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1. Introduction

ABSTRACT

Granularity is one of the most predominant structures for polycrystalline materials, from geological compounds
to technical high-performance alloys. In particular, grain structures in metal alloys enable custom-tailored
material properties if their formation can be modeled and simulated accurately to analyze, characterize,
and generate granular materials. Despite significant advances in the field, established physics-based grain-
growth models still need to improve to match real-life experimental data accurately. Instead of relying
on physical knowledge, data-driven models provide a complementary way to study grain structures using
only the information in the data. However, many machine learning methods require supervised learning on
information that is challenging to measure or numerically expensive to compute. In this work, we propose a
new strategy that uses unsupervised deep learning on synthetic physics-based data to generate realistic granular
structures with customizable features and properties (grain size/number). A variational autoencoder learns to
compress grain structures into a low-dimensional latent space, derive data-driven features that characterize
grain structures, and use these features to generate new structures with representative grain size distributions in
a computationally efficient way. These data-driven features can complement the physics-based features derived
from classical materials research and help identify new characterizing properties. Thus, this work represents
a prototype application of bridging machine learning methods to material characterization and generation.

and behavior. Particularly, the knowledge of correlations between grain
structure characteristics and material properties allows for the develop-

Granular structures, a compact packing configuration of multiple
cells, can be observed in many natural systems, such as dried basins of
lakes, metal alloys, foams, geological rocks or wings of insects. These
structures continuously inspire humans to create stunning architectures
and artworks, like Water Cube and Airspace Tokyo. The grain structures
in the metal alloy are granular systems of significant importance in
material sciences, where the grains represent small single crystalline
regions, and the borders separating them are called grain boundaries.
The spatial structure of the grains strongly affects material properties

ment of new materials and processing routes based on advanced data
analysis techniques in an acceleration mode. For example, the Hall-
Petch relation [1] describes that yield strength is inversely dependent
on grain size. Furthermore, thermal conductance [2] and electrical
conductivity [3] are known to be regulated by grain structure as well.
So far, grain structure has been a fascinating area to explore the
structure-property linkage in materials science.

Intuitively, the grains interact, which means the contacting inter-
faces and angles between grains are under certain constraints. The
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constraints could be classified into two aspects. On the one hand,
since the total spatial volume remains constant, a particular grain will
grow only if the others are shrinking; this effect is geometrical. On the
other hand, since a particular grain is surrounded by its neighbors, the
faces and vertices of adjacent grains must be paired and tangential;
this effect is topological. Reasonable grain structures must fulfill these
two criteria. Following this, various analytical theories are built. Von
Neumann first proposed the N-6 rule [4] of grain structure based on
pure topological considerations. Mullins proposed an idealized model
where the moving speed of the grain boundary is proportional to its
curvature [5]. Later, Hillert developed a theory [6] for predicting grain
size distribution in equilibrium. Subsequent studies extensively ex-
plored the possibility of using different state variables (e.g. volume [7],
topological class [8,9], topological events [10], etc.) to mathematically
describe grain growth behavior.

Besides the analytic theories, several computational methods have
been developed to mimic grain growth in last decades, including cel-
lular automata [11], Monte Carlo Potts model [12], and phase-field
modeling [13] and multi-phase field modeling [14]. Within these meth-
ods, all the discrete elements in the computational domain evolve
following some rules, and jointly form a realistic grain configuration
after a period of time. The rules used in the model can incorporate
physical interactions and therefore can be more realistic. The compu-
tational methods depend on classical theories to check their validity. In
practice, the Hillert theory is often used to check computer simulation
results [13,15,16]. Usually, satisfying matches can be observed between
simulation and theory, so the above simulation methods become the
gold standard for obtaining large-scale grain structures. Moreover,
these simulation methods are further used to validate newly pro-
posed kinetic laws of grain growth [8,17-19] and extended to more
complicated systems [20].

Remarkable successes are made so one can generate grain structures
without much coding effort and evaluate the analytic laws. Never-
theless, this generation-evaluation workflow confronts ever-increasing
challenges. For the simulation side, almost all algorithms rely on the
curvature-driven rule, whereas experimental evidence does not support
this rule [21,22]. For the evaluation side, whether the Hilbert self-
similar regime exists has been questioned [23-25] for a long time.
From a physical point of view, the formation of grain structure results
from the competitive growth of multiple single crystalline regions.
Considering that a physical system favors a low-energy state, in this
scenario, the interplay of surface energy and bulk energy plays an
important role. Therefore, it is theoretically feasible to obtain a real-
istic grain structure by incorporating all possible state variables into
the system’s free energy. Yet, the formulation of energy functional is
not trivial, often requiring sophisticated knowledge of the underlying
physical phenomena. Specifically, grain growth not only undergoes
short-range interactions, such as strain induced by surface stress or
latent heat but also possibly possesses long-range interactions, such as
magnetic or electrostatic interactions. Therefore, alternative methods
to characterize and generate grain structures, tackling complexity with
incomplete information, are urgently needed.

With the rapid development of data science, huge progress has been
achieved in applying machine learning techniques in materials sci-
ence [26-29]. These studies cover a wide range of topics, from structure
characterization and reconstruction to structure-property linkage. Neu-
ral network based models are reported to segment rock images [30] and
to reconstruct oolitic limestone [31]. An open-source workflow is built
for the comprehensive characterization of porous materials [32]. The
optimization of mechanical properties is reported via high-throughput
phase-field simulation combined with an artificial neural network [33].
The effective permeability of membranes is found to rely on the pore-
solid interface [34]. A regression model is formulated to predict the
sluggish effect in duplex and triplex systems [35]. The long short-
term memory network is useful for accelerating simulations [36]. We
can find that convolutional neural networks are fundamental building

blocks in most spatial-data-oriented studies. It is not surprising because
CNN can learn to detect the salient features of spatial input data
hierarchically without requiring any prior knowledge about physical
behavior [37]. When the input data is projected into a low-dimensional
space, analyzing the structure-property linkage yields many benefits.
Meanwhile, the compressed information is a good starting point to
generate new samples.

The analysis above suggests that the Variational AutoEncoder (VAE)
[38] is a promising architecture to characterize and generate grain
samples. VAE is one of the powerful unsupervised machine learning
algorithms derived from the family of variational Bayesian methods,
which can be implemented as a neural network built on top of many
convolution blocks. The model maps the input data through a reduced-
order bottleneck back onto itself, thus maximizing the information
compressed into the latent variables. Once the training converges, the
encoder learns to characterize a structure, and the decoder learns to
generate a structure from a characterization. VAE was proven to be
useful for the generation of stochastic porous structures [39]. Yet, a
discussion is still absent for the more regular-shaped grain structure.
A closely related work is from Yan et al. [40], where they successfully
predicted grain growth after learning the local grain boundary behav-
iors. In comparison, we focus on the feasibility of a purely data-driven
workflow. Note that generative adversarial networks can also generate
realistic structure [41], but it lacks the ability to characterize structures.

In this paper, we thus select the VAE as our machine learning
model, showing that VAE can extract the main feature of the grain
structure and generate new grain samples from customized vectors. The
conceptual design of VAE is illustrated in Fig. 1. From the left to the
right, it is usually called the encoder, the latent space, and the decoder,
respectively. First of all, to generate sufficient amounts of data, we
simulate multi-phase field models, which have been widely used in
recent studies [16,20,25,42]. Built on appropriate data preparation like
thresholding and denoising and a programming interface for converting
data, the model should also works on experimental data. Then, we build
a workflow to convert and preprocess the simulation data into samples
of numerical tensors for machine learning. Next, a VAE is trained until
it can map these numerical tensors back onto themselves with only
a minor reconstruction error. After that, a watershed segmentation
yields the discrete grain structure from the reconstructed data. We
found that the compressed data in the low-dimensional latent space
forms a regular manifold, which can be efficiently explored with a
principal component analysis, which uncovers a strong influence of
grain-structure properties on the first principal component. In addition,
we reveal that the output of the decoder is the weighted sum of a series
of eigenmodes. Finally, we generate new grain samples based on the
statistical feature of the training dataset, whose statistical feature does
not exist in the original training dataset.

2. Methods
2.1. Multi-phase field simulation

In a poly-crystalline material system with N grains, an a grain is
treated by an order parameter, so called phase field variable ¢,(x,1),
occupying spatial-temporal coordinates x and 7, so that the whole sys-
tem could be represented as a vector-valued order parameter ¢(x,7) =
(b1s 2, @3, ..., dn). Tracking the evolution of this vector valued field
variable gives all the information on grain growth. For example, the
volume of a particular grain « is obtained by integrating the selected
phase field variable ¢,(x,7) over all spatial coordinates. The thermo-
dynamic theory states that the system evolves towards the minimum
free energy. Following Nestler et al. [14,42], the free energy could be
written as
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Fig. 1. Overview of the workflow. A batch of index data (upper-left panel) is converted into distance data (lower-left panel), which are then loaded into the variational autoencoder
for model training. After convergence is achieved, a customized vector can be used to generate new distance data and corresponding index data.

where a(¢, V¢) stands for the surface energy due to the existence of
phase boundaries, w(¢) is the multi-obstacle potential, and e is a factor
determining the thickness of diffuse boundary layers. The free energy
integrates over the whole volume Q.

The surface energy depends solely on the phases that form the
surfaces. Without loss of generality, it takes the following form of
summation of all possible two-phase pairs.

a( . V) = Y Vuplaup(@up) 4ol )
a<p

where g, is the generalized gradient of phase « and phase §, i.e., g,5 =
¢, Vs — $5V,, and the quadratic form of g,; multiplying y,, gives
a measure of energy. Additionally, a,; is an anisotropic factor. It
regulates the energy, which depends on g, as well.

The multi-obstacle function is given by the summation of polyno-
mials of order parameters

W)= 12 Y tapbay + X, apstbubybs @)
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where the quadratic term forces the order parameter to be 1 within
the grain and O outside the grain, and the cubic term is introduced
to suppress the occurrence of extraneous contributions of phase field
variables.

Following Landau’s formulation, a variational differentiation of the
free energy functional with respect to the order parameters ¢, yields
a set of coupled nonlinear partial differential equations describing the
evolution of the grain structure in space and time.

¢,
ot

where the (.,4,“ ), (',qua) denote partial derivatives. 7 is a kinetic factor
affecting the velocity of evolution,
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The parameter 4 computes the impact of all grains. 4 ensures that the
N
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constraint Z ¢,(x,1) = 1 and takes the following expression,
a=1

N
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In the phase field simulation of grain boundary evolution, material
parameters from nickel alloys are chosen as reported in [43]. For

simplicity, anisotropy is neglected, and the kinetic factor is set to 1.
Periodic domain boundary conditions are assumed along the x and y
axis.

2.2. Principal component analysis

Principal Component Analysis (PCA) stands as a potent mathemati-
cal technique essential for dimensionality reduction and data compres-
sion while preserving the intrinsic patterns inherent within the data.
PCA’s core principle centers on the transformation of the original data
into a novel coordinate system where data variability is maximally
captured.

The initial step in PCA involves a dataset represented as a matrix,
denoted as X, ,, where n signifies the number of observations and p
represents the number of features. This process commences with data
centering, whereby the mean of each feature is subtracted from its
respective column, resulting in a demeaned matrix that removes any
bias in the data. Subsequently, PCA delves into the identification of
orthogonal eigenvectors that encapsulate the maximum variance within
the demeaned data. These eigenvectors, when sorted by eigenvalues
representing their variance contribution, become the axes of a fresh
coordinate system. The leading eigenvector corresponds to the direction
with the highest variance, followed by successive eigenvectors captur-
ing progressively less variance. Mathematically, the original dataset
X, , can be expressed as a linear combination of these eigenvectors V,

np
and their corresponding scores Y, ;:

Xn,p = Yn,k . I/‘Ik’ (7)

where the variable k signifies the number of considered principal
components. The selection of primary components based on their scores
allows for effective data dimensionality reduction while preserving the
most salient patterns. Additionally, PCA facilitates data reconstruction
from the reduced PCA space. This process entails multiplying PCA
coordinates Yn’k by their corresponding eigenvectors V,, and subse-
quently adding column-wise mean values to obtain high-dimensional
counterparts. The PCA implementation used in this work is based on
the scikit-learn package [44].

2.3. Watershed segmentation

The watershed algorithm treats 2D data as a geographical land
scope. Firstly, one has to mark the peaks where the local maximum
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resides. The calculation of the gradient vectors of the distance data
provides this information. Then these peaks are trimmed to remove
saddle points [45]. The remaining peaks are the starting points to form
islands by gradually lowering the water level until adjacent islands
contact each other. The numbers of the islands are given by the peaks,
and the neighborhood relationships of the islands are recorded during
their formation.

3. Results
3.1. Preparation of training dataset

Since the model should represent a single compound, we simulate
this compound as the 2D grain growth process with the multi-phase
field method, performed with the simulation framework Pace3D [46],
developed at the IDM at the Karlsruhe University of Applied Sciences.
The theory of multi-phase field simulation is briefly described in the
following. The simulation domain size is 4000 x 4000 numerical cells to
finely resolve a 1 pm X 1 pm area, which is filled with 60 000 randomly
distributed grains by Voronoi tessellation. Such settings enable getting
as many representative configurations as possible. The simulation re-
sults are recorded at specific time steps that characterize the physical
grain growth process at early (1st), intermediate (2nd), and late (3rd)
stages. The initial and final few time steps are not recorded. The initial
step refers to a Voronoi partition, which usually deviates a lot from the
physical state of grain boundaries as grain boundary energies and cur-
vature minimization are not included in the generation algorithm [47].
Furthermore, the final steps lose statistical significance as the structure
may contain only a few residual grains after coarsening.

Using equilibrium or quasi-equilibrium states offers several advan-
tages. First and foremost, these states are common occurrences in the
process of grain growth. Moreover, they maintain the homogeneity
of the material, making the behavior more predictable in daily use.
Secondly, in the context of equilibrium or quasi-equilibrium states, the
average size or the number of grains as a scalar value serves as a
well-defined feature. This feature is favorable during the evaluation
of the generated samples. While the present study primarily focuses
on equilibrium or quasi-equilibrium states, it is important to note that
non-equilibrium states can also be generated using our multiphysics
framework. This suggests that the workflow has the potential to be
extended to more intricate scenarios in future endeavors.

A typical computationally generated grain structure is illustrated in
Fig. 2a, where each grain is indexed by an integer and represented by
a colored area. We note that this index data is unsuitable for model
training because the grain index is interchangeable without changing
any physical state. For example, after the disappearance of the grain
during evolution, the corresponding grain index is missing. Then, the
whole data range of indices is neither continuous nor constant. This is
detrimental for a neural network to learn the characteristics. Therefore,
we convert the index data into binary data, as shown in Fig. 2b,
where only the grain boundaries are kept. The binary data preserves
all information of grain states, and all pixel values are reduced to zeros
or ones, thus overcoming the drawback of index data. However, the
sparsity of the boundaries between the grains creates an imbalance in
the dataset between the two classes in the binary dataset. Furthermore,
within a grain, all values are identical, which means the distance
information of a point from the grain boundary is not explicitly carried.
Although the distance information is deterministic when the whole
structure is given, it is not the same situation where convolutional
operations are performed with small filter sizes in a neural network.
Therefore, we calculate the Euclidean distance transformation of the
binary data and obtain another form of data, hereinafter referred
to as distance data (Fig. 2c). This distance data inherently encodes
information regarding the shape of the entire grain locally to each
material point. Through the distance transformation, the resulting data
are less sparse than the binary data, which mitigates the binary class

imbalance by reformulating the classification to a regression task, and
augments the information contained at every spatial position.

To make our model computationally affordable, we split the dis-
tance data into many small patches, where each patch is called a
sample. Each sample size is 256 x 256, which is a common dimen-
sionality for computer vision tasks. We can use a single simulation
best by sampling the distance data repeatedly rather than simulating
numerous small-scale grain growth processes. The sampling details are
given in Fig. 2d, where highlighted squares are data to be taken, and
red rectangles are the bounding box defined on a global coordinate. The
position of each square is randomly chosen, specified by a coordinate
(x;,y;) located at its upper-left corner. The orientation of each square
is allowed to change to increase the variance of data. The size of the
bounding box L, can be calculated analytically based on edge length
L, and orientation angle «;. Overlapping of patches is allowed. Once
a bounding box is sliced from the whole distance data, rotation and
cropping are applied to get a sample with the desired size. The relative
geometrical relationship is depicted in Fig. 2e. For each simulation
step, we pick up 20000 samples. Three simulation steps are used
in the following study. We further use the tfrecords [48] format to
store the samples, accelerating the loading speed in model training. As
shown in Fig. 2f, the corresponding simulation step for each sample, as
descriptors, is also added to the tfrecords.

3.2. Training the variational autoencoder

Variational autoencoders are powerful generative models based on
Bayesian interference. Let us define a sample x, The evidence prob-
ability of data p(x) is proven to have a lower bound, which means
maximization of the evidence lower bound (ELBO) gives an estimation
of p(x). In practice, the posterior probability p(z|x) and prior probability
p(z) are taken as Gaussian distribution to make it mathematically
simple, where z is the variable and p(z) denotes the probability density
of z. In Fig. 3a, the architecture of a VAE is illustrated. The left part with
warm colors is the encoder, functioning as the posterior probability
p(z|x). At the center, random sampling reparameterizes the encoder
output and applies noise so that the right part, i.e., the decoder, approx-
imates the likelihood probability p(x|z). The VAE model is implemented
with the CIDS framework, an open-source toolbox that automatizes
hyperparameter search, model training, and inference aimed at data
for the physical and materials sciences [49]. The encoder consists of
three layers; each consists of two convolution layers with rectified
linear activation followed by a pooling layer. The filter is 2 dimensional
with its size being 3 x 3 and the number of filters is 32, 64, and 128,
respectively. The stride is chosen to be 1. The pooling size is set to be 4
for anti-aliasing. An additional batch normalization layer is appended
after each convolution. The decoder mirrors the architecture of the
encoder. The dimension of the latent variable space, d, holds significant
importance as a hyperparameter in the variational autoencoder training
process. After conducting a series of trial tests (with d = 64, 128, 256,
512), a latent size between the encoder and decoder is chosen as 256,
which indicates a compression rate of 1/256.

The full dataset is shuffled and split randomly into a training,
validation, and test set at a ratio of 0.7:0.15:0.15. During training, the
combined reconstruction and KL-divergence loss are minimized using
the ADAM optimizer [38] with a learning rate of 1e-5 and a batch size
of 8. The first epoch is used to compute the normalization statistics for
the scaling of the input/target tensor [50].

Fig. 3b shows a randomly selected example from the test set to
give an intuitive understanding of the performance of our VAE model.
It visualizes the input distance data to the encoder, while Fig. 3c
visualizes the corresponding output distance data from the decoder.
Visually, plenty of bright closed-shape regions are distinguishable from
a dark background. The reconstructed structure is more blurred than
the input one, being a typical issue of the Gaussian kernel. Due to
the same reason, some tiny grains are absent. We also calculate the
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Fig. 2. Pre-processing for computationally generating grain structures data: (a) index data, (b) binary data capturing grain boundaries, (c) distribution of distances of grain bulk
centers, (d) illustration of several randomly selected bounding boxes of the region of interest, (e) reorientation of the bounding box, and (f) tfrecords containing the distance data
and descriptors.
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Fig. 3. Data flow in the training process: (a) the VAE consists of the encoder (orange blocks), sampler (green blocks), and decoder (cool blocks), (b) the ground truth from
phase-field simulations, (c) the corresponding prediction of the VAE, (d) the residual data, and (e) the loss curves during training epochs.
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Fig. 4. Characterization of a predicted structure from the test dataset: (a) predicted distance data, (b) segmented index data, (c) dependence of radius (R) and number of neighbors
(n) related to the grain structure sample, (d) statistics of 100 randomly selected samples from the early simulation step, (e-h) results of the intermediate simulation step after the

same operation, (i-1) results of the late simulation step after the same operation.

difference between the two and plot the residual values in Fig. 3d,
where the overall intensity is one order of magnitude lower than
the structure itself. This discrepancy is effectively quantified using a
widely accepted metric, the mean square error (MSE). As a result, we
adopt the MSE as our reconstruction loss, which, together with the
KL-divergence loss, constitutes the total loss. In Fig. 3e, we illustrate
the total loss of the training dataset (green curve) and the validation
dataset (orange curve). Throughout the training epochs, the total loss
converges rapidly. Therefore, we postulate that our VAE model can
learn the salient feature of grain structure. After training, the losses
are 6.80e—3 on the training dataset, 6.94e—3 on the validation dataset.
We also evaluate the loss on the test dataset after the training and get a
value of 6.78e—3. The similarity in the trends of the loss curves between
the test and validation datasets can be attributed to the fact that, in
the self-similar state, different grain configurations exhibit statistically
similar characteristics. Since training, validation and test error are
close, no overfitting could be observed.

3.3. Generation of new sample from decoder

At first, we prove that the distance data can be converted to index
data before we move to the generation of new samples. As discussed
in the last section, there is a corresponding predicted distance data
for each ground-truth input/target distance data. Here we take the
prediction distance data for post-processing. Fig. 4 is organized in three
rows, where the data are taken from three simulation steps. The later
the simulation step, the more grains have grown, shrunk, or even
disappeared due to grain growth, which reduces the overall number
of grains. For example, Fig. 4a represents the grain structure from the
early simulation step. Applying the watershed segmentation method,
we obtain the grain patterns in Fig. 4b. A brief explanation of how

the watershed algorithm works can be found in the method section. As
characteristic quantities of grain structures, the number of grains, the
size and face distributions are of interest to material scientists. Such
information is contained in Fig. 4c. The radius of grains falls into the
range from several pixels to 20 pixels, while the faces are less than 10.
We can see a linear correlation between the radius (R) and faces (n).
The total number of grains (N) and the slope (s) of the fitted line are
marked in the scattering plot. Considering that the decoder of the VAE
model generates structures sampled from the latent space, it is helpful
to aggregate many generated samples together. We thus concatenate
the statistical information of 100 samples together in Fig. 4d. The
tendency of a single grain and multiple grains are almost identical,
indicating good uniformity. The same data analysis for the intermediate
and late simulation steps are shown in Fig. 4e-h and i-l, respectively.
An evident tendency concerning the time change is that the slope of
fitting curves becomes steeper. Equivalently speaking, the slope is an
indicator of the average grain size. For comparison, we can process the
ground-truth data from the test set in the same way and visualize it in
Fig. S1. Both sets appear to be statistically similar. Nevertheless, two
aspects are noticeable. For a single sample, the ground truth’s slope is
always slightly larger than the prediction. For multiple samples, if it is
at the early simulation step, the slope of the prediction is smaller than
that of the ground truth, while if it is at the late simulation step, the
slope of the prediction is larger than that of the ground truth. This can
be attributed to the tiny grains that are not finely reconstructed.

We then investigate the manifold in the latent space to study
the performance of the encoder. According to the implementation of
the VAE, the encoder provides mean and log-var(iance) vectors that
support a normal distribution used to sample latent variables. To verify
it, we take all the 4500 samples from the test set to get a statistical
distribution in Fig. 5a. The x-axis represents the dimension (Z,) of
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Fig. 5. Analysis of latent space: (a) distribution of latent variables along the latent dimension, (b) projection of latent variables in the principal space with two principle components,
PC, and PC,, distribution of (c) mean x and (d) variance ¢ for characteristic simulation steps.

the latent vector. The y-axis represents the values (z) of the latent
variables. The z-axis represents the probability density (f(z)) of the
latent variables. We can see that the distribution is approximately
invariant with respect to the dimension, indicating that information
is evenly distributed in all latent dimensions. In each dimension, the
profile of the latent variable is bell-shaped, with a symmetric plane
at y = 0. Note that we have three simulation steps involved, but no
remarkable clustering behavior can be found here. Therefore, we use a
principal component analysis [51] to decorrelate our latent variables as
much as possible and visualize the results. The effectiveness of PCA has
been demonstrated in a series of works, including the compression of
the latent space [36], determination of the anisotropy of CT-scanned
microstructures [52], and characterization of porous structures [34].
The basic idea of PCA is described in the method section. We compress
the 256-dimension variable into 10 components, of which we visualize
the two components that explain the most variance. As shown in
Fig. 5b, three clusters are formed, corresponding to the simulation
steps, which confirms that the neural network can recognize the grain
structure. To investigate further, we divide the latent variables in
Fig. 5a based on the simulation step descriptors and fit the bell-
shaped profile with the normal distributions in Fig. 5c—d. Since we
are quantitatively evaluating the profile, therefore inevitably introduce
statistical parameters of the latent vector, namely, the mean (x) and
variance (o) of each latent dimension. These two variables are distinct
from the mean vector and log-variance vector shown in Fig. 3a. The

curves for mean (u) and variance (o) confirm that the fitted parameters
of each simulation step have their own characteristics and illustrate that
the PCA can detect the difference.

To intuitively understand how the decoder works, we employ some
black box tests. We start with an all-zero input to get the “baseline” of
the decoder. This results in a chessboard pattern of potential grains with
weak contrast, as shown in Fig. 6a. It could be treated as a discretized
approximation of an all-zero output. The chessboard pattern appears to
be caused by the strided convolution operation. Then we can activate
each single dimension one by one. The outputs corresponding to the 1st
and the 256th dimensions are displayed in Fig. 6b and c, respectively.
The variation can be barely seen. Therefore, we calculate their differ-
ence to baseline, as shown in the inset of each figure. We can observe
similar phenomena (i) some area is brighter than the background, (ii)
the brighter areas are distributed to the whole space, (iii) the brighter
area is striped but not closed. Besides, the brighter patterns differ
from each other. We believe that such a phenomenon means that each
latent variable controls the activation of a unique pattern. Naturally,
we infer that the patterns could be combined together. Therefore, we
select the number of activated dimensions from an increasing series
of values 4, 16, and 64. The obtained outputs are plotted in Fig. 6d—
f, respectively. As expected, the more activated dimensions, the more
similar the pattern looks like a real grain structure. When there are
enough activated dimensions, the chessboard of potential grains in the
background is no more visible. With all dimensions activated, in Fig. 6g,
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Fig. 6. Decomposition of latent space: (a) baseline, where all the latent variables are deactivated, (b) the decoder approximation of the 1st and (c) of the 256th dimension with
positive activation, (d)-(f) the decoder approximation when the number of positively activated dimensions successively increases from 4 to 64, (g)-(1) the decoder approximation
when the amplitudes of all latent variables are tested at different levels from 1 to 3, respectively. The inset images in (b) and (c) show their difference to the base line.

we could see more regular bright granular areas. If we continue to level
up the magnitude of input values, we find that the intensity increases
to saturation while the pattern is fixed. In Figs. 6h and i, the input
values are 2 and 3, respectively. The inputs are not restricted to positive
values. For the cases where negative inputs are fed to the neural
network, similar tendencies can be observed in Fig. S2. To summarize,
the decoder resembles a transformation matrix consisting of a series of
correlated eigenmodes of grain structure. Correspondingly, the latent
variables constitute the eigenvector of the grain structure transformed
into the latent space of correlated variables.

Then one may ask how we can combine the eigenmodes to get
meaningful grain structures. An arbitrary eigenvector could not pro-
duce a meaningful pattern, as seen in the last paragraph. So the idea is
to follow the statistical characteristics of the latent variables from the
training set. Fig. 5c visualizes the distribution of the mean to explain
the clustering behavior. Next, the procedure is repeated, and more tests
are carried out. We generate several groups of random vectors from
a normal distribution N(u, o). In each group, there are 100 samples.
The values of the variable y from —2.0 to 2 with a step of 1.0 and
are thus in the vicinity of the values from the training data set. These
vectors are transformed by the same PCA model trained in Fig. 5¢ and
the principal components PC, and PC, of these vectors are determined.

Considering PC, first, it can be observed that the violin plot’s center
is monotonically shifting as shown in Fig. 7a. The shifting direction
may change subject to the different random initialization in the training
process, but its dependence on the mean is definite. Then we vary the
variance ¢ from 1 to 3 with a step of 1.0. After the same projection,
in Fig. 7b, we see that the center of the violin plot is constant while
the body of the violin plot is elongated. For PC,, the tendency of
mean is the opposite while that of variance is the same, as plotted in
Fig. 7c and d, respectively. These results suggest that the PCA is only
sensitive to the difference in the mean value of the latent variable in
three simulation steps. However, other than the mean value, the order
of dimensions matters as well. Therefore, it is impossible to do a reverse
PCA to generate meaningful latent variables. We can say that the PCA
score is an insufficient but necessary indicator of the grain properties.

We already have 256 pairs of means and variances estimated by
fitting all samples into a normal distribution, as done in Fig. 5c—d. They
are used to sample vectors for the results in Fig. 8. The arrangement of
each row is the same as in Fig. 4. First comes the prediction distance
data, followed by its segmentation, then comes the statistics for a single
sample, and finally, the aggregated statistics for 100 samples. Because
there are three simulation steps, we organize the results into three
rows possessing some common features. We can see that the generated
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Fig. 7. Mapping a random vector into PCA space: (a) shift of PC, towards positive values with respect to the increase of the mean y, (b) increase of the non-uniformity of PC,
with respect to the increase of the variance o, (¢) shift of PC, towards negative values with respect to the increase of the mean y, (d) increase of the non-uniformity of PC, with

respect to the increase of the variance o.

structures are closer to grain structure than those in Fig. 6g-i, even
though more blurry than those in Fig. 4. The segmented grains are
neither too round nor too slim. Good linearity is preserved for the
statistics of both a single sample and aggregated samples. Furthermore,
we observe that the slopes are increasing with respect to time steps.
Because there is no ground truth for a single structure to compare, the
aggregated statistics is better compared with that from the test dataset.
We found that the range of the number of neighbors is less than 10,
similar to that in Fig. 4 and Fig. S1. However, the upper bound of
size is less than their counterparts, which leads to smaller slopes in
all three rows. An explanation is that large grains are rare cases in
the training data set, so it is not likely to be predicted by a normal
distribution where the occurrence probability of extreme values is low.
As a byproduct, the generated samples prefers more uniform grains
structures, even though there were no such samples in the training set
of the VAE model. This just demonstrates the generative ability of VAE.

4. Conclusion

In this paper, we conduct unsupervised learning of the grain struc-
tures, aiming to automatically and massively characterize and generate

new samples with similar grain structures. The dataset is obtained from
a multi-phase field simulation. Before feeding the data into the model,
the Euclidean distance transformation is applied to balance and densify
the spatial data. A VAE is trained and can reconstruct the ground-
truth structures to realistic performance. We obtained a well-clustered
representation in the latent space with the assistance of PCA. Besides,
we can generate new grain samples from customized vectors; more
importantly, the size distribution can be tuned. In future work, we plan
to use the reduced feature to study various structure—property linkages.
Moreover, although our demonstration uses grain structure from metal
alloys as an example, this method should apply to similar systems, such
as bubble foam.

Despite the feasibility, several factors limit our model’s perfor-
mance. Firstly, in the vanilla VAE, information tends to spread in
all dimensions, which is unfavorable to compressing the data further.
Possible solutions could be the adaption of recently developed VAE
derivatives. For example, one can tune the weight of reconstruction loss
and KL-divergence loss [53] or force the latent variables into a certain
category [54]. Secondly, we notice that the saddle points in the blurry
distance data is harmful for segmentation. U-net-inspired architectures
could be helpful for this situation [55]. Last, more powerful hardware
is desired to accommodate a larger network and more training data.
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Fig. 8. Characterization of the generated grain structure: (a) generated distance data, (b) segmented index data, (c) dependence of radius (R) and number of neighbors (n) of the
corresponding sample, (d) statistics of 100 randomly selected samples from the early simulation step, (e-h) results of the intermediate simulation step after the same operation,

(i-]) results of the late simulation step after the same operation.
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