weighted non-linear regression to the p < 0.001 level of significance on the sample of
daily errors obtained through the wide-scale day-ahead building load forecasting simulation
(Section 9.1.1). The evaluated models were summarized in Table 9.5 while the results are
discussed in the text throughout the Chapter 10.

Model E0 Scrit (MWh) p α β

FN 0.048 (±5e-04)*** 695 (±30)*** 0.8 (±0)*** 0.544 (±0.0019)*** 0.0023 (±0)***
NWE 0.058 (±5e-04)*** 569 (±23)*** 0.8 (±0)*** 0.586 (±0.002)*** 0.0033 (±1e-04)***
ARIMA-R 0.061 (±6e-04)*** 526 (±21)*** 0.8 (±0)*** 0.721 (±0.0026)*** 0.0037 (±1e-04)***
D-7 0.065 (±6e-04)*** 465 (±18)*** 0.9 (±0)*** 0.827 (±0.003)*** 0.0042 (±1e-04)***
MKNN 0.066 (±6e-04)*** 577 (±26)*** 0.8 (±0)*** 0.554 (±0.0021)*** 0.0043 (±1e-04)***

UA 0.067 (±5e-04)*** 301 (±10)*** 0.9 (±0)*** 0.595 (±0.0021)*** 0.0045 (±1e-04)***
ILP 0.07 (±5e-04)*** 319 (±11)*** 0.8 (±0)*** 0.582 (±0.0021)*** 0.0048 (±1e-04)***
SLP 0.079 (±7e-04)*** 836 (±38)*** 0.7 (±0)*** 0.758 (±0.0025)*** 0.0063 (±1e-04)***
ARIMA-D 0.082 (±6e-04)*** 353 (±11)*** 0.9 (±0)*** 1.074 (±0.0034)*** 0.0067 (±1e-04)***
MLP-M 0.092 (±4e-04)*** 159 (±4)*** 0.9 (±0)*** 0.929 (±0.003)*** 0.0085 (±1e-04)***

DNN-2 0.094 (±4e-04)*** 171 (±4)*** 0.9 (±0)*** 0.925 (±0.003)*** 0.0089 (±1e-04)***
D-1 0.095 (±6e-04)*** 271 (±10)*** 0.8 (±0)*** 0.827 (±0.0033)*** 0.0089 (±1e-04)***
DNN-3 0.096 (±5e-04)*** 180 (±5)*** 0.9 (±0)*** 0.866 (±0.0029)*** 0.0092 (±1e-04)***
NARX 0.122 (±5e-04)*** 79 (±2)*** 1 (±0)*** 1.347 (±0.0049)*** 0.015 (±1e-04)***
NAR 0.123 (±6e-04)*** 128 (±4)*** 0.8 (±0)*** 0.646 (±0.0029)*** 0.0151 (±1e-04)***

MLP-D 0.129 (±4e-04)*** 68 (±1)*** 1 (±0)*** 0.951 (±0.0033)*** 0.0167 (±1e-04)***
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10 Simulation Results

Table 10.2: Total error of the models in each load group. Models summarized in Table 9.5 were evaluated
in a wide-scale day-ahead building load forecasting simulation (Section 9.1.1) calculating the
expected daily error (7.15) for each load. The resulting sample of 1851 errors was split into six
load groups (Table 9.3). In each load group, we calculated the total error (7.16) presented in
the table with the corresponding interquartile range (in brackets). The results are discussed in
the text throughout the Chapter 10.

Residential loads Commercial loads

A B C D E F

Heuristic models
D-1 0.86 [0.58, 1.23] 0.44 [0.34, 0.57] 0.26 [0.18, 0.34] 0.45 [0.21, 0.88] 0.37 [0.23, 0.59] 0.19 [0.10, 0.36]
D-7 0.85 [0.58, 1.23] 0.43 [0.34, 0.57] 0.25 [0.17, 0.34] 0.35 [0.16, 0.72] 0.28 [0.18, 0.43] 0.12 [0.08, 0.19]
ILP 0.70 [0.50, 0.98] 0.36 [0.29, 0.46] 0.21 [0.15, 0.29] 0.37 [0.19, 0.70] 0.28 [0.18, 0.42] 0.12 [0.08, 0.19]
SLP 0.78 [0.60, 1.07] 0.40 [0.32, 0.50] 0.23 [0.17, 0.31] 0.66 [0.45, 0.98] 0.39 [0.29, 0.54] 0.24 [0.18, 0.32]

ARIMA models
ARIMA-D 0.98 [0.70, 1.38] 0.49 [0.39, 0.64] 0.29 [0.20, 0.39] 0.45 [0.23, 0.86] 0.33 [0.22, 0.49] 0.15 [0.09, 0.23]
ARIMA-R 0.79 [0.55, 1.12] 0.41 [0.33, 0.54] 0.24 [0.17, 0.33] 0.34 [0.17, 0.69] 0.27 [0.18, 0.41] 0.12 [0.08, 0.19]

ANN models
NAR 0.75 [0.52, 1.07] 0.39 [0.30, 0.50] 0.25 [0.19, 0.33] 0.38 [0.20, 0.74] 0.32 [0.21, 0.49] 0.17 [0.09, 0.30]
NARX 1.03 [0.69, 1.56] 0.44 [0.34, 0.58] 0.25 [0.18, 0.34] 0.58 [0.26, 1.14] 0.41 [0.25, 0.67] 0.18 [0.10, 0.35]
MLP-D 0.90 [0.62, 1.33] 0.39 [0.31, 0.52] 0.24 [0.17, 0.31] 0.50 [0.27, 0.91] 0.38 [0.26, 0.56] 0.22 [0.13, 0.35]
MLP-M 0.92 [0.64, 1.31] 0.42 [0.33, 0.55] 0.24 [0.17, 0.33] 0.43 [0.21, 0.84] 0.32 [0.21, 0.49] 0.15 [0.09, 0.26]
DNN-2 0.92 [0.65, 1.30] 0.43 [0.34, 0.55] 0.25 [0.18, 0.33] 0.44 [0.22, 0.84] 0.33 [0.22, 0.51] 0.16 [0.09, 0.27]
DNN-3 0.89 [0.64, 1.24] 0.42 [0.33, 0.55] 0.25 [0.18, 0.33] 0.44 [0.22, 0.84] 0.34 [0.22, 0.52] 0.17 [0.10, 0.28]

Nonparametric models
MKNN 0.68 [0.47, 0.98] 0.37 [0.29, 0.49] 0.24 [0.17, 0.32] 0.29 [0.14, 0.63] 0.26 [0.16, 0.42] 0.12 [0.07, 0.21]
NWE 0.70 [0.49, 1.01] 0.37 [0.29, 0.49] 0.23 [0.16, 0.31] 0.31 [0.15, 0.64] 0.25 [0.16, 0.40] 0.11 [0.07, 0.18]
UA 0.72 [0.51, 1.02] 0.37 [0.29, 0.48] 0.22 [0.15, 0.29] 0.31 [0.15, 0.63] 0.24 [0.16, 0.37] 0.11 [0.07, 0.18]
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10 Simulation Results

Table 10.3: Accuracy improvement (%) relative to the forecast with a standard load profile. The table
summarizes the daily forecast improvement (7.14) in each load group (Table 9.3) obtained
by the models (Table 9.5) evaluated in the wide-scale day-ahead building load forecasting
simulation (Section 9.1.1). For each of the six load groups, we provide the expected daily
improvement, 95%-confidence intervals and the corresponding significance levels (’p < 0.1; *
p < 0.05; ** p < 0.01; *** p < 0.001).

Residential loads Commercial loads

A B C D E F

Heuristic models
D-1 -7 (±2)*** -10 (±2)*** -9 (±3)*** 15 (±9)*** -6 (±13)’ -11 (±23)’
D-7 -8 (±2)*** -11 (±2)*** -8 (±3)*** 30 (±8)*** 18 (±11)*** 33 (±13)***
ILP 10 (±1)*** 8 (±1)*** 7 (±2)*** 33 (±7)*** 22 (±11)*** 38 (±12)***

ARIMA models
ARIMA-D -24 (±2)*** -24 (±2)*** -24 (±3)*** 18 (±9)*** 9 (±11)** 26 (±14)***
ARIMA-R -1 (±1)’ -6 (±2)*** -4 (±3)*** 33 (±7)*** 23 (±10)*** 38 (±12)***

ANN models
NAR 3 (±2)*** 2 (±2)*** -13 (±6)*** 27 (±8)*** 10 (±13)** 6 (±22)
NARX -38 (±6)*** -14 (±3)*** -12 (±4)*** -4 (±13) -17 (±19)*** -5 (±29)
MLP-D -17 (±3)*** -1 (±3) -5 (±4)*** 11 (±10)*** -3 (±13) -5 (±24)
MLP-M -16 (±3)*** -6 (±2)*** -5 (±3)*** 21 (±9)*** 11 (±11)*** 21 (±17)***
DNN-2 -15 (±3)*** -8 (±2)*** -8 (±3)*** 20 (±9)*** 9 (±11)** 17 (±17)***
DNN-3 -11 (±2)*** -6 (±2)*** -9 (±3)*** 20 (±9)*** 8 (±10)** 14 (±18)**

Nonparametric models
MKNN 12 (±1)*** 3 (±2)*** -6 (±3)*** 40 (±6)*** 25 (±9)*** 37 (±13)***
NWE 9 (±1)*** 5 (±2)*** 1 (±3) 39 (±6)*** 29 (±9)*** 42 (±12)***
UA 8 (±1)*** 6 (±2)*** 6 (±2)*** 40 (±6)*** 30 (±9)*** 42 (±11)***

Note:
Confidence intervalls (95%) and the significance levels were computed with one-sided t-test.
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10.1 Reference Forecasts

10.1 Reference Forecasts

In this section, we evaluate the forecasts obtained by the reference models (Table 9.5).
Previously, we selected 15 differentmodels based on an extensive literature review (Chapter
5) and set them up on a separate validation dataset (Section 9.2). Below, we present the
results of the wide-scale day-ahead building load forecasting simulation obtained by the
reference models belonging to heuristic (Section 10.1.1), parametric (Section 10.1.2) and
nonparametric (Section 10.1.3) families. In the next section, we compare these forecasts
to the predictions obtained by the functional neighbor model evaluating the proposed load
forecasting approach.

10.1.1 Heuristic Forecasts

With heuristic forecasts (D-1, D-7, ILP and SLP), we observed large spread among daily
errors for each load size (Figure 10.1). On the smallest loads, errors of several hundreds
percent occurred often with all models. At the same time, D-1 and D-7 often had very low
forecast errors, especially on the loads smaller than 100 MWh. Whenever an enterprise
was closed or the inhabitants of a house were absent over several days, the daily electricity
consumption was low and almost constant. For such case, the persistence heuristics could
provide almost a perfect forecast. Therefore, these models were more flexible and better
in adjusting to such situations than the profiling heuristics.

With all heuristic models, the expected model error (EME) and the variation among daily
errors decreased rapidly with annual consumption, reaching the critical load size where
scaling saturated and converged towards the irreducible error (Table 10.1). For larger
loads, only small reduction of the error could be obtained despite increasing size.

We compare EME of the heuristic approaches (Figure 10.2). The SLP-model had the
largest critical load size of 837 MWh and the irreducible error of 0.08. Forecasting larger
loads with the SLP-model, reduced the error while other heuristic models had lower Sc

and entered the saturation at notably smaller load sizes. At the same time, D-7 and ILP
had significantly lower irreducible error (0.065 and 0.07 respectively). This indicates that
these heuristics can be more accurate, especially on larger loads. In fact, we saw that the
ILP and D-7 could be expected to be more accurate than the SLP-forecast on the loads
larger than 10 MWh and 100 MWh respectively.

We consider the total errors within different load groups. The daily errors for each load
were approximately log-normally distributed and are summarized in terms of median and
interquartile range (IQR) in Table 10.2. For residential consumers, ILP had the smallest
total error in each group. Starting with 0.7 error on single family homes (A), total error
rapidly decreased to 0.21 for large residential aggregations (C). For commercial consumers
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10 Simulation Results

Figure 10.1: Heuristic models – forecast errors. Each panel presents the 283,203 daily errors (grey dots)
obtained by a heuristic model (Table 9.5) in the wide-scale day-ahead building load forecasting
simulation (Section 9.1.1) on the loads of the specified size (annual consumption). For each
model, we computed the expected model error according to the empirical scaling law (7.17)
using nonlinear weighted regression (red line) and compared it to the ideal error scaling (black
line). The discussion of the results is provided in the text (Section 10.1.1).
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10.1 Reference Forecasts

Figure 10.2: Heuristic models – expected model error (EME) comparison. The forecast error that we can
expect from amodelwhen predicting a load of a given sizewas computed applying the empirical
scaling law (7.17) on the corresponding sample of 283,203 daily forecast errors obtained with
each heuristic model in the wide-scale day-ahead building load forecasting simulation (Section
9.1.1). On each sample, we used the weighted nonlinear regression estimating the parameters
p, α, β of the fitted curve representing the EME on the figure. The estimated parameters are
denoted in Table 10.1. Further discussion of the results in provided in the text (Section 10.1.1).

the total error was substantially lower. The most accurate forecast was D-7 which obtained
0.35 for enterprises (D) decreasing to 0.12 error for large commercial aggregations (F).

The variation of daily error in each group was reflected in the IQR. The D-1 and D-7
forecasts had the largest spread of the daily error corresponding to the widest IQR. The
IQR is often asymmetrical due to the log-normal error distribution. While a load can have
special days (Figure 10.1), we also had special loads where the models failed to forecast
adequately.

The expected daily error (EDE) distribution allows us to compare the models in terms of
the expected accuracy and error variation within each load group (Figure 10.3). On a log
scale, EDE was approximately normally distributed (i.e., log-normal in the original scale).
The EDE-distribution on larger loads was slightly skewed due to uneven distribution of
loads within terms of size in these groups.

Whenever the difference between the models was not evident from Figure 10.3, we tested
the significance of the pair-wise differences among the EDEs for each load. A paired
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10 Simulation Results

Figure 10.3: Heuristic models – expected daily error (EDE) distribution by load group. In a wide-scale
day-ahead building load forecasting simulation (Section 9.1.1), we applied various heuristic
models (Table 9.5) predicting 1851 loads of different size and type. For each load, we
obtained a sample of 153 daily forecast errors (7.13) and computed the EDE (7.15) of the
corresponding model. The figure presents the EDEs obtained by the models in residential
(A-C) and commercial (D-F) load groups (Table 9.3). Each panel shows the values (grey dots)
obtained predicting individual loads of the corresponding group and their distribution (box
and violin plots). Additionally, we denoted the EDE-mean (red dot) and its 95%-confidence
interval (vertical red bars) for each model. Further discussion is provided in the text (Section
10.1.1).
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10.1 Reference Forecasts

Wilcoxon signed rank test2, conducted post-hoc, confirmed that the ILP was the most
accurate model in most load groups (Table 10.4). The test showed that even on large
residential aggregations, small total error difference between ILP and SLP of 4% was
significant (p < 0.001). For commercial loads, the difference between D-7 and ILP was
only significant on holidays (p < 0.01).

Overall, we observed that other heuristic models can be notably more accurate than the
SLP-approach. Individual load profiles achieved the largest improvement (Table 10.3).
On residential loads, the ILP-model improved the SLP forecasts by 10%. On commercial
loads the improvement was several times as large. On single enterprises the forecast
could be improved by 33% and up to 48% on large aggregations. The D-7-forecast had
comparable improvement on commercial loads. At the same time, there were some days
and loads, where no heuristics achieved any improvement comparing to the SLP-forecast.

2 We used Wilcoxon signed rank test because the EDE-distribution is not symmetrical which prohibits
the usage of the, more common, t-test.
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10 Simulation Results

Table 10.4: Heuristic models – total error comparison. We applied the paired Wilcoxon signed rank test
on the sample of 283,203 daily forecast errors obtained in the wide-scale day.ahead local load
forecasting simulation (Section 9.1.1) to evaluate the statistical significance of the total error
difference between the heuristic models confounded on load group and day-type. The results
are discussed in the text (Section 10.1.1).

Model p-values

D-7 ILP SLP D-7 vs. ILP D-7 vs. SLP ILP vs. SLP

Single family homes (A)
Workday 0.89 0.74 0.84 <0.001 <0.001 <0.001
Saturday 1.00 0.80 0.89 <0.001 <0.001 <0.001
Holiday 1.07 0.88 0.97 <0.001 <0.001 <0.001

Residential aggregations (B)
Workday 0.45 0.38 0.40 <0.001 <0.001 <0.001
Saturday 0.49 0.39 0.43 <0.001 <0.001 <0.001
Holiday 0.55 0.45 0.47 <0.001 <0.001 <0.001

Large residential aggregations (C)
Workday 0.27 0.23 0.24 <0.001 <0.001 <0.001
Saturday 0.27 0.23 0.25 <0.001 <0.001 <0.001
Holiday 0.34 0.28 0.29 <0.001 <0.001 <0.001

Single enterprises (D)
Workday 0.52 0.55 0.83 0.030 <0.001 <0.001
Saturday 0.32 0.34 0.69 0.001 <0.001 <0.001
Holiday 0.35 0.29 0.54 <0.001 <0.001 <0.001

Commercial aggregations (E)
Workday 0.37 0.39 0.46 0.4 <0.001 <0.001
Saturday 0.24 0.23 0.34 0.087 <0.001 <0.001
Holiday 0.28 0.21 0.32 <0.001 <0.001 <0.001

Large commercial aggregations (F)
Workday 0.17 0.16 0.24 >0.9 <0.001 <0.001
Saturday 0.12 0.12 0.24 0.005 <0.001 <0.001
Holiday 0.17 0.12 0.21 <0.001 <0.001 <0.001

Note:
Paired Wilcoxon signed rank test was used to compute p-values.
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10.1.2 Parametric Forecasts

In this section, we present the forecasting results that were obtained by the reference
models relying on parametric regression methodology. In particular, we evaluate the
forecasts computed by the ARIMA and ANN-based models. We observed that parametric
models improve the SLP-forecast only in some cases as we describe below.

10.1.2.1ARIMA

Webegin presenting the forecast errors obtained byARIMA-models using direct (ARIMA-
D) and recursive (ARIMA-R)multistep strategies. We observed that the recursive approach
resulted in significantly more accurate forecasts as we show subsequently.

For both models, daily errors were widely spread at each load size (Figure 10.4). On
the smallest loads, errors of several hundreds percent were observed for both models.

Figure 10.4: ARIMA – forecast errors. Each panel presents the 283,203 daily errors (grey dots) obtained by
an ARIMA-model (Table 9.5) in the wide-scale day-ahead building load forecasting simulation
(Section 9.1.1) on the loads of the specified size (annual consumption). For each model, we
computed the expectedmodel error according to the empirical scaling law (7.17) using nonlinear
weighted regression (red line) and compared it to the ideal scaling (black line). The discussion
of the results is provided in the text (Section 10.1.2.1).
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Figure 10.5: ARIMA – expected model error (EME) comparison. The forecast error that we can expect
from a model when predicting a load of a given size was computed applying the empirical
scaling law (7.17) on the corresponding sample of 283,203 daily forecast errors obtained with
each ARIMA-model in the wide-scale day-ahead building load forecasting simulation (Section
9.1.1). On each sample, we used the weighted nonlinear regression estimating the parameters
p, α, β of the fitted curve representing the EME on the figure. The estimated parameters
are denoted in Table 10.1. Further discussion of the results in provided in the text (Section
10.1.2.1).

At the same time, ARIMA-models often achieved very low errors3, especially for the
loads whose annual consumption was smaller than 100 MWh. This happens when the
enterprise was closed or when the household inhabitants were on vacation. ARIMA-
model, that considered only few lags had the flexibility to react faster to the concept
change and exhibit behavior similar to persistence heuristics. Recursive multistep strategy
appeared to be slightly better at this than the direct approach. The EME decreased rapidly
with the consumer size until the critical load size where it saturated and converged towards
the irreducible error. For larger loads, only small reduction of the error could be obtained
despite increasing size.

Direct ARIMA had the critical load size of 355 MWh where the error decrease due to the
aggregation began to wane before saturating at 0.08. Recursive ARIMA had higher critical
load size of 529 MWh and lower irreducible error of 0.06 (Table 10.1). Comparing both

3 Consider the forecast errors (grey dots) in the lower triangle of the Figure 10.4. These correspond to the
errors that were observed on special days where an enterprise was closed or inhabitants were absent.
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Figure 10.6: ARIMA – expected daily error (EDE) distribution by load group. In a wide-scale day-ahead
building load forecasting simulation (Section 9.1.1), we applied variousARIMA-models (Table
9.5) predicting 1851 loads of different size and type. For each load, we obtained a sample of
153 daily forecast errors (7.13) and computed the EDE (7.15) of the corresponding model. The
figure presents the EDEs obtained by the models in residential (A-C) and commercial (D-F)
load groups (Table 9.3). Each panel shows the values (grey dots) obtained predicting individual
loads of the corresponding group and their distribution (box and violin plots). Additionally,
we denoted the expected EDE-mean (red dot) and its 95%-confidence interval (vertical red
bars) for each model. Further discussion is provided in the text (Section 10.1.2.1).

EMEs, we noted that the recursive ARIMA-R could be expected to have smaller error for
all load sizes (Figure 10.5). In fact, it had higher critical load size and yielded a 33% lower
irreducible error which made it substantially more accurate on larger loads.

The recursive strategy used with ARIMA was 20%–30% more accurate than the direct
strategy in various load groups (Table 10.2). In each group, recursive ARIMA had signif-
icantly smaller total error than the direct strategy (p < 0.001). The corresponding IQR of
the recursive strategy was also slightly narrower. On households, the error of ARIMA-R
was 0.79 and dropped to 0.24 which it achieved on large residential aggregations. In gen-
eral, both ARIMA-models weremuchmore accurate on commercial loads. On enterprises,
ARIMA-R achieved 0.34 that dropped to 0.12 on large aggregations.

For each load group, we present the EDE-distribution obtained on the loads belonging to
the group (Figure 10.6). Applying log scale, the distribution was approximately normal
(i.e., log-normal in the original scale). For larger loads (C, F), the distribution was slightly
skewed due to the uneven selection of the loads in terms of size. In all load groups,
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recursive approach was, on average, significantly more accurate than the direct approach
(p < 0.001). Additionally, there were many small residential loads where the both
ARIMA-model delivered an inadequate forecast (outliers). On households, both models
had EDE of around 1 and more. For commercial loads, both approaches were considerably
more accurate.

We compare the accuracy of ARIMA-models to the SLP-forecast (Table 10.3). ARIMA-
models improved the SLP-forecast significantly only on commercial loads (p < 0.001).
There, the improvement was notable with 31%–48%. However, on residential loads,
the ARIMA-forecast provided, on average, no improvement. In fact, direct ARIMA was
notably less accurate than the SLP-forecast. Considering IQR, we saw that on, some days,
ARIMA-forecast was less accurate than the SLP-forecast even on commercial loads.

10.1.2.2Neural Networks

Wemade several observations considering daily forecast errors and theEMEwhen applying
neural-network-based models (MLP-D, MLP-M, NAR, NARX, DNN). We observed a
large spread among daily forecast errors at each load size (Figure 10.7). On the smallest
loads, considerable errors occurred often. With some architectures, we observed small
errors on special days, though such observations were less often than with ARIMA-
models4. Whenever the consumers were absent or the building was temporally closed
(e.g., vacation), the monthly retrained ANN-models did not have the flexibility to quickly
identify and adjust themselves for such situations. The EME and the variation decreased
rapidly with the size reaching critical load size where scaling saturated and converged
towards the irreducible error (Table 10.1). For larger loads, only small reduction of the
error could be expected despite further aggregation.

We observed that the multi-out MLP-M-network with one hidden layer and the deep neural
networks with two and three layers usually provided almost identical daily errors. As a
result, the differences in the EME were almost indistinguishable while these models had
similar critical load size and irreducible error (Table 10.1). This suggests that the network
with one layer had enough modeling capacity for the load forecasting task. The surplus
was suppressed by the Baysian regularization preventing overfitting.

Considering the EME, allowed us to compare different multistep strategies (Figure 10.8).
We observed that direct (MLP-D) and the multi-out architectures (MLP-M) had similar
accuracy on smaller loads and were significantly more accurate than the recursive strategy
(NARX). However, the MLP-D had the lowest critical load size (68 MWh) and the error

4 Consider errors (grey dots) in the lower triangle of the Figure 10.7. These correspond to the errors that
were observed on special days where an enterprise was closed or inhabitants were absent.
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Figure 10.7: Neural networks – forecast errors. Each panel presents the 283,203 daily errors (grey dots)
obtained by a neural-network-basedmodel (Table 9.5) in thewide-scale day-ahead building load
forecasting simulation (Section 9.1.1) on the loads of the specified size (annual consumption).
For each model, we computed the expected model error according to the empirical scaling law
(7.17) using nonlinear weighted regression (red line) and compared it to the ideal error scaling
(black line). The discussion of the results is provided in the text (Section 10.1.2.2).
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Figure 10.8: Neural networks – expected model error (EME) comparison. The forecast error that we
can expect from a model when predicting a load of a given size was computed applying the
empirical scaling law (7.17) on the corresponding sample of 283,203 daily forecast errors
obtained with each neural-network-based model in the wide-scale day-ahead building load
forecasting simulation (Section 9.1.1). On each sample, we used the weighted nonlinear
regression estimating the parameters p, α, β of the fitted curve representing the EME on the
figure. The estimated parameters are denoted in Table 10.1. Further discussion of the results
in provided in the text (Section 10.1.2.2).

saturated faster towards the larger E0 of 0.13 than with any other network. At the same
time, the MLP-M had the smallest irreducible error of 0.09 among all networks.

Moreover, we can expect NAR to be more accurate than other architectures on small
loads (Figure 10.8). For middle-sized loads of around 100 MWh annual consumption,
all architectures can be expected to have comparable accuracy. For the loads larger than
300 MWh, MLP-M becomes the most accurate network. Recursive architectures (NAR,
NARX) had irreducible errors that were approximately 33% higher than that of multi-
out networks (MLP-M, DNN). Additionally, the latter had a higher critical load size of
159–181 MWh.

Consider the total errors in different load groups (Table 10.2). On commercial loads, all
models achieved substantially lower errors than on residential loads. The errors on single
enterprises (D) were comparable with those on residential aggregations (B). MLP-M and
DNN often had almost identical daily errors reflected by similar total errors and IQRs in
each group.
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10.1 Reference Forecasts

The NAR had the lowest total error on smaller loads (A,B,D). On residential loads,
starting with 0.75 (A), the error reduced rapidly to 0.25 on large residential aggregations
(C), where all networks had comparable accuracy. On single enterprises (D), NAR was
the most accurate network obtaining error of 0.38.

At the same time, the other recursive model (NARX) was the least accurate on single enter-
prises (D) and commercial aggregations (E) with total errors of 0.58 and 0.41 respectively.
On large commercial aggregations (F), only direct model (MLP-D) was 22% less accurate.
Other networks had comparable errors of 0.15–0.17.

The EDE-distribution allowed us to compare the models within the load groups in terms
of error average and variation (Figure 10.9). DNNs were left out, since they had almost the
same accuracy as the MLP-M. On a log scale, the distribution was approximately normal
(i.e., log-normal in the original scale). The EDE-distribution on large loads (C,F) was
slightly skewed due to uneven distribution of loads in terms of size in these groups.

A paired Wilcoxon signed rank test, conducted post-hoc, confirmed that the NAR and
MLP-M were the most accurate models in most load groups (Table 10.5). NAR was
the most accurate network on smaller loads. In particular, it was significantly more
accurate (p < 0.001) on single family homes (A), enterprises (D) and smaller residential
aggregations (B) than any other network. On commercial aggregations (E), NARandMLP-
M had similar accuracy (difference was not significant) outperforming other networks by
22%–32%. However, on larger loads (C, F), MLP-M was the most accurate network
outperforming NAR by 8%–79% with high significance of the results (p<0.001). In some
rare cases, MLP-D and MLP-M had very similar accuracy (A, C), but overall, MLP-M is
17%–50% more accurate (p < 0.001).

As we note previously, MLP-M and DNN often had almost identical daily errors. The tests
confirmed that the difference between the total errors obtained with MLP-M and DNNs
was either not significant orMLP-Mwas slightly (under 1%)more accurate in some groups
with p-values ranging from p = 0.01 to p = 0.1 (Table 10.6). Only on single family homes
(A), DNN with 3 layers was significantly more accurate (p < 0.001), but in that case, all
networks had very high total error of around 0.95.

Only in some cases, we observed that neural-network-based models were more accurate
than the SLP-forecast. To make a direct comparison, we computed the accuracy increase
(7.14) relative to the SLP-approach for each load and day. The daily improvement is
summarized in Table 10.3. All neural networks were more effective when applied to
commercial loads where MLP-M and NAR significantly improved the SLP-forecast. For
instance, the improvement on single enterprises (D) or commercial aggregations (E) was
much larger than on large residential aggregations (C). However, on smaller residential
loads (A,B) only NAR achieved a small, yet significant, 2%–3% improvement over the
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10 Simulation Results

Figure 10.9: Neural networks – expected daily error (EDE) distribution by load group. In a wide-scale
day-ahead building load forecasting simulation (Section 9.1.1), we applied various neural-
network-based models (Table 9.5) predicting 1851 loads of different size and type. For each
load, we obtained a sample of 153 daily forecast errors (7.13) and computed the EDE (7.15) of
the corresponding model. The figure presents the EDEs obtained by the models in residential
(A-C) and commercial (D-F) load groups (Table 9.3). Each panel shows the values (grey
dots) obtained predicting individual loads of the corresponding group and their distribution
(box and violin plots). Additionally, we denoted the expected EDE-mean (red dot) and its
95%-confidence interval (vertical red bars) for each model. Further discussion is provided in
the text (Section 10.1.2.2).
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10.1 Reference Forecasts

SLP-forecast (p < 0.001). On large residential aggregations (C), no ANN-model evaluated
in this study brought any significant improvement. On commercial loads (E,F), MLP-M
was more accurate than the NAR-model obtaining mean improvement of 11% to 21%.
Again, MLP-M and DNN had comparable improvement in each load group. At the same
time, NARX and MLP-D often brought the smallest or negative improvement comparing
to other architectures.

Our results allow no general conclusions about the effectiveness of neural networks for the
load forecasting. While for some individual loads, an improvement exceeding 50% was
obtained with various networks, there were load groups where on more than a half of the
loads no improvement against currently used SLP-approach was obtained.
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10.1 Reference Forecasts

Table 10.6: Deep neural networks – total error comparison. We applied the paired Wilcoxon signed rank
test on the sample of 283,203 daily forecast errors obtained in the wide-scale day.ahead local
load forecasting simulation (Section 9.1.1) to evaluate the statistical significance of the total
error difference between the selected ANN-models confounded on load group and day-type.
The results are discussed in the text (Section 10.1.2.2).

Model p-values

MLP-M DNN-2 DNN-3 MLP-M vs. DNN-2 MLP-M vs. DNN-3 DNN-2 vs. DNN-3

Single family homes (A)
Workday 0.95 0.96 0.92 0.4 <0.001 <0.001
Saturday 1.02 1.01 0.98 0.5 <0.001 <0.001
Holiday 1.08 1.07 1.05 <0.001 <0.001 <0.001

Residential aggregations (B)
Workday 0.43 0.44 0.43 <0.001 <0.001 0.003
Saturday 0.45 0.46 0.45 <0.001 0.5 <0.001
Holiday 0.51 0.51 0.50 0.064 0.2 <0.001

Large residential aggregations (C)
Workday 0.25 0.26 0.26 <0.001 <0.001 0.054
Saturday 0.27 0.27 0.27 <0.001 <0.001 >0.9
Holiday 0.31 0.32 0.32 <0.001 <0.001 0.019

Single enterprises (D)
Workday 0.58 0.60 0.60 <0.001 0.001 0.4
Saturday 0.49 0.50 0.50 0.3 >0.9 0.062
Holiday 0.36 0.34 0.35 0.061 0.005 0.3

Commercial aggregations (E)
Workday 0.43 0.42 0.42 0.018 <0.001 0.020
Saturday 0.31 0.34 0.32 0.044 0.3 0.4
Holiday 0.24 0.26 0.26 0.3 0.070 0.4

Large commercial aggregations (F)
Workday 0.21 0.23 0.23 <0.001 <0.001 0.006
Saturday 0.17 0.18 0.18 0.4 0.2 0.3
Holiday 0.14 0.15 0.15 0.020 0.051 >0.9

Note:
Paired Wilcoxon signed rank test was used to compute p-values.
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10.1.3 Nonparametric Forecasts

Similar to the previously discussed model families, nonparametric reference models
(MKNN, NWE, UA), also had a large spread among daily forecast errors, at each load size
(Figure 10.10). On the smallest loads, considerable errors of several magnitudes of the
average daily load occurred often. At the same time, all models often obtained very low
errors, especially on the loads whose annual consumption was smaller than 100 MWh5.
Whenever the consumers were absent or the building was temporally closed (e.g., vaca-
tion), nonparametric models had the flexibility to quickly identify and adjust themselves
for such situations.

The EME and the variation of daily errors decreased rapidly with the annual consump-
tion reaching critical load size where error scaling saturated and converged towards the
irreducible error (Table 10.1). For larger loads, only small reduction in EME could be
expected despite increasing size. Comparing the EMEs, we noted that the UA-model had
substantially lower critical load size and began to saturate earlier than NWE and MKNN
(Figure 10.11). While the MKNN could be expected to be more accurate on smaller loads,
all models had very similar accuracy on the middle-sized and large loads. The irreducible
error for all nonparametric models was around 6%, yet that of the NWE was slightly, but
significantly, lower (p < 0.001).

In each load group, daily errors were approximately log-normally distributed and could
be summarized in terms of median and IQR (Table 10.2). All nonparametric models had
similar accuracy on most loads which was consistent with the EME comparison (Figure
10.11). On residential loads, the models had the largest total error of 0.68–0.72 on single
family homes (A), which dropped to 0.22–0.24 for large residential aggregations (C). For
commercial loads (D,E,F), the total error was notably lower. Even on single enterprises
(D), daily errors were often smaller than on large residential aggregations, though the IQR
was also wider.

Nevertheless, a paired Wilcoxon signed rank test, conducted post-hoc, showed that the
difference between the models was mostly significant except for enterprises (D) where on
workdays all models had similar accuracy (Table 10.7). At the same time, no model was
consistently better for all groups and the difference was often small. For instance, MKNN
was 3%–8% more accurate on single family homes (A) but was 5%–6% less accurate than
the others on commercial aggregations (E, F). At the same time, UA was 2%–5% more
accurate than others on residential aggregations (B, C).

5 Consider the errors (grey dots) in the lower triangle of the Figure 10.10. These correspond to the errors
that were observed on special days where an enterprise was closed or inhabitants were absent.
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10.1 Reference Forecasts

Figure 10.10: Nonparametric models – forecast errors. Each panel presents the 283,203 daily errors (grey
dots) obtained by a nonparametric reference model (Table 9.5) in the wide-scale day-ahead
building load forecasting simulation (Section 9.1.1) on the loads of the specified size (annual
consumption). For each model, we computed the expected model error according to the
empirical scaling law (7.17) using nonlinear weighted regression (red line) and compared it
to the ideal error scaling (black line). The discussion of the results is provided in the text
(Section 10.1.3).
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Table 10.7: Nonparametric models – total error comparison. We applied the paired Wilcoxon signed rank
test on the sample of 283,203 daily forecast errors obtained in the wide-scale day-ahead building
load forecasting simulation (Section 9.1.1) to evaluate the statistical significance of the total
error difference between the heuristic models confounded on load group and day-type. The
results are discussed in the text (Section 10.1.3).

Model p-values

MKNN NWE UA MKNN vs. NWE MKNN vs. UA NWE vs. UA

Single family homes (A)
Workday 0.74 0.75 0.76 <0.001 <0.001 <0.001
Saturday 0.78 0.81 0.84 <0.001 <0.001 <0.001
Holiday 0.87 0.90 0.90 <0.001 <0.001 <0.001

Residential aggregations (B)
Workday 0.40 0.39 0.38 <0.001 <0.001 <0.001
Saturday 0.41 0.41 0.41 0.5 0.019 0.018
Holiday 0.47 0.47 0.46 <0.001 <0.001 0.017

Large residential aggregations (C)
Workday 0.26 0.25 0.23 <0.001 <0.001 <0.001
Saturday 0.26 0.25 0.24 <0.001 <0.001 <0.001
Holiday 0.32 0.30 0.29 <0.001 <0.001 <0.001

Single enterprises (D)
Workday 0.48 0.48 0.47 0.2 0.3 0.2
Saturday 0.30 0.30 0.30 <0.001 0.2 0.074
Holiday 0.23 0.24 0.25 <0.001 <0.001 0.2

Commercial aggregations (E)
Workday 0.35 0.34 0.33 <0.001 <0.001 0.034
Saturday 0.22 0.21 0.21 0.002 <0.001 0.002
Holiday 0.20 0.19 0.20 0.027 0.062 >0.9

Large commercial aggregations (F)
Workday 0.16 0.15 0.15 <0.001 <0.001 0.2
Saturday 0.12 0.11 0.11 <0.001 <0.001 0.5
Holiday 0.12 0.11 0.12 <0.001 <0.001 0.4

Note:
Paired Wilcoxon signed rank test was used to compute p-values.
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Figure 10.11: Nonparametric models – expected model error (EME) comparison. The forecast error that
we can expect from a model when predicting a load of a given size was computed applying
the empirical scaling law (7.17) on the corresponding sample of 283,203 daily forecast errors
obtained with each nonparametric reference model in the wide-scale day-ahead building load
forecasting simulation (Section 9.1.1). On each sample, we used the weighted nonlinear
regression estimating the parameters p, α, β of the fitted curve representing the EME on the
figure. The estimated parameters are denoted in Table 10.1. Further discussion of the results
in provided in the text (Section 10.1.3).

Often, nonparametric models significantly improved the SLP-forecast in the majority of
the load groups (Table 10.3). When applied on single family homes (A), the models could
be expected to improve SLP-forecast by 8%–12%, which was more than the improvement
achieved by the best performing NAR-network. On residential loads, the improvement
waned with load size as the SLP-forecast also became more accurate. For large residential
aggregations (C), only UA-model achieved a significant improvement of 6% (p < 0.001).
The improvement was more substantial on commercial loads. There, all models had
average improvement of 25%–42%. On commercial loads, nonparametric models were
much more accurate than the SLP-forecast.
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10 Simulation Results

Figure 10.12: Nonparametric models – expected daily error (EDE) distribution by load group. In a wide-
scale day-ahead building load forecasting simulation (Section 9.1.1), we applied various
nonparametric models (Table 9.5) predicting 1851 loads of different size and type. For each
load, we obtained a sample of 153 daily forecast errors (7.13) and computed the EDE (7.15) of
the corresponding model. The figure presents the EDEs obtained by the models in residential
(A-C) and commercial (D-F) load groups (Table 9.3). Each panel shows the values (grey
dots) obtained predicting individual loads of the corresponding group and their distribution
(box and violin plots). Additionally, we denoted the expected EDE-mean (red dot) and its
95%-confidence interval (vertical red bars) for each model. Further discussion is provided in
the text (Section 10.1.3).
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10.2 Functional Neighbor Forecasts

In this section, we evaluate the forecasts provided by the functional neighbor (FN) model
proposed in Section 8.2. We present the results obtained in the wide-scale day-ahead
building load forecasting simulation and compare the accuracy of our forecaster to the
predictions by the previously discussed reference models. The results of the smart-
building load forecasting simulation evaluating the functional neighbor extension model
that considers exogenous variables are provided later in the text (Section 8.3).

As with the reference models, we observed a large spread among daily forecast errors at
each load size (Figure 10.13). The largest errors were observed on the smallest loads.
At the same time, on the loads between 2 MWh and 100 MWh, we often observed very

Figure 10.13: Functional neighbor model – forecast errors. The figure shows the 283,203 daily errors
(grey dots) obtained by the functional neighbor model (Algorithm 3) in the wide-scale day-
ahead building load forecasting simulation (Section 9.1.1) on the loads of the specified size
(annual consumption). Additionally, we computed the expected model error according to the
empirical scaling law (7.17) using nonlinear weighted regression (red line) and compared it to
the ideal error scaling (black line). Further discussion is provided in the text (Section 10.2).
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small errors6. Whenever the consumers were absent or the building was temporally closed
(e.g., vacation), the FN-model had the flexibility to quickly identify and adjust itself to
such situations. The EME and the variation of daily errors decreased rapidly reaching the
critical load size (695MWh)where scaling saturated and converged towards the irreducible
error of 0.048. For larger loads, only a small reduction of the error could be obtained
despite the increasing size.

The FN-model had the smallest irreducible error compared to the reference models (Table
10.1). For the largest loads, our model could be expected to be 39% more accurate7 than
the SLP-forecast that was designed for predicting large aggregations of end-consumers and
had the highest critical load size (836 MWh) among all reference models.

Extending the comparison to other heuristic models, the FN-model had notably smaller
EME than any heuristic model for the loads larger than 30 MWh (large home or a small
enterprise). In particular, the FN-model had 31% lower irreducible error than the best
heuristic model – ILP (Figure 10.14).

Comparing to the parametric models, FN-model can be expected to have lower forecast
error on loads of any size (Figure 10.14). Even on larger loads, its irreducible error was
23% smaller than that of the best parametric model (ARIMA). Notably, the FN-model was
more accurate than the ANN-based models which we used as a reference in this study.

The FN-model had accuracy similar to the other nonparametric models on smaller loads.
Our forecaster started to distinguish itself from those models for the loads larger than 100
MWh (e.g., an average building) for which the EME was notably smaller than that of other
nonparametric models. The irreducible error of the FN-model was 17% lower than the
one of the NWE and 27% less than the one of the MKNN (Figure 10.14).

We compared the EDE-distribution obtained by the FN- and SLP-models on residential
(Figure 10.15) and commercial (Figure 10.16) loads. In each load group, the EDE-
distribution, same as the original daily error distribution, had approximate log-normal
shape (mind log scale of the plot). There was a slight left-skew for large aggregations that
can be explained by uneven distribution of the loads in these groups (Section 9.1.1).

The paired difference between model errors8 was approximately normal. For the groups
where the difference between the means did not appear significant (e.g, C) considering the
overlapping confidence intervals (horizontal bars), we conducted a Wilcoxon test and a
paired t-test confirming that the FN-model had lower total and mean daily errors than the
SLP-forecast in each group (p < 0.001).

6 Consider the forecast errors (grey dots) in the lower triangle of the Figure 10.13. These correspond to
the errors that were observed on special days where an enterprise was closed or inhabitants were absent.

7 Here, we relate to the improvement of irreducible error relative to the SLP-forecast.
8 Here, we relate to the difference in the forecast error obtained on the same load.
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10.2 Functional Neighbor Forecasts

Figure 10.14: Functional neighbormodel – expectedmodel error (EME) comparison to the referencemodels.
The forecast errors that we can expect from the functional neighbor model (Algorithm 3) and
various reference models (Table 9.5) when predicting a load of a given size were computed
applying the empirical scaling law (7.17) on the samples of 283,203 daily forecast errors
obtained with each model in the wide-scale day-ahead building load forecasting simulation
(Section 9.1.1). On each sample, we used the weighted nonlinear regression estimating the
parameters p, α, β of the fitted curve representing the EME on the figure. The estimated
parameters are denoted in Table 10.1. Each panel compares the EME of the functional
neighbor forecaster to the heuristic (top), parametric (middle) and nonparametric (bottom)
reference models. Further discussion of the results is provided in the text (Section 10.2).
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Figure 10.15: Functional neighbormodel – expected daily errors (EDE) on residential loads. We applied the
functional neighbor forecaster (Algorithm 3) and the SLP-model predicting 1247 residential
loads of different size in a wide-scale day-ahead building load forecasting simulation (Section
9.1.1). For each predicted load, we computed the EDE (7.15) using the sample of 153 daily
forecast errors obtained by each model. Conditioned on day-type, the panels show the EDE-
distributions in residential load groups (A-C) defined in Table 9.3. Each panel shows the
errors on a log scale obtained on individual loads (rugs) by the corresponding model and the
probability density function. Additionally, we denoted the error mean (vertical dotted line)
and its 95%-confidence interval (vertical bar). Further discussion is provided in the text.

In fact, the FN-model had the lowest total error among all reference models in every load
group (Table 10.8). The difference to other models, was mostly significant (p < 0.001).
Only in very few cases, the difference to some models (ILP, UA) was not statistically
significant (Table 10.9).

For a better comparison, we consider the improvement against the SLP-forecast. On
the vast majority of loads, the FN-forecast was a notable improvement of up to 100%
comparing to the SLP-forecast (Figure 10.17). We saw particularly large gains of multiple
dozens of percent for commercial loads and larger aggregations. For few loads, FN-model
was slightly less accurate than the SLP-forecast. However, those loads were often very
small – homes with annual consumption up to 20 MWh. In such cases, a deterministic
forecast might not be adequate since we can have large daily errors with all models.

Overall, FN-model yielded a significant improvement comparing to the SLP-forecast in
each load group (Figure 10.18). The improvement on commercial loads was three to four
times higher than on residential loads. Even on single enterprises, the FN-model could
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Figure 10.16: Functional neighbor model – expected daily errors (EDE) on commercial loads. We applied
the functional neighbor forecaster (Algorithm 3) and the SLP-model predicting 242 commer-
cial loads of different size in a wide-scale day-ahead building load forecasting simulation
(Section 9.1.1). For each predicted load, we computed the EDE (7.15) using the sample of
153 daily forecast errors obtained by each model. Conditioned on day-type, the panels show
the EDE-distributions in residential load groups (D-F) defined in Table 9.3. Each panel shows
the errors on a log scale obtained on individual loads (rugs) by the corresponding model and
the probability density function. Additionally, we denoted the error mean (vertical dotted
line) and its 95%-confidence interval (vertical bar). Further discussion is provided in the text.

be expected to improve the forecast by over 43% without using any information about the
enterprise such as opening hours. On residential aggregations, where the SLP-method
was designed to predict particularly well, the FN-model could be expected to improve the
SLP-forecast by over 10%. Even for larger aggregations (C, F) improvement of 54% and
83% was observed.

In fact, the FN-model improved the SLP-forecast more than any reference model evaluated
in this study (Table 10.10). A paired t-test verified that our forecaster brought a significantly
larger improvement in all load groups than any parametric (Figure 10.20), nonparametric
(Figure 10.21) and heuristic (Figure 10.19) reference model. Even on single family homes,
where the difference to the MKNN was under 1% it was, nevertheless, significant (p <

0.001). On residential aggregations (B), the difference to themost accurate heuristics (ILP)
was small but could be considered significant (p = 0.044). Comparing the FN-model to
any other reference in any other group showed an accuracy improvement with the highest
significance level (p < 0.001).
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Table 10.8: Comparison of the total errors of the forecasts in each load group. The forecasting models were
evaluated in the wide-scale day-ahead building load forecasting simulation (Section 9.1.1). For
each load group defined in Table 9.3, we highlight the models that achieved the smallest (green),
below average (grey) and the highest total error (7.16). Further discussion is provided in the
text (Section 10.2).
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Table 10.9: Functional neighbor model – total error comparison with the best reference models. We applied
the paired Wilcoxon signed rank test on the sample of 283,203 daily forecast errors obtained
in the wide-scale day-ahead building load forecasting simulation (Section 9.1.1) to evaluate
the statistical significance of the total error (7.16) difference between the heuristic models
confounded on load group and day-type. Further discussion is provided in the text (Section
10.2).

Model p-values

FN ILP MKNN UA FN vs. ILP FN vs. MKNN FN vs. UA ILP vs. MKNN ILP vs. UA MKNN vs. UA

Single family homes (A)
Workday 0.72 0.74 0.74 0.76 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Saturday 0.80 0.80 0.78 0.84 <0.001 <0.001 <0.001 0.002 <0.001 <0.001
Holiday 0.87 0.88 0.87 0.90 0.9 0.018 <0.001 0.3 <0.001 <0.001

Residential aggregations (B)
Workday 0.37 0.38 0.40 0.38 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Saturday 0.40 0.39 0.41 0.41 <0.001 <0.001 0.056 <0.001 <0.001 0.019
Holiday 0.45 0.45 0.47 0.46 0.040 <0.001 <0.001 <0.001 <0.001 <0.001

Large residential aggregations (C)
Workday 0.22 0.23 0.26 0.23 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Saturday 0.24 0.23 0.26 0.24 <0.001 <0.001 0.031 <0.001 <0.001 <0.001
Holiday 0.29 0.28 0.32 0.29 0.010 <0.001 0.036 <0.001 <0.001 <0.001

Single enterprises (D)
Workday 0.41 0.55 0.48 0.47 <0.001 <0.001 <0.001 <0.001 <0.001 0.3
Saturday 0.30 0.34 0.30 0.30 <0.001 0.037 <0.001 <0.001 0.013 0.2
Holiday 0.22 0.29 0.23 0.25 <0.001 0.019 <0.001 <0.001 <0.001 <0.001

Commercial aggregations (E)
Workday 0.31 0.39 0.35 0.33 <0.001 <0.001 <0.001 0.3 <0.001 <0.001
Saturday 0.21 0.23 0.22 0.21 0.009 <0.001 0.062 >0.9 <0.001 <0.001
Holiday 0.19 0.21 0.20 0.20 0.005 <0.001 0.6 0.7 0.005 0.062

Large commercial aggregations (F)
Workday 0.14 0.16 0.16 0.15 <0.001 <0.001 <0.001 0.9 <0.001 <0.001
Saturday 0.10 0.12 0.12 0.11 0.019 <0.001 0.046 0.004 0.4 <0.001
Holiday 0.11 0.12 0.12 0.12 0.006 <0.001 >0.9 0.001 0.006 <0.001

Note:
Paired Wilcoxon signed rank test was used to compute p-values.
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Figure 10.17: Functional neighbor model – improvement relative to the standard load profile forecast. In
a wide-scale day-ahead building load forecasting simulation (Section 9.1.1), we applied the
functional neighbor forecaster (Algorithm 3) and the SLP-model predicting 1851 loads of
different size and type. For each load, we computed the improvement (7.14) by the functional
neighbor model relative to the forecast using standard load profiles. The figure shows the
improvement (%) for each predicted load denoting load size (annual consumption) and type
(colors). The probability density function of the improvement obtained for the corresponding
load type is presented on the right of the main plot. Further discussion is provided in the text
(Section 10.2).
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Figure 10.18: Functional neighbor model – improvement relative to the standard load profile forecast by
load group. In a wide-scale day-ahead building load forecasting simulation (Section 9.1.1),
we applied the functional neighbor forecaster (Algorithm 3) predicting 1851 loads of different
size and type obtaining a sample of 153 daily forecast errors for each load. Additionally, we
predicted the same loads using the SLP-model and used predictions as a benchmark. Relative
to the benchmark, we computed the forecast improvement (7.14) for each predicted daily load
curve. In the figure, the panels show the improvement in residential (A-C) and commercial
(D-F) load groups (Table 9.3). Every panel shows the sampling distribution of the mean
improvement for each load (rugs at the top), expected improvement in the load group (dotted
vertical line) with the 95%-confidence interval (horizontal bar) and the zero-improvement
line (red vertical line). Further discussion is provided in the text (Section 10.2).
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Figure 10.19: Functional neighbor model – comparison to selected heuristic models. In a wide-scale day-
ahead building load forecasting simulation (Section 9.1.1), we applied the functional neighbor
forecaster (Algorithm 3) and the most accurate heuristic models (Section 10.1.1) predicting
1851 loads of different size and type. Additionally, we predicted the same loads with
standard load profiles and used these predictions as a benchmark. Relative to the benchmark,
we computed the forecast improvement (7.14) obtained by each model. The figure presents
the improvement (%) in residential (A-C) and commercial (D-F) load groups (Table 9.3).
Each panel shows the distribution of the improvement in the corresponding load group (box
and violin plots) with the zero-improvement mark (red dashed line). Additionally, we denoted
the improvement mean (red dot) and its 95%-confidence interval (vertical red bars) in each
load group. Further discussion in the text (Section 10.2).
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Figure 10.20: Functional neighbor model – comparison to selected parametric models. In a wide-scale
day-ahead building load forecasting simulation (Section 9.1.1), we applied the functional
neighbor forecaster (Algorithm 3) and the most accurate parametric models (Section 10.1.2)
predicting 1851 loads of different size and type. Additionally, we predicted the same loads
with standard load profiles and used these predictions as a benchmark. Relative to the
benchmark, we computed the forecast improvement (7.14) obtained by each model. The
figure presents the improvement (%) in residential (A-C) and commercial (D-F) load groups
(Table 9.3). Each panel shows the distribution of the improvement in the corresponding load
group (box and violin plots) with the zero-improvement mark (red dashed line). Additionally,
we denoted the improvement mean (red dot) and its 95%-confidence interval (vertical red
bars) in each load group. Further discussion in the text (Section 10.2).
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Figure 10.21: Functional neighbor model – comparison to selected nonparametric models. In a wide-scale
day-ahead building load forecasting simulation (Section 9.1.1), we applied the functional
neighbor forecaster (Algorithm 3) and the nonparametric models (Section 10.1.3) predicting
1851 loads of different size and type. Additionally, we predicted the same loads with
standard load profiles and used these predictions as a benchmark. Relative to the benchmark,
we computed the forecast improvement (7.14) obtained by each model. The figure presents
the improvement (%) in residential (A-C) and commercial (D-F) load groups (Table 9.3).
Each panel shows the distribution of the improvement in the corresponding load group (box
and violin plots) with the zero-improvement mark (red dashed line). Additionally, we denoted
the improvement mean (red dot) and its 95%-confidence interval (vertical red bars) in each
load group. Further discussion in the text (Section 10.2).
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Table 10.10: Comparison of median improvement relative to the SLP-forecast in each load group. The
models were evaluated in the wide-scale day-ahead building load forecasting simulation (Sec-
tion 9.1.1). For each load group defined in Table 9.3, we highlight the models that achieved
minimal (green), below average (grey) and maximal forecast improvement (7.14) relative to
the SLP-forecast. Further discussion is provided in the text (Section 10.2).
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10.3 Functional Neighbor Extension Forecast

In this section, we present the results of the smart-building load forecasting simulation. The
simulation was done using the load of a smart building from the Smart-City-Demo Aspern
project (Section 9.1.2). The net electricity demand of this building notably depends
on the solar irradiation due to a large photovoltaic (PV) installation on the roof. For
this building, we computed the day-ahead forecast with the FNX-model that considered
global solar irradiation as an exogenous variable (Algorithm 4). Together with various
reference models (Table 9.6), the forecast was computed day-by-day on a rolling basis
(91 consecutive days). The simulation results validate the FNX-model which allowed to
consider exogenous variables within functional neighbor forecasting methodology.

We observed that the FNX-model had the smallest forecast error on the majority of the
predicted days (Table 10.11). As in the wide-scale day-ahead building load forecasting
simulation (Section 10.2), the daily errors were log-normally distributed and could be
summarized in terms of a median and an IQR. Notably, all models were less accurate on
weekends, where the power demand of a building is often more volatile than on workdays.
Moreover, we observed that the multivariate models which considered the solar irradiation
(FNX, DNN, ARIMAX) were substantially more accurate than the profiling heuristics
(SLP, ILP) which, by design, did not consider any external variables. At the same time,
the median errors and IQRs of the multivariate models were comparable which required
further statistical testing before reaching any conclusion on their comparison.

Unpaired one-sided independent t-tests showed that all multivariate models significantly
(p < 0.001) improved the SLP-forecast of our building with a PV-installation. The
improvement with all these models was consistent throughout the simulated days and
averaged around 50% (Table 10.12). Additionally, paired t-tests confirmed that the FNX-
forecaster brought a slightly larger improvement than other models. The difference to the

Table 10.11: Smart building load forecasting simulation – summary of daily forecast errors. In a smart
building simulation (Section 9.1.2), we applied the FNX-model (Algorithm 4) and various
reference models (Table 9.6) predicting the 91 consecutive daily load curves of a smart building
from the Smart-City-Demo Aspern project. The table summarizes the daily forecast errors in
terms of the median [interquartile range] conditioning on the weekday. Further discussion is
provided in the text (Section 10.3).

Weekday

Mon Tue Wed Thu Fri Sat Sun

Model
FNX 0.43 [0.39, 0.59] 0.43 [0.32, 0.74] 0.50 [0.40, 0.60] 0.57 [0.40, 0.78] 0.60 [0.54, 0.89] 0.83 [0.75, 0.94] 0.61 [0.53, 0.76]
DNN 0.60 [0.53, 0.68] 0.69 [0.43, 1.14] 0.65 [0.48, 0.95] 0.56 [0.43, 1.01] 0.74 [0.48, 0.97] 0.71 [0.49, 0.91] 0.74 [0.69, 0.98]
ARIMAX 0.55 [0.48, 0.82] 0.58 [0.54, 0.96] 0.78 [0.59, 0.96] 0.61 [0.52, 0.94] 0.86 [0.59, 1.12] 0.79 [0.55, 0.90] 0.94 [0.63, 1.09]
ILP 0.74 [0.66, 0.79] 0.74 [0.63, 0.91] 0.76 [0.60, 0.80] 0.78 [0.61, 0.93] 0.84 [0.78, 0.92] 0.86 [0.74, 1.03] 0.95 [0.90, 1.04]
SLP 1.26 [1.17, 1.40] 1.22 [1.12, 1.31] 1.15 [1.09, 1.26] 1.20 [1.14, 1.31] 1.22 [1.16, 1.34] 1.36 [1.21, 1.48] 1.41 [1.29, 1.47]
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Table 10.12: Smart building load forecasting simulation – improvement relative to the standard load profile
forecast. In a smart building simulation (Section 9.1.2), we applied the FNX-model (Algorithm
4) and various reference models (Table 9.6) predicting the 91 consecutive daily load curves of a
smart building from the Smart-City-DemoAspern project. For each predicted daily load curve,
we computed the improvement (7.14) relative to the SLP-forecast. The table summarizes the
improvement (%) in terms of the mean [median] and the results of a paired t-test evaluating the
statistical significance of the differences between the models. Further discussion is provided
in the text (Section 10.3).

Model p-values

ARIMAX FNX DNN DNN vs. FNX DNN vs. ARIMAX FNX vs. ARIMAX

Weekday
Mon 52 [50] 62 [64] 51 [57] 0.050 0.8 0.073
Tue 45 [49] 57 [62] 33 [48] 0.009 0.2 0.005
Wed 26 [28] 50 [54] 37 [41] 0.035 0.2 <0.001
Thu 37 [46] 44 [53] 31 [54] 0.12 0.5 0.4
Fri 27 [29] 40 [51] 35 [37] 0.15 0.3 0.086
Sat 43 [41] 35 [36] 41 [53] 0.5 0.7 0.3
Sun 35 [35] 48 [50] 41 [44] 0.3 0.4 0.045

Note:
Paired t-test was used to compute p-values.

ARIMAX-forecast was more substantial and often significant (p < 0.05). It appeared
that the FNX-model was more accurate at modeling the nonlinearities of the relationship
between solar irradiation and the net consumption of the building. The difference in
accuracy between FNX and DNN was smaller, yet also significant on the majority of
workdays (p < 0.05).

Overall, the results of the smart-building load forecasting simulation validated the func-
tional neighbor extension approach that considers external variables within the proposed
functional neighbor forecasting methodology. We observed that our methodology pro-
vided forecast comparable, and often more accurate, than complex parametric models
(ARIMAX, DNN) which are commonly used to predict the load of smart buildings.
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This dissertation aims to provide an alternative to the standard load profiles for the day-
ahead load forecasting of buildings on a wide scale. There are numerous methods for
predicting the aggregated consumption at the power system level. At the same time,
only few studies exist focusing on predicting local low-voltage loads – the electricity
demand of individual buildings connected to the distribution grid. Commonly, the research
concentrates on fine-tuning a complex parametric model for a given building. The model is
set up manually for a one-step ahead prediction (intraday) and parametrized using explicit
knowledge of the building. The forecast is usually evaluated on a single or a small set of
loads which impedes any conclusions about a possible wide-scale application of the model.
Awide-scale application of a forecaster requires to predict numerous local loads of different
size and type without a possibility for any manual adjustment of the model. Importantly,
the local loads can be highly volatile and diverse requiring the forecast evaluation on a
statistically relevant sample of the end-consumers. In total, a model for predicting the
day-ahead building loads on a wide scale requires a fully-automated forecasting method
and an extensive evaluation that we provide in this dissertation.

With our study, we establish the wide-scale local load forecasting as a subfield of research
within distribution system operation (Contribution 1). To this end, we formulated the
before-the-meter forecasting problem (Chapter 7) and consolidated the existing knowledge
on local load forecasting. In particular, we presented a unified view on data-driven
load forecasting in distribution systems combining the perspectives of statistical learning
theory, classical and functional time series analysis (Chapter 4). Herewith, we provided
a classification of the existing building load forecasting methods and their critical review
placing them into the context of a wide-scale application (Chapter 5).

Furthermore, we formulated and applied a methodology to evaluate and compare fore-
casting models for the wide-scale application, which we demonstrate evaluating the most
common existing forecasting techniques (Contribution 2). We used an extensive public
smart-meter dataset to simulate wide-scale day-ahead building load forecasting using nu-
merous reference models (Chapter 9). The results included hundreds of thousands of daily
load forecasts which allowed us to draw several statistically founded conclusions about
common data-driven load models (Chapter 10). To the best of our knowledge, this is
the first such evaluation in context of a wide-scale day-ahead forecasting on a statistically
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relevant sample of local loads – a challenging domain where historical data is limited,
manual adjustment is not possible and the loads can be highly volatile and diverse.

The main practical outcome of this dissertation is a load forecaster based on the novel
functional neighbor methodology (Contribution 3). We had considered the insights from
the aforementioned reference model evaluation and developed a method specifically for the
wide-scale day-ahead load forecasting in a distribution grid (Chapter 8). The corresponding
data-driven model requires no manual setup and can be universally applied to buildings of
any size and type. Our forecaster requires three months of historical load measurements
and can optionally consider further data inputs available in a smart grid. Applying the
aforementioned evaluation methodology, we demonstrated that the functional neighbor
model is significantly more accurate than standard load profiles and more sophisticated
approaches based on classical time series analysis and machine learning (Chapter 10).

In this chapter, we discuss the results of our study relating them to the research question
and contributions that were stated in the introductory part of the thesis. We interpret
the findings and show their relevance for the wide-scale day-ahead local load forecasting
(Section 11.1). Focusing on implications for designing predictive models for wide-scale
applications on buildings, we connect our contributions to the existing scholarly work on
load forecasting. Further, we explain how the functional neighbor methodology proposed
in this thesis advances the load forecasting capabilities in smart grids (Section 11.2).
Completing the discussion, we acknowledge the limitations of our study and highlight
various paths for future developments in the field of wide-area local load forecasting
(Section 11.3). Overall, this chapter provides the arguments required for concluding the
dissertation.

11.1 Wide-Scale Day-Ahead Local Load Forecasting

This study presents a unified view on data-driven distribution system load forecasting.
In particular, we combined the perspectives of statistical learning theory and time series
analysis on designing predictive models for the load forecasting applications (Chapter
4). Studying the existing literature, we identified three different families of forecasting
approaches (Chapter 5) and evaluated various reference models from each family (Chapter
9) in a wide-scale day-ahead building load forecasting simulation (Chapter 10). In this
section, we analyze the simulation results that allow us to compare the approaches between
each other and discuss implications to designing predictive models for a wide-scale day-
ahead local load forecasting.
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11.1.1 Evaluation of Forecasts in Context of a Wide-Scale Application

Our results imply that the load forecasting studies where models are compared on a single
or a small group of buildings allow only limited and case specific conclusions about
the evaluated methods. With our research, we demonstrate the importance of statistical
analysis for evaluating and comparing the models for wide-scale local load forecasting. In
the conducted day-ahead building load forecasting simulation, daily forecast errors varied
substantially depending on the building. For instance, we observed a variation of over
100% on smaller buildings. In these circumstances, single number quantifying the forecast
error (e.g., average) can be insufficient to evaluate model accuracy. Instead, we need to
rely on further descriptive statistics representing the error distribution.

Contrary to a common preconception, we observed that daily errors are distributed neither
normally nor symmetrically which was reflected by the interquartile range (Table 10.2).
For themost smaller loads, we observed daily error outliers reflecting the days with unusual
consumption. Moreover, we had several smaller loads where the models failed to forecast
adequately. The presence of the outliers has to be considered when applying descriptive
statistics. In this context, median is a more appropriate statistic than the average for
describing daily error distribution.

The accuracy of all models depended on the time-series characteristics that are linked to
the building size and type – i.e., accuracy of the forecasting methods varied substantially
depending on the load. In particular, our results confirm the empirical scaling law [SR18]
that describes how the forecast error decreases with load size. Additionally, we found
that the error also substantially depends on building type. The models evaluated in this
study were notably more accurate predicting the electricity consumption of commercial
buildings rather than residential buildings of the same size. Commercial loads closely
followworkday calendar and have more regular usage patterns over the day than residential
loads. Our results extend the findings of Sevlian et al., [SR18] who claim that the load
size alone determines the scaling of the forecast error.

Moreover, our results explain conflicting conclusions thatmay be obtainedwhen comparing
the models based on the existing literature (Chapter 5). We observed that different models
can be expected to have similar accuracy, especially on the loads of an average size with
annual consumption of around 100 MWh. Therefore, a load forecasting model for a
wide-scale application must be evaluated on a diverse set of loads of different size and
type. Any observed difference in model accuracy must be verified on various levels of
load aggregation and checked for statistical significance due to the error variation.

In this study, we proposed a methodology (Section 7.3) combining descriptive and inferen-
tial statistics to evaluate and compare the forecasting models in a wide-scale application.
For such application, we need to estimate the forecast error that we can expect on a building
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of a given size and quantify the accuracy across the building domain. This suggests the
necessity to consider expected model error (EME) (7.17) and its scaling as a part of the
model evaluation as we did in this study. The empirical scaling law [SR18] allowed us to
compute the EME for the buildings of all sizes. Most importantly, it allowed us to compare
the models not only in terms of the expected error on a particular load or a sample of loads,
but also estimate the expected accuracy on the loads that are not part of our dataset.

Additionally, we have to use inferential statistics and hypothesis testing to draw any
comparisons between themodels. Evenwhenwe compare twomodels on a single building,
we have to assess if the difference in the forecast errors is statistically significant or is
due to the natural variation of daily consumption patterns. Notable error variation can
lead to case-based conclusions when comparing the models between each other. For a
comprehensive comparison, we have to evaluate the models not only on single loads or
groups of loads, but across all sizes and compute the irreducible errors (7.21) for each
model that describe until which point the forecast error can be reduced following the load
aggregation.

11.1.2 Reference Model Comparison

The results of the wide-scale day-ahead building load forecasting simulation allow to
compare various heuristic, parametric and nonparametric reference models that are com-
mon in the forecasting literature. We forecast numerous loads of different size and type
and evaluated the models in context of a wide-scale application using the aforementioned
evaluation methodology.

The forecast using standard load profiles had the largest critical load size of 837 MWh
and the irreducible error of 0.08. This is consistent with the praxis, where the error of 0.1
is expected for aggregations exceeding 400 households [Ber00]. At the same time, other
heuristics (D-7, ILP) had significantly lower irreducible error (0.07). Consequently, these
heuristics can be more accurate, especially on larger loads. In fact, we saw that the ILP and
D-7 can be expected to be more accurate than the SLP-forecast on the loads larger than 10
MWh and 100 MWh respectively. Among all heuristic models, ILP had the smallest error
in each load group. Hence, we can replace SLP with ILP and expect a notable accuracy
increase.

Our results suggest that parametric regression might not be the best approach for the
load forecasting in a wide-scale application. Parametric regression is the most common
load forecasting methodology and various authors demonstrated the effectiveness of cor-
responding models when predicting the consumption of a single building or a small group
of buildings (Chapter 5). The models presented in the literature often rely on manual
fine-tuning and parametrization that is not possible in context of a wide-scale application.
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In our wide-scale load forecasting simulation, we observed that only in some cases (mostly
commercial loads), a parametric model was more accurate than currently used SLPs. In
particular, ARIMA-models were only effective for commercial loads and failed to improve
the forecast on residential buildings because of the nonlinearities of the loads. At the
same time, none of the evaluated neural network architectures were consistently better
than others on loads of all sizes. While NAR performed best on small loads, MLP-M was
more accurate on larger loads. On the middle-sized loads, EME of different architectures
was similar.

More generally, we observed that heuristic models were often more accurate than sophis-
ticated parametric approaches. Nonstationarity of the building loads imposes a major
limitation on common machine learning methods. We repeatedly observed that even
DNNs could be outperformed by simple heuristic forecasts. We explain the weak perfor-
mance of the applied neural networks by the nonstationarity of local loads. Following
the ANN-methodology, a trained network forecasts unseen data, assuming that the statis-
tical properties of the process generating the data remain constant. Once the regression
function is estimated, a network does not adapt to the change in data characteristics which
often arises with local loads. In such case, historical data quickly becomes irrelevant
undermining the network training. The fact that the most accurate neural network model
used the least amount of training data supports this hypothesis (NAR-model using only 2
months of data). On the other hand, nonparametric regression appears to be more flexible
and accurate for day-ahead predictions of building loads.

More than the reference models of any other family, nonparametric models significantly
improved the SLP-forecast in the majority of the load groups (Table 10.3). On single
family homes, these models can be expected to improve the SLP-forecast by 8%–12%,
which is more than the best performing NAR-network could achieve. Yet, on residential
loads, the improvement wanes with load size as the SLP-forecast becomes more accurate.
For large residential aggregations (C), only UA-model achieved a significant improvement
of 6% (p < 0.001). The improvement was more substantial on commercial loads. There,
nonparametric models improved the SLP-forecast by 25%–42% on average. The EME
also shows that nonparametric models have smaller irreducible error than the SLP-forecast
and are better at predicting larger loads.

11.1.3 Practical Implications for Load Forecaster Design

The evaluation and comparison of numerous forecasting models provided various practical
insights for predicting day-ahead building load curves on a wide scale. First, our results
suggest that the models predicting the time series one-step ahead, should not be adopted
directly for multistep forecasts. We considered various multistep strategies (Section 7.2.2)
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and observed that the direct approach was the least accurate strategy. Predicting each point
of the load curve separately, was significantly worse than any other approach. Second,
we observed that forecast accuracy did not necessarily improve with model complexity.
For instance, modeling capacity of a neural network depends on its size, yet we did not
observe any accuracy improvement despite the increase in network size. It seems that
the nonstationarity of the predicted time series remains a fundamental limitation for the
corresponding forecast accuracy.

The first insight is important because one-step ahead models for intraday predictions are
far more common in the forecasting literature. For instance, we showed that a traditional
ARIMA-model applied directly (ARIMA-D) was significantly less accurate than when the
same approach was applied recursively (ARIMA-R). Similarly, we observed that the ANN
using the direct strategy (MLP-D) was significantly less accurate than the same network
using the recursive (NARX) or multi-out (MLP-M) strategy. In fact, our results provide
substantial evidence that the multi-out strategy is the most effective for adapting one-step
ahead models for multistep day-ahead predictions.

The second insight is based on our simulation results which imply that it is often senseless
to use complex models to predict local loads. Increased modeling capacity did not increase
the forecast accuracy in a wide-scale load forecasting application considered in this study.
In particular, we observed that the accuracy of a neural network model with just one hidden
layer of neurons was almost indistinguishable from the more complex DNNs with two and
more layers. This suggests that a single layer network had enough modeling capacity for
the local load forecasting task. The surplus in modeling capacity available in the DNNs
was discarded by the Baysian regularization preventing overfitting.

Advanced model architectures like the DNNs are being intensively researched and consid-
ered for the load forecasting applications [AMM17,HCR18,KC19,Sch15,SXL18,SLW16].
Such complex parametric models can sometimes accurately forecast a given load, however,
our results showed that the nonstationarity of the predicted time series remains a funda-
mental challenge. For instance, we observed that even larger neural networks (DNNs) did
not have the flexibility to consider a concept change in the load (e.g., special days when
the building becomes vacated). We suggest that a neural network or any other parametric
model should be retrained daily to account for the nonstationarities of the load. Before
considering a complex parametric model (e.g. DNN) for the wide-scale building load
forecasting application, we need to see compelling evidence that such model is adequate
for predicting local loads without manual setup.

At the same time, we observed that the simplest ANN-architecture (NAR) yielded the
most accurate forecast of small loads among neural networks. It modeled inherent load
seasonalities (Section 8.1.1) implicitly which simplified the architecture. Modeling the
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dependency on the calendar explicitly (e.g., MLP-M, NARX) only provided accuracy
improvement on larger loads where such dependency is more pronounced.

Alternatively, our results motivate the usage of nonparametric regression approach for
the day-ahead local load forecasting. Nonparametric models were notably more accurate
than any parametric forecasters on the majority of loads of all sizes. Furthermore, they
significantly improved the SLP-forecast on residential loads where parametric models
failed to do so. Hypothesizing, nonparametric methodology appears to be more robust
against the nonstationarity of the local loads. While the most research concentrates on
parametric regression, our study challenges this approach in the context of wide-scale load
forecasting in the distribution systems.

11.2 Functional Neighbor Forecasting Methodology

We considered the insights discussed above while developing a novel methodology for
wide-scale day-ahead building load forecasting. Our method is based on functional non-
parametric regression and addresses the main issues of a nonparametric modeling: curse
of dimensionality and the difficulty to consider exogenous variables. Simulation results
demonstrated that the proposed functional neighbor forecaster is more accurate than any of
the evaluated reference models and can substantially improve the forecasting capabilities
in distribution systems for predicting the load of single buildings and aggregations.

The functional neighbor forecaster that we propose in this dissertation (Chapter 8), was
designed specifically for a wide-scale application and requires no manual setup. Mod-
ularity and flexibility of the corresponding algorithm allows the forecaster to be applied
to various loads of different type and size. The load seasonalities are modeled implicitly
which allows to reduce the amount of required historical data. As a result, our forecaster
was the most accurate in each load group and had the smallest irreducible error comparing
to the 15 different reference models from the literature. Statistical analysis of the results
allows us to expect the functional neighbor forecaster to be more accurate than any of the
common models on buildings loads of any size.

Most importantly, our simulation results (Chapter 10.2) suggest that the proposed forecaster
is a better alternative to the currently used SLP-method wherever smart-meter data is
available. On almost every load, the functional neighbor method significantly improved
the forecast comparing to the SLP-prediction by up to 100%. Notably, the improvement
on commercial loads was three to four times higher than on residential loads. Hence, our
method can drastically improve the SLP-forecast without using any knowledge about the
business (e.g., opening hours). Moreover, our forecaster had irreducible error that is 39%
lower than that of the SLP-method which was designed to deliver accurate predictions of
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aggregated loads. Consequently, the functional neighbor model is not only more accurate
on the vast majority of single loads, but also on aggregations of any size. Therefore,
if we replace currently used SLPs with the functional neighbor model, we can expect
significantly more accurate forecasts in the distribution systems.

Our forecasting method can have various practical applications in smart grids. Follow-
ing the mass adoption of smart-meters, functional neighbor methodology can replace the
traditionally used SLPs and notably improve the forecasting capabilities of the distribu-
tion system operators. Moreover, the proposed forecasting methodology allows further
improvements such as incorporating external inputs. We proposed an extension (FNX)
that can do so and demonstrated that it was effective in considering exogenous variables
when predicting the load of a smart building (Section 10.3). The FNX-model was tested
on a building where the daily load curve depends substantially on solar irradiation and
was (though insignificantly) more accurate than the more common DNN and ARIMAX
models. Considering exogenous variables, such as weather or scheduled control-signals
for the next day, enables to predict the day-ahead load of a modern building equipped
with photovoltaic panels, electrical heating or air-conditioning systems, and flexible loads,
facilitating wide-scale demand response applications.

Improved forecast accuracy can have substantial practical advantages. When applied to
numerous buildings, a forecast improvement of a single percent can lead to sizable cost
savings [SSM16]. In contrast, an inapt forecast can result in severe problems for the distri-
bution system. With an increasing share of distributed generation and storage, a congestion
becomes more probable while a substantial prediction error imperils the countermeasures
(e.g., predictive control). This makes accurate short-term forecasts fundamental for the
operation of smart buildings and grids. At the same time, smart grids allow new business
models for the European electricity market [NA16]. Those are often based on pooling to-
gether smaller consumers and producers to virtual power plants and selling the aggregated
load flexibility. The operators of such entities often rely on the day-ahead predictions of
the consumers in the pool to optimize the cost of supply, anticipate energy purchases, and
estimate the amount of flexibility which they can monetize [NHG17,YFLL19]. In total,
improved accuracy and flexibility of the functional neighbor forecaster facilitates various
smart-grid applications which can increase the efficiency of the existing distribution system
infrastructure and aid accommodating decentralized renewable energy generators.

11.3 Limitations and Future Research

Finalizing the discussion, we acknowledge the limitations of our study and highlight the
paths for further development of the building load forecasting field. Our future research
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will focus on overcoming the limitations of the current study and improving functional
neighbor methodology facilitating its practical applications in smart grids.

For ease of exposition, we made several methodological choices when simulating the
wide-scale day-ahead building load forecasting using a public smart-meter dataset. As a
result, the simulation deviated from a practical application in several ways. First, the load
curve for the upcoming day was predicted at midnight assuming that the measurements of
the most recent day are fully available. In practice, a day-ahead forecast might be required
earlier1. In such case, we can use recursion or other multistep strategy (Section 7.2.2) to
extend the forecaster horizon depending on the application. Second, we predicted the load
curves with hourly resolution to reduce the amount of data processed by the simulator.
However, modern smart meters can provide a higher load measurement resolution given
that power system operators have the adequate computational resources to process the data.
At last, we used a public smart-meter dataset that is not fully representative for all building
loads. All smart meters were from the same region (Greater Dublin Area) and included
only single family homes, small businesses as well as middle-sized enterprises. However,
we can expect further building types such as industrial and institutional facilities to feature
similar workday calendar dependency and recurrent weekly patterns present in commercial
loads included in the chosen dataset. The absence of a representative smart-meter dataset
that is publicly available remains an important obstacle for further research on a wide-scale
local load forecasting.

Despite those limitations, our simulation provided an empirical evidence that the paramet-
ric regression might be an ill-chosen methodology for wide-scale load forecasting (Section
10.1). However, our study does not allow a more definitive conclusion. Such conclusion
would require to prove that there is a fundamental limitation of a parametric approach for
predicting low-voltage loads or, at least, to evaluate all the numerous parametric models
proposed for building load forecasting. Instead, we evaluated only the most commonmeth-
ods (ANN, ARIMA) observing that those were notably less accurate than simple heuristic
models for predicting local loads. Our hypothesis about load nonstationarity being such a
limitation remains to be formally proven in the future.

Considering the functional neighbor methodology, the proposed extension allowing to
consider external inputs (Section 8.3) is yet to be evaluated in a wide-scale smart-building
load forecasting simulation. As it is common in the building load forecasting literature, we
validated the proposed extension against various referencemodels on a smart building from
the Smart-City-Demo Aspern project. In our smart-building load forecasting simulation
(Section 9.1.2), the dataset consisted of a single load and was very small comparing to the
wide-scale forecasting simulation with which we validated the basic functional neighbor

1 For instance, at 12:00 in the European electricity market balancing.
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methodology. Moreover, the inputs affecting the net consumption were identifiedmanually
knowing the energy equipment installed in the building. The manual input selection does
not impede a practical application of the FNX-model, since larger energy equipment has
to be registered by the grid operator. Nevertheless, at the moment there is no publicly
available dataset which contains smart-meter data of numerous smart buildings together
with the measurements of relevant exogenous variables that could be used for a wide-scale
load forecasting simulation of smart buildings.

Authors proposing a novel method and evaluating it against the existing techniques are
subject to confirmation bias. In the building load forecasting literature, it is often unclear if
the same relative comparison of the forecasting models would hold if the researchers would
had put same effort to setting up and fine-tuning the reference models as they did for the
model they are proposing. To minimize the confirmation bias, we evaluated our model on
numerous loads of different type and size, without any manual setup. Moreover, we used
a public smart-meter dataset to facilitate the replication of the wide-scale building load
forecasting simulation results. Most importantly, we relied on the extensive validation of
the reference models (Section 9.2) to assure that those are set up to the best of our abilities.

The modularity of the functional neighbor methodology facilitates future improvements.
In particular, we will investigate further distance notions (Section 8.2.2) for assessing the
similarity of load curves and develop corresponding mergers (Section 8.2.3). Moreover,
further research is needed to improve model selector in a nonstationary environment
that can emphasize relevant training data and discard special days when selecting the
bandwidth and other global parameters of the functional neighbor model. Additionally,
we will develop an automated feature selection module that will allow the FNX-model to
select the most relevant inputs for a given smart building in cases where installed energy
equipment is unknown.

Further, we will study the relation between load measurement resolution, forecast horizon
and model accuracy. In particular, we will extend the functional neighbor methodology
to enable forecasts with different horizons. This will allow smart-grid operators to adjust
the horizon for their application and facilitate intraday forecasts using our methodology
if so required. We will demonstrate the usage of the functional neighbor forecaster in a
practical smart-grid application and estimate the economic potential due to the accuracy
improvement comparing to the currently used standard load profiles.

Regarding the wide-scale local load forecasting in general, researchers can consider al-
ternative forecasting methodologies. For instance, traditional parametric models can be
adapted for nonstationary environments as it was demonstrated in other fields [KM18].
Alternatively, ensemble models can be a promising approach for predicting diverse loads
across the building domain. At the same time, a probabilistic forecast might be more
adequate for the loads of single households where the largest prediction errors occur due
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to the increased volatility and nonstationarity of the electricity consumption. Probabilistic
forecasting methods providing a prediction band with corresponding confidence intervals
started to appear in the literature [AT14] and might be a promising extension of the
functional nonparametric regression approach.

Model evaluation is an important issue for the field of wide-scale local load forecasting
maturing as a field. Any model for a wide-scale local load forecasting application must
be validated on numerous loads of different type, size and geographic location. Currently,
there is a no public smart-meter dataset which can become a standard for model evaluation.
As it is done in other fields2, such dataset can be used for benchmarking facilitating model
comparison. At the moment, building load forecasting models are often evaluated on
private datasets which impedes the replication and comparison to other models. We are
convinced, that creating a public smart-meter dataset that contains a representative group
of buildings of different size, type, energy equipment and geographic location will advance
wide-scale local load forecasting as a field.

2 For instance, ImageNet dataset [DDS+09] greatly advanced the research on image recognition and
machine learning.
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This dissertation investigates the usage of smart-meter data for predicting the day-ahead
electricity consumption of buildings and their aggregations on a wide scale. We propose
a novel functional neighbor forecasting method that allows power system operators to
predict the day-ahead load curves of any individual low-voltage end-consumer equipped
with a smart meter and an aggregation thereof, without manual setup of the forecaster.
More generally, we establish the wide-scale day-ahead local load forecasting as an area of
research in power system operation. In particular, we consolidated the fragmented knowl-
edge providing a unified view on the subfield and evaluated the existing load forecasting
models in context of a wide-scale application on local loads. After conducting extensive
simulations and statistical analysis of numerous forecasts, we conclude that the functional
neighbor forecaster, proposed in this dissertation, can be expected to be significantly more
accurate than the existing load forecasting methods that are commonly found in the lit-
erature. In praxis, our forecaster can replace the currently used standard load profiles
for predicting low-voltage loads and notably increase the forecasting capabilities in the
distribution systems.

Load forecasting is a traditional subfield of power engineering. There exist variousmethods
that can predict the day-ahead consumption very accurately at the high voltage level. At
the low-voltage level, distribution system operators estimate that buildings consume the
electricity according to predefined and standard load profiles. These profiles give a
reasonable approximation for larger aggregations of low-voltage loads, while detailed
load measurements of single end-consumers are not required. The ongoing wide-area
installation of smart meters enables the usage of data-driven models for load forecasting
at the level of individual buildings. Various research projects have demonstrated that
accurate day-ahead building load forecasts can improve the distribution system operation
while providing a foundation for various smart-grid applications.

The need for novel building load forecasting methods is reflected in the intensifying
research efforts. At present, numerous propositions focus on predicting the electricity
consumption of a single building rather than developing a model that can replace standard
load profiles in a wide-scale application. The existing works approach building load fore-
casting either from the time series analysis perspective, creating a model of the underlying
stochastic process, or from the machine learning perspective focusing on approximating
the regression function using historical load measurements. Both perspectives allow to
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create models that, given manual setup and fine-tuning, have been shown to improve the
accuracy of a building load forecast comparing to the standard load profiles. However,
there is no forecasting method that can predict building power demand on a wide scale –
a method that can be applied to numerous individual buildings of different size and type
without any explicit knowledge of the building or a possibility for manual setup of the
forecaster.

This study establishes wide-scale day-ahead local load forecasting as a research subfield
of smart grid operation and consolidates the relevant knowledge on data-driven load
forecasting. Focusing on a wide-scale application on low-voltage loads and aggregations,
we formulated the forecasting problem and provided a methodology for evaluating the
models in this context. In particular, we formulated the prediction task as a problem
of computing the multistep forecast of the load curve before-the-meter (Section 7.2.3).
Assuming area-wide installation of smart meters, this problem can be approached with
data-driven machine learning models common in other areas of application. At the same
time, the time-series nature of the load-measurement data must be considered, which
makes the usage of conventional regression models more challenging. Moreover, model
evaluation must be based on statistical analysis of the forecast due to notable stochastic
variation among the loads. To this end, we introduced amethodology that combines various
descriptive and inferential statistics to evaluate a forecaster in a wide-scale application
context.

With this methodology, we evaluated the most common models from the load forecast-
ing literature. Summarizing the findings, our study provides an empirical evidence that
heuristic and nonparametric approaches are better suited for a wide-scale day-ahead lo-
cal load forecasting than parametric regression techniques which are far more common.
In particular, we demonstrated that simple heuristic and nonparametric models are more
accurate for predicting local loads than sophisticated parametric models (e.g., ARIMA,
ANN). Nonstationarity of the load imposes a major limitation on parametric models as
those require extensive training data that is subject to concept change which is often present
in local load time-series. At the same time, nonparametric models, requiring less historical
data, delivered significantly more accurate forecasts on the vast majority of loads.

Combining nonparametric and functional regression approaches, we developed a forecast-
ing algorithm specifically for a wide-scale application, that does not require any manual
setup and can be used on local loads such (i.e., buildings and their aggregations) of different
type and size. Moreover, our forecaster can consider exogenous variables (e.g., weather,
control signals) that affect the demand of individual buildings which are increasingly
equipped with photovoltaic panels and load flexibilities participating in demand response.
We validated our method by simulating a wide-scale day-ahead building load forecasting
using an extensive public smart-meter dataset. Statistical analysis of the results indicates
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that a distribution system operator can expect our forecaster to be notably more accurate
than other common methods existing to this day, on local loads of any size. In particular,
we demonstrated that the functional neighbor forecast is often twice as accurate as the
standard load profiles when predicting the load of individual buildings. Even for the largest
loads, our method can be expected to be at least 39% more accurate than standard load
profiles that were designed to predict larger aggregations of end-consumers. Therefore,
replacing standard load profiles by our method, we can expect a significant improvement
of the forecasting capabilities in distribution systems.

Our future researchwill aim at further accuracy improvement on smaller loads and practical
application of the functional neighbor forecaster in smart grids. We will investigate
the effect of smart-meter resolution and extend our methodology to facilitate variable
forecast horizon. Herewith, smart-grid operators will be able to use our forecaster for their
particular application. Moreover, we foresee an accuracy improvement from using a more
advanced distance notion to quantify the similarity of load curves and a model selector
suited to work with nonstationary data for setting model parameters. Further, we will
develop an automated input selection procedure allowing the FNX-model to determine
the most relevant inputs from the available data and validate this model in a wide-scale
smart-building load forecasting simulation. More generally, the wide-scale local load
forecasting field can be advanced by creating the standard smart-meter dataset including a
representative and diverse set of building loads.

Given a mass adoption of smart meters, the functional neighbor methodology presented
in this dissertation can replace the currently used standard load profiles for predicting
day-ahead distribution system loads and notably increase forecasting capabilities of the
power system operators. Improved accuracy and flexibility of our method can provide
a foundation for various smart-grid applications relying on day-ahead forecasts. Such
applications will increase the efficiency of the distribution system infrastructure and aid
accommodating decentralized renewable energy generators in the distribution grids.
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through the two-way communication smart metering (SM) device or over
the internet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2 Smart buildings and their energy equipment located in the Aspern district
of Vienna and that participate in the SCDA project [Asp]. . . . . . . . . . . 74

7.1 Electricity consumption of an electrically heated single family home
(Household (1176) from the ICER-dataset [Arc16]). Subplots: (a) load
time-series normalized by the maximal value; (b) monthly consumption;
(c) load time-series on a selected week in winter; (d) load time-series on a
selected week in summer. The power demand in winter is notably higher
that in summer. Presumably, the house is heated electrically which
increases the load during the colder months. . . . . . . . . . . . . . . . . . 83

7.2 Electricity consumption of a single family home with an air-conditioning
(Household (1539) from the ICER-dataset [Arc16]). Subplots: (a) load
time-series normalized by the maximal value; (b) monthly consumption;
(c) load time-series on a selected week in winter; (d) load time-series on a
selected week in summer. The power demand in summer is notably
higher that in winter. Presumably, the house is cooled actively by an
air-conditioning system which increases the load during the warmer months. . 84

7.3 Electricity consumption of a single family home (Household (3781) from
the ICER-dataset [Arc16]). Subplots: (a) load time-series normalized by
the maximal value; (b) monthly consumption; (c) load time-series on a
selected week in winter; (d) load time-series on a selected week in
summer. There is no clear dependency between the load and the season
of the year. The slight demand difference between January and July can
be explained by the habits of the users which tend to spend more time
indoors during the winter months. . . . . . . . . . . . . . . . . . . . . . . . 85
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7.4 Daily load profile and hourly load distribution of a single family home
(Household (1176) from the ICER-dataset [Arc16]). For each hour, the
distribution of load measurements is represented by a compact box-plot
(grey) including outliers (purple). The line interconnects the median
values for each hour representing the load profile (red). Each of the seven
panels shows the load profile for the corresponding day of the week.
From Monday to Friday there is a distinguishable morning peak and the
load profiles are similar among each other. During the weekends, the
profiles are visibly different, and the load exhibits higher variance while
its morning peak is notably broader. . . . . . . . . . . . . . . . . . . . . . . 86

7.5 Electricity consumption of a commercial building (Enterprise (6520)
from the ICER-dataset [Arc16]). Subplots: (a) load time-series
normalized by the maximal value; (b) monthly consumption; (c) load
time-series on a selected week in winter; (d) load time-series on a
selected week in summer. The electricity consumption pattern
corresponds to the common business hours following the workday calendar. . 87

7.6 Daily load profile and hourly load distribution of a commercial building
(Enterprise (6520) from the ICER-dataset [Arc16]). For each hour, the
distribution of load measurements is represented by a compact box-plot
(grey) including outliers (purple). The line interconnects the median
values for each hour representing the load profile (red). Each of the seven
panels shows the load profile for the corresponding day of the week. The
electricity consumption pattern corresponds to the common business
hours following the workday calendar. . . . . . . . . . . . . . . . . . . . . . 88

7.7 Electricity consumption of a commercial building (Enterprise (2916)
from the ICER-dataset [Arc16]). Subplots: (a) load time-series
normalized by the maximal value; (b) monthly consumption; (c) load
time-series on a selected week in winter; (d) load time-series on a
selected week in summer. The electricity consumption does not follow
the workday calendar. Presumably, this enterprise opens every evening
except on Tuesday. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.8 Daily load profile and hourly load distribution of a commercial building
(Enterprise (2916) from the ICER-dataset [Arc16]). For each hour, the
distribution of load measurements is represented by a compact box-plot
(grey) including outliers (purple). The line interconnects the median
values for each hour representing the load profile (red). Each of the seven
panels shows the load profile for the corresponding day of the week.
Load profiles indicate that this enterprise has unusual business hours and
is closed on Tuesday. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
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7.9 Examples of building load nonstationarity. The subplots show electricity
consumption of various buildings from the ICER smart-meter
dataset [Arc16] that abruptly change their time-series characteristics over
the course of a year. For each residential (red) and commercial (grey)
building we provide the corresponding smart-meter dataset IDs in
parenthesis. We can see examples where the inhabitants of a building are
suddenly absent (2803) or the business remains temporary closed (1345).
In some examples, we presume that a new piece of equipment is installed
or uninstalled, or that an additional electrical HVAC is switched on only
on particular days (3715, 2023, 514, 2488). At the same time, the
installed equipment (e.g., storage) can operate only during a certain
period of the year (2488). Often, we do not know why certain change in
the consumption pattern happened (1525, 4730). . . . . . . . . . . . . . . . 91

7.10 Autocorrelation function of a residential (Household (1176)) and a
commercial (Enterprise (2916)) building from the ICER smart-meter
dataset ICER smart-meter dataset [Arc16]. The panels at the bottom
show the enlargement for smaller lags of the corresponding plots at the
top. There is a visible increase of the autocorrelation for the lags
corresponding to 24 hours, seven days and their multiples. This indicates
the presence of a daily and weekly seasonality in the load time-series.
The commercial building has notably higher autocorrelation which
indicates that its load is more regular (i.e., autocorrelated) and might be
easier to predict than the load of the residential building. . . . . . . . . . . . 93

7.11 Autocorrelation functions of 887 residential (top) and 175 commercial
buildings from the ICER smart-meter dataset ICER smart-meter
dataset [Arc16]. For each lag, the multitude of the autocorrelation
function values is represented with percentiles (pct) and the median.
There is a visible increase of the lags that are a multiple of 24 hours. This
increase indicates the presence of the daily seasonality in the most loads
within the dataset. There is also an increase at the lags that are multiples
of seven days that indicates to the weekly seasonality. This increase is
more notable for commercial loads that feature strong weekly patterns
related to their business hours. Moreover, the autocorrelation of the
commercial loads is higher indicating that these loads are, in general,
more regular (i.e., autocorrelated) and easier to predict. . . . . . . . . . . . . 94

7.12 Autocorrelation functions of residential aggregations of various sizes.
Each building is represented by an aggregation of households from the
ICER smart-meter dataset [Arc16]. The magnitude of the autocorrelation
function increases with aggregation size indicating the corresponding
load curves are smoother (Figure 1.1) and easier to predict. . . . . . . . . . . 95
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7.13 Before-the-meter building load forecasting in a wide-scale application
(Definition 7.2.1). In this application, we might not have any explicit
knowledge about the building Y or the data from its internal sensors.
Forecast ŷ(t + h) has to be computed relying on net electricity demand
measurements y(t) and the prediction Ẑ(t + h) of the exogenous variable
Z(t). Further discussion is provided in the text. . . . . . . . . . . . . . . . . 98

7.14 Strategies for multistep predictions: (a) recursive, (b) direct, (c)
multi-out. Description is provided in the text. . . . . . . . . . . . . . . . . . 99

7.15 Before-the-meter forecast of a building load. At the time t and for a given
independent variable zt (e.g., weather), a building represented by the
stochastic process Y responds with a load yt. Delays values of zt and yt

are fed respectively into the forecasters V for external variables and F for
the yielding the forecasts ẑt and ŷt. . . . . . . . . . . . . . . . . . . . . . . 101

7.16 Comparison of the MAE and RMSE notions. We applied a naive model
(Section 9.2.1.2) predicting the 300 loads in the validation dataset
(Section 9.1.1.3) day-by-day for 100 consecutive days. For each load, we
evaluated the daily forecast accuracy computing the MAE (7.9) and
RMSE (7.10). In the figure, each panel shows the daily forecast errors
obtained on individual loads of the corresponding type. Additionally, we
denoted the linear regression line (solid) and the line representing the
ideal correlation (dashed). We observed that both error notions are
strongly correlated. However, the RMSE emphasizes larger residuals
which leads to a notable deviation from the MAE on smaller loads
(homes, enterprises) where such residuals occur more often and larger
forecast errors are to be expected. . . . . . . . . . . . . . . . . . . . . . . . 104

7.17 Example motivating the usage of a permutation-adjusted error notion. In
the figure, each panel shows a different forecast (black) of the same
illustrative load curve (red). Four exemplary forecasts – Ŷ1 (best), Ŷ2

(bad), Ŷ3 (good), Ŷ4 (flat) – were evaluated using different error notions
with the results summarized in Table 7.2. Further discussion is provided
in the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.18 Comparison of the RMSE and PRMSE notions. We applied a naive
model (Section 9.2.1.2) predicting the 300 loads in the validation dataset
(Section 9.1.1.3) day-by-day for 100 consecutive days. For each load, we
evaluated the daily forecast accuracy computing the RMSE (7.10) and
PRMSE (7.12). In the figure, each panel shows the daily forecast errors
obtained on individual loads of the corresponding type. Additionally, we
denoted the linear regression line (solid) and the line representing the
ideal correlation (dashed). We observed that both error notions are
notably correlated. However, the difference between permuted (PRMSE)
and traditional (RMSE) error notion becomes notable on volatile loads
such as homes and small enterprises. . . . . . . . . . . . . . . . . . . . . . 107
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7.19 Daily error distribution shape of a naive model. We applied the naive
model (Section 9.2.1.2) predicting the 300 loads in the validation dataset
(Section 9.1.1.3) day-by-day for 100 consecutive days. For every daily
load forecast, we computed the PRMSE (7.12) expressed in terms of
coefficient of variation (7.13). Each panel shows the daily error
distributions in form of the probability density function (grey) of each
load and the average distribution (red) in the corresponding load group.
We observed that daily forecast errors are often approximately
log-normally distributed. Further, the model often produced very small
forecast errors since the naive approach can deliver an almost perfect
prediction when the building inhabitants are absent for two or more days. . . 109

7.20 Improvement distribution. We applied a naive model (Section 9.2.1.2)
and the standard load profiles (Section 9.2.1.1) predicting the 300 loads
in the validation dataset (Section 9.1.1.3) day-by-day for 100 consecutive
days. For every daily load forecast, we computed the improvement (7.14)
relative to the SLP-forecast with the PRMSE (7.12) expressed in terms of
coefficient of variation (7.13). Each panel shows the improvement in
form of the probability density function (grey) of each load and the
average distribution (red) in the corresponding load group. We observed
that daily relative forecast errors (e.g., improvement) are often
approximately normally distributed. . . . . . . . . . . . . . . . . . . . . . . 111

7.21 Distribution of expected daily errors in different load groups. We applied
a naive model (Section 9.2.1.2) predicting the 300 loads in the validation
dataset (Section 9.1.1.3) day-by-day for 100 consecutive days. For each
load, we computed the expected daily error (7.15). In the figure, each
panel represents the distribution in the corresponding load group. The
top panels show the distribution while the lower panels show the
corresponding Q-Q-plots. We observed that the distribution is
approximately normal in case of households, yet is notably asymmetrical
and skewed for the enterprises and aggregations. Further discussion is
provided in the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.22 Expected model error (EME) of a forecast. The figure shows the 30000
daily errors (grey dots) obtained by the standard load profile forecast
(Algorithm 3) predicting the loads in the validation dataset (Section
9.1.1.3). Having obtained a set of daily errors according to PRMSE
(7.12) expressed in terms of coefficient of variation (7.13), we computed
the EME (7.17) (red line) according to the empirical scaling law (7.17)
using nonlinear weighted regression and compared it to the ideal scaling
(black line). Further discussion is provided in the text. . . . . . . . . . . . . 113
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8.1 Forecast example illustrating weekly seasonality modeling of the load.
Nonparametric forecast (Algorithm 1) that considers all historical
observations results in a notable forecast error on Tuesday where the
enterprise whose load we are predicting is supposedly closed (upper
panel). Using only the historical days of the corresponding weekday
allows the model to consider weekly seasonality and avoid such error
(lower panel). Further discussion is provided in the text. . . . . . . . . . . . 125

8.2 Residuals autocorrelation with different multistep strategies considering
daily seasonality. The forecast of a residential building load was
computed using the nearest neighbors model applying the direct
(Algorithm 1) and the multi-out (Algorithm 2) multistep strategy. The
residuals of the direct KNN forecast (left panel) are notably more
autocorrelated than the residuals of the multi-out KNN forecast (right
panel). Autocorrelated residuals indicate that the multi-out strategy
allowed the KNN-model to extract more information from the time series
and is better for considering daily seasonality of the load. . . . . . . . . . . . 128

8.3 Autocorrelation function of the load measurements in the ICER
smart-meter dataset. To exclude the influence of the weekly and daily
seasonality, we only computed the autocorrelation of the time series
consisting of the load measurements on a particular hour and weekday
(Saturday, 8pm). At each lag, the multitude of the autocorrelation
function values of the ICER-dataset is represented with percentiles (pct)
and the median. For the majority of residential (left) and commercial
(right) buildings, we see a substantial autocorrelation of the load to its
recent observations (<20 weeks old) that quickly decays and becomes
negligible for older observations (>30 weeks old). Therefore, older
measurements might contain less information that can be used by the load
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.4 Forecast error estimation using various validation methods. In the figure,
each panel shows the actual daily prediction error E, average daily error
(i.e., EDE (7.15)) and estimated daily error Ê (red line) with its spread
(red shadow) obtained by the corresponding validation method (Table
8.1). To collect the data, we applied the MKNN-model predicting the
day-ahead load of a single family home (ID 1176) from the ICER
smart-meter dataset [Arc16] for one year (Algorithm 2 with K = 1, FbW,
and 17 weeks of training data). Further, we applied different validation
methods (Table 8.1) to estimate the forecast error and compare the
estimate to E. We observed that all estimators, failed to estimate E and
instead estimated the EDE. Further, all estimators reliably estimated the
spread, while its ripple could be explained by the filtering approach of the
model (FbW). Further discussion is provided in the text. . . . . . . . . . . . 132
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8.5 Relative estimation bias (REB) with various validation methods. In the
figure, each panes shows the REB (8.16) observations of different
validation methods that were collected on the corresponding weekday. In
each panel, their distribution is summarized with a box-plot where the
notch denotes the 95%-confidence interval of the median and the red dot
represents the average shown together with its 95%-confidence interval
(red horizontal bar). To collect the data, we applied the MKNN-model
predicting the day-ahead load of a single family home (ID 1176) from the
ICER smart-meter dataset [Arc16] for one year (Algorithm 2 with K = 1,
FbW, and 17 weeks of training data). Further, we applied different
validation methods (Table 8.1) to estimate the forecast error and
computed the REB for each forecast day. We observed that all validation
methods rarely achieved an unbiased estimate. For some weekdays, the
average REB was up to 20%. The in-sample validation methods had
similar average bias and provided no significant (p < 0.05) advantage
compared to the OOS-validation method. In fact, the OOS-validation was
often the most accurate estimating the EDE. Further discussion is
provided in the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.6 Model selector success rate (MSSR) using different validation methods.
The figure shows the quality of model selection observed in a load
forecasting experiment. In this experiment, we applied the MKNN-model
predicting the day-ahead load of a single family home (ID 1176) from the
ICER smart-meter dataset [Arc16] for one year (Algorithm 2, FbW and
17 weeks of training data). For this model, we used different model
selectors with corresponding validation methods (Table 8.1) selecting the
bandwidth K before each daily forecast. After the experiment, we
computed the MSSR (8.17) of each model selector and represented it on a
bar-plot for all forecast days (a), conditioned on day-type (b) and weekday
(c). We observed that, on most days, the best model was found using OOS
and (less often) LOOCV estimators. Further discussion is provided in the text. 135

8.7 Functional neighbor forecaster. Description is provided in the text. . . . . . . 137
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8.8 Computation of a smooth. Figure demonstrates the computation of a
continuous function y(t) from a series of load measurements using
B-splines basis functions ξi(t) of different orders: (a) step-wise splines –
zero-order basis functions; (b) linear splines – first order basis functions;
(c) cubic splines – third order basis functions; (d) comparison of a daily
load curve to the smoothed curves which were calculated using splines of
different order. Here, piecewise constant smooth corresponds to the
sample-and-hold technique using a step-wise function (zero-order
splines). Piecewise linear smooth corresponds to a simple interpolation
joining the points of adjacent observations (first-order splines). Cubic
smooth is calculated with splines of the third-order that are among the
most commonly used [RS05]. . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.9 Load curve sparsity in a multidimensional Euclidean space. In this space,
each point is a q-dimensional vector that can represent a time series. For
this example, we considered three different sets of time series represented
by the vector in the Euclidean space: uniformly randomly-generated time
series, daily load curves of a single home, load curves of a larger
residential aggregation (400 homes). In each set, the time series feature a
different degree of autocorrelation expressed by the first autocorrelation
function coefficient a. For each set, we computed the average curve and
counted the number of observations in a ball with radius b = 0.3 centered
at the vector corresponding to the average curve. Resampling the curves
with various resolution, we show how the sparsity of the observations
varied with dimensionality of the space. Observe, that for uncorrelated
data, the sparsity rapidly decreases with the dimensionality. At the same
time, the density of the highly correlated data (400 homes aggregation)
remained stable despite the dimensionality increase. . . . . . . . . . . . . . 148

8.10 Change in data-sparsity in (F, du). The space of daily load curves (F, du)
includes 153 observations collected for a single family home (ICER
dataset discussed in Section 9.1) and is endowed with a distance notion
du based on the permuted ℓ2-semimetric (8.52). To quantify
data-sparsity, we computed the average curve X̄ and counted the curves
located in the ball BF

(
X̄, b

)
centered at X̄ . On the figure, we denote the

% of the curves whose distance from X̄ was less than b = 0.3.
Resampling the curves with various resolutions, we show how the
observation sparsity in F varies with dimensionality of the vectors that
would represent the time series in a Euclidean space. Additionally, the
sparseness depends on the dimensionality of the basis E which changes
depending on the permutation range u of the du-distance notion.
Observe, that the sparsity decreases with permutation range at every
dimensionality. Therefore, by increasing the permutation range, we can
make reduce the sparsity of the observation space. . . . . . . . . . . . . . . 153
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8.11 Forecast improvement with the ℓ2
u-distance. In a validation experiment

(Section 9.3.1.1), we applied the functional neighbor forecaster
(Algorithm 3) using the du-distance notion (8.52) to predict the 300 loads
of different groups obtaining a sample of 30000 daily forecast errors. For
the distance notion, we used different permutation ranges (1 hour to 6
hours, given hourly resolution of the time series). Additionally, we
applied the functional neighbor forecaster with ℓ2-distance to predict the
same loads and used these results as a benchmark. Relative to this
benchmark, we computed the forecast improvement (7.14) for each
predicted daily load curve. In the figure, every panel presents the
sampling distribution of the mean improvement for each load (rugs at the
top), expected improvement in the load group (dotted vertical line) with
the 95%-confidence interval (horizontal bar), and the zero-improvement
mark (red vertical line). Notably, increasing the permutation range
resulted in a growing spread of the improvement observations. Numerous
outliers lowered the overall improvement which was particularly notable
for homes and aggregations. . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.12 Selecting the permutation range for the du-distance notion. In a
validation experiment (Section 9.3.1.1), we applied the functional
neighbor model (Algorithm 3) using the du-distance notion (8.52) with
various permutation ranges (1 hour to 6 hours, given hourly resolution of
the time series) to predict the 300 loads of different groups obtaining a
sample of 30000 daily forecast errors for each model variant.
Additionally, we predicted the same loads using the same model with the
ℓ2-distance considering the results as a benchmark. Relative to this
benchmark, we computed the forecast improvement (7.14) for each
predicted daily load curve. Conditioned on load group and day-type, each
panel shows the percentage of predicted daily load curves where the usage
of ℓ2

u-distance resulted in a forecast at least as accurate as when using the
ℓ2-distance. In each panel, the distribution is summarized with a box-plot
where the notch denotes the 95%-confidence interval of the median and
red dotted line denotes the 50% improvement frequency mark. On
average, du=1-distance notion improved the forecast with the ℓ2-distance
on more days than any other distance notion with larger permutation range. . 155
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8.13 Distance notion comparison by load. In a validation experiment (Section
9.3.1.1), we applied the functional neighbor model (Algorithm 3) using
the Euclidean (4.63) distance (no permutations) and the du=1-distance
notion (1 hour permutation range according to (8.52)) to predict the 300
loads of different groups. Conditioning on load type (panel row) and
weekday (panel column), we represent each individual load by a square
filled depending on the model that provided the smallest expected daily
error (7.15) on the days of the corresponding weekday. Notably, there
was a similar number of loads where each of the notions delivered the
most accurate forecast. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.14 Comparison of the distance notion with auto-selected permutation range.
In a validation experiment (Section 9.3.1.1), we applied the functional
neighbor model (Algorithm 3) using the ℓ2-distance (no permutations)
and ℓ2

u-distance to predict the 300 loads of different groups. The
permutation range (u ∈ {0, 1}) for the ℓ2

u-distance was selected
automatically for the given load using leave-one-out cross-validation prior
to the forecast. Conditioning on load type (panel row) and weekday (panel
column), we represent each individual load by a square filled depending
on the distance notion that provided the smallest expected daily error
(7.15) on the days of the corresponding weekday. Notably, the ℓ2

u-distance
notion provided the most accurate forecast for the vast majority of loads. . . . 157

8.15 Kernel functions defined in Table 8.3. . . . . . . . . . . . . . . . . . . . . . 160
8.16 Kernel function comparison. Multivariate nonparametric model

(Algorithm 2) using average-based merger with various kernel functions
to determine the weights of historical observations predicted 300 loads in
a validation experiment (Section 9.3.1.1). Each panel shows the expected
daily error (7.15) distribution in the corresponding load group. The
distribution of expected daily errors for each load (dots) is summarized by
a box-plot where the notch denotes the 95%-confidence interval of the median. 162
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8.17 Forecast improvement through kernel weighting. In a validation
experiment (Section 9.3.1.1), we applied the functional neighbor model
(Algorithm 3) using an average-based merger with Gaussian and
triangular kernels weighting historical observations to predict 300 loads
of different groups and obtaining a sample of 30000 daily forecast errors.
Additionally, we predicted the same loads with the
uniform-average-based merger using the results as a benchmark. Relative
to the benchmark, we computed the forecast improvement (7.14) for each
predicted daily load curve. In the figure, every panel presents the
sampling distribution of the mean improvement for each load (rugs),
expected improvement in the load group (dotted vertical line) with the
95%-confidence interval (horizontal bar) obtained by the functional
neighbor forecaster using the denoted kernel function in the
corresponding day-type (panel column) and load group (panel row).
Notably, Gaussian kernel provided no improvement against uniform
average, but reduced the accuracy (on average down to 30%). At the same
time, triangular kernel often resulted in a significantly (p < 0.05) more
accurate forecast than when using the uniform kernel. . . . . . . . . . . . . . 163

8.18 Contrasting uniform average and a permutation merger on an artificial
example. In this example, we applied uniform average and permutation
merger to compute a consensus representation of {Y1, Y2}. The curves
Y1, Y2 have a distinctive peak of the same magnitude but slightly shifted
in time (a). Uniform average provided a curve that features the peaks of
both curves with reduced amplitude (b). In contrast, permutation merger
provides the curve with one peak between the original peaks (c). . . . . . . . 165

8.19 Demonstration of different mergers finding the consensus representation
of two daily load curves with an hourly resolution: (a) uniform average;
(b) permutation merger with one hour range; (c) permutation merger with
a two hour range. Detailed description is provided in the text. . . . . . . . . 166
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8.20 Forecast improvement with the permutation merger. In a validation
experiment (Section 9.3.1.1), we applied the functional neighbor model
(Algorithm 3) with a one-hour permutation merger (u = 1) to predict the
300 loads of different groups obtaining a sample of 30000 daily forecast
errors. We used various bandwidths K determining the number of curves
to be merged. Additionally, we applied the functional neighbor forecaster
with uniform-average-based merger to predict the same loads and used
these results as a benchmark. Relative to the benchmark, we computed
the forecast improvement (7.14) for each predicted daily load curve. In
the figure, every panel presents the sampling distribution of the mean
improvement for each load (rugs at the top), expected improvement in the
load group (dotted vertical line) with the 95%-confidence interval
(horizontal bar) obtained by the functional neighbor forecaster with the
specified bandwidth K (panel column) on the loads of the corresponding
group (panel row). We observed that the permutation merger significantly
(p < 0.05) improved the functional neighbor forecast. The average
improvement depended on the chosen bandwidth. The improvement
becomes more notable with larger K that requires more load curves to be
merged. Further, we provided the results obtained by the model with an
ideal model selector choosing the best possible bandwidth (Section
9.3.1.1). These results show that we can expect a significant forecast
improvement when using the permutation merger instead of the uniform
average for the functional neighbor model. . . . . . . . . . . . . . . . . . . 167

8.21 Selecting permutation range for the merger. In a validation experiment
(Section 9.3.1.1), we applied the functional three-neighbor model
(Algorithm 3 with K = 3) using the permutation merger with various
ranges to predict the 300 loads of different groups obtaining a sample of
30000 daily forecast errors. Conditioning on weekday and load group, for
each load, we counted the days where a model variant provided the
smallest daily forecast error among other permutation merger variants
predicting the same load. Each panel presents these day counts (dots).
For the corresponding load group (panel row) and weekday (panel
column), the distributions of individual load day counts are summarized
by box-plots where the notch represents the 95%-confidence interval of
the median and the dotted horizontal line represents the corresponding
average count for the panel. Notably, one-hour permutation merger
provided a significantly (p < 0.05) more accurate forecast in the majority
of cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

8.22 Demonstration of different mergers computing consensus representation
of the illustrative curves Y1, Y2, Y3. Detailed description is provided in the text. 173
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8.23 Permutation merger improvement through weighting. In a validation
experiment (Section 9.3.1.1), we applied the functional neighbor
forecaster (Algorithm 3) with a one-hour weighted permutation merger
(u = 1) to predict the 300 loads of different groups obtaining a sample of
30000 daily forecast errors. We used various bandwidths K determining
the number of curves to be merged. Additionally, we applied the
functional neighbor forecaster with the (uniform) permutation merger to
predict the same loads and used these results as a benchmark. Relative to
the benchmark, we computed the forecast improvement (7.14) for each
predicted daily load curve. In the figure, every panel presents the
sampling distribution of the mean improvement for each load (rugs at the
top) and the expected improvement in the load group (dotted vertical line)
with the 95%-confidence interval (horizontal bar) obtained by the
functional neighbor forecaster with the specified bandwidth K (panel
column) on the loads of the corresponding group (panel row). We
observed that weighting the observations significantly (p < 0.05)
improved the functional neighbor forecast. The average improvement
depended on the chosen bandwidth. The improvement becomes more
notable with larger K that requires more load curves to be merged.
Further, we provided the results obtained by the model with an ideal
model selector choosing the best possible bandwidth (Section 9.3.1.1).
These results show that we can expect a significant forecast improvement
when using the weighted permutation merger instead of the original
permutation merger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

8.24 Comparison of different mergers. In a validation experiment (Section
9.3.1.1), we applied the functional neighbor forecaster (Algorithm 3)
using various average-based mergers (uniform, Gaussian and triangular
kernel functions), permutation merger (u = 1) and weighted permutation
merger (u = 1) to predict 300 loads of different groups obtaining a
sample of 30000 daily forecast errors. Conditioning on weekday and load
group, for each load, we counted the days where a model variant provided
the smallest daily forecast error among other merger variants predicting
the same load. Each panel presents these day counts (dots). For the
corresponding load group (panel row) and weekday (panel column) the
distributions of individual load day counts are summarized by box-plots
where the notch represents the 95%-confidence interval of the median
and the dotted horizontal line represents the corresponding average count
for the panel. Notably, the weighted permutation merger provided a
significantly (p < 0.05) more accurate forecast than other mergers in the
majority of cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
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8.25 Comparison of different mergers by load. In a validation experiment
(Section 9.3.1.1), we applied the functional neighbor forecaster
(Algorithm 3) using the selected average-based mergers (uniform,
triangular kernel functions), permutation merger (u = 1) and weighted
permutation merger (u = 1) to predict 300 loads of different groups
obtaining a sample of 30000 daily forecast errors. Moreover, we used
various bandwidths K determining the number of curves to be merged.
Conditioning on load type (panel row) and bandwidth (panel column), we
represent each individual load by a square filled depending on the
multistep strategy that provided the smallest expected daily error (7.15)
on the days of the corresponding weekday and bandwidth. Notably, the
model using the weighted permutation merger provided a more accurate
forecast on the vast majority of loads. The dominance becomes more
notable with larger K that requires more load curves to be merged.
Further, we provided the results obtained by the model with an ideal
model selector choosing the best possible bandwidth (Section 9.3.1.1).
These results show that we can expect a significant forecast improvement
when using the weighted permutation merger. . . . . . . . . . . . . . . . . . 176

8.26 Two-dimensional demonstration of relevance computation based on
triangulation. The relevance l(D∗, Dj) of the historical day
Dj = {Xj, Z

(j)
1 } to the extended query D∗ = {X∗, Z∗

1} can be computed
as the square root of the sum of the squares of distances between
individual features of the day applying the Pythagorean theorem (8.65).
Further discussion is provided in the text. . . . . . . . . . . . . . . . . . . . 179

9.1 Loads of the extended ICER smart-meter dataset that were used for the
wide-scale building load day-ahead forecasting simulation. Homes,
enterprises and aggregations are denoted according to their size (annual
consumption) and variability (coefficient of variation). The distribution
of the size and variability within each load group is denoted alongside the
main plot with the same color. . . . . . . . . . . . . . . . . . . . . . . . . . 185

9.2 Residential load groups included in the extended ICER smart-meter
dataset that were used for the wide-scale building load day-ahead
forecasting simulation. Single family homes (A), residential aggregations
(B) and large residential aggregations (C) are denoted according to their
size (annual consumption) and variability (coefficient of variation). The
distribution of the size and variability within each load group is denoted
alongside the main plot with the same color. . . . . . . . . . . . . . . . . . 186
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9.3 Commercial load groups included in the extended ICER smart-meter
dataset that were used for the wide-scale building load day-ahead
forecasting simulation. Single enterprises (D), commercial aggregations
(E) and large commercial aggregations (F) are denoted according to their
size (annual consumption) and variability (coefficient of variation). The
distribution of the size and variability within each load group is denoted
alongside the main plot with the corresponding color. . . . . . . . . . . . . . 187

9.4 Loads from the extended ICER smart-meter dataset that were included in
the validation dataset. For each of the three load groups (single family
homes, enterprises, mixed aggregations), we selected 100 loads that were
closes to the average annual consumption among the corresponding group
in the extended ICER smart-meter dataset. . . . . . . . . . . . . . . . . . . 188

9.5 Smart building from the Smart-City-Demo Aspern project [Asp]. The
student home accommodates over 300 students on 7000 m2 and features
various energy equipment denoted on the figure. . . . . . . . . . . . . . . . 189

9.6 Average daily load curves of the smart building (Figure 9.5). In winter,
there is a distinct consumption peak in the afternoon and evening. In
summer and during the warmer months, the consumption is notably lower
due to the installed photovoltaic generator. . . . . . . . . . . . . . . . . . . 190

9.7 Net electricity consumption and standard load profile of the smart
building (Figure 9.5). The standard profile appears to be a poor
representation of the load due to an unusual consumption pattern that can
be affiliated to the large photovoltaic and battery installation in the building. . 190

9.8 Electricity consumption of the smart building (Figure 9.5), outside
ambient temperature and global solar irradiation measured at the
neighboring weather station (7 km). The time series were normalized by
the maximal values and resampled synchronously with 60-minute resolution. 191

9.9 Dependency of total daily electricity consumption of the smart building
(Figure 9.5) on the weather-related variables. The dependency on the
outside ambient temperature was weak due to the thermal heating and
insulation. At the same time, the dependency on the daily solar irradiation
was more pronounced due to the large photovoltaic installation on the roof. . 192

9.10 Standard load profiles of various end-consumers as defined by the
national entities in Austria [Syn] and Ireland [Iri14]. The profiles are
presented for the last week in July 2010 and were defined for the loads
with 1000 kWh of annual consumption. . . . . . . . . . . . . . . . . . . . . 194

9.11 Individual load profiles computed for a commercial (top) and a
residential building from the ICER smart-meter dataset [Arc16]. Each
profile was calculated by averaging the historical daily load curves of the
corresponding season and day-type. . . . . . . . . . . . . . . . . . . . . . . 195
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9.12 Comparison of profiling heuristic models. Standard and individual load
profiles (Section 9.2.1.1) predicted the 300 loads in the validation dataset
(Section 9.1.1.3) day-by-day for 100 consecutive days. For each day-type,
we computed the expected daily errors (EDE) according to (7.15). The
figure shows the 900 EDE-observations confounded on day and load type
(grey dots), including the outliers (black dots). Violin and box-plots
summarize the EDE-distributions in each groups. The average EDE of
the model in each group (red dot) is shown together with 95%-confidence
interval (red bar). We see that the individual load profile forecast was, on
average, significantly (p < 0.05) more accurate for each type of loads and days. 196

9.13 Comparison of the persistence heuristic forecasts. We applied the naive
(D-1) and the weekly (D-7) persistence heuristic models (Section 9.2.1.2)
to predict the 300 loads of the validation dataset (Section 9.1.1.3). Each
load was predicted day-ahead for 100 consecutive days (23 April 2010 –
31 July 2010). Conditioning on load type (panel row) and weekday (panel
column), we represent each individual load by a square filled depending
on the model that provided the smallest expected daily error (7.15) on the
days of the corresponding load type and weekday. Notably, there is a
smaller difference in forecast accuracy between the heuristics in the
middle of the week (Wednesday, Thursday) since the end-consumers
often follow similar behavioral patterns during the week. The difference
becomes more apparent around the weekend (Sunday, Monday) where
the weekly seasonality becomes particularly prominent. Moreover, the
weekly persistence heuristics was notably more accurate on the loads
with stronger weekly seasonality (enterprises, aggregations). . . . . . . . . . 197

9.14 Input-output processing for parametric models. . . . . . . . . . . . . . . . . 198
9.15 Forecast errors of different ARIMA-D-model variants. Each model

variant with a different value of the parameter p (Section 9.2.2.1)
predicted the 300 loads in the validation dataset (Section 9.1.1.3)
day-by-day for 100 consecutive days. For each day-type, we computed the
expected daily errors (EDE) according to (7.15). The figure shows the
900 EDE-observations confounded on day and load type (grey dots)
including the outliers (black dots). Violin and box-plots summarize the
error distribution in each of the groups. The average EDE of the model in
each group (red dot) is shown together with 95%-confidence interval (red
bar). We observed that the variant with p = 1 was significantly
(p < 0.05) more accurate than other variants. . . . . . . . . . . . . . . . . . 199
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9.16 Forecast errors of the different ARIMA-R-model variants. Each model
variant with a different value of the parameter p (Section 9.2.2.1)
predicted the 300 loads in the validation dataset (Section 9.1.1.3)
day-by-day for 100 consecutive days. For each day-type, we computed the
expected daily errors (EDE) according to (7.15). The figure shows the
900 EDE-observations confounded on day and load type (grey dots),
including the outliers (black dots). Violin and box-plots summarize the
EDE-distributions in each of the groups. The average EDE of the model
in each group (red dot) is shown together with 95%-confidence interval
(red bar). We observed that the variant with p = 24 and p = 48 was
significantly (p < 0.05) more accurate than other variants. . . . . . . . . . . 200

9.17 Comparison of the ARIMA-models using direct and recursive multistep
strategies. The ARIMA-model (Section 9.2.2.1) using either direct
(ARIMA-D) or recursive (ARIMA-R) strategy predicted the 300 loads in
the validation dataset (Section 9.1.1.3) day-by-day for 100 consecutive
days. For each day and load type, we computed the expected daily errors
(EDE) according to (7.15). The figure shows the 900 EDE-observations
confounded on day and load type (grey dots), including the outliers
(black dots). Violin and box-plots summarize the EDE-distributions in
each of the groups. The average EDE of the model in each group (red
dot) is shown together with 95%-confidence interval (red bar). We
observed that the recursive strategy was significantly (p < 0.05) more
accurate than the direct multistep strategy. . . . . . . . . . . . . . . . . . . . 201

9.18 Network architectures for the day-ahead prediction. (a) MLP-D model
using direct strategy; (b) MLP-M model using multi-out strategy; (c)
NARX-model with external input using recursive strategy. Further
description is provided in the text. . . . . . . . . . . . . . . . . . . . . . . . 202

9.19 NAR-model. Further description is provided in the text. . . . . . . . . . . . 204
9.20 Forecast errors of the different NAR-models of different size. Each model

variant with different size of the hidden layer (Section 9.2.2.2) predicted
the 300 loads in the validation dataset (Section 9.1.1.3) day-by-day for
100 consecutive days. For each day-type, we computed the expected daily
error (EDE) according to (7.15). The figure shows the 900
EDE-observations confounded on day and load type (grey dots),
including the outliers (black dots). Violin and box-plots summarize the
EDE-distributions in each of the groups. The average EDE of the model
in each group (red dot) is shown together with 95%-confidence interval
(red bar). We observed that the network with 15 hidden neurons delivered
one of the best forecasts in each group. . . . . . . . . . . . . . . . . . . . . 207
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9.21 Forecast errors of the NWE-models with bandwidth found using either
Bowman’s plug-in method or minimizing the leave-one-out
cross-validation criterion (4.44). Each model variant (Section 9.2.3.1)
predicted the 300 loads in the validation dataset (Section 9.1.1.3)
day-by-day for 100 consecutive days. For each day-type, we computed the
EDE according to (7.15). The figure shows the 900 EDE-observations
confounded on day and load type (grey dots). Violin and box-plots
summarize the EDE-distributions in each of the groups. Outliers did not
affect any qualitative conclusions and were removed to provide the figure
panels with similar axis limits. The average EDE of the model in each
group (red dot) is shown together with 95%-confidence interval (red bar).
Note that both NWE-variants resulted in comparable accuracy. . . . . . . . . 208

9.22 Comparison of the multistep strategies for an NWE-model with fixed
bandwidth. We applied the NWE-model (Section 9.2.3.1) using direct
and multi-out strategies to predict the loads in the validation dataset
(Section 9.1.1.3). Each load was predicted day-ahead for 100 consecutive
days (23 April 2010 – 31 July 2010). Conditioning on load type (panel
row) and weekday (panel column), we represent each individual load by a
square filled depending on the multistep strategy that provided the
smallest expected daily error (7.15) on the days of the corresponding load
type and weekday. Notably, the direct multistep strategy provided a more
accurate forecast on the majority of loads. . . . . . . . . . . . . . . . . . . . 209

9.23 Forecast errors of MKNN-model variants with different variable
bandwidth K. Each model variant (Section 9.2.3.2) predicted the 300
loads in the validation dataset (Section 9.1.1.3) day-by-day for 100
consecutive days. For each day-type, we computed the expected daily
error (EDE) according to (7.15). The figure shows the 900
EDE-observations confounded on day and load type (grey dots),
including the outliers (black dots). Violin and box-plots summarize the
EDE-distributions in each of the groups. The average EDE of the model
in each group (red dot) is shown together with 95%-confidence interval
(red bar). We see that setting the bandwidth automatically using
leave-one-out cross-validation (LOOCV) often resulted in the most
accurate forecast. Here, we showed the workdays (Monday – Friday)
together, but similar results can be observed when considering each
workday individually. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
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9.24 Comparison of the multistep strategies for a nonparametric model with
variable bandwidth. We applied the KNN-model (Section 9.2.3.2) using
direct and multi-out strategies to predict the loads in the validation
dataset (Section 9.1.1.3). Each load was predicted day-ahead for 100
consecutive days (23 April 2010 – 31 July 2010). Conditioning on load
type (panel row) and weekday (panel column), we represent each
individual load by a square filled depending on the multistep strategy that
provided the smallest expected daily error (7.15) on the days of the
corresponding load type and weekday. Notably, the multi-out strategy
resulted in a more accurate forecast on the vast majority of loads. . . . . . . . 211

9.25 Comparison of the nonparametric reference models. The models
described in Section 9.2.3 predicted the 300 loads in the validation
dataset (Section 9.1.1.3). Each load was predicted day-ahead for 100
consecutive days (23 April 2010 – 31 July 2010). Conditioning on load
type (panel row) and weekday (panel column), we represent each
individual load by a square filled depending on the multistep strategy that
provided the smallest expected daily error (7.15) on the days of the
corresponding load type and weekday. Notably, the uniform average
forecast had comparable accuracy to the NWE and MKNN forecasts. In
fact, it was often the most accurate forecast. . . . . . . . . . . . . . . . . . . 212

9.26 Forecast errors of the uniform average model variants using different
filtering and history length. Each variant of the uniform average model
(Section 9.2.3.3) predicted the load averaging over various number of
historical load curve observations (panel row) of the same day-type (red)
or weekday (grey). Each model variant variant predicted the 300 loads in
the validation dataset (Section 9.1.1.3) day-by-day for 100 consecutive
days. For each load, we computed the expected daily error (EDE)
according to (7.15). The figure shows the 900 EDE-observations (grey
dots) confounded on load type (panel column) and the number of
averaged curves (panel row). Violin and box-plots summarize the
EDE-distributions in each of the groups. The average EDE of the model
(red dot) is shown together with 95%-confidence interval (red bar).
Outliers did not affect any qualitative conclusions and were removed to
provide the figure panels with similar axis limits. The figure considers
only the daily errors obtained on workdays, since both filtering schemes
provide the same forecast on weekends. Notably, computing the average
for the days of the same day-type was in many cases significantly more
accurate than averaging over the same weekday. Moreover, filtering by
weekday, the most accurate forecast was obtained when averaging the
load curves that are three to five weeks old. . . . . . . . . . . . . . . . . . . 213
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10.1 Heuristic models – forecast errors. Each panel presents the 283,203 daily
errors (grey dots) obtained by a heuristic model (Table 9.5) in the
wide-scale day-ahead building load forecasting simulation (Section 9.1.1)
on the loads of the specified size (annual consumption). For each model,
we computed the expected model error according to the empirical scaling
law (7.17) using nonlinear weighted regression (red line) and compared it
to the ideal error scaling (black line). The discussion of the results is
provided in the text (Section 10.1.1). . . . . . . . . . . . . . . . . . . . . . 232

10.2 Heuristic models – expected model error (EME) comparison. The
forecast error that we can expect from a model when predicting a load of
a given size was computed applying the empirical scaling law (7.17) on
the corresponding sample of 283,203 daily forecast errors obtained with
each heuristic model in the wide-scale day-ahead building load
forecasting simulation (Section 9.1.1). On each sample, we used the
weighted nonlinear regression estimating the parameters p, α, β of the
fitted curve representing the EME on the figure. The estimated
parameters are denoted in Table 10.1. Further discussion of the results in
provided in the text (Section 10.1.1). . . . . . . . . . . . . . . . . . . . . . 233

10.3 Heuristic models – expected daily error (EDE) distribution by load
group. In a wide-scale day-ahead building load forecasting simulation
(Section 9.1.1), we applied various heuristic models (Table 9.5)
predicting 1851 loads of different size and type. For each load, we
obtained a sample of 153 daily forecast errors (7.13) and computed the
EDE (7.15) of the corresponding model. The figure presents the EDEs
obtained by the models in residential (A-C) and commercial (D-F) load
groups (Table 9.3). Each panel shows the values (grey dots) obtained
predicting individual loads of the corresponding group and their
distribution (box and violin plots). Additionally, we denoted the
EDE-mean (red dot) and its 95%-confidence interval (vertical red bars)
for each model. Further discussion is provided in the text (Section 10.1.1). . 234

10.4 ARIMA – forecast errors. Each panel presents the 283,203 daily errors
(grey dots) obtained by an ARIMA-model (Table 9.5) in the wide-scale
day-ahead building load forecasting simulation (Section 9.1.1) on the
loads of the specified size (annual consumption). For each model, we
computed the expected model error according to the empirical scaling
law (7.17) using nonlinear weighted regression (red line) and compared it
to the ideal scaling (black line). The discussion of the results is provided
in the text (Section 10.1.2.1). . . . . . . . . . . . . . . . . . . . . . . . . . 237
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10.5 ARIMA – expected model error (EME) comparison. The forecast error
that we can expect from a model when predicting a load of a given size
was computed applying the empirical scaling law (7.17) on the
corresponding sample of 283,203 daily forecast errors obtained with each
ARIMA-model in the wide-scale day-ahead building load forecasting
simulation (Section 9.1.1). On each sample, we used the weighted
nonlinear regression estimating the parameters p, α, β of the fitted curve
representing the EME on the figure. The estimated parameters are
denoted in Table 10.1. Further discussion of the results in provided in the
text (Section 10.1.2.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

10.6 ARIMA – expected daily error (EDE) distribution by load group. In a
wide-scale day-ahead building load forecasting simulation (Section
9.1.1), we applied various ARIMA-models (Table 9.5) predicting 1851
loads of different size and type. For each load, we obtained a sample of
153 daily forecast errors (7.13) and computed the EDE (7.15) of the
corresponding model. The figure presents the EDEs obtained by the
models in residential (A-C) and commercial (D-F) load groups (Table
9.3). Each panel shows the values (grey dots) obtained predicting
individual loads of the corresponding group and their distribution (box
and violin plots). Additionally, we denoted the expected EDE-mean (red
dot) and its 95%-confidence interval (vertical red bars) for each model.
Further discussion is provided in the text (Section 10.1.2.1). . . . . . . . . . 239

10.7 Neural networks – forecast errors. Each panel presents the 283,203 daily
errors (grey dots) obtained by a neural-network-based model (Table 9.5)
in the wide-scale day-ahead building load forecasting simulation (Section
9.1.1) on the loads of the specified size (annual consumption). For each
model, we computed the expected model error according to the empirical
scaling law (7.17) using nonlinear weighted regression (red line) and
compared it to the ideal error scaling (black line). The discussion of the
results is provided in the text (Section 10.1.2.2). . . . . . . . . . . . . . . . 241

10.8 Neural networks – expected model error (EME) comparison. The
forecast error that we can expect from a model when predicting a load of
a given size was computed applying the empirical scaling law (7.17) on
the corresponding sample of 283,203 daily forecast errors obtained with
each neural-network-based model in the wide-scale day-ahead building
load forecasting simulation (Section 9.1.1). On each sample, we used the
weighted nonlinear regression estimating the parameters p, α, β of the
fitted curve representing the EME on the figure. The estimated
parameters are denoted in Table 10.1. Further discussion of the results in
provided in the text (Section 10.1.2.2). . . . . . . . . . . . . . . . . . . . . 242
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10.9 Neural networks – expected daily error (EDE) distribution by load group.
In a wide-scale day-ahead building load forecasting simulation (Section
9.1.1), we applied various neural-network-based models (Table 9.5)
predicting 1851 loads of different size and type. For each load, we
obtained a sample of 153 daily forecast errors (7.13) and computed the
EDE (7.15) of the corresponding model. The figure presents the EDEs
obtained by the models in residential (A-C) and commercial (D-F) load
groups (Table 9.3). Each panel shows the values (grey dots) obtained
predicting individual loads of the corresponding group and their
distribution (box and violin plots). Additionally, we denoted the expected
EDE-mean (red dot) and its 95%-confidence interval (vertical red bars)
for each model. Further discussion is provided in the text (Section 10.1.2.2). . 244

10.10Nonparametric models – forecast errors. Each panel presents the 283,203
daily errors (grey dots) obtained by a nonparametric reference model
(Table 9.5) in the wide-scale day-ahead building load forecasting
simulation (Section 9.1.1) on the loads of the specified size (annual
consumption). For each model, we computed the expected model error
according to the empirical scaling law (7.17) using nonlinear weighted
regression (red line) and compared it to the ideal error scaling (black
line). The discussion of the results is provided in the text (Section 10.1.3). . . 249

10.11Nonparametric models – expected model error (EME) comparison. The
forecast error that we can expect from a model when predicting a load of
a given size was computed applying the empirical scaling law (7.17) on
the corresponding sample of 283,203 daily forecast errors obtained with
each nonparametric reference model in the wide-scale day-ahead building
load forecasting simulation (Section 9.1.1). On each sample, we used the
weighted nonlinear regression estimating the parameters p, α, β of the
fitted curve representing the EME on the figure. The estimated
parameters are denoted in Table 10.1. Further discussion of the results in
provided in the text (Section 10.1.3). . . . . . . . . . . . . . . . . . . . . . 251

10.12Nonparametric models – expected daily error (EDE) distribution by load
group. In a wide-scale day-ahead building load forecasting simulation
(Section 9.1.1), we applied various nonparametric models (Table 9.5)
predicting 1851 loads of different size and type. For each load, we
obtained a sample of 153 daily forecast errors (7.13) and computed the
EDE (7.15) of the corresponding model. The figure presents the EDEs
obtained by the models in residential (A-C) and commercial (D-F) load
groups (Table 9.3). Each panel shows the values (grey dots) obtained
predicting individual loads of the corresponding group and their
distribution (box and violin plots). Additionally, we denoted the expected
EDE-mean (red dot) and its 95%-confidence interval (vertical red bars)
for each model. Further discussion is provided in the text (Section 10.1.3). . . 252
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10.13Functional neighbor model – forecast errors. The figure shows the
283,203 daily errors (grey dots) obtained by the functional neighbor
model (Algorithm 3) in the wide-scale day-ahead building load
forecasting simulation (Section 9.1.1) on the loads of the specified size
(annual consumption). Additionally, we computed the expected model
error according to the empirical scaling law (7.17) using nonlinear
weighted regression (red line) and compared it to the ideal error scaling
(black line). Further discussion is provided in the text (Section 10.2). . . . . 253

10.14Functional neighbor model – expected model error (EME) comparison to
the reference models. The forecast errors that we can expect from the
functional neighbor model (Algorithm 3) and various reference models
(Table 9.5) when predicting a load of a given size were computed
applying the empirical scaling law (7.17) on the samples of 283,203 daily
forecast errors obtained with each model in the wide-scale day-ahead
building load forecasting simulation (Section 9.1.1). On each sample, we
used the weighted nonlinear regression estimating the parameters p, α, β

of the fitted curve representing the EME on the figure. The estimated
parameters are denoted in Table 10.1. Each panel compares the EME of
the functional neighbor forecaster to the heuristic (top), parametric
(middle) and nonparametric (bottom) reference models. Further
discussion of the results is provided in the text (Section 10.2). . . . . . . . . 255

10.15Functional neighbor model – expected daily errors (EDE) on residential
loads. We applied the functional neighbor forecaster (Algorithm 3) and
the SLP-model predicting 1247 residential loads of different size in a
wide-scale day-ahead building load forecasting simulation (Section
9.1.1). For each predicted load, we computed the EDE (7.15) using the
sample of 153 daily forecast errors obtained by each model. Conditioned
on day-type, the panels show the EDE-distributions in residential load
groups (A-C) defined in Table 9.3. Each panel shows the errors on a log
scale obtained on individual loads (rugs) by the corresponding model and
the probability density function. Additionally, we denoted the error mean
(vertical dotted line) and its 95%-confidence interval (vertical bar).
Further discussion is provided in the text. . . . . . . . . . . . . . . . . . . . 256

310



List of Figures

10.16Functional neighbor model – expected daily errors (EDE) on commercial
loads. We applied the functional neighbor forecaster (Algorithm 3) and
the SLP-model predicting 242 commercial loads of different size in a
wide-scale day-ahead building load forecasting simulation (Section
9.1.1). For each predicted load, we computed the EDE (7.15) using the
sample of 153 daily forecast errors obtained by each model. Conditioned
on day-type, the panels show the EDE-distributions in residential load
groups (D-F) defined in Table 9.3. Each panel shows the errors on a log
scale obtained on individual loads (rugs) by the corresponding model and
the probability density function. Additionally, we denoted the error mean
(vertical dotted line) and its 95%-confidence interval (vertical bar).
Further discussion is provided in the text. . . . . . . . . . . . . . . . . . . 257

10.17Functional neighbor model – improvement relative to the standard load
profile forecast. In a wide-scale day-ahead building load forecasting
simulation (Section 9.1.1), we applied the functional neighbor forecaster
(Algorithm 3) and the SLP-model predicting 1851 loads of different size
and type. For each load, we computed the improvement (7.14) by the
functional neighbor model relative to the forecast using standard load
profiles. The figure shows the improvement (%) for each predicted load
denoting load size (annual consumption) and type (colors). The
probability density function of the improvement obtained for the
corresponding load type is presented on the right of the main plot.
Further discussion is provided in the text (Section 10.2). . . . . . . . . . . . 260

10.18Functional neighbor model – improvement relative to the standard load
profile forecast by load group. In a wide-scale day-ahead building load
forecasting simulation (Section 9.1.1), we applied the functional neighbor
forecaster (Algorithm 3) predicting 1851 loads of different size and type
obtaining a sample of 153 daily forecast errors for each load.
Additionally, we predicted the same loads using the SLP-model and used
predictions as a benchmark. Relative to the benchmark, we computed the
forecast improvement (7.14) for each predicted daily load curve. In the
figure, the panels show the improvement in residential (A-C) and
commercial (D-F) load groups (Table 9.3). Every panel shows the
sampling distribution of the mean improvement for each load (rugs at the
top), expected improvement in the load group (dotted vertical line) with
the 95%-confidence interval (horizontal bar) and the zero-improvement
line (red vertical line). Further discussion is provided in the text (Section 10.2). 261
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10.19Functional neighbor model – comparison to selected heuristic models. In
a wide-scale day-ahead building load forecasting simulation (Section
9.1.1), we applied the functional neighbor forecaster (Algorithm 3) and
the most accurate heuristic models (Section 10.1.1) predicting 1851 loads
of different size and type. Additionally, we predicted the same loads with
standard load profiles and used these predictions as a benchmark.
Relative to the benchmark, we computed the forecast improvement (7.14)
obtained by each model. The figure presents the improvement (%) in
residential (A-C) and commercial (D-F) load groups (Table 9.3). Each
panel shows the distribution of the improvement in the corresponding
load group (box and violin plots) with the zero-improvement mark (red
dashed line). Additionally, we denoted the improvement mean (red dot)
and its 95%-confidence interval (vertical red bars) in each load group.
Further discussion in the text (Section 10.2). . . . . . . . . . . . . . . . . . 262

10.20Functional neighbor model – comparison to selected parametric models.
In a wide-scale day-ahead building load forecasting simulation (Section
9.1.1), we applied the functional neighbor forecaster (Algorithm 3) and
the most accurate parametric models (Section 10.1.2) predicting 1851
loads of different size and type. Additionally, we predicted the same
loads with standard load profiles and used these predictions as a
benchmark. Relative to the benchmark, we computed the forecast
improvement (7.14) obtained by each model. The figure presents the
improvement (%) in residential (A-C) and commercial (D-F) load groups
(Table 9.3). Each panel shows the distribution of the improvement in the
corresponding load group (box and violin plots) with the
zero-improvement mark (red dashed line). Additionally, we denoted the
improvement mean (red dot) and its 95%-confidence interval (vertical red
bars) in each load group. Further discussion in the text (Section 10.2). . . . . 263

10.21Functional neighbor model – comparison to selected nonparametric
models. In a wide-scale day-ahead building load forecasting simulation
(Section 9.1.1), we applied the functional neighbor forecaster (Algorithm
3) and the nonparametric models (Section 10.1.3) predicting 1851 loads
of different size and type. Additionally, we predicted the same loads with
standard load profiles and used these predictions as a benchmark.
Relative to the benchmark, we computed the forecast improvement (7.14)
obtained by each model. The figure presents the improvement (%) in
residential (A-C) and commercial (D-F) load groups (Table 9.3). Each
panel shows the distribution of the improvement in the corresponding
load group (box and violin plots) with the zero-improvement mark (red
dashed line). Additionally, we denoted the improvement mean (red dot)
and its 95%-confidence interval (vertical red bars) in each load group.
Further discussion in the text (Section 10.2). . . . . . . . . . . . . . . . . . 264
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