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Probability forecasts for binary outcomes, often referred to as probabilistic classifiers or
confidence scores, are ubiquitous in science and society, and methods for evaluating and
comparing them are in great demand. We propose and study a triptych of diagnostic
graphics focusing on distinct and complementary aspects of forecast performance:
Reliability curves address calibration, receiver operating characteristic (ROC) curves diag-
nose discrimination ability, and Murphy curves visualize overall predictive performance
and value. A Murphy curve shows a forecast’s mean elementary scores, including the
widely used misclassification rate, and the area under a Murphy curve equals the mean
Brier score. For a calibrated forecast, the reliability curve lies on the diagonal, and for
competing calibrated forecasts, the ROC and Murphy curves share the same number of
crossing points. We invoke the recently developed CORP (Consistent, Optimally binned,
Reproducible, and Pool-Adjacent-Violators (PAV) algorithm-based) approach to craft
reliability curves and decompose a mean score into miscalibration (MCB), discrimination
(DSC), and uncertainty (UNC) components. Plots of the DSC measure of discrimination
ability versus the calibration metric MCB visualize classifier performance across multiple
competitors. The proposed tools are illustrated in empirical examples from astrophysics,
economics, and social science.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Across science and society, probability forecasts for
he occurrence of a binary outcome, also referred to as
robabilistic classifiers or confidence scores, are widely
sed. Prominent examples include a patient’s recovery or
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survival, weather events, solar flares, the designation of
email as spam, credit approval, and recidivism of criminal
defendants, to name but a few applications. Our ability
to develop and improve probability forecasts depends
on the availability of diagnostic tools for assessing and
comparing predictive power.

While some applications call for a single numerical
performance measure, with forecast contests and leader
boards being prime examples, the condensation of fore-
cast quality into a single number prevents detailed anal-
yses. As Janssens (2020) notes,

‘‘Some prediction researchers prefer one metric or graph that cap-
tures the overall performance of prediction models. Others prefer
one for each different aspect of performance, such as calibration,
discrimination, predictive value (risks), and utility’’.
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Table 1
Probability forecasts for class C1.0+ solar flares at a prediction horizon of a day ahead from a joint test
set within calendar years 2016 and 2017 (Leka & Park, 2019; Leka et al., 2019): Acronym, source, mean
Brier score, mean logarithmic (Log) score, and misclassification rate (MR). Details of the data example
are discussed in Section 6.1.
Probability forecast Mean score

Acronym Source Brier Log MR

NOAA National Oceanic and Atmospheric Administration 0.144 0.449 0.205
SIDC Royal Observatorium Belgium 0.172 0.515 0.263
ASSA Korean Space Weather Agency 0.184 ∞ 0.273
MCSTAT Trinity College Dublin 0.193 0.587 0.275
Fig. 1. Triptych of diagnostic graphics for evaluating and comparing the probability forecasts of class C1.0+ solar flares from Table 1: Murphy curves
(lower is better), reliability curves (close to diagonal is preferred) with 90% consistency bands, and ROC curves (higher is better).
Not surprisingly, numerous types of diagnostic graph-
ics for evaluating probability forecasts exist (Filho et al.,
2023; Murphy & Winkler, 1992; Prati et al., 2011), and
practitioners may wonder which ones are preferred.

In this article, we propose using a triptych of diag-
nostic graphics and provide theoretical support for our
choices. The triptych consists of reliability curves in the
recently proposed CORP (Consistent, Optimally binned,
Reproducible, and Pool-Adjacent-Violators (PAV) algor-
ithm-based) form to assess calibration (Dimitriadis et al.,
2021), receiver operating characteristic (ROC) curves to
judge discrimination ability (Fawcett, 2006; Swets, 1973),
and Murphy curves for the assessment of overall pre-
dictive performance and utility (Ehm et al., 2016). Fig. 1
illustrates the triptych for probabilistic classifiers from an
astrophysical forecast challenge (Leka & Park, 2019; Leka
et al., 2019) as introduced in Table 1 and discussed in
detail in Section 6.1.

From the left, Murphy curves assess overall predictive
performance in terms of proper scoring rules (Ehm et al.,
2016). To provide background, a scoring rule assigns a
score S(x, y) to each pair of a probability forecast x ∈

[0, 1] and a binary outcome y ∈ {0, 1}, where 1 stands for
n event and 0 for a non-event. A scoring rule is proper
f a forecaster minimizes the expected score by issuing
probability forecast that corresponds to her true belief,
ith the Brier score S(x, y) = (x−y)2 and the logarithmic

(Log) score S(x, y) = −y log x − (1 − y) log(1 − x) being
prominent examples (Gneiting & Raftery, 2007). Scores
then are averaged over a test set, and the forecast with
2

the smallest mean score is considered best. The widely
used misclassification rate (MR) arises as a special case,
namely, by assigning a score of 1 if the probability forecast
is less than 1

2 and the event realizes, or the forecast
is greater than 1

2 and the event does not realize, and
assigning a score of 0 otherwise. Distinct proper scoring
rules may yield distinct forecast rankings, so practitioners
may wonder which one to use, and guidance is essential.
In the case of a binary outcome, proper scoring rules
can be represented as mixtures over so-called elemen-
tary scoring rules. Consequently, we can reconstruct a
forecast’s score under any given proper rule if we know
its scores under the elementary rules. Fortunately, the
family of the elementary scoring rules is linearly parame-
terized by a threshold or cost-loss parameter θ . A Murphy
curve depicts the mean elementary score as a function of
the threshold θ , with lower scores being preferable. The
height of the Murphy curve at θ =

1
2 equals the mis-

classification rate, and the area under the Murphy curve
equals the mean Brier score. If a forecast has a Murphy
curve below a competitor’s, it is superior in terms of any
proper scoring rule and has superior economic utility to
any decision maker. For example, we see from the Murphy
curves in Fig. 1 that the NOAA forecast dominates the
ASSA forecast, regardless of intended use.

A probability forecast is calibrated if, conditional on
any forecast value p, the event realizes in 100·p percent of
the instances considered. Reliability curves visualize cal-
ibration by plotting an estimate of the conditional event

probability (CEP) as a function of the forecast value. While
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reliability curves close to the diagonal are compatible
with calibration assumptions, notable departures from
the diagonal suggest miscalibration and can be inter-
preted diagnostically. We adopt the recently proposed
CORP approach of Dimitriadis et al. (2021) for the esti-
mation of CEPs by nonparametric isotonic regression, as
illustrated in Fig. 1, where the SIDC and MCSTAT forecasts
exhibit overprediction, with estimated CEPs below the
diagonal.

Receiver operating characteristic (ROC) curves visual-
ze the discrimination ability of the forecasts — that is,
hey judge to what extent the forecast values distinguish
ituations with lower or higher true event probabilities.
pecifically, as one issues hard classifiers based on suc-
essively higher forecast thresholds, a ROC curve plots the
it rate (HR) on the ordinate against the false alarm rate
FAR) on the abscissa. As the ROC curve is invariant under
trictly increasing transformations of the forecast values,
t diagnoses discrimination ability only, while ignoring
alibration issues. Hit rates close to 1 and false alarm rates
lose to 0 are desirable, so ROC curves at the upper left in-
icate superior discrimination ability. In the ROC curves in
ig. 1, the NOAA forecast shows the highest and the ASSA
orecast the lowest discrimination ability. In conclusion,
he NOAA forecast performs best regarding scoring rules
nd economic utility, featuring excellent calibration and
uperior discrimination ability.
The choice of the triptych graphics reflects theoret-

cally supported desirable properties. Reliability curves
xclusively diagnose calibration, ROC curves assess dis-
rimination ability only, and Murphy curves quantify over-
ll predictive performance. Moreover, the novel Fact B and
heorem 2 below demonstrate that, under perfect calibra-
ion, Murphy curves and ROC curves yield congruent in-
ights, as they share the same number of crossing points.
Following the pioneering work of Murphy (1973), re-

earchers have sought decompositions of mean scores
nto intuitively appealing components that reflect cali-
ration and discrimination, respectively. We utilize the
ORP decomposition of Dimitriadis et al. (2021), which
ecomposes a mean score

¯ = MCB − DSC + UNC

nto readily interpretable components that represent mis-
alibration (MCB), discrimination (DSC), and uncertainty
UNC), respectively. In contrast to earlier approaches,
ORP reliability curves and score components do not de-
end on user choices or tuning parameters, and they show
ppealing finite and large sample optimality properties.
he mean score S̄ equals a weighted area under the Mur-

phy curve and serves as a summary measure of predictive
performance. The MCB component quantifies deviations
of the CORP reliability curve from the diagonal and can
be used as a calibration metric. The DSC component is an
appealing alternative to the widely used Area Under the
ROC Curve (AUC) measure of discrimination ability.

If many competing forecasting methods are to be com-
pared, the triptych graphics yield crowded displays. With
such settings in mind, we propose a simple alternative,
namely, MCB–DSC plots, that show, for each competitor
3

involved, the DSC measure plotted against the MCB com-
ponent, augmented by parallel contour lines that indicate
an equal mean score. Due to their simplicity and the
joint assessment of overall predictive ability, calibration,
and discrimination, MCB–DSC plots visualize strengths
and weaknesses of forecasting methods and facilitate the
identification of methods of interest that can be analyzed
in more detail via the triptych graphics. In Fig. 2, we show
Brier score MCB–DSC plots for probability forecasts from
solar flare and social science forecast contests.

While there is a rich literature on the evaluation of
probabilistic classifiers and associated graphical displays,
as reviewed by Murphy and Winkler (1992), Prati et al.
(2011), Richardson (2012), Alba et al. (2017), Filho et al.
(2023), and Xenopoulos et al. (2023), and variants of the
joint triptych display feature in the extant literature, as
in Figure 1 of Flach (2017) and graphics in Taillardat
and Mestre (2020), the original contributions of our work
include the presentation of the triptych as an argumenta-
tively complete set of displays, connections to the CORP
approach of Dimitriadis et al. (2021), the development of
MCB–DSC plots, and novel theoretical results proved in
the Appendix.

The remainder of the article is organized as follows.
Sections 2, 3, and 4 look at the individual triptych displays
by discussing proper scoring rules and Murphy curves,
CORP reliability curves and score decompositions, and
ROC curves, respectively. Section 5 argues for the simulta-
neous use of the triptych displays, studies the connections
between the individual displays, and discusses MCB–DSC
plots. In particular, we show that for two competing fore-
casts that are calibrated, Murphy and ROC curves yield
congruent insights, as they share the same number of
crossing points. In Section 6, we apply the proposed meth-
ods in case studies from astrophysics, economics, and
social science. The paper closes in Section 7. A software
implementation of the proposed tools and material for
replicating the results in the article (Dimitriadis & Jordan,
2023a, 2023b) is available for R (R Core Team, 2022).

2. Scoring rules assess overall predictive performance

Comparative assessments of overall forecast quality
rely on proper scoring rules that encourage honest and
careful forecasting (Brier, 1950; Gneiting & Raftery, 2007).
A scoring rule is a function S(x, y) that assigns a numerical
score or penalty based on the probability forecast x ∈

[0, 1] and the binary outcome y ∈ {0, 1}, where 1 stands
for an event and 0 for a non-event. Infinite penalties are
permitted only if an outcome was declared to have proba-
bility zero and, thus, be impossible. Throughout the paper,
we assume that scoring rules are negatively oriented, so
smaller scores are preferable.

2.1. Proper and strictly proper scoring rules

A scoring rule is proper if, given a Bernoulli random
variable Y with success probability p,

E [S(p, Y )] ≤ E [S(x, Y )] (2.1)

for all forecast values x. It is strictly proper if, additionally,
equality in (2.1) implies that x = p so that the true success



T. Dimitriadis, T. Gneiting, A.I. Jordan et al. International Journal of Forecasting xxx (xxxx) xxx

F
g
l
a
i

p
T
o
t

Fig. 2. Brier score MCB–DSC plots for competitors in forecast contests for (a) class C1.0+ solar flares (Leka et al., 2019), and (b) job training in the
ragile Families Challenge (Salganik et al., 2020a). The colours in panel (a) align with Fig. 1; in panel (b), benchmark forecasts are represented in
reen. The green square at the origin represents the ex post best constant forecast, that is, the unconditional event frequency, and the thick green
ine separates forecasts that are better (above the line) and worse (below the line) than this baseline. Details of the data examples from astrophysics
nd social science are discussed in Sections 6.1 and 6.3, respectively. (For interpretation of the references to colour in this figure caption, the reader
s referred to the web version of this article.).
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robability is the unique minimizer of the expected score.
he key benefit of propriety is the implicit enforcement
f honest and careful forecasts: If a forecaster believes
hat an event has success probability p, then p is her
best forecast in terms of the expected score or penalty.
In practice, for a given record

(x1, y1), . . . , (xn, yn) (2.2)

of probability forecasts x1, . . . , xn and associated binary
outcomes y1, . . . , yn, the mean score

S̄ =
1
n

n∑
i=1

S(xi, yi) (2.3)

is used to rank competing forecasts. The expression on the
right-hand side of (2.3) corresponds to the expectation
E [S(X, Y )] when the tuple (X, Y ) of random quantities
follows the joint empirical distribution of the record (2.2).

The most popular examples of strictly proper scoring
rules are the Brier score (BS) and the Logarithmic score
(LogS), defined by

BS(x, y) = (x − y)2 (2.4)

and

LogS(x, y) = −y log(x) − (1 − y) log(1 − x) (2.5)

for x ∈ [0, 1] and y ∈ {0, 1}. The zero–one loss or score

S 1
2
(x, y) = 1

(
x >

1
2
, y = 0

)
+ 1

(
x <

1
2
, y = 1

)
+

1
2
1

(
x =

1
2

)
(2.6)

is a prominent example of a scoring rule that is proper
but not strictly proper. When averaged in the form of
4

(2.3), it yields the widely reported misclassification rate.
The zero–one loss arises as the special case θ =

1
2 of the

general elementary scoring rule

Sθ (x, y) = 2θ 1(x > θ, y = 0)

+ 2(1 − θ ) 1(x < θ, y = 1) + 2θ (1 − θ ) 1(x = θ ) (2.7)

ith decision threshold or cost–loss parameter θ ∈ (0, 1),
hich is proper, but not strictly proper, as it only takes

nto account whether a predicted probability is smaller
r larger than θ , so it cannot distinguish between fore-
asts that are on the same side of θ . From an economic
erspective, Sθ specifies the loss of a rational decision
aker when the ratio of the monetary cost of a false
larm versus the cost of a missed event equals θ/(1− θ );

see Ehm et al. (2016) and references therein.1 In turn, Sθ

can be identified with the special case t = c = θ of the
general, cost-weighted misclassification loss at decision
threshold t and cost proportion c , as studied in the ma-
chine learning literature (Hand, 2009; Hernández-Orallo
et al., 2011, 2012, 2013).

2.2. Representations of proper scoring rules

The special role of the elementary scoring functions Sθ

from (2.7) is highlighted in a mixture representation stud-
ied by Schervish (1989). Subject to technical conditions
that are immaterial in practice, every proper scoring rule

1 The economic interpretation applies to the left-continuous version
of Sθ in eq. (14) of Ehm et al. (2016). Here we use the symmetric
version in (2.7), which assigns a fixed penalty of 2θ (1−θ ) when x = θ ,
independently of the binary outcome y ∈ {0, 1}. Both versions are
proper, but not strictly proper.
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admits a representation of the form

S(x, y) =

∫ 1

0
Sθ (x, y) dH(θ ) (2.8)

or forecast values x ∈ [0, 1] and outcomes y ∈ {0, 1},
here H is a measure that assigns non-negative weight
o cost–loss parameters θ ∈ (0, 1). The corresponding
core is strictly proper if the assigned weight is positive
lmost everywhere. The elementary score Sη arises when
is a point measure that assigns mass one to η ∈ (0, 1)

nd no mass elsewhere, the Brier score emerges when the
ixing measure H is uniform, and the logarithmic score
rises when H has density proportional to (θ (1 − θ ))−1.
ence, the logarithmic score assigns infinite mass to the
ntegrand in (2.8) at the very boundaries of the unit in-
erval, discouraging predictions with forecast probabilities
t or near 0 or 1. It may render a single (and, hence, a
ean) score infinite, as for the ASSA forecast from Table 1,
hich is a value judgment that some authors consider

‘unacceptable’’ (Selten, 1998, p. 51).
The mixture representation (2.8) is also a powerful tool

or constructing proper scoring rules. For instance, Buja
t al. (2005) introduce the flexible Beta family that arises
hen the mixing measure H has a density proportional
o a Beta density. The members of the Beta family include
he Brier score, the logarithmic score, and the H-measure
f Hand (2009).
An alternative, essentially equivalent characterization

s due to Savage (1971), who showed that subject to
echnical conditions, any proper scoring rule allows a
epresentation of the form

(x, y) = φ(y) − φ(x) − φ′(x)(y − x), (2.9)

here the function φ is convex with subgradient φ′.
subgradient is a generalized version of the classical

erivative; whenever the latter exists, the subgradient
quals the derivative. In relation to the mixture represen-
ation from (2.8) it holds that dH(θ ) = dφ′(θ ) = φ′′(θ ) dθ ,
ith slight technical adaptations when φ is convex, but
ot strictly convex (Gneiting & Raftery, 2007). Under the
avage representation (2.9) the Brier score arises when
(t) = t2, the logarithmic score emerges when φ(t) =

log(t) + (1 − t) log(1 − t), and the elementary scoring
ule Sθ arises under the convex, but not strictly convex,
unction φ(t) = 2max(θ t, (1 − θ )(1 − t)).

In practice, it is not uncommon that different proper
coring rules yield distinct forecast rankings. For example,
n Table 1, the Brier score and the logarithmic score dis-
gree in ranking the ASSA and MCSTAT forecasts. As there
s no apparent reason for a specific strictly proper scoring
ule to be preferred over any other, a natural question is
hich one to choose (Merkle & Steyvers, 2013).

.3. Murphy curves

The mixture representation (2.8) allows for a com-
elling resolution of the challenge for guidance in choos-
ng proper scoring rules. As the representation shows, any
trictly proper scoring rule arises as a mixture over the

amily of the elementary scoring functions Sθ from (2.7).

5

hus, it suffices to consider the family of mean elementary
cores,

¯ θ =
1
n

n∑
i=1

Sθ (xi, yi), (2.10)

where θ ∈ (0, 1). Ehm et al. (2016) proposed plots of the
Murphy curve, that is, the graph of S̄θ as a function of
the decision threshold or cost–loss parameter θ ∈ (0, 1),
which allows users to assess forecast performance with
respect to all scoring rules simultaneously. In particular,
the height of a Murphy curve at θ =

1
2 equals the

misclassification rate, but note that sole focus on the
misclassification rate as a general measure of predictive
performance is problematic because any single Sθ rep-
resents a particular economic scenario as mentioned in
Section 2.1 and fails to be strictly proper. For a general
measure, looking at the area under a Murphy curve, which
equals the mean Brier score, is better.

Hernández-Orallo et al. (2011) had proposed the same
tool under the name of Brier curve, and related dis-
plays had been studied by Murphy and Winkler (1992)
and Drummond and Holte (2006), among other authors.
The term Murphy diagram is also used, particularly when
multiple Murphy curves for competing forecasts are shown
within a single display. If a forecast exhibits a lower mean
score than another under all Sθ , then it dominates the
ompetitor in terms of any proper scoring rule S, as lower
alues under Sθ carry over to S through integration in the
ixture representation (2.8).
Fig. 3 looks at the Murphy curves for the class C1.0+

olar flare forecasts. The panel at left compares the lead-
ng contenders from Table 1, the NOAA, and the SIDC
orecasts. We note that NOAA has smaller S̄θ from (2.10)
nearly throughout, so integration over S̄θ with respect
to typically used mixing measures yields smaller mean
scores. The panel at right compares the MCSTAT and ASSA
forecasts, and we see that, while for decision thresholds θ

up to about 0.30, the former has lower S̄θ , the situation is
reversed for θ greater than 0.50. Hence, it depends on the
mixing measure H in (2.8) whether a scoring rule prefers
the MCSTAT or the ASSA forecast.

To summarize, Murphy curves assess overall predic-
tive performance, with the evaluation being complete in
terms of proper scoring rules and economic utility. Still, a
more detailed assessment of the merits and deficiencies
of competing forecasts is often desirable. For example,
a forecast might be deficient by systematically over or
underpredicting or by an inability to distinguish between
instances of higher and lower true CEPs. In a nutshell,
these two deficiencies correspond to a lack of calibration
and discrimination, respectively. While Murphy curves
rank forecasts with such deficiencies lower, they cannot
diagnose the form and extent of these issues. Reliability
and ROC curves, to which we turn in the sequel, serve this
purpose.

3. Reliability curves assess calibration

A crucial, desirable property of a probabilistic classifier

is that, when looking back at a collection of forecasts
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panels (a) and (c) show the difference between the mean elementary score for SIDC and NOAA, and for ASSA and MCSTAT, respectively.
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and associated binary outcomes, whenever the forecast
value x was issued, the outcome ought to occur in about
100 · x percent of the respective instances. To formalize
this property, it is useful to think of the forecast and
the outcome as random variables X and Y , respectively,
ith joint distribution Q. Then the probability forecast
is calibrated (Bröcker, 2012b; Lindley, 1982; Schervish,
989) if the conditional event probability,

EP(x) = Q (Y = 1 | X = x) = E [Y | X = x], (3.1)

agrees with the forecast value x for all relevant x ∈ [0, 1].
By Theorem 2.11 of Gneiting and Ranjan (2013), the con-
dition in (3.1) serves as the unified notion of calibration
for binary outcomes.

3.1. Reliability curves

Calibration is typically assessed graphically via relia-
bility curves (Bröcker & Smith, 2007; Murphy & Winkler,
1977, 1992) that plot an estimated version of the condi-
tional event probability CEP(x) against the forecast value
x, with deviations from the diagonal suggesting lack of
calibration. Classical approaches to estimating CEP(x) rely
on binning and counting and have been hampered by ad
hoc implementation decisions and instability under un-
avoidable choices regarding binning (Arrieta-Ibarra et al.,
2022; Roelofs et al., 2022). To resolve these issues, Dimi-
triadis et al. (2021) introduced the CORP (Consistent, Op-
timally binned, Reproducible, and Pool-Adjacent-Violators
(PAV) algorithm-based) reliability curve that plots an es-
timate of CEP(x) obtained through nonparametric iso-
tonic regression, subject to the regularizing constraint of
isotonicity in x, as implemented via the Pool-Adjacent-
Violators (PAV) algorithm (Ayer et al., 1955; De Leeuw
et al., 2009).

For a given record of the form (2.2), suppose without
loss of generality that x1 ≤ · · · ≤ xn. As specified in
Algorithm 1, where we specialize descriptions in Gneiting

and Resin (2023), the PAV algorithm generates a sequence c

6

Algorithm 1: PAV algorithm based on data of the form
(2.2)
Input: (x1, y1), . . . , (xn, yn) ∈ [0, 1] × {0, 1} where

x1 ≤ · · · ≤ xn
Output: calibrated values x̂1, . . . , x̂n
partition into groups G1:1, . . . ,Gn:n and let x̂i = yi for
i = 1, . . . , n

while there are groups Gk:i and G(i+1):l such that
x̂1 ≤ · · · ≤ x̂i and x̂i > x̂i+1 do

merge Gk:i and G(i+1):l into Gk:l and let
x̂i =

1
l−k+1

∑l
j=k yj for i = k, . . . , l

end

x̂1 ≤ · · · ≤ x̂n (3.2)

of recalibrated values, such that the empirical measure of
(x̂1, y1), . . . , (x̂n, yn) satisfies (3.1). In a nutshell, the algo-
ithm partitions the index set {1, . . . , n} into groups Gk:l =

{k, . . . , l} of consecutive integers. Successive groups get
pooled iteratively if the conditional event probability (CEP)
in the preceding group exceeds the CEP in the subsequent
group.

While isotonic regression and the PAV algorithm have
been well known as tools for re-calibration (Zadrozny
& Elkan, 2002), their usage in constructing reliability
curves is a recent development. The CORP reliability curve
shows the piecewise linear curve that connects the points
(x1, x̂1), . . . , (xn, x̂n). Horizontal segments in this piece-
ise linear graph correspond to indices i with xi < xi+1
nd x̂i = x̂i+1; diagonal segments originate from indices
where xi < xi+1 and x̂i < x̂i+1. If the original forecast
s calibrated, then x1 = x̂1, . . . , xn = x̂n, and the reli-
bility curve lies on the diagonal. Otherwise, systematic
eviations from the diagonal suggest a lack of calibration.
In contrast to classical approaches that estimate a re-

iability curve by assigning forecast values to bins and

ounting events per bin, which mandates user choices, the
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CORP approach does not require any tuning parameters.
It benefits from the regularizing constraint of isotonicity
and has appealing finite sample optimality and asymp-
totic consistency properties (Dimitriadis et al., 2021). If
desired, CORP reliability curves allow for an interpreta-
tion in terms of binning and counting by identifying any
horizontal segment with a bin and interpreting the CEP as
the corresponding empirical event frequency. Generally,
we supplement the reliability curve with a histogram
depicting the forecast values’ unconditional distribution.

Returning to the solar flare forecasts from Table 1,
he CORP reliability curves in Fig. 1 are supplemented
y consistency bands (Bröcker & Smith, 2007), which
e generate as described by Dimitriadis et al. (2021,
ection S3). Segments of a reliability curve that lie con-
iderably outside the consistency band, which represents
0 percent of the reliability curves that arise under the
ssumption of a calibrated forecast, suggest that the lack
f calibration should not be attributed to estimation noise
lone. The NOAA and ASSA forecasts are well-calibrated,
ith reliability curves primarily within the consistency
ands. In contrast, the SIDC and MCSTAT forecasts show
ubstantial underprediction.

.2. Empirical score decomposition: Miscalibration (MCB),
iscrimination (DSC), and uncertainty (UNC) components

For several decades, researchers have sought decom-
ositions of the mean score S̄ from (2.3) into nonneg-

ative components that allow for persuasive interpreta-
tion (Blattenberger & Lad, 1985; Bröcker, 2009; DeGroot
& Fienberg, 1983; Ferro & Fricker, 2012; Murphy, 1973;
Siegert, 2017; Yates, 1982). Typically, a decomposition
involves a reliability or miscalibration (MCB) term that in-
dicates how much the predicted probabilities differ from
the conditional event frequencies, a resolution or dis-
crimination (DSC) term that measures a forecast’s ability
to distinguish between events and non-events, and an
uncertainty (UNC) component that quantifies the inherent
difficulty of the prediction problem but does not depend
on the forecast under consideration. While extant ap-
proaches lack stability under mandatory user decisions,
particularly about binning, and may fail to provide an
exact decomposition or might yield components that fail
to be nonnegative, the CORP approach yields a new type
of decomposition that resolves these issues.

As before, for a given record (2.2) suppose without loss
of generality that x1 ≤ · · · ≤ xn, and let x̂1 ≤ · · · ≤ x̂n
denote the PAV re-calibrated values from (3.2), as plotted
in the CORP reliability curve. Furthermore, let r = ȳ =
1
n

∑n
i=1 yi be the realized unconditional event frequency.

With S being any proper scoring rule, let

S̄C =
1
n

n∑
i=1

S(x̂i, yi) and S̄R =
1
n

n∑
i=1

S(r, yi) (3.3)

denote the mean score for the (re)Calibrated probabilities
and the constant Reference forecast r , respectively. Using
(3.3), the mean score S̄ from (2.3) decomposes as

S̄ =
(
S̄ − S̄C

)  −
(
S̄R − S̄C

)  + S̄R . (3.4)
MCB DSC UNC

7

The miscalibration term MCB = S̄ − S̄C equals the
difference in the mean score of the original versus the
(re)calibrated forecast. It expresses deviations of the CORP
reliability curve from the diagonal in terms of the score
under consideration. The discrimination component DSC
= S̄R−S̄C quantifies how much the (re)calibrated forecast
improves upon the reference score S̄R that is based on
a calibrated but constant forecast, and we note that, by
construction, DSC is invariant under strictly increasing
transformations of the forecast values. While small values
of MCB are preferable, so are large values of the DSC com-
ponent. The uncertainty term UNC = S̄R is independent
of the forecast at hand and provides a natural benchmark,
as it equals the score of the (ex-post) best constant fore-
cast. In contrast to earlier types of decomposition, the
CORP decomposition from (3.4) is exact and guarantees
that MCB ≥ 0 with equality if the original forecast is
calibrated, and DSC ≥ 0 with equality if the (re)calibrated
forecast is constant (Dimitriadis et al., 2021, Theorem 1).

The CORP decomposition applies under any proper
scoring rule S. When S is the Brier score, it agrees with the
classical decomposition of Murphy (1973) in the special
case where the bins reduce to unique forecast values
with an associated nondecreasing sequence of conditional
event frequencies (Dimitriadis et al., 2021, Theorem 2).
Under the misclassification rate that arises from (2.3)
under the zero–one score in (2.6), the components ad-
mit appealing interpretations in terms of the original,
the (re)calibrated, and the constant reference forecast
being on the same or distinct side(s) of 1

2 . Table 2 shows
the CORP decomposition of the mean Brier score, the
mean logarithmic score, and the misclassification rate for
the solar flare forecasts from Table 1. The MCB compo-
nents confirm the visual appearance of the CORP reliabil-
ity curves in Fig. 1. The NOAA forecast exhibits the least
and MCSTAT the most pronounced lack of calibration. As
discussed, the mean score S̄ and the MCB component
under the logarithmic score are infinite for the ASSA fore-
cast. We defer consideration of the DSC components to
Section 4, where we focus on ROC curves.

3.3. Calibration metrics and the Brier score MCB component

Recently, there has been a surge of interest in calibra-
tion metrics in the machine learning literature. The widely
used metric of the Expected (or Estimated) Calibration
Error (ECE: Guo et al., 2017; Naeini et al., 2015) depends
on binning and counting and thus is subject to the afore-
mentioned types of instabilities (Dimitriadis et al., 2021;
Roelofs et al., 2022) and biases (Bröcker, 2012a; Ferro
& Fricker, 2012). In a recent review, Arrieta-Ibarra et al.
(2022, p. 3) summarize that

‘‘the classical empirical calibration errors based on binning vary
significantly based on the choice of bins. The choice of bins is
fairly arbitrary and enables the analyst to fudge results (whether
purposefully or unintentionally)’’.

To address these issues, Roelofs et al. (2022) use equal-
mass bins and select the number of bins as large as
possible while preserving isotonicity in the calibration
curve. Arrieta-Ibarra et al. (2022) and Bröcker (2022) rec-

ommend graphical displays, calibration metrics, and tests
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Table 2
CORP decomposition of the mean score in (2.3) for the probability forecasts of class C1.0+ solar
flares from Table 1, under the Brier score (UNC = 0.211), the logarithmic score (UNC = 0.614), and
misclassification rate (UNC = 0.303).
Forecast Brier score Logarithmic score Misclassification rate

S̄ MCB DSC S̄ MCB DSC S̄ MCB DSC

NOAA 0.144 0.006 0.073 0.449 0.027 0.191 0.205 0.004 0.102
SIDC 0.172 0.014 0.053 0.515 0.036 0.135 0.263 0.038 0.078
ASSA 0.184 0.007 0.035 ∞ ∞ 0.085 0.273 0.006 0.036
MCSTAT 0.193 0.034 0.052 0.587 0.101 0.128 0.275 0.042 0.071
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based on cumulative differences between predicted and
observed event probabilities. While approaches of this
type have appealing mathematical properties, cumulative
quantities lack intuition and ease of interpretation. Simi-
lar to the method proposed by Roelofs et al. (2022), the
CORP approach to reliability curves enforces isotonicity
but uses the PAV algorithm to select the number and
the arrangement of the bins in fully automated, optimal
ways (Dimitriadis et al., 2021). The CORP decomposition
from (3.3) and (3.4) is based on the CORP reliability curve.
When S is the Brier score, it yields an MCB component
that reduces to a classical calibration metric under modest
conditions (Dimitriadis et al., 2021, Theorem 2). We pro-
pose using the Brier score MCB component as a calibration
metric.

4. Receiver operating characteristic (ROC) curves visu-
alize discrimination ability

While calibration is an important quality of probabilis-
ic classifiers, a calibrated forecast is not necessarily pow-
rful, as it may lack the ability to discriminate between
vents of low and high event probability. ROC curves
re key in assessing this ability (Egan, 1975; Fawcett,
006; Swets, 1973). In a nutshell, ROC curves visual-
ze potential predictive power, detached from calibration
onsiderations.

.1. ROC curves

To introduce ROC curves, suppose that we use the
hreshold t to construct a hard classifier from the prob-
ability forecast x in the usual way by predicting an event
y = 1) if x > t and predicting a non-event (y = 0) if
x ≤ t . For a record of the form (2.2), the resulting False
Alarm Rate (FAR) and Hit Rate (HR) are given by

HR(t) =

∑n
i=1 1(yi = 1, xi > t)∑n

i=1 1(yi = 1)
(4.1)

and

FAR(t) =

∑n
i=1 1(yi = 0, xi > t)∑n

i=1 1(yi = 0)
, (4.2)

respectively. The ROC curve is the piecewise linear curve
that connects the at most n+1 unique points of the form
(FAR(t),HR(t)) that arise as the threshold t decreases.2

2 Some researchers talk of ROC as relative operating characteris-
tic (Swets, 1973), and the hit rate is also referred to as probability
of detection, recall, sensitivity, or true positive rate. The false alarm
 p

8

Informally, the threshold t parameterizes the ROC curve,
with the points (0,0) and (1,1) corresponding to t ≥ 1 and

< 0, respectively.
ROC curves assess the discrimination ability of fore-

asts and can be interpreted diagnostically (Marzban,
004). If the empirical conditional distributions for data
2.2) given an event (y = 1) and a non-event (y =

) coincide, then the forecast is unable to distinguish
etween events and non-events, and its ROC curve lies
n the diagonal. The larger the separation between these
onditional distributions, the higher the discriminatory
ower of the forecast and the further to the upper left
he ROC curve. For a perfectly discriminating probabilistic
lassifier, there is a threshold value t such that yi = 0 if
i ≤ t and yi = 1 if xi > t , and hence it exhibits an
deal ROC curve along the left and upper edges of the unit
quare. By construction, ROC curves are invariant under
trictly increasing transformations of the forecast values.
An often neglected but important consideration con-

erns the concavity of ROC curves.3 In practice, the orig-
nal ROC curves constructed from empirical data (2.2)
lmost inevitably fail to be concave, as illustrated on the
orecasts from Table 1 in the left-hand panel of Fig. 4. This
bservation is explained by Theorems 3 and 4 of Gneiting
nd Vogel (2022), according to which a ROC curve is
oncave if, and only if, the conditional event probability
s nondecreasing with the forecast value x, which for
mpirical data is hardly ever the case. ROC curves assess
iscrimination ability — that is, potential predictive ability
and while potential predictive ability is ignorant of

alibration, it can only be assessed under the assumption
f larger forecast values implying higher event proba-
ilities. In this light, displays of nonconcave ROC curves
ave been harshly criticized, with researchers positing
hat they ‘‘must be considered irrational’’ and ‘‘unethical
hen applied to medical decisions’’ (Pesce et al., 2010).

rate is also known as the probability of false detection, fall-out, or
false positive rate. It equals one minus the specificity, selectivity,
or true negative rate. See https://en.wikipedia.org/wiki/Precision_and_
recall#Definition_(classification_context), accessed 27 November 2022.
Moreover, some researchers define the ROC curve as a display that
connects the points (1 − HR(t), 1 − FAR(t)) for t ∈ [0, 1], resulting
n a curve that is mirrored at the anti-diagonal of the unit square,
hich maintains the interpretation that ROC curves at upper left are
esirable (Hernández-Orallo et al., 2013).
3 The machine learning literature uses the terms convex and con-
exity, following the seminal work of Fawcett (2006). Conventions in
he mathematical literature suggest that concave and concavity are
referred terms.

https://en.wikipedia.org/wiki/Precision_and_recall#Definition_(classification_context)
https://en.wikipedia.org/wiki/Precision_and_recall#Definition_(classification_context)
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Fig. 4. ROC curves for the probability forecasts of class C1.0+ solar flares from Table 1. Panel (a) shows the original ROC curves for the forecasts
x1, . . . , xn from (2.2), panel (c) the concave ROC curves for the PAV re-calibrated forecasts x̂1, . . . , x̂n from (3.2). In panel (b), the original and the
concave ROC curves are shown for the NOAA and SIDC forecasts. The magnified details demonstrate that the original ROC curve morphs into its
concave hull.
Fortunately, there is a straightforward remedy. If one
computes the ROC curve from the PAV transformed fore-
cast values (3.2) in lieu of the original forecasts from (2.2),
the ROC curve morphs into its concave hull, that is, the
smallest concave curve that lies to its upper left (Fawcett
& Niculescu-Mizil, 2007). The corrected, concave ver-
sion of the ROC curve exclusively compares discrimina-
tion ability, as differences in calibration get eliminated
through re-calibration. In contrast, while original ROC
curves focus on discrimination ability, conditional event
frequencies that fail to be monotone generate confound-
ing effects.4

We strongly recommend using concave ROC curves
computed from PAV-transformed forecast values in trip-
tych graphics for empirical data. In Fig. 4, the left-hand
panel illustrates the original versions of the ROC curves
for the solar flare forecasts, the right-hand panel displays
the concave ROC curves, as in the triptych graphics in
Fig. 1, and the middle panel illustrates the transition from
the original curve to the concave hull. The NOAA forecast
discriminates the most, and the ASSA forecast the least.
The MCSTAT and SIDC forecasts exhibit roughly equal
discrimination ability, with ROC curves that are nested in
between the curves for the NOAA and ASSA forecasts.

4.2. The area under the curve (AUC) measure and the Brier
score discrimination (DSC) component

Myriads of scientific papers have employed the Area
Under the ROC Curve (AUC: Bradley, 1997; DeLong et al.,
1988; Hanley & McNeil, 1982; Marzban, 2004) measure
to compare the predictive performance of probabilistic
classifiers. AUC admits an appealing interpretation as the

4 In general, the transformation from the original probabilities x1 ≤

· · · ≤ xn to the PAV transformed, re-calibrated probabilities x̂1 ≤ · · · ≤

x̂n is monotonic, but not strictly monotonic, so a change in the ROC
curve does not contradict the aforementioned invariance under strictly
increasing transformations.
9

probability of a value drawn at random from the em-
pirical distribution of forecast values for an event being
higher than a value drawn from the distribution for a
non-event. An AUC value of 1 signifies perfect discrim-
ination ability; a value of 1

2 indicates no discrimination,
corresponding to the trivial ROC curve on the diagonal.
A value smaller than 1

2 implies that interchanging the
predictions for 0 and 1 would improve forecast accuracy.
As the ROC curve is invariant under strictly increasing
transformations, so is AUC, and we note that AUC ex-
clusively concerns discrimination ability while ignoring
(mis)calibration.

Consequently, AUC has severe limitations as an overall
performance metric. To summarize arguments of Hand
(2009) informally, AUC can be interpreted in the form of
(2.8) with a mixing measure H that depends on the fore-
cast values in complex ways. As argued by Hand (2009),
Hand and Anagnostopoulos (2023), such a dependence is
‘‘absurd’’ and may entail ‘‘seriously misleading results’’.
Indeed, Example 3 of Byrne (2016) demonstrates that
deliberately misspecified classifiers may yield higher ex-
pected AUC than the true underlying probabilities. While
these perspectives are qualified by an alternative repre-
sentation of AUC studied by Flach et al. (2011), and by
Theorem 6 of Byrne (2016) according to which the true
probabilities yield the highest expected AUC when par-
ticipants in forecast contests are informed a priori of the
numbers of events and non-events, the limitations men-
tioned above remain, and AUC generally is not suitable as
an omnibus performance measure.

Instead, both AUC and the DSC measure from the CORP
score decomposition in (3.4) are measures of discrim-
ination ability. Under calibration, the MCB component
in (3.4) vanishes, and as the UNC component is inde-
pendent of the forecast, S̄ equals the DSC component,
except for an additive constant. Furthermore, if S is the
Brier score, then DSC reduces to a classical component,
subject to conditions (Dimitriadis et al., 2021, Theorem
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2). These relationships suggest using the Brier score DSC
component as an attractive alternative to AUC if a mea-
sure of discrimination ability is sought. While both AUC
and DSC are invariant under strictly increasing classifier
transformations, DSC = S̄R − S̄C admits an appealing
nterpretation in terms of the mean Brier score S̄C for the
AV (re)calibrated forecast, up to the constant S̄R. This
nterpretation is retained when S is the logarithmic score
r any other proper scoring rule.

. Putting it together: The triptych graphics and MCB
DSC plots

Considering the class C1.0+ solar flares example from
he previous sections and Figs. 1–4, the NOAA forecast is
uperior in all facets. However, rankings of the other fore-
asts from Table 1 depend on the criteria used: The ASSA
orecast is well calibrated but exhibits poor discrimination
bility. The MCSTAT and SIDC forecasts show discrimina-
ion ability between the NOAA and ASSA forecasts but lack
alibration. Murphy curves provide an overall assessment
f predictive performance, covering both calibration and
iscrimination ability, and favor the NOAA forecast, fol-
owed by the SIDC forecast. In contrast, the MCSTAT and
SSA forecast rankings depend on the scoring rule used.

.1. Theoretical guarantees

In the triptych graphics, information about overall
redictive ability in the Murphy curves is disentangled
nto facets of calibration, as displayed in CORP reliability
urves, and facets of discrimination ability, as visualized
y ROC curves. We now summarize existing and new
heoretical results that support this intuition and pro-
ide new insights about links between the displays, with
echnical details being available in the Appendix. The
indings are illustrated in idealized settings, where we
onsider the joint distribution of a pair (X, Y ) of random
ariables, with X representing the probability forecast and
the binary outcome. The triptych graphics in these ideal

ettings derive from the population quantities and can
e interpreted as the triptych graphics that arise when
record of the form in (2.2) is generated by ever larger
amples from the joint distribution of (X, Y ). As the pop-
lations involved show nondecreasing CEPs, original and
e-calibrated probabilities coincide and yield the same
oncave ROC curve.
We begin with a discussion of the role of calibration. As

oted, any forecast can be re-calibrated ex-post by apply-
ng the PAV algorithm that converts the original forecast
robabilities x1 ≤ · · · ≤ xn from (2.2) into the calibrated
robabilities x̂1 ≤ · · · ≤ x̂n from (3.2). The following
tylized fact summarizes findings from Schervish (1989,
heorem 6.3) and Holzmann and Eulert (2014, Corollary
).

act A. If a probability forecast fails to be calibrated, its
e-calibrated version is superior in terms of Murphy curves.

To illustrate Fact A, we consider the idealized Scenario

, where the binary outcome Y has event probability X0,

10
uniformly distributed on the unit interval. We compare
to the probability forecast X1 =

3
8 +

1
4X0, which is a

strictly increasing transformation of X0. Part (a) of Fig. 5
shows idealized triptych plots, where density plots for the
unconditional distribution of the forecast values augment
the reliability curves. While X0 and X1 have the same
discrimination ability and identical ROC curves, X1 fails to
be calibrated, whereas X0 is calibrated. In fact, X0 is the
re-calibrated version of X1 and thus is superior in terms
of Murphy curves.

The following fact summarizes a crucial, novel find-
ing. We provide a rigorous version as Theorem 2 in the
Appendix, which also contains its proof.

Fact B. For two competing probability forecasts that are
both calibrated, the number of crossing points of the ROC
curves equals the number of crossing points of the Murphy
curves.

For illustration, we tend to Scenario B, where the fore-
casts X1 and X2 are calibrated. Let X0 be uniformly dis-
tributed and the outcome Y have true event probability
X0. We consider the probability forecasts

X1 =

⎧⎨⎩
X0 if X0 < 1

4 ,
1
2 if 1

4 ≤ X0 ≤
3
4 ,

X0 if X0 > 3
4 ,

(5.1)

and

X2 =

⎧⎨⎩
1
8 if X0 < 1

4 ,

X0 if 1
4 ≤ X0 ≤

3
4 ,

7
8 if X0 > 3

4 ,

(5.2)

respectively. The triptych plots in part (b) of Fig. 5 illus-
trate that the ROC and Murphy curves share the same
number, namely two, of crossing points.

In particular, Fact B implies that if two competing
probability forecasts are calibrated, then there is a su-
periority relation in terms of ROC curves if, and only if,
there is a superiority relation in terms of Murphy curves.
The following fact sharpens this statement and relates to
considerations of sharpness (Gneiting et al., 2007). Infor-
mally, a probability forecast is sharper than another if its
forecast values are closer to the most confident values of
0 and 1, respectively. In the Appendix, we state and prove
a rigorous version of the subsequent Fact C in Theorem 3.

Fact C. Suppose two competing probability forecasts are
calibrated, and one is sharper than the other. In that case,
the sharper one is superior in terms of both ROC curves and
Murphy curves, and vice versa.

For an illustration in terms of nested information sets,
which imply Murphy dominance as proved by Holzmann
and Eulert (2014, Corollary 4) and Krüger and Ziegel
(2021, Proposition 3.1), we consider Scenario C. Specifi-
cally, let the binary outcome Y have true event probability
X0 = Φ(

∑4
i=1 ai ), where a1, a2, a3, and a4, respectively,

are independent standard normal variates, and Φ is the

cumulative distribution function of the standard normal
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Fig. 5. Triptych displays in idealized Scenarios A, B, and C.

11



T. Dimitriadis, T. Gneiting, A.I. Jordan et al. International Journal of Forecasting xxx (xxxx) xxx

f
s
a
t
i
f
s
o
s
P
r

5
s

f
p
g
i
H
o
s
t
t
p
(
w
(
j
a
c
r
e

a
r

distribution. We consider the probability forecasts

Xj = Φ

(
1

(j + 1)1/2

4−j∑
i=1

ai

)
(5.3)

or j = 0, 1, 2, and 3. So, there are four independent
ources of information, represented by a1, a2, a3, and a4,
nd the forecast Xj provides the correct specification of
he event probability conditional on 4 − j sources be-
ng available. Thus, the information sets are nested, the
orecasts are calibrated, and they exhibit an increase in
harpness as j decreases. The triptych graphs in part (c)
f Fig. 5 illustrate the increase in sharpness and the as-
ociated gain in terms of both ROC and Murphy curves.
airwise comparisons between the forecasts illustrate the
elationships guaranteed by Fact C.

.2. Visualizing classifier performance for many competitors
imultaneously: MCB–DSC plots

It is not uncommon that a multitude of competing
orecasts are to be compared, with forecast contests being
rime examples of such settings (Leka et al., 2019; Sal-
anik et al., 2020a). Considering all competing forecasts
n the triptych graphics results in overcrowded displays.
owever, the components of the CORP decomposition
f a mean score S̄ from (3.4) can serve as numerical
ummaries. For a succinct comparison that considers mul-
iple facets of forecast performance we propose a simple
ool, which we call an MCB–DSC plot, namely, a scatter
lot of the miscalibration (MCB) versus the discrimination
DSC) component of the CORP decomposition, augmented
ith a set of parallel contour lines that according to
3.4) correspond to an equal mean score. Notably, the
oint consideration of the MCB and DSC components en-
bles a comparison in terms of the mean score S̄ as well,
ontrary to the joint use of the (traditional) Brier score
eliability component and AUC in the extant literature, as
xemplified in Hewson and Pillosu (2021, Figure 2).
MCB–DSC plots admit appealing interpretations that

pply under any choice of the underlying proper scoring
ule S, as summarized now.

• For any forecast method considered, the mean score
S̄ and the associated MCB and DSC components from
(3.4) can be read off immediately. The UNC compo-
nent depends on the outcomes only, is shared by all
methods considered, and equals the label attached
to the diagonal (that is, the thick green line with a
unit slope that originates from the lower left corner
where MCB = 0 and DSC = 0).

• The origin of the coordinate system in an MCB–
DSC plot, where MCB = DSC = 0, corresponds
to the best constant forecast, namely, the uncon-
ditional event frequency in the test set. As noted,
the diagonal corresponds to its mean score, namely,
S̄R = UNC. Forecasts that appear above the diagonal
perform better than this reference; forecasts below
the diagonal perform worse.

• The mean score S̄C = UNC − DSC of the PAV-
(re)calibrated forecast corresponds to the DSC com-

ponent, up to a constant and sign. This illustrates

12
that the forecast with the largest DSC component has
the greatest potential, provided (re)calibration is an
option.

Figs. 2 and 7 show MCB–DSC plots for competing solar
flare forecasts (Leka & Park, 2019; Leka et al., 2019), and
for a considerably larger number of forecasts for a binary
outcome from the Fragile Families Challenge (Salganik
et al., 2020a), at which we take a closer look in Section 6.3.
We focus on the Brier score decomposition, which is of
particular appeal, as all terms involved are guaranteed to
be finite, the mean Brier score S̄ equals the area under
the Murphy curve, and under modest conditions, the Brier
score MCB component reduces to a classical measure of
deviations from the diagonal in a reliability curve (Dimi-
triadis et al., 2021). Under the logarithmic score, the mean
score S̄ equals a weighted area under the Murphy curve,
and both S̄ and the MCB component may become infinite.
While MCB–DSC plots might mask details of the predic-
tive performance, they are well suited to select subsets
of interesting forecasts that can be analyzed further by
plotting triptych graphics.

5.3. Uncertainty quantification via confidence bands

Our choices of details in the triptych graphics are tai-
lored to typical desiderata in forecast evaluation. Murphy
and ROC curves assess economic utility and discrimi-
nation ability, respectively, which should be compared
between forecasts. This is facilitated by using a single
panel to allow the curves to be compared against one
other. For a reliability curve, the degree of deviation from
the diagonal is relevant, and consistency bands address
the natural question of whether (or not) observed dif-
ferences between a CORP reliability curve and the diag-
onal can reasonably be attributed to chance alone despite
the forecast probabilities being perfectly calibrated. One
panel per forecast is the preferred visualization format for
the joint display of a reliability curve and the associated
consistency band.

While consistency bands only bear relevance to the re-
liability curve, confidence bands aim to quantify sampling
variability conditional on the data record at hand. So, they
apply to Murphy, reliability, and ROC curves. Here, the
focus lies on the uncertainty attached to the respective
estimate, and we change the visualization format to one
panel per forecast. As a baseline method for uncertainty
quantification, we use bootstrap case resampling to gen-
erate confidence bands; that is, we draw samples (with
replacement, and of the same size n) from the collection
(2.2) of prediction-observation tuples, find the respective
(Murphy, reliability, or ROC) curve for each bootstrap
sample, and construct confidence bands based on point-
wise quantiles. In Fig. 6, we return to the C1.0+ solar
flare data and show a modified version of the triptych,
where confidence bands are attached to the individual
curve estimates, that represent 90 percent of the curves
that arise under the bootstrap scheme.5

5 For Murphy curves and reliability curves, the confidence bands
show the collection of pointwise confidence intervals given the pa-

rameter on the horizontal axis. For ROC curves, confidence intervals are
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Fig. 6. Modified triptych graphics for probability forecasts of class C1.0+ solar flares from Table 1 and Figs. 1–4: Murphy curves (left panel), reliability
curves (middle panel), and ROC curves (right panel), with uncertainty quantification via 90% confidence bands.
While case resampling may not always be valid, it
s a reasonable starting point, and alternatives such as
lock-bootstrapping for time-series data can be readily
mployed. Other alternatives that are straightforward to
mplement include the resampling of observations from a
non)parametric estimate of the conditional event prob-
bility; for example, Dimitriadis et al. (2021) describe
he use of the isotonic estimate for the resampling of
eliability curves. Care must be taken when bootstrapping
he MCB component in MCB–DSC plots due to its finite
ample bias for forecasts calibrated on the population
evel. A more in-depth analysis of these issues is deferred
o future work.

. Empirical examples

We illustrate the use of the triptych displays and MCB–
SC plots for probabilistic classifiers from the academic
iterature in astrophysics, economics, and the social sci-
nces.

.1. Solar flares

Solar flares are energetic phenomena with potentially
isastrous effects on modern terrestrial communications
ystems. Numerous forecasting systems for solar flares
ave been developed due to the increased availability of
strophysical data in real time. In a series of workshops,
data repository for comparative evaluation has been

reated (Barnes et al., 2016; Leka & Park, 2019; Leka et al.,
019).
We consider operational probability forecasts at a pre-

iction horizon of a day ahead for solar flares of class
1.0+ and M1.0+, in exceedance of 10−6 and 10−5 Watts

per square meter, respectively, as issued in calendar years
2016 and 2017. While Leka and Park (2019), Leka et al.
(2019) describe 11 and 19 competing forecasts for C1.0+

created along parallel lines that connect points with the same index
(for technical details, cf. Fig. 12).
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and M1.0+ flares, respectively, there are substantial
amounts of missing data in the records. As fair com-
parisons require evaluation on a joint set of forecast
situations, we restrict our analysis to test sets of nine
forecasts for C1.0+ flares on 577 days, as analyzed in
Figs. 1 and 2, and 17 forecasts for M1.0+ flares on 431
days. On these test sets, records are complete, and flares
have unconditional event frequencies of 30.3 and 3.5
percent, respectively.

Turning to M1.0+ flares, Fig. 7 shows MCB–DSC plots
under the Brier score and the logarithmic score. Notably,
under the logarithmic score, most forecasts are outper-
formed by the best constant forecast. For the triptych
graphics in Fig. 8, we select the NOAA forecast, which
performs well under either scoring rule, and the NICT
forecast, which is by far the best-performing method in
terms of the Brier score. Furthermore, we consider the
MCSTAT forecast, which is poorly calibrated, and the ASSA
forecast as a technique that lacks discrimination ability.
Due to the low unconditional event probability, most
forecast values are small. The NOAA forecast is of high
quality in every regard. The NICT forecast is a hard clas-
sifier; it only issues forecast probabilities of 0 and 1. It
performs best under most thresholds θ in the Murphy
curves, except at very high values. Not surprisingly, it
is penalized by an infinite mean logarithmic score. The
MCSTAT forecast exhibits good discrimination ability but
overpredicts; the conditional event frequency is persis-
tently lower than the forecast value, resulting in poor
overall performance. These issues can be addressed by
(re)calibration, as opposed to the lack of discrimination
ability of the ASSA forecast, which cannot be remedied.

6.2. Survey of professional forecasters (SPF) probability fore-
casts of economic recessions

We study probability forecasts for US GDP recessions:
quarters with a negative real GDP growth rate. The data-
base of the Survey of Professional Forecasters (SPF:
Croushore & Stark, 2019) includes probability forecasts

for a GDP decline in the current and the following four
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Fig. 7. MCB–DSC plots for probability forecasts of class M1.0+ solar flares under (a) the Brier score and (b) the logarithmic score. Colours align
with Fig. 8. The green square at the origin represents the ex post best constant forecast, that is, the unconditional event frequency, and the thick
green line separates forecasts that are better (above the line) and worse (below the line) than this baseline. Forecasts in panel (b) along the right
margin have an infinite mean logarithmic score. (For interpretation of the references to colour in this figure caption, the reader is referred to the
web version of this article.).
Fig. 8. Triptych graphics for probability forecasts of class M1.0+ solar flares. Reliability curves are shown on (the smallest contiguous interval
ontaining) the support of the forecast distribution.
uarters from the fourth quarter of 1968 through the third
uarter of 2019.6 Following Lahiri and Wang (2013), we

consider the mean of the individual SPF forecasts, which
we denote SPF Consensus, and SPF forecaster #65, who
reports the second most frequently among the survey
participants. Lahiri and Wang (2013) study SPF probabil-
ity forecasts through the first quarter of 2011 by eval-
uating calibration, assessing potential predictive ability

6 SPF forecasts are available under https://www.philadelphiafed.
org/surveys-and-data/recess and binary outcomes under https://www.
philadelphiafed.org/surveys-and-data/real-time-data-research/routput.
Data for the third quarter of 1975 are missing.
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through ROC curves, and reporting mean Brier and mean
logarithmic scores. While their analysis is in the spirit
of the triptych approach, it differs by necessity, as the
methods proposed here depend on recent methodological
advances (Dimitriadis et al., 2021; Ehm et al., 2016) that
were not available to Lahiri and Wang (2013).

The triptych graphics in Fig. 9 compare SPF Consen-
sus forecasts at prediction horizons ranging from current
quarter nowcasts to four quarters ahead. The test set
comprises 195 quarters between the second quarter of
1971 and the first quarter of 2019, with an unconditional
event frequency of 0.16. We note the unsurprising yet
drastic effects of the forecast horizon on the quality of the

https://www.philadelphiafed.org/surveys-and-data/recess
https://www.philadelphiafed.org/surveys-and-data/recess
https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/routput
https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/routput
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Fig. 9. Triptych graphics for SPF Consensus forecasts of US recessions at different prediction horizons.
Table 3
CORP decomposition of mean Brier score for probability forecasts of US recessions from SPF Consensus
and SPF #65. The UNC component at 0.177 equals the mean Brier score for the best constant forecast,
namely, the unconditional event frequency in the test set.
Forecast h = 1 h = 2 h = 4

S̄ MCB DSC S̄ MCB DSC S̄ MCB DSC

SPF Consensus 0.118 0.045 0.104 0.144 0.043 0.075 0.177 0.018 0.018
SPF #65 0.143 0.019 0.053 0.207 0.043 0.013 0.212 0.036 0.001
SPF Consensus forecast. While forecasts are reasonably
well calibrated at all prediction horizons,7 we see a di-
minishing range of the forecast values and the associated
consistency bands. Accordingly, as shown by the ROC
curves, the discrimination ability and, as visualized by the
Murphy curves, the overall predictive ability deteriorate
dramatically with the prediction horizon. Forecasts four
quarters ahead have virtually no discrimination ability.
Table 3 concerns a test set of 61 quarters between 1972
and 2006, for which SPF forecaster #65 predictions are
available, with unconditional event frequency 0.23. The
SPF Consensus forecast outperforms SPF forecaster #65 at
all prediction horizons considered. The predictive perfor-
mance of the individual forecaster falls markedly below
that of the unconditional reference forecast at a prediction
horizon of two quarters already. The SPF Consensus fore-
cast maintains superior discrimination ability and overall
performance at a prediction horizon of two quarters. It
performs on par with the unconditional reference forecast
at a prediction horizon of four quarters ahead.

6.3. Fragile families challenge

The Fragile Families Challenge (Salganik et al., 2020a,
2021, 2020b) is a scientific mass collaboration where

7 At prediction horizons of two and four quarters ahead, the consis-
tency bands are not formally valid, as they depend on the assumption
of independence of the instances, and thus, they provide qualitative
guidance only. We encourage future work on the construction of
consistency bands under dependencies.
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teams supplied predictions for six (three binary and three
real-valued) variables about life trajectories of children
and families based on a rich data set from the Fragile
Families and Child Wellbeing Study (Reichman et al.,
2001). Salganik et al. (2020a) posit in their abstract that

‘‘despite using a rich dataset and applying machine-learning meth-
ods optimized for prediction, the best predictions were not very
accurate and were only slightly better than those from a simple
benchmark model’’.

We use the triptych methodology to shed detailed light
on this claim for one of the binary outcomes in the study,
namely, eviction (from a family’s home or apartment for
not paying rent or mortgage). For eviction and also for the
binary outcome job training (specifically, primary care-
giver participation in job training) analyzed in panel (b) of
Fig. 2, probability forecasts were sought for a holdout set
of 1103 families, with 160 teams providing valid contribu-
tions. In addition, the Challenge organizers supplied nine
benchmark forecasts based on commonly used statisti-
cal and machine learning techniques. The unconditional
event frequency in the holdout set is 0.059 for eviction
and 0.246 for job training.

The substantial numbers of up to 169 forecasts to be
compared discourage the immediate use of the triptych
graphics. To enable the selection of methods of interest,
Fig. 10 shows MCB–DSC plots for the eviction data set un-
der the Brier score and the logarithmic score, respectively.
Benchmark forecasts are represented in green and cluster
near the origin; they are well-calibrated but lack discrimi-

nation. Interestingly, a substantial number of competitors
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Fig. 10. MCB–DSC plots for probability forecasts of eviction from the Fragile Families Challenge under (a) the Brier score and (b) the logarithmic
score. Benchmark forecasts are marked in green; the other colours align with Fig. 11. The green square at the origin represents the ex post best
constant forecast, that is, the unconditional event frequency, and the thick green line separates forecasts that are better (above the line) and worse
(below the line) than this baseline. Forecasts in panel (b) along the right margin have infinite mean logarithmic scores. Various forecasts are not
represented in the displays due to trivial submissions (Salganik et al., 2020a, Table S5), overlap in symbols or labels, or a particularly poor (but
finite) mean score. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this article.).
Fig. 11. Triptych graphics for probability forecasts of eviction from the Fragile Families Challenge.
outperform the benchmarks of Salganik et al. (2020a) and
the best constant forecast in terms of both scores, though
the improvement is small. However, for the job training
data set in panel (b) of Fig. 2, none of the teams show
predictive ability superior to the benchmark forecasts.

For the triptych graphics in Fig. 11, we select mrdc as
the best forecast in terms of the Brier score, bjgoode, and
Justajwu as the best-discriminating forecasts with respect
to the Brier score and the logarithmic score, respectively,
and the baseline technique benchmark_logit_full of Sal-
ganik et al. (2020a). The mrdc, bjgoode, and Justajwu
16
forecasts outperform the baseline model in terms of dis-
crimination ability, as depicted by the ROC curve. Due to
the low unconditional event frequency, the forecasts take
on values below 0.40 only, and we restrict the reliability
curves, the respective consistency bands, and the Murphy
curves in the triptych displays to suitable ranges. The
baseline model is particularly well calibrated, making it
competitive in overall predictive performance, as demon-
strated in the Murphy curves. However, (re)calibrated
versions of the mrdc, bjgoode, and Justajwu forecasts are
bound to outperform the benchmarks by notable margins.
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7. Discussion
In this paper, we have proposed the joint use of a

riptych of diagnostic graphics in the evaluation of proba-
ility forecasts, including reliability curves in the recently
roposed CORP form to assess calibration, the concave
ariant of receiver operating characteristic (ROC) curves
o elucidate discrimination ability, and Murphy curves for
he overall assessment of predictive performance and eco-
omic utility. For a succinct overview of the performance
f multiple forecasts, we have introduced MCB–DSC plots
hat leverage the CORP decomposition of a mean proper
core into miscalibration (MCB), discrimination (DSC), and
ncertainty (UNC) components. A software implementa-
ion of the proposed tools and material for replicating the
esults in the article (Dimitriadis & Jordan, 2023a, 2023b)
s available for R (R Core Team, 2022).

Our work builds on and supplements, and in a sense
ompletes, extant software for the evaluation of prob-
bilistic classifiers, or probabilistic forecasts in general,
ncluding but not limited to the ROCR (Sing et al., 2005),
pROC (Robin et al., 2011), verification (NCAR - Re-
search Applications Laboratory, 2015), and reliabili-
tydiag (Dimitriadis et al., 2021) packages in R, and the
PyCalib package (Perello-Nieto et al., 2021) in Python.
Arguably, closest in spirit are the classifierplots (De-
fazio & Campbell, 2020) package, which generates a ‘‘grid
of diagnostic plots’’ that includes reliability curves and
ROC curves, and the interactive Calibrate approach
of Xenopoulos et al. (2023). However, these packages do
not use the CORP approach of Dimitriadis et al. (2021) to
generate reliability curves and score decompositions, nor
do they implement Murphy curves.

Given the general theory of calibration and score de-
compositions developed by Gneiting and Resin (2023), the
triptych approach to the diagnostic evaluation of prob-
ability forecasts might serve as a blueprint for evalua-
tion strategies in similar settings, including but not lim-
ited to ordinary least squares regression, forecasts in the
form of the expected value of a general real-valued out-
come, quantile regression, and quantile forecasts. The case
of quantiles has been studied by Gneiting et al. (2023),
whose toolbox includes variants of Murphy curves, CORP
reliability curves, and the CORP score decomposition. The
recently developed universal ROC (UROC) curve of Gneit-
ing and Walz (2022) generalizes the ROC curve from the
classical case of a binary outcome to a general real-valued
outcome, and the UROC curve might join CORP reliability
curves and Murphy curves to form triptych graphics in the
above types of settings. While currently available imple-
mentations of the triptych graphics and MCB–DSC plots
involve static graphics only, ever-increasing numbers of
competitors in forecast contests (Makridakis et al., 2022;
Salganik et al., 2020a) may warrant the development of
interactive versions, where users can select competitors of
interest in an MCB–DSC plot and generate the respective
triptych graphics on the fly.
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Appendix. Theoretical guarantees: Rigorous statements
and proofs

We work within the prediction space setting of Gneit-
ing and Ranjan (2013) and Gneiting and Vogel (2022),
where we represent the probability forecast and the bi-
nary outcome as random variables X and Y , respectively,
with joint distribution Q, where Y = 1 represents an
event and Y = 0 a non-event, with both types of out-
comes having strictly positive probability. The symbol
F denotes the marginal cumulative distribution function
(CDF) of the forecast X . When comparing competing prob-
ability forecasts X1 and X2 for the binary outcome Y , we
also denote their joint distribution by Q.

The probability forecast X is calibrated if Q(Y = 1 |

X) = X almost surely. We define the conditional CDF
F|1(t) = Q(X ≤ t | Y = 1) and F|0(t) = Q(X ≤ t |

Y = 0) such that, for any threshold value t ∈ [0, 1], the
population versions of hit rate (HR) and false alarm rate
(FAR) are given by

HR(t) = 1 − F|1(t) = Q(X > t | Y = 1)

and

FAR(t) = 1 − F|0(t) = Q(X > t | Y = 0),

respectively. If F|0 and F|1 are continuous and strictly
increasing, the ROC curve can be identified with a function
R : [0, 1] → [0, 1], where R(0) = 0, R(1) = 1, and
R(p) = 1 − F|1(F−1

|0 (1 − p)) for p ∈ (0, 1). In the general
setting, including but not limited to the case of empiri-
cal distributions for data of the form (2.2), the raw ROC
diagnostic is the set-theoretic union of the points of the
form (FAR(t),HR(t))′ within the unit square, from which
the ROC curve is obtained by linear interpolation (Gneiting
& Vogel, 2022). On the support of F , we can index the ROC
curve in terms of c = F (t), with a natural extension to
c ∈ [0, 1] via linear interpolation.

Except for assuming that the competing probability
forecasts X1 and X2 are calibrated and requiring that
Q(Y = 0) ∈ (0, 1), we do not impose any regularity con-

ditions on the distribution Q. Our proofs rely on the novel
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Fig. 12. Schematic illustration of the technical concepts in the statements and proofs of Lemma 1 and Theorem 2. Given calibrated classifiers X1
nd X2 for the binary outcome Y , where 0 < π0 = Q(Y = 0) < 1, the panel at right shows the unconditional CDFs, F1 and F2 , and generalized
nverses or quantile functions, Q1 and Q2 , respectively. At lower left, the Murphy curve difference DMC

X1,X2
(θ ) arises as the vertical difference between

he two Murphy curves at the cost–loss parameter θ . The panel at upper left concerns the ROC curve difference DROC
X1,X2

(c). The parallel lines with
lope −π0/(1 − π0) connect points on the two ROC curves with the same index, c.
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emma 1 that expresses the difference of the Murphy
urves,

DMC
X1,X2 (θ ) = EQ Sθ (X1, Y ) − EQ Sθ (X2, Y )

t the cost–loss parameter θ ∈ (0, 1), as sketched in the
ower left display of Fig. 12, and the difference of the ROC
urves, DROC

X1,X2
(c), at c = F (t) in terms of the unconditional

DFs, F1 and F2, and the associated quantile functions, Q1
nd Q2, of the classifiers X1 and X2. As the proof of The-
rem 2 demonstrates, and the upper left panel of Fig. 12
llustrates, the respective points on the ROC curves lie on
arallel lines with slope −π0/(1−π0), and the ROC curve
ifference DROC

X1,X2
(c) is taken in this direction. We note

he close relation to the idea that underlies the Kendall
urve (Hernández-Orallo et al., 2013), which considers the
ifference between a ROC curve and its optimal version,
hat is, the left and upper boundary of the unit square,
n exactly this direction. The Kendall curve then presents
he information contained in the ROC curve in cost space,
hich coincides with the abscissa of the Murphy curve.

emma 1. Suppose that X1 and X2 are calibrated probabil-

ty forecasts for the binary outcome Y , where Q(Y = 0) ∈ E
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0, 1). Then, the Murphy curve difference and the ROC curve
ifference are

MC
X1,X2 (θ ) =

∫
[0,θ ]

(F2(x) − F1(x)) dx

nd

ROC
X1,X2 (c) =

∫
[0,c]

(Q1(α) − Q2(α)) dα,

here F1 and F2 are the unconditional CDFs for X1 and X2,
nd Q1 and Q2 are the left-continuous generalized inverses
o F1 and F2, respectively.

roof. To simplify notation, let X be a probability forecast
or Y with unconditional CDF F and generalized inverse Q .
et F|i = Q(X ≤ · | Y = i) and πi = Q(Y = i) for i ∈ {0, 1}.
For the Murphy curve difference, consider the elemen-

ary scoring function Sθ from (2.7). For θ ∈ (0, 1) the
xpected elementary score of X is

QSθ (X, Y ) = 2θ Q(X > θ, Y = 0)
+ 2(1 − θ ) (Q(X < θ, Y = 1) + θ Q(X = θ )) .

he Murphy curve is the graph of the map MC : θ ↦→
QSθ (X, Y ). Under calibration of X , we have x = Q(Y =
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1 | X = x) and θ Q(X = θ ) = Q(X = θ, Y = 1), which
yields

MC(θ ) = 2θ Q(Y = 0) − 2θ Q(X ≤ θ ) + 2Q(X ≤ θ, Y = 1)

= 2θπ0 − 2θF (θ ) + 2
∫

[0,θ ]

x dF (x)

= 2θπ0 − 2
∫

[0,θ]

F (x) dx

using integration by parts for Lebesgue–Stieltjes integrals.
Therefore, a version of the Murphy curve difference of two
forecasts X1 and X2 is

DMC
X1,X2 (θ ) =

1
2MCX1 (θ ) −

1
2MCX2 (θ ) =

∫
[0,θ ]

(F2(x) − F1(x)) dx

or θ ∈ [0, 1], as claimed.
Turning to the ROC curve distance, the raw ROC di-

gnostic of the probability forecast X is the set-theoretic
nion of the points of the form (FAR(t),HR(t))′ = (1 −

F|0(t), 1 − F|1(t))′ for all threshold values t . Under cali-
bration of X and using substitution for Lebesgue–Stieltjes
integrals, we have

π1F|1(t) =

∫
[0,t]

x dF (x) =

∫
[0,F (t)]

Q (α) dα.

Furthermore, (F ◦ Q ◦ F )(θ ) = F (θ ) = π0F|0(θ ) + π1F|1(θ ),
for Q is a generalized inverse to F . We use the idea that
underlies the construction of the rate-driven cost curve
and the Kendall curve (Hernández-Orallo et al., 2013),
namely, to substitute Q (c) for t , where c = F (t), in concert
with the above facts, to write the points in the raw ROC
diagnostic as(
1 −

1
π0

(
c −

∫
[0,c]

Q (α) dα

)
, 1 −

1
π1

∫
[0,c]

Q (α) dα
)′

,

where c ∈ Im(F ) = {F (t) : t ∈ R}. These expressions
nterpolate linearly when c ∈ [0, 1] \ Im(F ), since Q (α) =

(min(Im(F )∩[α, 1])). Therefore, the ROC curve, as a lin-
ar interpolation of the raw ROC diagnostic, is the graph
f the map

OCcurve
X : [0, 1] → [0, 1]2,

↦→

(
1 −

1
π0

(
c −

∫
[0,c]

Q (α) dα
)

, 1 −
1
π1

∫
[0,c]

Q (α) dα
)′

.

Given competing probability forecasts X1 and X2, the
vector-valued difference between the ROC curves at c ∈

[0, 1] is

ROCcurve
X1 (c) − ROCcurve

X2 (c)

=

(
1
π0

, −
1
π1

)′ (∫
[0,c]

(Q1(α) − Q2(α)) dα
)

,

which demonstrates that pointwise differences between
ROC curves are to be measured along lines with slope
−π0/π1 in the ROC curve plot, as illustrated in the up-
per left panel of Fig. 12. The factor at right is chosen
as the pointwise distance between the ROC curves for
X1 and X2 at index c ∈ [0, 1], that is, DROC

X1,X2
(c) =∫

[0,c] (Q1(α) − Q2(α)) dα, as claimed. □

A function on the unit interval has n sign changes if
there exists a partition of the unit interval with n + 1
19
members, such that the function is nonnegative (nonpos-
itive) with at least one nonzero value on the first and
nonpositive (nonnegative) with at least one nonzero value
on the second of any two consecutive members of the
partition.

We state and prove a rigorous version of Fact B in
Section 5.1.

Theorem 2. Suppose that X1 and X2 are calibrated proba-
bility forecasts for the binary outcome Y , where Q(Y = 0) ∈

(0, 1). Let F1 and F2 denote the unconditional CDFs of X1 and
X2, and suppose that F1 − F2 has a finite number n ≥ 1 of
sign changes. Then the following hold:

(a) The ROC curve difference DROC
X1,X2

has at most n−1 sign
changes.

(b) The Murphy curve difference DMC
X1,X2

and the ROC
curve difference DROC

X1,X2
have the same number of sign

changes.

Proof. For part (a), note that the integrand Q1 − Q2 of
DROC

X1,X2
has the same number of sign changes as F1 − F2

and that no additional sign change can be introduced by
integration. Since DROC

X1,X2
(c) evaluates to 0 at both c =

0 (by definition) and c = 1 (due to calibration, which
implies that EX1 = EX2), the number of sign changes
of the integral must be smaller than the number of sign
changes of the integrand.

For part (b), consider the two partitions of the unit
interval generated by sign changes of the integrands F2 −

F1 and Q1 − Q2, respectively. As both partitions have the
same number of elements, the elements can be matched
pairwise to create blocks, as illustrated in the right panel
of Fig. 12. At the beginning and end of every block (the
bottom left or top right corner, respectively), we have
equality of the differences DMC

X1,X2
(θ ) and DROC

X1,X2
(c), and

within a block either both differences are nonincreasing
or both are nondecreasing. Therefore, in a single block,
both differences experience a single sign change, or nei-
ther does. □

The assumption of finitely many sign changes in F1−F2
is not particularly restrictive, as it is satisfied whenever
either X1 or X2 has finite support (covering all empirical
cases) or when both have a finite number of (poten-
tially interval-valued) modes. Otherwise, the statement in
part (b) continues to hold whenever the number of sign
changes in either DMC

X1,X2
or DROC

X1,X2
is finite. Furthermore,

the assumption of calibration guarantees the existence
of at least one sign change in F1 − F2 whenever F1 ̸=

F2, since otherwise F1 and F2 are stochastically ordered,
which implies EX1 ̸= EX2 and contradicts the assumption
of calibration.

Informally, a probability forecast for a binary outcome
is sharper than another if its forecast values are closer to
the most confident values of 0 and 1, respectively (Gneit-
ing et al., 2008). To formalize the notion of sharpness
we follow Krüger and Ziegel (2021) and define X1 to be
sharper than X2 if it is greater in convex order, that is, if
Eφ(X1) ≥ Eφ(X2) for all convex functions φ on the unit

interval, with strict inequality for some φ. As Krüger and
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Ziegel (2021, p. 974) note, given the assumption that fore-
casts are calibrated, being larger in convex order implies
that the forecast values are more spread out toward the
most confident probabilities of 0 and 1.

In Fact C in Section 5.1, we express the idea that if
ompeting probability forecasts are calibrated, and one of
hem is sharper than the other, then the sharper one is
uperior in terms of both ROC curves and Murphy curves,
nd vice versa. To state a rigorous version of this fact, we
ay that X1 dominates X2 in the ROC sense if DROC

X1,X2
(c) ≤ 0

for all c ∈ [0, 1] with strict inequality at some c. Similarly,
X1 dominates X2 in the Murphy sense if DMC

X1,X2
(θ ) ≤ 0 for

all θ ∈ [0, 1] with strict inequality at some θ .

Theorem 3. Suppose that X1 and X2 are calibrated proba-
bility forecasts for the binary outcome Y , where Q(Y = 0) ∈

(0, 1). Then the following relations are equivalent:

(i) X1 is sharper than X2.
(ii) X1 dominates X2 in the ROC sense.
(iii) X1 dominates X2 in the Murphy sense.

Proof. The equivalence of statements (i) and (iii) is a spe-
cial case of Theorem 3.1 in Krüger and Ziegel (2021), and
the equivalence of statements (ii) and (iii) follows from
the arguments in the proof of part (b) of Theorem 2. □

Theorem 3 demonstrates that if probability forecasts
are calibrated, then comparisons in terms of sharpness,
discrimination ability, and proper scoring rules yield con-
gruent insights, as illustrated in Scenario C and part (c) of
Fig. 5 in Section 5.1. Related results have been discussed
by Krzysztofowicz and Long (1990, p. 670), Wilks (2019,
p. 416), and references therein.
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