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Abstract

The multiphase field method holds great potential to accelerate future materials
research through simulation studies - for example in the field of battery materi-
als. Through appropriate modeling, fundamental mechanisms of diffusion, phase
transformation and reaction kinetics can be investigated, thus providing insight
into possible kinetic limitations or degradation mechanisms. In the last decade,
the phase-field method has been increasingly used to simulate phase transfor-
mations in the active material on the electrode level. However, these studies
are mostly limited to single crystals with one coherent phase transformation. A
consistent description of materials with multiple phase transformations and poly-
crystalline morphology has not yet been developed.

In the introduction of this work, relevant mechanisms that significantly influence
the kinetics of charging and discharging at the particle level are discussed. Based
on this, a multiphase-field model for intercalation materials is formulated, which
includes phase transformations coupled with ion diffusion and an elastic defor-
mation of the crystal lattice. The intercalation reaction is applied as a boundary
condition and correlates with the local chemical potential of sodium at the parti-
cle surface. Assuming a globally constant charge rate, the effective overpotential
can be determined and compared with experiments. Polycrystalline agglomer-
ates can be described in a natural way including the effects of grain boundaries
by the underlying multiphase-field formulation. Since this model formulation
has not yet been applied to battery materials modeling, this work investigates
and validates individual energy contributions in detail. New implementations are
tested numerically and build upon previous developments of the simulation soft-
ware PACE3D, which has been developed for more than 20 years at the chair
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of Prof. Britta Nestler. Additionally, the detailed discussion in the validation
chapters is intended to facilitate the implementation of the same model or similar
formulations in other research codes.

In the second part of this work, the versatile capabilities and potentials of the
developed model are tested and discussed on the basis of several examples. First,
based on the well-researched cathode material lithium iron phosphate, a com-
parison of the model with an established approach based on the Cahn-Hilliard
model is drawn. Furthermore, the underlying assumptions of the simulations are
discussed in detail. The results confirm previous research findings and, more-
over, show the influence of polycrystals on the intercalation behavior. While the
phase transformation occurs preferentially grain by grain at slow charge rates,
simultaneous transformation of many grains is enforced at high rates. In addi-
tion, high tensile stresses can be observed at grain boundaries of randomly ori-
ented polycrystals, which contribute to mechanical degradation. The final two
use cases illustrate new directions in the field of battery modeling. The cath-
ode material NaX Ni1/3Mn2/3O2 is a promising candidate for future sodium-ion
batteries. However, it exhibits poor cycling stability which is partially attributed
to a phase transformation at high potentials associated with a highly anisotropic
deformation of the crystal lattice. The simulations provide insight into the inter-
play between phase transformation, mechanical deformation and diffusion. They
reveal that mechanics contributes significantly to the effective capacity at slow to
moderate charge rates. High tensile stresses, however, are indicative of cracking
in the material. The study on polycrystalline NMC agglomerates emphasizes the
influence of microstructure on the overall battery charging behavior. Directional
grain structures can improve ion transport and contribute to a more homoge-
neous concentration distribution in the particle, which positively affects the cycle
and rate stability of the material. Future research could investigate the poten-
tial of similar microstructures for other cathode materials to accelerate materials
research with respect to batteries.
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Kurzfassung

Die Multiphasenfeld-Methode birgt großes Potential, die zukünftige Material-
forschung durch Simulationsstudien zu beschleunigen - so auch im Bereich der
Batteriematerialien. Durch geeignete Modellierung können grundlegende Mech-
anismen der Diffusion, Phasenumwandlung und Reaktionskinetik untersucht
werden und so Aufschluss über mögliche kinetische Limitierungen oder Degra-
dationsmechanismen geben. In den letzten zehn Jahren wurde die Phasenfeld-
Methode immer häufiger für die Simulation von Phasenumwandlungen im Ak-
tivmaterial auf Elektrodenebene eingesetzt, wobei diese Studien sich meist auf
Einkristalle mit einer kohärenten Phasenumwandlung beschränken. Eine kon-
sistente Beschreibung von Materialien mit mehreren Phasenumwandlungen und
polykristalliner Morphologie fehlte bisher.

In der vorliegenden Arbeit werden zunächst die relevanten Mechanismen disku-
tiert, welche auf Partikelebene maßgeblich die Kinetik das Laden und Entladens
beeinflussen. Basierend darauf wird ein Multiphasenfeld-Modell für Interkala-
tionsmaterialien formuliert, welches Phasenumwandlungen gekoppelt mit Ionen-
Diffusion und einer elastischen Deformation des Kristallgitters umfasst. Die In-
terkalationsreaktion wird als Randbedingung aufgebracht und korreliert mit dem
lokalen chemischen Potential des Natriums an der Partikeloberfläche. Unter der
Annahme einer global konstanten Laderate, kann das effektive Überpotential bes-
timmt und mit Experimenten verglichen werden. Polykristalline Agglomerate
können durch die zugrundeliegende Multiphasenfeld-Formulierung auf natür-
liche Weise inklusive der Effekte von Korngrenzen beschrieben werden. Da
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diese Modellformulierung bisher nicht für die Modellierung von Batteriemate-
rialien angewendet wurde, werden die einzelnen Energiebeiträge detailliert un-
tersucht und validiert. Neue Implementierungen werden numerisch getestet und
bauen auf den bisherigen Entwicklungen der Simulations-Software PACE3D auf,
welche seit mehr als 20 Jahren am Lehrstuhl von Prof. Britta Nestler entwickelt
wird. Die ausführliche Diskussion in den Validierungskapiteln soll gleichzeitig
auch die Umsetzung desselben Modells oder ähnlicher Formulierungen in an-
deren Forschungscodes erleichtern.

Im zweiten Teil der Arbeit werden die vielseitigen Anwendungsmöglichkeiten
und Potentiale des entwickelten Modells anhand mehrerer Beispiele erprobt
und diskutiert. Zunächst wird auf Basis des gut erforschten Kathodenmate-
rials Lithiumeisenphosphat ein Vergleich des Modells mit einem etablierten
Ansatz basierend auf dem Cahn-Hilliard Modell gezogen. Des Weiteren werden
die zugrundeliegenden Annahmen der Simulationen ausführlich diskutiert. Die
Ergebnisse bestätigen bisherige Forschungsergebnisse und zeigen darüber hin-
aus den Einfluss von Polykristallen auf das Interkalationsverhalten. Während die
Phasenumwandlung bei langsamen Laderaten bevorzugt Korn für Korn erfolgt,
wird bei hohen Raten eine gleichzeitige Umwandlung vieler Körner erzwungen.
Außerdem können in zufällig orientierten Polykristallen starke Spannung an Ko-
rngrenzen beobachtet werden, welche zur mechanischen Degradation beitragen.
Die anderen beiden Anwendungsfälle zeigen neue Wege im Bereich der Bat-
teriemodellierung auf. Das Kathodenmaterial NaX Ni1/3Mn2/3O2 ist ein vielver-
sprechender Kandidat für zukünftige Natrium-Ionen Batterien. Allerdings weist
es eine schlechte Zyklenfestigkeit auf, was unter anderem auf eine Phasenumwand-
lung bei hohen Potentialen zurückgeführt wird, welche mit einer stark anisotropen
Deformation des Kristallgitters einhergeht. Die Simulationen geben Einblick in
das Zusammenspiel von Phasenumwandlung, mechanischer Deformation und
Diffusion. Dabei zeigt sich, dass die Mechanik bei langsamen bis moderaten
Laderaten maßgeblich zur nutzbaren Kapazität beiträgt. Hohe Zugspannungen
sind jedoch ein Indiz für Rissbildung im Material. Die Studie zu polykristallinen
NMC Agglomeraten unterstreicht den Einfluss der Mikrostruktur auf das gesamte
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Ladeverhalten der Batterie. Gerichtete Kornstrukturen können den Ionentrans-
port verbessern und zu einer homogeneren Konzentrationsverteilung im Partikel
beitragen. Dies wirkt sich wiederum positiv auf die Langlebigkeit und Ratenfes-
tigkeit des Materials aus. Zukünftige Forschungsarbeiten könnten die Potentiale
ähnlicher Mikrostrukturen für andere Kathodenmaterialien untersuchen, um die
Materialforschung im Batteriebereich zu beschleunigen.
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Figure 1: Phase-field simulations applied on the single particle and agglomerate scale. Selected re-
sults from this work illustrate phase transformations and ion transport in polycrystalline
battery particles.
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1 Introduction

1.1 Intercalation batteries - a materials
perspective

Undeniably, the lithium-ion battery is a cornerstone of today’s society and has
influenced many areas of public life. This fact was acknowledged by the be-
stowal of the 2019 Nobel Prize in Chemistry to the three researchers John B.
Goodenough, M. Stanley Whittingham and Akira Yoshino “for their contribu-
tions to the development of the lithium-ion battery. This rechargeable battery
laid the foundation of wireless electronics such as mobile phones and laptops.
It also makes a fossil fuel-free world possible, as it is used for everything from
powering electric cars to storing energy from renewable sources.” [1].

The development of the lithium-ion battery (LIB) is not only a story of electro-
chemistry but also of material science. Finding electrode materials that deliver
high energy density and can be reversibly charged and discharged has been the
goal since the beginning and still is today. The basic working principle of the
lithium-ion cell is the so-called rocking chair mechanism, which means that
lithium ions can be reversibly inserted and extracted from both electrodes and
are shutteled between the anode and the cathode during cycling. On the anode
side, graphite has been investigated since the 1970s and has been used in com-
mercial cells since 1994 [2]. Graphite remains the dominant anode material for
applications ranging from portable electronics to electric vehicles despite exten-
sive research on alternatives such as silicon, sulfur and lithium metal anodes [2].
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The improvement of LIBs over the last 30 years was instead driven by changes in
electrolyte additives, new cathode materials and engineering concepts which led
to a rather linear increase in cell performance [3]. In 2010, LiCoO2 was the most
commonly used cathode material in LIBs [4], but the global ramp-up of electric
vehicle production led to new demands in terms of price, resource availability and
sustainability. LIB sales have more than tripled between 2010 and 2016 [3] and
the market is still growing exponentially. Material abundance, chemical toxicity
and recycling are very present issues in the public discourse and society is quite
unwilling to compromise on upcoming technologies in the face of advancing
climate change [5]. To that end, the global availability of lithium and cobald as
well as their mining conditions are rather problematic which leads to increased
interest in ‘next-generation’ batteries, often called ‘post-lithium batteries’ [3].
The research in the field of post-lithium systems covers a wide range of cell
chemistries such as sodium, magnesium [6], fluorine [7] and many others. For
the context of this work, I focus on intercalation batteries with monovalent ions.

Lithium and sodium intercalation batteries both rely on the same basic princi-
ple for charge storage. The ions are reversibly stored in a host material and can
be inserted or removed depending on the surface overpotential. Sodium ions
have a larger ionic radius compared to lithium (1.02 Å vs. 0.76 Å) which influ-
ences phase stability, crystallographic structure and transport properties. Hence,
sodium intercalation materials often exhibit pronounced steps in the open cir-
cuit potential indicating a tendency towards electronic or structural phase transi-
tions [8] due to the strong lattice distortion upon insertion and extraction of ions.
Depending on the applied voltage, the occurring phase transitions can be partially
irreversible which crucially limits cell stability and performance and, thus, needs
to be investigated in more detail.

While lithium-ion cells are today’s state of the art, it is expected that the emer-
gence of new cell chemistries will lead to more technological diversity for battery
systems. However, any new development will be benchmarked against LIBs in
terms of e.g. energy density, cycle life, sustainability and cost, which are moving
targets given the continuous improvement of lithium-ion technology [3].
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1.1 Intercalation batteries - a materials perspective

1.1.1 Ionic transport in intercalation compounds

There are many ways to categorize and describe electrode materials for lithium-
and sodium-ion batteries. From a material science perspective, it seems natural
to start with the properties of perfect single crystals and then look at techni-
cally relevant microstructures. From the modeling perspective, I will focus on
physical properties such as ion diffusion in the host structure, concentration-
dependent changes in lattice constants and phase transformations rather than
electro-chemical metrics such as specific capacity. Anisotropies that are intrinsic
to the crystal structure will be used to group and discuss intercalation compounds.

Three representative intercalation compounds are the olivine LiFePO4, the lay-
ered LiCoO2 and spinel LiMn2O4 as shown in Fig. 1.1. LiX FePO4 (LFP) is a
structure in which lithium resides in one-dimensional channels. Therefore, the
bulk diffusion is strongly anisotropic with fast diffusion in the b-direction (along
the channels) while hopping across channels is rather unlikely in a perfect crystal
structure but can be mediated through crystal defects [9]. In the LiCoO2 (LCO)
layered oxide, lithium resides between layers of transition metal oxide sheets
(Fig. 1.1 b). Lithium diffusion is restricted to the layers in a defect-free crystal
and still varies by orders of magnitude between the parallel und normal direction
of the sheets in real systems [10]. In the LiMn2O4 spinel, Li interstitial sites form
a three-dimensional network that results in isotropic diffusion [11].

Figure 1.1: Crystal structure of three canonical intercalation cathodes for LIBs, namely a) LiFePO4,
b) LiCoO2 and c) LiMn2O4. Green spheres represent lithium ions. Reprinted with per-
mission from Van Der Ven et al. [12]. Copyright 2023 American Chemical Society.
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Besides the correlation of diffusivity and anisotropy of the crystal structure, there
is a compositional dependence on the fraction of intercalated ions in the host
structure. The interlayer diffusivity in LCO varies depending on X in LiX CoO2

with a maximum around X = 0.5 and two to three orders slower diffusion in the
empty (X → 0) and full (X → 1) state [13]. One reason is that the migration
barrier scales with the distance between layers which becomes smaller at low
lithium content [14]. Furthermore, the lowest energy path for lithium migration
is a di-vacancy hop, which becomes much less probable at high lithium content
such that in order to diffuse, another mechanism with higher energy barrier needs
to be activated [13]. The same holds true for similar layered structures with the
generalized formula AX MO2 where A is the intercalated ion and M stands for
one or various transition metals such as Ni, Mn or Co [15]. The high-nickel
LiX Ni0.8Mn0.1Co0.1O2 (NMC811) exhibits a strong decrease of chemical diffu-
sivity for X < 0.3 and X > 0.9 [16]. Diffusion in NaX Ni1/3Mn2/3O2 also depends
strongly on sodium content and the crystallographic phase. At low sodium con-
tent (X < 0.33) there is a phase transition from the P2 to O2 structural polymorph
which is accompanied by a reduction of the interlayer distance. Consequently,
the energetic barrier for sodium ion diffusion in the O2 phase is higher which
results in slower diffusion [17].

Apart from the crystal structure, ion transport in electrode particles is strongly
influenced by the morphology. Within this work, the term morphology is used
to describe the structural appearance of crystalline materials on the mesoscale
(i.e. single crystals with more than 100 nm and secondary particles up to 15 µm).
Layered-oxides based on nickel, manganese and cobald (NMC) are state-of-the-
art cathode materials for commercial lithium-ion cells in high-capacity applica-
tions such as electric vehicles. Typically, NMCs form hierarchical structures
of many primary crystals agglomerated in a spherical secondary particle (see
Fig. 1.2), sometimes referred to as meatball structure [18, 19]. As the primary
crystals are typically randomly oriented, stresses arise due to misorientation of
neighboring grains that can lead to fracture and eventually disintegration of the
secondary structure [19] (see also Section 1.1.3). Similar secondary morpholo-
gies can be obtained for the P2-type NaX Ni1/4Mn3/4O2 [20].
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(a) (b) (c)

Figure 1.2: Secondary particle morphologies of a) as-prepared NCM111 and b) nano-porous
NMC111 after spraydrying reproduced from Müller et al. [21] published under a CC
BY-NC-ND licence. The NaX Ni1/4Mn3/4O2 particle shown in c) is reproduced from
Pfeiffer et al. [20] and has been published under the CC BY licence.

Ionic transport can be altered in polycrystalline materials through microstruc-
ture design such as tailoring crystallographic orientations [22] or introducing
nanoporosity as in Fig. 1.2b [21]. Particles consisting of radially aligned grains
show excellent rate performance and improved cyclic stability [22]. This can be
attributed to less tortuous pathways for ion transport and the increase of small-
angle grain boundaries, which lead to an overall reduction of accumulated stress
in grain boundaries. The same applies for the nano-porous particle morphology,
as the open-pored structure significantly reduces diffusion paths within the ac-
tive material compared to close-packed spherical structures. Additionally, the
pores buffer the breathing (cycling expansion and contraction) of the material,
thus limiting stress accumulation and subsequent fracture [21].

In conclusion, the modeling of ion diffusion in battery intercalation compounds
needs to reflect the material-specific crystyllography and the anisotropy of dif-
fusion barriers that might arise from it. Furthermore, the microstructure of sec-
ondary particles strongly affects the ion transport alongside other key properties
such as mechanical degradation. Model simplifications such as the assumption
of spherical symmetry in cell models should be based on homogenization of the
actual microstructure (more details can be found in Section 1.2).
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1.1.2 Phase transformations

First order phase transformations as well as charge orderings that are continu-
ous second order transformations cause plateaus in the voltage profile due to the
coexistence of two states of minimal energy. This was discussed by Delmas et
al. [23] in 1999 and led to a variety of electro-chemical measurement methods
to characterize electrode materials during intercalation. Steps and plateaus can
be found in a large number of technically relevant electrode materials, ranging
from graphite, lithium-iron phosphate (LFP) to high-nickel NMCs for LIBs. In
sodium intercalation compounds, steps and plateaus are even more pronounced
due to strong lattice distortion resulting from the larger ionic radius of sodium.

In recent years, LFP has transformed from a material with strong scientific inter-
est and low market share (‘drosophila of phase separation’ [24]) to the second-
most employed cathode material for electric vehicles after NMC-based cell
chemistries in 2022. It undergoes a first order phase transformation with low
miscibility in the end-member states, i.e. there is a long plateau over almost the
whole compositional range of X ∈ [0,1] [25]. The layered oxide LiX CoO2 under-
goes a phase transition at low lithium content [14] while LiX NiO2 exhibits four
structurally different phases in the full range of X ∈ [0,1] [26, 27]. As previously
mentioned, graphite is the dominant anode material for LIBs [2]. It exhibits a
staging phenomenon characterized by a stepwise filling of graphite layers which
manifests itself through plateaus in the open-circuit voltage (OCV) [28]. Promis-
ing cathode materials for sodium-ion batteries typically exhibit phase transitions
and charge ordering, e.g. the layered oxides NaX Ni1/3Mn2/3O2 [29, 30] and
NaX Ni1/4Mn3/4O2 [20], olivine NaFePO4 [31], Na3V2(PO4)3 [32].

This list is far from complete, yet it highlights that reversible phase transforma-
tions during cycling are not an exotic execption but a common phenomenon in
intercalation compounds. The nature of these materials can only be modeled and
understood if phase transformations are accounted for.
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1.1.3 Mechanical degradation

The intercalation of ions is often accompanied by volumetric changes of the in-
sertion host material, which is material specific (e.g. volume change of≈ 1.2% in
NMC111 [18], ≈ 6.9% in LFP [33], ≈ 20% in NaX Ni1/3Mn2/3O2 [30]). This re-
sults in two effects, the first of which is a "breathing" of the electrode, i.e. overall
expansion and shrinkage of the particles within one eletrode during charge and
discharge. This effect is mitigated by the porous nature of electrodes and the
viscosity of the binder [34]. However, continued cycling can lead to gradual
degradation through contact loss between the binder and the active material [34].
Secondly, and probably more important in terms of degradation, stresses arise in
particles (both single crystals and agglomerates) due to concentration gradients
or due to a lattice mismatch between crystallographic phases that form during
cycling. This induces an electro-chemo-mechanical fatigue either through disin-
tegration of agglomerated structures [18, 19, 35] or crack formation in primary
crystals [34].

Secondary particles such as the ones shown in Fig. 1.2 tend to form intergranular
cracks if the primary crystals undergo significant expansion and contraction [18].
This effect is strongly interconnected with the anisotropic nature of these ma-
terials as layered oxides typically exhibit much stronger changes in the c-axis
(perpendicular to the transition metal oxide sheets). In the randomly oriented
arrangement of primary crystals, large stresses arise at grain boundaries where
crystals with a strong misorientation meet [18, 36]. Accordingly, small-angle
grain boundaries are not strained as much because neighboring grains expand in
a similar way.

For single crystal electrodes, a clear trend between particle size and crack for-
mation has been observed [34]. Larger crystals are more prone to cracking for
several reasons. The stored elastic energy resulting from strain scales with the
volume of the particle, as opposed to crack surface energy which scales with
area. Thus, in larger particles more stored elastic energy can be released via for-
mation of crack surfaces. Furthermore, the probability of crystal defects is higher
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in larger crystals, which lowers the energetic barrier for crack nucleation. If the
intercalation of ions becomes diffusion limited at high C-rates, concentration gra-
dients develop, additionally contributing to lattice strain. Larger particles enter
the diffusion limited regime much earlier as the diffusion relaxation time scales
with the square of the average diffusion length [37].

The direct consequence of fracture on the battery performance is ambiguous for
the following reasons. First of all, the increase in surface that is accessible for
ion insertion improves the rate performance [38]. At the same time, the creation
of new surfaces in combination with other surface degradation mechanisms such
as surface densification leads to continuous degradation [27, 39, 40]. The dis-
integration of agglomerated particles can result in the loss of electrical contact,
which leads to a fraction of active material that is dead in the sense that it no
longer contributes to the reversible capacity [35]. This effect is even more pro-
nounced in solid state batteries as the solid electrolyte cannot compensate the
loss of contact [41].

To summarize this section, it should be noted that mechanical degradation is an
important issue, especially in electrode materials undergoing phase transforma-
tions. Consequently, the modeling therof should include elastic deformations
and the coupled effects of diffusion and strain. Furthermore, it is crucial that
the anisotropic nature of crystalline materials is accounted for if the simulations
aim at understanding degradation mechanisms such as a correct prediction of
fracture. A homogenized modeling of spherical particles with volumetric expan-
sion can only account for the collective behaviour of the electrode and is, thus,
able to account for the breathing but not for particle degradation. Cracking and
disintegration of agglomerates can only be captured if grain boundaries in the
polycrystal are accounted for.
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1.2 Battery modeling

The research on new electrode materials for LIBs and next-generation batteries is
very interdisciplinary. Experimental methods from various fields are combined
with simulation techniques to develop a deeper understanding of the physical pro-
cesses that determine battery performance and lifetime. The simulation methods
which have been applied in the field of intercalation batteries cover length scales
ranging from atomic resolution to cell and pack models. Typically, the consid-
ered length scale correlates with the timescale that is accessible by the respective
method as shown in Fig. 1.3.

Figure 1.3: Methods for battery simulation across the scales. The phase-field method on the meso-
scale bridges the gap between atomistic models to empirical cell models.
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On the smallest scale, we find ab-initio methods which means that only phys-
ical constants are used as an input. The computational accessability of quan-
tum chemistry has been propelled by the research of Kohn and Pople, which
resulted in the development of density functional theory (DFT) and the bestowal
of the 1998 Nobel Prize in Chemistry “to Walter Kohn for his development of the
density-functional theory and to John Pople for his development of computational
methods in quantum chemistry” [42]. DFT has also been used in the context of
battery material science to study many aspects of intercalation compounds.

Some physical properties of battery electrode materials are intrinsically difficult
to measure experimentally. Diffusivity measurements, for example, yield an ap-
parent diffusivity of intercalated ions that depends on the electrode microstruc-
ture and the multi-particle nature of electrodes. DFT can be used to compute
diffusivities from migration barriers via the nudged elastic band method (e.g. for
LFP [9, 43] and graphite [44]). Furthermore, the energy above hull yields infor-
mation about stable states and, thus, possible two-phase coexistence. In that re-
gard, ab-initio calculations are well-established to compute phase diagrams [45],
ordering effects [30, 46, 47] and open circuit voltages [11, 44]. The calculation
of elastic constants [48] in combination with anisotropic chemical interfacial en-
ergies [49] has be used to estimate the thermodynamically stable interface ori-
entation of the phase-separated state in LFP nanocrystals. The computation of
surface energies yields insights into the equilibrium crystal shape (Wulff shape)
of faceted crystals [50, 51]. A comprehensive review of DFT studies in the con-
text of lithium and sodium intercalation compounds can be found in the work
by Islam and Fisher [11]. Furthermore, DFT can be used to parametrize kinetic
Monte Carlo (kMC) models which are able to describe ion diffusivity in a crys-
talline host structure on longer time scales and at higher temperatures (e.g. room
temperature) [13, 52].

While DFT is a powerful method to study the properties of crystalline bulk mate-
rials, several drawbacks arise from the computational cost involved in resolving
atoms and electron densities. The system size is typically limited to a periodic
supercell with few hundred atoms such that phase transformations and complex
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interfaces are out of scope. Thus, other simulation methods are necessary to de-
scribe the spatial and temporal scale of nucleation and growth of new phases,
the interplay of chemical and mechanical driving forces as well as the collective
behaviour of many interconnected particles.

On the particle to cell scale, continuum theories are employed, typically involv-
ing more assumptions and input parameters. The discrete atomic representation
of a material is replaced by a continuum field with a set of physical properties.
Physical processes such as ion transport within the electrolyte and electrode ma-
terials, stress evolution and phase transformations are then described by partial
differential equations (PDEs) [53–56]. Two classes of continuum models can
be distinguished in this context, namely spatially resolved models and effective
transport models.

The first class of models is based on spatially resolved microstructures which
can be artificially generated or included from microscopy data such as FIB-SEM
measurements [57, 58]. Some studies focus on the microstructure of secondary
particles [59–61] while others are concerned with the porous electrode morphol-
ogy without resolving grain structures of agglomerates [56, 58, 62–65]. This can
be explained by the fact that the smallest resolved feature typically dictates the
maximal resolved length scale in terms of computational times. The advantage
of explicitly resolving the microstructure is that these models are able to capture
local variations in electrical potential and ion flux which can be crucial for the
prediction of degradation mechanisms that can result in failure [58].

The second class of model formulations is based on a homogenization of porous
electrode structures such that ion transport can be described on a one-dimensional
line from the anode, through the separator, to the cathode. These models are typ-
ically called “Newman-type model” or “Doyle-Fuller-Newman (DFN) model”
according to their origins [53, 66]. Alternatively, the term “pseudo-2D model
(P2D)” [67, 68] is used to emphasize the two resolved length scales in this model
formulation, i.e. the cross section through the cell and the length scale for dif-
fusion in the active material particles. Compared to spatially resolved models,
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this approach is computationally cheap and well-suited for battery lifetime pre-
diction or real-time estimation of state-of-charge. Geometric information of the
porous electrode microstructure is included in terms of effective parameters such
as porosity and tortuosity, both of which can be determined from representative
volume elements (e.g. based on FIB-SEM data [69]). There are open-source code
projects such as PyBaMM [70] and MPET [71] that aim at unifying individual
efforts and accelerating battery modeling research by reducing duplicate code
development. Oftentimes, simulations are based on the assumption of spherical
particles and a constant diffusivity in the solid [53] which calls for an appropri-
ate homogenization of the secondary particle microstructure to yield physically
meaningful results. A comparison of spatially resolved simulations with a lower
dimensional DFN model has been carried out by Wiedemann et al. [58]. An
extensive overview of continuum models in general can be found in Grazioli et
al. [67], in which various assumptions and modeling details found in literature
are discussed.

Phase-field models play a vital role for the simulation of electrode materials that
undergo phase transformations upon cycling. They can be employed in both
classes of continuum models, either for spatially resolved particles [72] or in
homogenized models [73]. Furthermore, the multiphase-field method provides
a framework to study coupled multi-physics in polycrystalline battery materials
in a thermodynamically consistent framework. In the following section, state-
of-the-art phase-field models for intercalation compounds are discussed in more
detail.
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1.3 Phase-field models for battery modeling

As elaborated in Sec. 1.1.2, there are many battery intercalation compounds
which exhibit phase transitions during cycling. This includes first-order phase
transformations which typically entail a change in the host crystal structure and,
furthermore, second-order continuous phase separations such as charge order-
ing. Therefore, attempts have been made to model phase transitions in a ther-
modynamic framework which encompasses electrical, chemical and mechanical
driving forces.

Originally introduced to the field of battery simulation by the studies of Han et
al. [74] and Guyer et al. [75], the phase-field method is well-established nowa-
days and has been applied in numerous works investigating electrodeposition [76–
81] and intercalation in phase separating electrode materials [72, 82–98]. For the
scope of this work, I will mainly focus on intercalation models and only briefly
comment on modeling dendrite formation simulations.

The first application of a Cahn-Hilliard type phase-field model to describe ion
diffusion in an electrode was shown by Han et al. [74]. Singh et al. [82] then
employed this formulation to model the phase transition in LiX FePO4 single
crystals based on a depth-averaging in the b-direction. This dimensionality re-
duction is motivated from the assumption of surface reaction limitation and fast
bulk diffusion in the 1D channels along the b-direction for LFP. As a result,
concentration evolution is described by a reaction equation that has later been
called “Allen-Cahn reaction (ACR) model” [99]. The model predicts intercala-
tion waves sweeping across the single-crystal as a result of diffusion anisotropy
and the surface reaction rate given by the Butler-Volmer (BV) equation. This
approach has been used to study the suppression of phase separation for high
fluxes [83] and the pattern formation on an active facet of nano-sized single crys-
tal including the effect of coherency strain [84] and surface wetting [100]. In a
recent work [72], pattern formation depending on particle size was studied. An-
other approach, often referred to as Cahn-Hilliard reaction (CHR) model [99],
uses the BV equation as a boundary condition while computing the flux inside
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the particle based on the conservative Cahn-Hilliard equation. Tang et al. [85]
showed that the interface evolution is dependent on both surface flux and bulk
diffusion. The recent works of Hong et al. [86, 87] show how larger overpo-
tentials shift the interface motion from surface reaction limitation to a hybrid or
mainly bulk-diffusion limited case.

Huttin and Kamlah [88] studied intercalation in spherical particles reduced to
one dimension by radial symmetry with constant boundary flux. Their origi-
nal work was based on small deformations and later extended to large deforma-
tion mechanics [89]. Subsequent studies comprise the intercalation simulation in
NaFePO4, a promising candidate for post-lithium batteries, [90] and a compari-
son of miscibility gaps for various cathode materials [91]. Zhao et al. [92] intro-
duced concentration-dependent elastic properties and performed simulations in
spheroidal three-dimensional particles. In their later work [93], surface reaction
was accounted for by the BV equation rather than constant flux, and diffusion-
induced cracking was investigated. All these works focus on the influence of
strongly coupled chemo-mechanics on diffusion and are characterized by sophis-
ticated treatment of large deformation mechanics with the finite element method.
Furthermore, degradation due to fracture was studied with the phase-field method
in isotropic spherical particles [101], LFP single-crystals [102, 103] as well as
polycrystalline NMC particles [104].

Several other studies focus on incorporating realistic particle shapes into simula-
tions. For example, Santoki et al. [94] studied the intercalation in an arbitrarily-
shaped particle in three dimensions. Constant boundary flux was applied based
on the smoothed boundary method, which has also been previously used to study
spherical particles in 2D [95]. More complex geometries have also been stud-
ied, such as the agglomerate of three spherical particles neglecting internal inter-
faces [96] and two touching nanowires [97]. Wu et al. [98] performed simulations
with particle shapes reconstructed from x-ray tomography. They discuss the im-
portance of realistic shapes as higher stress arises during insertion compared to
simulations with idealised particles.
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In the context of the phase-field method, the most studied electrode material is
LFP [72, 74, 82–87, 95, 98–100, 103, 105–110], which is most likely chosen for
the following reasons. First of all, there is technological relevance as discussed
in Sec. 1.1.2 and, secondly, LiX FePO4 is a very prototypical phase-separating
material in the sense that it exhibits a large miscibility gap resulting in a long
voltage plateau in the compositional range X ∈ [0,1]. The free energy is well
described by the regular solution model, which has also been used in the original
works of Cahn and Hilliard [111–113]. Furthermore, there is a multitude of
published experimental results and simulations on atomistic scales which can be
used to parametrize phase-field models. Other phase-field studies comprise the
electrode materials LiX Mn2O4 [88–90, 94, 101, 102], NaX FePO4 [90, 114, 115]
and NMC [104]. A special variant of the Cahn-Hilliard model with across-layer
interactions was used to model the staging in graphite [73, 116–118]. There
are many other lithium and sodium intercalation compounds that undergo phase
transformations which have not yet been modelled. This raises the question if
the existing approaches are too restrictive to model other materials which cannot
be described by a regular solution free energy. Within this work, the multiphase-
field approach is used to introduce additional degrees of freedom and allow for an
arbitrary number of phases which can be parametrized with phase-specific free
energy functions. This model aproach is compared with the established Cahn-
Hilliard approach for the well-studied LFP cathode material in Chapter 6.

As mentioned earlier, several phase-field works are concerned with the electro-
deposition of lithium metal and the growth of dendritic structures. To the best
of my knowledge, none of the dendrite shapes predicted by phase-field simu-
lations resemble the needle-like structures that are typically observed in exper-
iments [119]. Differences are also found for mossy lithium growth [120]. The
differences could trace back to the fact that the phase-field formulations are based
on a driving force based on the electric field while experimental results suggest
that crystal defects and grain boundaries determine the growth behaviour rather
than the electric field [119, 120].
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1.4 Research motivation

Because experimental observations provide evidence that multi-particle interac-
tion noticeably affects the intercalation behaviour [121], the need for extending
existing phase-field techniques to multi-particle systems has been reported [122].
So far, phase-field simulations of intercalation are mostly restricted to single crys-
tals or single particles. Possible reasons are, first of all, the limitations linked to
the Cahn-Hilliard approach used in basically all phase-field intercalation simu-
lations on LFP, LiX Mn2O4, NaX FePO4 and graphite. The underlaying evolution
equation is a fourth order PDE which is computationally challenging. Further-
more, the Cahn-Hilliard approach is a microscopic theory in the sense that all the
parameters involved are motivated from atomic interactions on the nanometer-
scale. The gradient term describes long range interactions in the crystal lattice
while the regular solution free energy includes the mixing entropy between in-
tercalated ions and vacancies as well as the enthalpic contribution which covers
repulsive forces between ions. As a result, this model is able to predict interfa-
cial energies between stable phases and the length scale of the transition region in
between. For electrode materials, the interfacial width is in the range of nanome-
ters which needs to be resolved by spatial discretization. This smallest resolved
feature limits the overall simulation size to single nano-particles with a length of
20-500 nm due to computational cost, as shown on the left-hand side of Fig. 1.4.

Figure 1.4: Relevant length scales from single particles to one electrode layer.
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Common multiphase-field models based on the works of Steinbach et al. [123]
and Nestler et al. [124] address these two issues very naturally. They are meso-
scopic models in the sense that the interfacial width can be re-scaled while re-
covering a physical interfacial energy. All equations are formulated in terms of
N phases which includes polycrystalline materials and makes them an attractive
choice to model battery electrode materials.

To correctly describe the multi-physics involved in the intercalation of lithium or
sodium into electrode materials, further requirements arise. Ideally, the model
should

• be able to describe phase transformations, ion diffusion, mechanical defor-
mation and the intercalation reaction;

• be thermodynamically consistent, i.e. recover the equilibrium states in
the bulk of the material and non-equilibrium kinetics should be driven by
energy minimization;

• cover material anisotropies with regard to ion migration, lattice expansion
and interfacial energies;

• cover length scales from 100 nm to 10 µm to be able to simulate single
crystals as well as agglomerates.

As illustrated in Fig. 1.4, the simulation of single particles and agglomerates al-
ready involves multiple length scales. Nevertheless, the phase-field method acts
on the mesoscale between atomistic and more coarse-grained models. Thermo-
dynamic consistency on all modeling scales and an effective parameter trans-
fer for scale bridging are vital to get predictive cell models on the macroscopic
scale [125]. Thus, the goal of this work is not only to investigate the multiphase-
field method as a tool for battery simulation, but also to discuss linkages to the
adjacent length scales.
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1.5 Structure of this work

The overarching goal of my research during the last four years was the develop-
ment of a multiphase-field model that is suitable for the investigation of phase
transitions in polycrystalline battery materials under the influence of electrical,
chemical and mechanical forces. This has led to the following publications,
which cover individual aspects of this thesis and are partially reproduced in Chap-
ters 3 to 8:

1. S. Daubner, P G Kubendran Amos, E. Schoof, J. Santoki, D. Schneider,
and B. Nestler. Multiphase-field modeling of spinodal decomposition dur-
ing intercalation in an Allen-Cahn framework. Physical Review Materials,
5(3):035406, 2021.

2. S. Daubner, M. Weichel, D. Schneider, and B. Nestler. Modeling in-
tercalation in cathode materials with phase-field methods: Assumptions
and implications using the example of LiFePO4. Electrochimica Acta,
421:140516, 2022

3. S. Daubner, P. W. Hoffrogge, M. Minar, and B. Nestler. Triple junction
benchmark for multiphase-field and multi-order parameter models. Com-
putational Materials Science, 219:111995, 2023.

4. S. Daubner, M. Weichel, P. W. Hoffrogge, D. Schneider, and B. Nestler.
Modeling anisotropic transport in polycrystalline battery materials. Batter-
ies, 9(6), 310, 2023.

5. S. Daubner, M. Dillenz, L. F. Pfeiffer, C. Gauckler, M. Rosin, N. Burgard,
J. Martin, P. Axmann, M. Sotoudeh, A. Groß, D. Schneider, and B. Nestler.
Combined study of phase transitions in the P2-type NaX Ni1/3Mn2/3O2

cathode material: experimental, ab-initio and multiphase-field results.
Submitted.

These indiviual works are put into context by explaining how they contributed to
the overaching research question within this thesis by a discussion section at the
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end of each chapter. Only parts that are relevant for the modeling of battery inter-
calation materials with the multiphase-field method are taken from the original
publications and discussed in this work. I have been involved in other publica-
tions during the course of my research in the group of Prof. Nestler which are
not included in this thesis but are listed here for completeness:

6. X. Liu, D. Schneider, S. Daubner, and B. Nestler. Simulating mechanical
wave propagation within the framework of phase-field modelling. Com-
puter Methods in Applied Mechanics and Engineering, 381:113842, 2021.

7. M. Reder, D. Schneider, F. Wang, S. Daubner, and B. Nestler. Phase-field
formulation of a fictitious domain method for particulate flows interacting
with complex and evolving geometries. International Journal for Numeri-
cal Methods in Fluids, 93(8):2486–2507, 2021.

8. J. Santoki, S. Daubner, D. Schneider, M. Kamlah, and B. Nestler. Ef-
fect of tortuosity, porosity, and particle size on phase-separation dynamics
of ellipsoid-like particles of porous electrodes: Cahn–Hilliard-type phase-
field simulations. Modelling and Simulation in Materials Science and En-
gineering, 29(6):065010, 2021.

9. S. Daubner, M. Reder, N. Prajapati, D. Schneider, and B. Nestler. Multiphase-
field modelling of anisotropic elasticity at finite deformation in Eulerian
space. Journal of Computational Science, 66:101930, 2023.

10. Q. Huang, S. Daubner, S. Zhang, D. Schneider, B. Nestler, H. Mao,
S. Liu, and Y. Du. Phase-field simulation for voltage profile of LixSn
nanoparticle during lithiation/delithiation. Computational Materials Sci-
ence, 220:112047, 2023.

The literature overview given in the introduction illuminates general aspects of
electrode materials from a materials science perspective. Afterwards, the state of
the art of battery modeling from the atomistic to the cell scale is reviewed with
a special emphasis on the application of phase-field methods to the simulation
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of intercalation materials. From this introduction I derive open research ques-
tions and formulate the overarching goal of my research. Chapter 2 presents the
developed model in a consolidated manner. It is based on the validation works
within the previously mentioned publications. The model section is followed
by three validation chapters, each of them elaborating on specific aspects of the
suggested model. The goal is to provide a comprehensive overview of how to
select an appropriate phase-field model and energetic terms for the simulation
of battery materials. Due to the complex multi-physics, the individual energetic
terms have been validated in a gradual manner, starting with interfacial forces
which are the basis of the multiphase-field method in Chapter 3. In Daubner et
al. [126], various formulations for interfacial energies are discussed and evalu-
ated for multiphase-field and multi-order parameter models. The results for MPF
formulations are re-printed in Chapter 3. This chapter is closed by a discussion
of implications for the modeling of polycrystalline battery materials. The anal-
ysis is then extended to the interplay of interfacial with chemical driving forces
and their influence on nucleation of new phases and spontaneous phase separa-
tion in Chapter 4. Part I of this thesis is closed with numerical details about the
implementation of anisotropic fluxes in Chapter 5.

The second part of this thesis comprises three application examples covering
different aspects of the presented multiphase-field model. In Chapter 6, the well-
established Cahn-Hilliard model is compared with the multi-phase formulation
and various modeling assumptions are discussed in detail for LFP. Subsequently,
the sodium intercalation compound NaX Ni1/3Mn2/3O2 is studied in Chapter 7.
The effects of hierarchical secondary microstructures on effective ion transport
are discussed in Chapter 8. The main outcomes and potential future investiga-
tions are summarized in the final Chapter 9.
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Model formulation and
validation

21





2 Multiphase-field model for
intercalation battery materials

2.1 Brief history of (multi)phase-field models1

»Over the last decades, phase-field methods have been established as the method
of choice for the simulation of microstructures with evolving interfaces. A gen-
eral feature of phase-field approaches is the diffuse interface between coexisting
phases. The term phase refers to thermodynamically distinct states that occur
in a phase diagram as a function of temperature, pressure, composition, and so
on. In the phase-field community, the usage of this term extends to differentiate
between crystalline polymorphs or grains with different orientations. The diffuse
interface is characterized by a continuous and steep transition of the phase-field
variable, which generally could be molar fraction c [111], an order parameter
η [127–129] or the volume fraction φ [123, 124] of the respective phase. In
many fundamental works of the phase-field method, such as those by van der
Waals [130], Ginzburg and Landau [131] and Cahn and Hilliard [111], the dif-
fusiveness of interfaces is considered a natural property of the transition region
between stable phases which holds true on a small scale. Cahn and Hilliard intro-
duce the gradient term κ(∇c)2 to account for long-range interactions while the
second contribution, the regular solution free energy, has a strong foundation in
chemistry. As a result, the interfacial energy, which is defined as the excess Gibbs
free energy per unit area in the diffuse region, can be predicted as a function of
temperature. In many applications, the phase-field method is primarily used due

1 The content of this section is taken verbatim from the article Daubner et al. [126].
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2 Multiphase-field model for intercalation battery materials

to its strength to describe curved and evolving surfaces but the physical length
scale of the diffuse interface is well below the microstructural scale of interest.
This introduces the notion of diffuse representation of sharp-interface problems
which calls for effective re-scaling of the diffuse interfacial width while preserv-
ing its physical interfacial energy to correctly model the interplay of curvature
driven phase transformations with other coupled multi-physics.

Another reason for the success of phase-field methods is the thermodynamically-
sound framework of defining the overall system free energy (or entropy) func-
tional and, consequently, deriving the kinetic evolution equations from varia-
tional principles. This allows for modeling of multi-physics interaction, includ-
ing various coupled effects such as thermal, chemical, mechanical, electrical
or magnetic bulk driving forces or coupling with fluid mechanics. Hence, the
range of applications is broad nowadays, including fluid-fluid interfaces such as
demixing or spinodal decomposition of emulsions (oil-water systems) [132] and
multi-phase flows of two immiscible fluids [133]. Problems with fluid-solid in-
terfaces include solidification from a melt which can result in dendritic growth
for pure substances [134] or lamellae for eutectic systems [124, 135, 136] as well
as growth or dissolution of crystals from supersaturated solutions [137, 138].
Solid-solid interfaces and phase transformations, on the other hand, can be found
in many applications associated with steels and alloys, such as recrystalization,
grain coarsening and martensitic transformations [139, 140]. Additionally, in
fields like microstructure evolution in fuel cells [141], intercalation in battery
materials [36, 100] and many others, the phase-field method continues to acquire
increasing interest. For all these applications, the simulation outcome heavily
depends on the correct modeling of competing driving forces and, irrespective of
the possibly coupled multiphysics, always depends on interfacial energies and,
thus, curvature driving forces.

Generalizations of the phase-field method to multi-phase systems were developed
in two different ways, both acting as a nucleus for the growth of scientific com-
munities. In 1994, Chen and Yang [128] published a model employing many non-
conserved order parameters evolving through time-dependent Ginzburg-Landau
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2.2 Energy functional

equations and started the model branch of multi-order parameter models (also
called continuum-field models). The work by Steinbach et al. [123] in 1996
marks the beginning of multiphase-field models which are characterized by the
notion of phase-fields φ representing the volume fraction. Both branches have
been further developed since.«

This work is based on the ongoing development of multiphase-field models based
on [123]. Relevant details are the gradient term formulation following [142], the
re-scaling of interfacial width [124], the evolution equation proposed in [143]
and the derivation of chemical driving forces within the framework of a grand-
potential functional [144, 145]. The treatment of phase transformations in poly-
crystalline samples as well as the corresponding noise term for phase nucleation
are based on the works of Schoof [140, 146]. The following sections provide
detailed insights into the model formulation und the corresponding numerical
implementation.

2.2 Energy functional

A multiphase-field (MPF) model is formulated for a tuple of N phase variables
φ= {φα ,φβ , . . .} where φα denotes the volume fraction of the α-phase and thus
φα ∈ [0,1] and ∑N

α φα = 1 should be fulfilled [124, 142, 147, 148]. The evolution
of phases in battery materials is governed by the complex interplay of electro-
chemo-mechanical as well as interfacial driving forces. Thus, the free energy
functional F can be expressed as

F = Fint(φ,∇φ) + Fbulk(φ,c,ε) (2.1)

=
∫

V
fint(φ,∇φ)dV +

∫

V
fbulk(φ,c,ε)dV (2.2)

=
∫

V
fgrad(∇φ)+ fob(φ)dV +

∫

V
fchem(φ,c,Φ)+ felast(φ,ε)dV, (2.3)
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2 Multiphase-field model for intercalation battery materials

consisting of interfacial and bulk contributions. The interfacial energy fint com-
prises two terms, first the gradient energy density [142]

fgrad(∇φ) =−ε ∑
α

∑
β>α

γαβ∇φα ·∇φβ (2.4)

with the numerical parameter ε linked to interface width and the interfacial en-
ergy γαβ between two phases φα and φβ . The nabla symbol is used ∇(·) for
the gradient operator. The second term fob is the multi-obstacle potential energy
density

fob(φ) =
16

επ2 ∑
α

N

∑
β>α

γαβ φα φβ , (2.5)

which, in combination with Eq. (2.4), prevents the non-physical formation of
ghost phases in two-phase interfaces (see Chapter 3). The driving force for inter-
calation in Li/Na-ion batteries, which are based on the rocking-chair principle,
is given by the difference between chemical potentials of Li/Na in the anode and
cathode. During charge or discharge, electrons are moving through an outer cir-
cuit while Li+/Na+ ions are shuttled through the electrolyte. Thus, the discussion
of equilibrium states includes consideration of the electro-chemical potentials of
charged species (see Section 2.6). Under the assumptions of fast electronic trans-
port and charge neutrality on the mesoscopic length scale, it is sufficient to model
the energetic landscape of intercalated Li/Na atoms in the host structure. The
chemical energy density depends on the site filling fraction in the host structure
c and is expressed as the linear interpolation of phase-specific contributions

fchem(φ,c) =
N

∑
α

f α
chem(c

α)φα (2.6)

weighted by the local volume fractions φα . The phase-specific molar fractions
cα(µ) are related by equal diffusional potential in the diffuse interface while
the average is defined as c = ∑cα φα . The fitting of phase-dependent chemical
energies f α

chem needs to fulfill the invertibility criterion [145] (for more details
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2.3 Phase-evolution equations

see Appendix C). In this work, two formulations are used, namely the quadratric
fit for computational efficiency and a logarithmic expression based on an ideal
solution

f α
quad = Aα(cα − cα

min)
2 +Bα , (2.7)

f α
ideal = µα

0 cα +Kα cα ln(cα)+Kα(cmax− cα) ln(cmax− cα)+Bα . (2.8)

For the mechanical part, only elastic deformation due to a change in lattice con-
stants is considered. The corresponding energy contribution felast includes phase-
dependent eigenstrains ε∗α and is formulated following [149] as

felast(φ,ε) =
1
2
εel : C : εel =

1
2
[ε−ε∗] : C : [ε−ε∗]. (2.9)

The effective stiffness is defined as the linear interpolation of stiffnesses C =

∑α Cα φα and the effective eigenstrain ε∗ = ∑ε∗α φα is given by linear interpo-
lation as well. A discussion regarding this choice of interpolation coupled with
chemical driving forces can be found in [150, 151].

2.3 Phase-evolution equations

The kinetics of phase transformations are described by N coupled evolution
equations (Allen-Cahn equations) for the non-conserved fields φα . Follow-
ing Hamilton’s principle, the equilibrium solution of the total energy Eq. (2.3)
is given by δF = 0. Furthermore, linear relaxation of the system free energy
towards its minimum is assumed. The evolution of phase φα is then governed by

∂φα

∂ t
=−L

(
∂ f

∂φα
−∇ · ∂ f

∂∇φα

)
, (2.10)

where f denotes the total energy density and L is the kinetic coefficient in the
sense of a relaxation rate. Throughout this work ∇ · (·) denotes the divergence
operator.
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2 Multiphase-field model for intercalation battery materials

For sake of compact notation, the functional derivative is introduced [152, Eq.
13.63]

δ (·)
δφα

=

(
∂ (·)
∂φα
−∇ · ∂ (·)

∂∇φα

)
. (2.11)

The notion of φα representing the volume fraction of phase α makes it necessary
to fulfill the Gibbs simplex constraint

φ ∈ RN :
N

∑
α=1

φα = 1, 0≤ φα ∀α. (2.12)

The constraints of all φα summing up to one and all phase fractions being larger
than zero, implicitly ensures φα ∈ [0,1] ∀α = 1, . . . ,N. If the initial conditions
fullfill Eq. (2.12), the two conditions ∑N

α=1 ∂φα/∂ t = 0 and 0 ≤ φα need to be
ensured during the phase-field evolution. The first condition is ensured by a
correct formulation of the evolution equations. One option is the introduction of
a Langrange multiplier [124]

∂φα

∂ t
=−L

δ f
δφα
−λ . (2.13)

Another option is a suitable choice of the mobility matrix. This results in the sum
over two-phase interactions as introduced by Steinbach and Pezolla [142]

∂φα

∂ t
=− 1

Ñε

Ñ

∑
β 6=α

Mαβ

(
δ f

δφα
− δ f

δφβ

)
(2.14)

where Ñ ≤ N denotes the amount of locally present phases and ε scales the in-
terfacial width. Following [153], the mobility matrix Mαβ must be symmetric
and all rows and columns should sum up to zero. If all entries Mαβ , α 6= β
are chosen such that they match the experimental interfacial velocity of the αβ -
phase pair and Mαβ = Mβα , the main diagonal of the mobility matrix is given
by Mαα = −∑α Mαβ . A significant difference between the two evolution equa-
tions is that the kinetic coefficient L in Eq. (2.13) needs to be interpolated from
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2.3 Phase-evolution equations

pair-wise mobilities while Eq. (2.14) directly incorporates the physical param-
eters Mαβ which is preferable if they are pair-wise different. This is especially
relevant in the context of intercalation in polycrystalline structures where the pre-
existing grain boundaries should be immobile or much less mobile compared to
the phase transitions happening within the grains. The second criterion, 0≤ φα ,
is either fulfilled by construction of the energetic landscape [154] as discussed
in Fig. 3.2 or needs to be enforced explicitly via algebraic constraints or projec-
tion schemes as discussed in Appendix B. Within this work, the multi-obstacle
potential (Eq. (2.5)) is employed together with the projection scheme outlined in
Algorithm 1.

If Eq. (2.14) is solved for a two-phase case solely driven by interfacial forces,
the combination of Eq. (2.4) and (2.5) results in a diffuse transition from φα = 0
to φα = 1, as shown in Fig. 2.1a for a flat interface. For a one-dimensional
case, the equilibrium solution can be obtained analytically as φα(x) = 0.5 +

0.5sin(4x/επ), which also results in the interfacial energy and width of the
diffuse interphase given in Appendix A.2. The results in Fig. 2.1b reveal two
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Figure 2.1: Evolution of a one-dimensional diffuse interface towards the equilibrium solution. The
diffuse transition is shown in a) for grid spacing ∆x = 1 and ε = 5 while the ratio of
interfacial forces in b) is used as a metric for convergence.
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2 Multiphase-field model for intercalation battery materials

fundamental properties of the diffuse interface. First of all, the time it takes
for convergence towards an equilibrium interface depends on the parameter ε
and, thus, the width of the interface. The formation process must be resolved
on a smaller timescale than the physical processes of interest. For this reason,
PACE3D [155, 156] includes an implementation to pre-process interfaces by
solving a modified version of Eq. (2.14) to start with close-to-equilibrium diffuse
interfaces. Secondly, the ratio of interfacial forces only converges to 1 if the in-
terface is resolved with enough grid points. Strong deviation can be observed for
ε = 2∆x where ∆x denotes the grid spacing, i.e. the distance between two grid
points. Therefore, throughout this work a minimal resolution of ε = 4∆x is used.

If a constant bulk driving force is now added to the system (e.g. fbulk = f α φα ,
f α = const.), one would expect from consideration of the corresponding sharp
interface problem that the diffuse interphase moves with constant velocity along
its normal direction while keeping its equilibrium profile. This is, however, not
the case which can be shown mathematically [143]. In fact, the representation
of a surface by the volumetric transition region of the phase variable φα must

(a)

− επ2

4
0 επ2

4

0

0.5

1

x

φ φα 1−φα
√

φα (1−φα )

(b)

Figure 2.2: Diffuse representation of a sharp interface problem with the phase-field method given
exemplarily for a circle. Isolines of φα = 0.1 and 0.9 are marked in blue. The isoline
φα = 0.5 is drawn in red and represents the corresponding sharp interface problem. In-
terfacial profile and gradient approximation in radial direction are shown in b)
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2.3 Phase-evolution equations

be accompanied by a consistent application of forces across the diffuse inter-
face. Just as the surface of a body is accurately recovered by the volume inte-
gral S =

∫ |∇φα |dV , any force f α acting on this surface needs to be smeared
by |∇φα | f α [141, 157]. Employing the equilibrium solution for the obstacle
potential in Appendix A.2, the norm of the gradient |∇φα | can be replaced
in the two-phase case by 4

επ
√

φα(1−φα). Inspired by this consideration, the
evolution equation Eq. (2.14) can be modified, treating interfacial terms as be-
fore but adjusting all pair-wise bulk driving forces with a factor accounting for
the diffuseness of interfaces. The evolution of phase variables is then governed
by [143, 158]

∂φα

∂ t
=− 1

Ñε

Ñ

∑
β 6=α

Mαβ

(
δ fint

δφα
− δ fint

δφβ
+

8
π

√
φα φβ ∆αβ

)
, (2.15)

in which the abbreviation ∆αβ = δ fbulk/δφα −δ fbulk/δφβ has been introduced.
Eq. (2.15) can also be motivated by an interpolation function hob for bulk driv-
ing forces that ensures the correct traveling wave solution for a binary inter-
face [110, Eq. 14]. The derivative of this interpolation function ∂hob(φ)/∂φ =
8
π
√

φ(1−φ) is then generalized for the multi-phase case. Note that no matter
how Eq. (2.15) is derived, it is no longer fully variational.

The functional derivatives of the free energy contributions (2.4)-(2.9) yield

−∇ · ∂ fgrad

∂∇φα
=

N

∑
β 6=α

εγαβ∇2φβ ,

∂ fob

∂φα
=

16
επ2

N

∑
β 6=α

γαβ φβ ,

∂ fchem

∂φα
= f α

chem +
N

∑
β

∂ f β
chem

∂cβ
∂cβ

∂φα
φβ = f α

chem−µcα ,

∂ felast

∂φα
=

1
2
εel :

∂C
∂φα

: εel +
∂εel

∂φα
: C : εel.
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2 Multiphase-field model for intercalation battery materials

For the re-formulation of the chemical contribution, the constraint of equal phase
diffusion potentials in the interface µ = ∂ f α/∂cα = · · · = f N/∂cN and the def-
inition of the mean composition have been used. The interpolation of energies
yields the definition c = ∑N

α cα φα for the mean composition [145].

Furthermore, the mean composition should not depend on phase fractions, i.e.

∂c
∂φα

= cα +
N

∑
β

∂cβ

∂φα
φβ = 0 →

N

∑
β

∂cβ

∂φα
φβ =−cα .

The evolution of phase α is then goverend by

∂φα

∂ t
=− 1

Ñε

Ñ

∑
β 6=α

Mαβ

(
γαβ Idual + Itriple +

8
π

√
φα φβ

(
∆αβ

chem +∆αβ
elast

))

where the symmetry γαβ = γβα has been included. The individual contributions
are given as

Idual = ε
(
∇2φβ −∇2φα

)
+

16
επ2

(
φβ −φα

)
, (2.16)

Itriple = ε
N

∑
γ 6=β 6=α

(γαγ − γβγ)

(
∇2φγ +

16
(επ)2 φγ

)
, (2.17)

∆αβ
chem = ( f α

chem−µcα)−
(

f β
chem−µcβ

)
, (2.18)

∆αβ
elast =

1
2
εel :

(
Cα −Cβ

)
: εel−

(
ε∗α −ε∗β

)
: C : εel. (2.19)

Note that even if there is an immobile phase φγ , the evolution of φα and φβ is in-
fluenced by φγ via Itriple. The triple phase contribution scales with the difference
in interfacial energies γαγ − γβγ and ensures correct angles in multi-junctions
according to Young’s law. Thus, the model is e.g. able to naturally account
for correct wetting behaviour on a substrate. If γαγ − γβγ ≈ 0, the triple phase
contribution Itriple becomes negligibly small. Furthermore, it is computationally
beneficial to skip the computation of Itriple which led to the so-called antisymmet-
ric approximation [158, 159]. Note that this simplification can result in a strong
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2.3 Phase-evolution equations

deviation of multi-junction angles and dynamics if the ratio between pairwise
interfacial energies becomes large.

Nucleation
For the nucleation of new phases in combination with the multi-obstacle potential
(Eq. (2.5)), a noise term is necessary in order to enable growth of phases that are
initially not present. Consequently, a term representing thermal fluctuations is
included in the evolution equation [140]

∂φα

∂ t
=− 1

Ñε

Ñ

∑
β 6=α

Mαβ

(
δ fint

δφα
− δ fint

δφβ
+

8
π

√
φα φβ ∆αβ

)
+

∂ζ
∂φα

, (2.20)

which is only active in the interface regions assuming heterogeneous nucleation
at structural defects such as grain or phase boundaries in polycrystalline materi-
als [160]. This assumption is discussed in more detail in Sec. 4.4. The noise term
is formulated as

ζ =
N

∑
α<β<γ

A ·D ·φα φβ φγ (2.21)

with an amplitude A and random distribution D. As the computation of ion dif-
fusion is based on the diffusion potential µ (Section 2.4), a correction of µ is
included to ensure that c is unaffected by the noise [136]. Otherwise, the inclu-
sion of noise in φ could result in a numerical leakage of the conserved quantitiy
c. The choice of Eq. (2.21) and the corresponding necessary noise amplitude A
are discussed in more detail in Chapter 4.
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2 Multiphase-field model for intercalation battery materials

2.4 Diffusion within the active material

In the general case, the diffusion of K species with molar fractions ci is given
by a set of K− 1 independent partial differential equations driven by the phase
diffusion potentials µ j

∂ci

∂ t
=∇ ·

(
K−1

∑
j=1

Mi j(φ,ci)∇µ j

)
+Ri. (2.22)

and the reaction term Ri. The mean mobility comprises the individual phase
mobilities Mi j = ∑N

α Mα
i jφα , where each Mα

i j is defined as Mα
i j = Dα

i j∂cα
i /∂ µ j in

the general case. The thermodynamic pre-factors ∂cα
i /∂ µ j depend on the choice

of chemical phase energies f α
chem. In equilibrium, the diffusion potentials of two

adjacent phases must be equal (µα
i = µβ

i ) and this constraint is generally applied
to diffuse interface regions. This can be motivated from the fact, that interfaces
can be interpreted as a phenomenological superposition of multiple phases and,
according to the introduced separation of interfacial and bulk contributions in
Eq. (2.1), the equilibrium interfacial profile obtained from fgrad and fob should
not be altered by bulk driving forces [144]. The chemical driving force for phase
transformations is given by the pairwise difference of grand chemical potentials
( f α

chem−µcα)−( f β
chem−µcβ ) (Eq. (2.18)), which needs to be constant across the

diffuse interface [145]. This condition is fulfilled if µ = µα
i = · · ·= µN

i . Instead
of solving for K ×N molar fractions and applying the K ×N − 1 constraints,
the evolution equations (2.22) can be re-written in terms of diffusional potential
following [145]. From ci = ∑N

α cα
i φα it follows that

∂ci

∂ t
=

N

∑
α

∂cα
i

∂ µk

∂ µk

∂ t
φα +

N

∑
α

cα
i

∂φα

∂ t
(2.23)

and, thus, the expression

∂ µk

∂ t
=

[
N

∑
α

∂cα
i

∂ µk
φα

]−1(
∇ ·
(

K−1

∑
j=1

Mi j∇µ j

)
+Ri−

N

∑
α

cα
i

∂φα

∂ t

)
(2.24)
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is obtained for the evolution of the diffusion potentials.

The diffusion of ions inside the intercalation compound is treated in the sense
of interstitial diffusion inside a lattice with the two species ions and vacancies.
The maximal concentration of intercalated ions cmax is given by the number of
interstitial sites per unit cell volume. The sum of ions and vacancies cion + cv =

cmax can be considered constant under the assumption that the host structure does
not change significantly. The field variable is normalized by its maximal value
such that equations are formulated in terms of the molar fraction cion/cmax, which
is equivalent to the local site filling fraction of vacancies within the host structure
(e.g. x in LixFePO4). Eq. (2.24) can thus be simplified to

∂ µ
∂ t

=

[
N

∑
α

∂cα

∂ µ
φα

]−1(
∇ · (M∇µ)+R−

N

∑
α

cα ∂φα

∂ t

)
. (2.25)

The ion concentration in the active material can change due to an insertion re-
action at the electrode-electrolyte interface, which is given by a surface reaction
term or, under specific assumptions (see Section 6.2.1), as a bulk source term.
Electro-chemical reactions are discussed in Sec. 2.6.

For many applications, diffusion is assumed to be ideal and isotropic which re-
sults in a scalar mobility M = ∑N

α (D
α ∂cα/∂ µ)φα based on scalar diffusivities

Dα per phase. More generally, anisotropic diffusion is described by a second
order tensor Dα . As discussed in Section 1.1.1, many battery materials ex-
hibit strongly anisotropic properties in terms of diffusivity, surface energies, me-
chanical stiffness and lattice expansion. For orthorhombic materials with strong
anisotropy, the diffusion tensor in the lattice coordinate system can be expressed
by a diagonal tensor with three independent entries

D123 =




D11 0 0

0 D22 0

0 0 D33


 .

35



2 Multiphase-field model for intercalation battery materials

Every grain has an individual orientation that can be described by Euler angles or
quaternions with respect to the global coordinate system. Rotation of the diffu-
sion tensor from the material to the reference coordinate system can be achieved
using rotation matrices such as

Rx =




1 0 0

0 cosθ −sinθ

0 sinθ cosθ


 ,Ry =




cosψ 0 sinψ

0 1 0

−sinψ 0 cosψ


 ,Rz =




cosϕ −sinϕ 0

sinϕ cosϕ 0

0 0 1




which, in the XYZ-convention, yields the rotation transformation

Dα
xyz =R

α
z R

α
y R

α
x D123(R

α
x )

T (Rα
y )

T (Rα
z )

T .

Alternatively, the rotation can be computed based on quaternions, which are more
robust for arbitrary rotations [161, 162] and, moreover, allow for straight-forward
interpolation of intermediate configurations.

2.5 Mechanical equilibrium

The kinematics of a continuous body B can be described by the mapping from
the reference to the current configuration x = χ(X, t), in which x denotes the
current position of a material point and X the initial position. The displacment
of each material point is defined by the vector pointing from the initial to the
current position u(X, t) = χ(X, t)−X . The deformation is described by the
deformation gradient F =∇χ containing rigid body rotations as well as strain.
An appropriate strain measure needs to be independent of rigid body motion,
which leads to formulations for material laws based on e.g. the right Cauchy-
Green tensor C = F TF or the Green strain tensor E = 1

2 (F
TF − 1). In the

limit of small strain ε, the linearized approximation

ε=
1
2
(∇u+(∇u)T) (2.26)
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holds. Within this work, only small deformations are considered. However, the
inclusion of large deformations within the multiphase-field approach is also pos-
sible [163].

The evolution of mechanical stress is governed by the momentum balance. Un-
der the assuption that mechanical relaxation processes are much faster than diffu-
sional ones, equilibrium of the static momentum balance is required at any given
time such that the stress tensor σ fulfills

∇ ·σ+b= 0 (2.27)

with applied body forces b. Furthermore, symmetry of σ is obtained from the
balance of angular momentum σ = σT. To close the system of equations, an
assumption about the rheological behaviour of the continuous body needs to be
introduced which is typically called material law. The postulated elastic energy
density (2.9) defines the material law through the relation

σ =
∂ felast

∂εel = C : [ε−ε∗] (2.28)

in which the additive superposition of strains ε = εel + ε∗ was implicitely im-
posed. ε denotes the total, εel the elastic and ε∗ eigenstrains, respectively.

Within the diffuse interface region, an interpolation of phase-specific quantities
needs to be employed. From the Hill-Mandel condition [164], it follows that a
homogenization of the phase-dependent stress and strain contributions by inter-
polation with the volume fraction φα

σ = ∑
α
σα φα and ε= ∑

α
εα φα

defines the effective quantities σ and ε. Two well-known averaging schemes are
the Voigt-Taylor (VT) interpolation based on the assumption of uniform strains
ε= εα ,∀α and the Reuss-Sachs scheme, which assumes uniform stress among all
phases σ = σα ,∀α . These two interpolations define the upper and lower bounds
of admissible interpolation schemes. Eq. (2.9), on the other hand, follows the
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2 Multiphase-field model for intercalation battery materials

microelasticity approach of Khachaturyan [149] assuming linear interpolation of
stiffnesses C = ∑Cα φα and linear interpolation of eigenstrains ε∗ = ∑ε∗α φα ,
resulting in the effective stress

σ = C : [ε−ε∗] =
(

∑
α
Cα φα

)
: [ε−∑

α
ε∗α φα ].

The elastic energy (2.9) cannot be expressed as an average of phase-specific en-
ergies and, thus, this approach is not a homogenization in the spirit of the Hill-
Mandel condition. All three approaches have been compared for the case of an
elasto-plastic precipitate in an elastic matrix driven by chemo-mechanical forces.
The comparison showed that the Reuss-Sachs interpolation does not correctly
account for the coupling of chemical and mechanical forces while the other two
yielded almost identical results [150].

All three interpolation schemes discussed above do not reproduce the momentum
balance at singular surfaces for a finite width of the diffuse interface [165]. In-
terpolation schemes that correctly account for the Hadamard condition and avoid
excess energies in the diffuse interface have been developed [165–167]. They are
based on a split of normal and tangential contributions, which makes it necessary
to compute the surface normal of an interface from the gradient of the phase-
field, e.g. n = ∇φα/|∇φα |. However, this approach poses a numerical chal-
lenge for nucleation of new phases when interfaces are not yet fully developed.
The VT and Khachaturyan approaches are more stable but alter the interfacial
energy. This excess energy is larger in the case of VT interpolation [151]. For
this reason, the microelasticity theory (i.e. Khachaturyan interpolation) is em-
ployed throughout this work although I am aware of the drawbacks arising from
the interdependence between interfacial width l(ε) and excess energy.
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2.6 Electro-chemical surface reaction

All model derivations and assumptions in this section are discussed for a Na-ion
intercalation battery. However, the results are also applicable to Li-ion batteries.

In a sodium ion cell, sodium atoms are stored in both the anode and the cath-
ode. However, oxidation and reduction reactions are necessary at both electrode-
electrolyte interfaces during operation of the cell such that ions can be solvated
in the electrolyte and travel to the other electrode while electrons are moving
through an external circuit. The driving force for an electric current is the dif-
ference of electro-chemical potentials of the electrons between the anode (A)
and cathode (C) side which corresponds to the voltage difference measured by a
potentiometer [168]

F∆V = µ̃A
e− − µ̃C

e− . (2.29)

F denotes the Faraday constant. In other words, the measured potential can be
interpreted as the voltage that must be applied to a battery to stop the current.
These potentials are actually measured at contacts to the current collectors (cc)
on both sides but in equilibrium µ̃cc,A

e− = µ̃A
e− must hold as the electrode and

respective current collector are electrically connected. Note that the measured
potential difference is not generally equal to the difference in (inner) electrostatic
potentials. If we measure the potential difference with two copper wires, the
chemical potentials of electrons are identical and thus

∆V =
µ̃wire,A

e− − µ̃wire,C
e−

F

=
µcopper

e− −FΦwire,A−µcopper
e− +FΦwire,C

F
= Φwire,C−Φwire,A

holds. Typically, the anode and cathode are two different materials and, as a
result, their inner electro-static potentials cannot be directly measured.
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2 Multiphase-field model for intercalation battery materials

Under open-circuit conditions, the electrochemical potential of sodium ions must
be equal across the cell

µ̃C
Na+ = µ̃elyte

Na+ = µ̃A
Na+ (2.30)

as the electrolyte is able to shuttle Na+ ions until equilibrium is established. The
Na chemical potential can be expressed as the sum of electrochemical potentials
of the ion and respective electron

µNa = µ̃Na+ + µ̃e− (2.31)

and, consequently, the resulting open-circuit voltage can be expressed as

VOC =
µ̃A

e− − µ̃C
e−

F
=

µA
Na− µ̃A

Na+ −µC
Na + µ̃C

Na+

F
=

µA
Na−µC

Na
F

. (2.32)

This is equal to the change in Gibbs free energy when transferring an ion from
the anode to the cathode and can be approximated by balancing the total energies
obtained with DFT [169].

The simulation studies in Chapters 6, 7 and 8 consider the intercalation of
lithium/sodium into cathode materials, which are cycled against the respective
metal counter electrode (analogous to a half-cell setup). At constant temperature
and pressure, the chemical potential of metallic sodium is constant (µA

Na = µ	,ANa )
while the chemical potential in the cathode depends on the site filling fraction of
vacancies

µC
Na(c) = µ	,CNa +µ(c). (2.33)

In the continuum approximation, the diffusion potential µ is related to the partial
derivative of the Gibbs free energy density with respect to the site filling frac-
tion µ = ∂ f/∂c [158, 170]. Within the multiphase-field approach presented in
Section 2.2, µ = ∂ f α/∂cα = · · · = f N/∂cN holds for the phase-specific contri-
butions. Under these assumptions, Eq. (2.32) can be expressed as

VOC(X) =V	cell−
µ
F
. (2.34)
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2.6 Electro-chemical surface reaction

where the reference cell voltage V	cell = (µ	,ANa −µ	,CNa )/F is independent of c and
thus constant. X ∈ [0,1] denotes the average site filling fraction X = 1

VE

∫
ciondVE

in the active electrode material volume VE. Even though the local composition
may vary across the active material due to phase transformations, the chemical
potentials are equal in equilibrium. This thermodynamic background facilitates
the comparison of experimental results that are close to equilibrium (i.e. low C-
rate) with total energies calculated by DFT [169]. Furthermore, both can be used
as an input to formulate the chemical Gibbs free energy density fchem for phase-
field simulations which is discussed for NaX Ni1/3Mn2/3O2 in Section 7.2.1.

Kinetic processes that dominate the charge and discharge of intercalation com-
pounds include interfacial ion transfer as well as ion and electron transport in
the bulk and possible phase transformations. The intercalation reaction into the
active material such as

X ·Na++X · e−+TM O2 
 NaX TM O2, (2.35)

is typically modelled by the Butler-Volmer equation [168, Eq. 9.13] such that the
electrical flux into or out of the electrode is given by

jN = j0(csurf)

(
exp
(

α
eη

kBT

)
− exp

(
−(1−α)

eη
kBT

))
(2.36)

with the exchange current density j0 and the so-called overpotential η . kB de-
notes the Boltzmann constant, e the elemental charge and T the ambient temper-
ature. For symmetry of the forward and backward reaction (α = 0.5)), Eq. (2.36)
reduces to

jN = 2 j0(csurf)sinh
(

eη
2kBT

)
. (2.37)

In the non-equilibrium case, a gradient in chemical potential can arise in the cath-
ode from the surface into the bulk of active particles due to diffusion limitation
and ∇µ is the respective driving force for diffusion as discussed in Section 2.4.
The overpotential η is the driving force for intercalation, which is given by the
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2 Multiphase-field model for intercalation battery materials

difference of electrochemical potentials of Na+ ions at the electrolyte-electrode
interface

η = (µ̃elyte
Na+ − µ̃C

Na+,surf)/F.

Assuming fast ion transport in the electrolyte and fast reaction kinetics at the
metal electrode, µ̃elyte

Na+ ≈ µ̃A
Na+ holds and thus

η =
µ̃A

Na+ − µ̃C
Na+,surf

F
=

µA
Na−µC

Na,surf

F
−

µ̃A
e− − µ̃C

e−,surf

F
.

Furthermore, assuming good electronic wiring in the cathode and fast electron
conduction compared to the time scales of ion intercalation and diffusion, µ̃C

e−

takes the same value across the cathode. With the definition in Eq. (2.29) and the
previously used expressions for chemical potential, this yields

η =
µA

Na−µC
Na,surf

F
−V =V	cell−V − µsurf

F
(2.38)

where the V is the applied voltage. µsurf is the diffusion potential of sodium at
the surface of the active material and will be spatially resolved in simulations. In
combination with Eq. (2.37), this yields

jN = 2 j0(csurf)sinh
(

e
2kBT

(V	cell−V )− µsurf

2RT

)
(2.39)

and, thus, the surface reaction depends on the surface concentration and chemical
potential of intercalated ions. The previously discussed model assumptions lead
to the notion of the nano-battery model sketched in Fig. 2.3

In the classical Butler-Volmer equation, the exchange current density is assumed
to take the form j0 = k0

√
csurf(1− csurf). A derivation of reaction kinetics from

Marcus theory leads to a different pre-factor [99, 108], which introduces an
asymmetry into the charge-discharge behaviour. A skewed j0(csurf) relation can
amplify reaction heterogeneities during charge but suppresses them during dis-
charge [171]. The rate constant k0 is material specific [172] and associated with
the energetic barrier to be overcome for desolvation and intercalation of ions. k0
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2.6 Electro-chemical surface reaction

Figure 2.3: Nano-battery model consisting of a single cathode particle cycled against Na metal anode
assuming fast transport in the electrolyte and fast reaction kinetics at the anode side.

and consequently jN have dimensions [A/m2] and the surface reaction is given
by Rsurf(c, t) = jN/F in [mol/(s m2)] with F being the Faraday constant.

The assumption of galvanostatic (dis-)charge (i.e. battery is charged with a con-
stant flux) can be modeled employing Eq. (2.39) on the surface while restricting
the global flux [108]

I =
∫

∂B

1
F
j ·ndA !

= cmax C-rate
∫

B
1dV

[
mol

s

]
. (2.40)

Eq. (2.40) can be utilized to compute the applied voltage V of the nanoparticle
battery under the assumptions stated before. Inserting Eq. (2.36) as the surface
flux and employing the definition of overpotential in Eq. (2.38), yields

k0

F

∫

∂B

√
c(1− c)

[
exp
(

e
2kBT

(V	cell−V )− µ
2RT

)

− exp
(
− e

2kBT
(V	cell−V )+

µ
2RT

)]
dA !

= I.

Substituting y = exp( e
2kBT (V

	
cell−V )) and multiplying both sides by y leads to

y2
∫ k0

F

√
c(1− c)exp

(
− µ

2RT

)
dA−

∫ k0

F

√
c(1− c)exp

( µ
2RT

)
dA− Iy !

= 0.
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With abbreviations for both integrals

int− =
∫ k0

F

√
c(1− c)exp

(
− µ

2RT

)
dA,

int+ =
∫ k0

F

√
c(1− c)exp

( µ
2RT

)
dA,

the quadratic formula for y can be solved and expressed as

y =
1

2int−
[
I±
√

I2 +4int− int+
]
.

The second solution I−
√

I2 + . . . is unphysical (y must be positive for V to be
existent) and, therefore, the applied voltage of the nanoparticle battery is

V =V	cell−
2kBT

e
ln(y) . (2.41)

It is common practive in experimental setups to limit the voltage window with
a lower and upper cut-off voltage. After computation of Eq. (2.41), the applied
voltage in simulations is limited to the given interval by

V ∗ = min(max(V cut-off
lower ,V ),V cut-off

upper ).

Cut-off voltages are chosen in accordance with experiments in Chapters 6 and 7.

2.7 Numerical implementation

All simulations are conducted using codes based on finite difference stencils
and an explicit Euler time-stepping. MPF simulations were performed using
PACE3D [155, 156] which is an in-house code. The PACE3D (Parallel Algo-
rithms for Crystal Evolution in 3D) framework has been developed by the group
of Prof. Nestler for over 20 years and comprises a set of modules covering phase
evolutions, diffusional and thermal processes, solid mechanics, fluid mechanics,
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2.7 Numerical implementation

magnetism and electrical fields. The battery-specific part of the model formu-
lation presented in Section 2.6 has been implemented as a new module inside
the framework and, consequently, has been applied in combination with phase,
concentration and stress evolution. Coupling with other effects such as plasticity,
fracture or temperature evolution are possible in the future.
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[0,0]

Figure 2.4: Discretisation of spatial domain

The spatial domain is discretized by a regular grid as shown in Fig. 2.4. Boundary
conditions are applied using ghost cells (gray) such that all spatial gradients or the
laplacian can be evaluated with stencils of second order precision in the physical
domain (colored cells).

More details concerning the numerical implementation for anisotropic fluxes are
given in Chapter 5. A domain decomposition is implemented in PACE3D using
MPI (message passing interface) [156]. Each subdomain can be assigned to a
MPI process, which allows for massive parallelization and computational speed-
up [135]. To handle a large amount of phases in a computationally-efficient way,
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2 Multiphase-field model for intercalation battery materials

a locally-reduced order parameter (LROP) scheme is employed [173, 174]. Un-
der the assumption that at most NLROP << Nphases phases are locally present,
the computation time and memory space can be significantly reduced if NLROP

phases are stored by index and value. The concept is similar to the idea of storing
a sparse matrix as tuples of the two indices and a value.

2.8 Remarks

The model presented in this chapter has been carefully selected based on state-of-
the-art multiphase-field models and the following validation chapters. Modeling
aspects are discussed in detail and have partially been published in Daubner et
al. [126], Daubner et al. [36] and Daubner et al. [110].

Future model improvements might encompass a strongly coupled chemo-mecha-
nical energy formulation such that eigenstrains explicitely depend on the local
composition and the ion flux has a contribution stemming from elastic defor-
mation [175]. Currently, both influences are considered but coupled through
the phase fields φ, which results in elimination of cross-terms in the evolution
equations of µ and σ. On the other hand, the simplification is the basis for the
re-formulation of Eq. (2.22) to Eq. (2.24) and, thus, contributes to the computa-
tional performance of the proposed model formulation.

Depending on the electrode material of interest, other possible model extensions
comprise the inclusion of plasticity, large deformations or fracture. It has been
shown experimentally [18, 35] as well as through simulations [19] that mechani-
cal degradation is one of the most prominent mechanisms for irreversible capac-
ity loss. At the same time, the complex effects of mechanical forces interacting
with ion insertion and diffsion are not well-understood and mechanics can lead
to unexpected behaviour. Fracture of larger agglomerates can shorten the average
diffusion path length and lead to a higher rate performance [38]. Furthermore, the
studies in Chapter 7 suggest that elastically stored energy dictates the direction
of phase transformations and, thus, contributes to a higher accessible capacity.
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3 Benchmarking interfacial forces1

»Multi-phase field formulations have historically been developed by various re-
search groups, each of them following their own notation and advancing their
own branch of model development. There has been little effort to address the
mutual comparison of phase-field formulations. The work by Moelans, Wendler
and Nestler [176] compares two phase-field models, employing a steady-state
triple junction amongst others but is limited to dihedral angles in the range θ ∈
[89,140]. Toth et al. [153] were the first, to the best of our knowledge, to de-
fine a list of criteria that should be fulfilled for any multiphase-field formulation.
Using these criteria, the authors compare established models with a newly devel-
oped one. For the scope of this work, we employ some of the criteria and only
consider model formulations which fulfill the following conditions [153]:

• In accordance with the “principle of formal indistinguishability”, physical
results should be independent of the labeling of variables (i.e. independent
of the order of computation).

• Over time, the total free energy should decrease monotonically (second
law of thermodynamics) and tend towards the equilibrium solution which
minimizes the free energy of the system.

• The model should be general in the sense that adding or removing a new
phase is straight-forward and it should be possible to recover the respective

1 The content of this chapter is taken verbatim from the article Daubner et al. [126]. While the
original article includes a detailed derivation of analytical solutions and the comparison of multi-
order parameter models, only the parts that are specific to multiphase-field models are included
in this dissertation.
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models from each other, e.g. all formulations naturally reduce to the well-
known equations of a two-phase interface for N = 2.

The goal of this work is to shed some light on the similarities and differences
among various branches of multi-phase field (MPF) models, performed in three
consecutive steps. Commonly used gradient and potential energy contributions
are compared using a unified notation. Subsequently, we specify the evolution
equations, underlying assumptions as well as the inclusion of physical model
parameters for MPF models (Sec. 3.1.3). Multiple authors have previously used
a triple junction setup to validate their specific modeling approach [154, 176–
180] which is well-suited for the following reasons:

• All critical modeling choices for extension from the binary to the multi-
phase case have to be made to arrive at a triple junction. It should then be
straight-forward to increase the number of phases to N.

• The energetic landscape of the potential term can still be visualized em-
ploying the Gibbs simplex constraint, similar to a ternary diagram (see [154]
and Sec. 3.1.2).

• Triple junction angles are analytically known from Young’s law.

• The occurance of ghost phases can be quantified.

• The simulation setup is simple enough (concerning initial and boundary
conditions, domain size, computational effort) to be suitable for bench-
marking.

The steady-state motion of the triple junction has often been compared with an
analytical solution derived from a small-slope approximation [176, 181] without
discussing the limits of this approximation. Especially at high ratios of pair-wise
different interfacial energies, the approximate solution deviates strongly from the
mathematically exact solution [182, 183] which impacts the drawn conclusions.
This issue has been addressed in a recent note by Eiken [184].
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3.1 Model formulation

In a general sense, the energy functional can be formulated as

F (φ,∇φ, . . .) = Fint(φ,∇φ)+Fbulk(φ, . . .) (3.1)

where we assume a separation of interfacial and bulk energy terms following the
notion discussed in the introduction that sharp interfaces can be replaced by a
diffuse representation well above the atomic scale of diffuse transition regions.
The interfacial term represents the surface energy of phases in contact with each
other. In a sharp interface representation, this energy contribution is constrained
to surfaces but in the context of the phase-field approach, it turns into a volumetric
contribution smeared over the diffuse interface region such that Fint =

∫
V fintdV

holds. The integral should converge to the same energy even for finite interfacial
widths. The bulk contribution can possibly contain chemical, mechanical, ther-
mal, electrical or other driving forces for phase transformation but is not subject
of the following investigations. The interfacial volume integral of phase-field
formulations is generally constructed as the sum over two contributions

Fint(φ,∇φ) =
∫

V
fgrad(φ,∇φ)+ fpot(φ)dV (3.2)

namely a gradient term and a potential term (also called homogeneous free en-
ergy [178] or barrier function [153]) which will be discussed in detail in the
following sections.
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3.1.1 Gradient energy formulations

As a generalization of the two-phase case κ|∇φ |2, we formulate the gradient
term for multiple phases α,β , . . .N as

fgrad(∇φ) =
1
2 ∑

α
∑
β
(∇φα : καβ : ∇φβ ) (3.3)

isotropic
=

1
2 ∑

α
∑
β

καβ (∇φα ·∇φβ ) (3.4)

where καβ could be a tensor including directional dependence of interfacial en-
ergies. For isotropic systems, it reduces to a scalar καβ . Note that there are
various other ways to include anisotropic surface energies within phase-field for-
mulations [153, 185]. Some model formulations only employ the main diagonal
of the καβ -matrix, i.e. καβ = 0, ∀α 6= β which results in

fgrad(∇φ) =
1
2 ∑

α
κα |∇φα |2. (3.5)

This formulation carries the problem that for a number of phases N > 3 there
are less parameters κα than possibly different pairwise interfacial energies γαβ
which leads to the alternative formulation based on interpolation of the pairwise
parameters καβ

f interpolate
grad (φ,∇φ) = κ̃

2 ∑
α
|∇φα |2 where κ̃ =

∑καβ hαβ (φ)

∑hαβ (φ)
. (3.6)

A popular choice is hαβ = φ 2
α φ 2

β [153, 178, 186], but generally the definition of an
appropriate interpolation function can be challenging. Due to the interpolation,
this formulation is not only a function of gradients ∇φα but also the φα -values.
Alternatively, setting the main diagonal to zero καα = 0 leads to a second set
of frequently used gradient formulations [142]. As the interfacial energy γαβ
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between two phases should be independent of the labeling of variables (see prin-
ciple of formal indistinguishability [153]), we enforce symmetry καβ = κβα . The
gradient term can thus be written as the summation over pairwise dot products

f dot
grad(∇φ) =−∑

α
∑

β>α
καβ∇φα ·∇φβ (3.7)

where the minus sign is introduced for convenience of the καβ fitting values.
Note that the factor 1/2 is consumed by assumption of symmetry and reduction
to the upper right entries of the matrix (∑β>α ). Another formulation of the gra-
dient term which has been used in works of Steinbach [123], Tiaden [159] and
Nestler [124, 156]

f weighted
grad (φ,∇φ) = ∑

α
∑

β>α
καβ |φα∇φβ −φβ∇φα |2 (3.8)

cannot be derived from the postulated Eq. (3.4) but is closely related to formula-
tion Eq. (3.7) in the sense that terms are introduced as pairwise interactions with
parameters καβ . It includes a generalized gradient based on an antisymmetric
weighting of the two gradients for each two-phase interface and traces back to
the theory of irreducible representation (see Landau and Lifschitz [187]). An
important feature that both equations 3.7 and 3.8 share is that the αβ term van-
ishes in all other interfaces where one of the two phases is inactive (φα = 0 and
∇φα = 0 or φβ = 0 and ∇φβ = 0). This ensures that the interfacial energies
are mutually decoupled, which simplifies the parameterization of the model. All
the above mentioned formulations reduce to κ|∇φα |2 in two-phase interfaces if
φβ = 1−φα (which implies ∇φβ =−∇φα ) is fulfilled.
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3.1.2 Potential energy formulations

The double-well and double-obstacle formulations which have typically been
used for phase-field models with one parameter fwell(φ) = Ωφ 2(1− φ)2 and
fob(φ) =Ωφ(1−φ) can be generalized intuitively in two possible ways. The first
one is motivated by setting φ = φα and defining the second phase as φβ = 1−φ
which results in

f 1
well(φ) = ∑

α
∑

β>α
Ωαβ φ 2

α φ 2
β and f 1

ob(φ) = ∑
α

∑
β>α

Ωαβ φα φβ .

The second option is a summation over all occurring phases where we set φ = φα

in the single phase terms

f 2
well(φ) =

1
2 ∑

α
Ωα φ 2

α(1−φα)
2 and f 2

ob(φ) =
1
2 ∑

α
Ωα φα(1−φα).

Other formulations are generally possible under the constraint that they naturally
reduce to the double-well or obstacle potential within each two-phase interface to
reproduce the physical interfacial energy γαβ of each αβ -phase pair. This implic-
itly requires the additional criterion that two-phase interfaces should represent a
stable equilibrium and thus be free of additional phases [153]. The occurrence
of additional phases is often referred to as “spurious phases” or “ghost phases”
as they are unphysical and alter the resulting interfacial energy. For a more de-
tailed investigation of the above free energy formulations, a three-phase system
is considered in the following paragraph.

As mentioned by Folch and Plapp [154], the visualization of the energy landscape
over the Gibbs simplex of a triple junction (similar to a ternary diagram) is helpful
to aquire geometric intuition. As we make use of the sum constraint ∑φα = 1
for parametrization, the energies shown in Fig. 3.1 are exact for multiphase-field
models while differences can arise for multi-order parameter models. However,
as the models discussed in this paper assume stable states of η at 0 and 1, most
conclusions hold true for both classes of model formulations. By plotting the
above formulations with the same value of Ω for all phases (or phase pairs),
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φα

φβ

φγ

f 1
well

f 2
well

(a) multi-well potential

φα

φβ

φγ

f 1
ob = f 2

ob

(b) multi-obstacle potential

Figure 3.1: Energetic landscape of the multi-well and multi-obstacle potentials shown for a three-
phase system over the Gibbs simplex of a triple junction. Formulations f 1

well and f 1
ob are

represented by surfaces with contour lines while f 2
well and f 2

ob are drawn by red wireframe
plots.

we can immediately see that the first generalization of the multi-well potential
exhibits a saddle at the triple point φα = φβ = φγ = 1/3 while for the second
approach, the energy of dual interphases is lower than anywhere in the triple
phase region. For the obstacle potential, both formulations yield identical results
and the energies of two-phase interfaces are generally lower than triple junctions.
Differences will be discussed in more detail within the following subsections.

3.1.2.1 Multi-well energies

Throughout the phase-field community, several multi-phase extensions of the
well-potential have been applied. Folch and Plapp [154] use formulation f 2

well(φ)

for a ternary system. From Fig 3.1a, it is clear that formulation f 1
well, which is

purely based on φ 2
α φ 2

β terms, suffers from low energy in the triple junction. As
the three-phase case becomes energetically favorable compared to two-phase in-
terfaces, models based on this approach suffer from ghost phases and distorted
interfacial energies. Some multi-well formulations try to circumvent this issue
by adding additional terms that penalize higher-order junctions through single
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phase contributions that need to be constructed such that they reduce correctly in
the two-phase case [153, 178]

f Moelans
well = Ω̃

(
∑
α

∑
β>α

χαβ φ 2
α φ 2

β +∑
α

(
φ 4

α
4
− φ 2

α
2

)
+

1
4

)
(3.9)

f Toth
well = Ω̃

(
1
2 ∑

α
∑

β>α
φ 2

α φ 2
β +∑

α

(
φ 4

α
4
− φ 3

α
3

)
+

1
12

)
. (3.10)

Alternatively, triple-phase terms can be added [177]

f Garcke
well = ∑

α
∑

β>α
Ωαβ φ 2

α φ 2
β +∑

α
∑

β>α
∑

γ>β
Ωαβγ φ 2

α φ 2
β φ 2

γ (3.11)

to alter the triple junction energy. Other higher-order monomials have been used
in works of Steinbach et al. [123] and Tiaden et al. [159]. The similarity be-
tween the potentials (3.10) and (3.9) is most apparent when both are written for
a homogeneous system (as in ideal grain growth)

f Moelans
well = Ω

(
χM ∑

α
∑

β>α
φ 2

α φ 2
β +∑

α

(
φ 4

α
4
− φ 2

α
2

)
+

1
4

)
(3.12)

f Toth
well = Ω

(
χT ∑

α
∑

β>α
φ 2

α φ 2
β +∑

α

(
φ 4

α
4
− φ 3

α
3

)
+

1
12

)
. (3.13)

The formulations only differ in the polynomial contributions, but interestingly,
they reduce to the same expression in the two-phase interface such that the con-
dition Ω(2χ + 1) = 2Ωref should be fulfilled (see Appendix A). The parameter
χ performs a weighting between the dual terms and single-phase monomials.
Fig. 3.2 shows the energetic landscape over the triple junction for both formula-
tions with constant Ωref but varying values of χ .

To predict the energy barrier and phase fractions in an interface between two
phases, we compute the connecting minimum energy path (MEP) between global
minima via the nudged elastic band method [188, 189]. Results are shown in
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Figure 3.2: Multi-well formulations (3.12) and (3.13) drawn over the Gibbs simplex of a triple junc-
tion for different values of χ . Energy values inside the sum constraint are shown as
colored surfaces with contour lines while values outside are shown by gray wireframe
plots. The 2D-colorplots additionally show the minimum-energy path (MEP) between
the bulk phases as a white dashed line. The MEP is calculated numerically using the
nudged elastic band method [188, 189].

Fig. 3.2 as white dashed lines in the two-dimensional colorplots. Only for the
special values of χM = 1.5 and χT = 0.5, the behavior of a two-phase system
is reproduced. For other values of χ , we expect ghost phases as the minimum
energy path involves nonzero values of a third phase. The illustration underlines
that not only the values of the potential function within the Gibbs simplex con-
straint are relevant but also the position of the saddle point which defines the
energetic barrier. The saddle point that separates α and β phases is located at
φα = φβ = (1− x)/2 and φγ = x, where x depends on the value of χ . In the limit
of χ → ∞, both model formulations reduce to the binary terms in f 1

well and the
saddle is located at [1/3,1/3,1/3]. Decreasing the value of χ leads to higher
triple point energies until, eventually, two-phase interfaces become energetically
favorable and thus a stable solution of the system. The two energy landscapes
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3 Benchmarking interfacial forces

are identical with formulation f 2
well for the values χM = 1.5 and χT = 0.5. The

saddle point lies on the two-phase interface at [1/2,1/2,0] which makes these
cases attractive in the sense that they are naturally bounded to the Gibbs simplex
and make projection algorithms as discussed in Appendix B redundant. Formu-
lation (3.12) has an infinite amount of stable solutions that lie on a circle around
the Gibbs triangle for χ = 0.5 [129] and, thus, is limited to χ ≥ 0.5. The for-
mulation f Toth

well only reaches this limiting case asymptotically for χ → 0 which
allows a wider range of input parameters. Note that for values smaller than 0.5,
the saddle point is located at x < 0 which lowers the simulated interfacial energy
for multi-order parameter models and, in the case of multi-phase field models,
needs explicit handling of the Gibbs simplex constraint.

Hence, it seems beneficial to limit the value χ to a small range of values around
1.5 for Eq. (3.12) and 0.5 for Eq. (3.13), respectively, to reach the desired fea-
tures of multi-well formulations. Moelans et al. studied the influence of χM

(there called overlap parameter) on the shape of equilibrium phase field profiles
and the interfacial energy in two-phase interfaces in more detail in the context
of MOP models [178]. If interfacial energies are pair-wise different, this inho-
mogeneity can be introduced in Eqs. (3.12) and (3.13) either via the potential
barrier height Ω̃ = (∑α ∑β>α Ωαβ φ 2

α φ 2
β )/(∑α ∑β>α φ 2

α φ 2
β ) or via the weighting

parameter χ̃ = (∑α ∑β>α χαβ φ 2
α φ 2

β )/(∑α ∑β>α φ 2
α φ 2

β ). Implications of these
two choices are discussed in [178].

The third formulation Eq. (3.11) raises the energy in the triple junction, but only
in the limit of Ωαβγ → ∞ are two-phase interfaces energetically favorable. For
finite values of Ωαβγ , a small fraction of ghost phases remains as can be ob-
served from the simulations in Sec. 3.2. An additional problem with the triplet
terms Ωαβγ φ 2

α φ 2
β φ 2

γ is the great number of numerical fitting parameters that re-
sults from many phase variables N as it scales with ∝ N3. Furthermore, these
numerical parameters might cause issues in applications that employ heteroge-
neous nucleation mechanisms (e.g. martensitic transformations [140] or battery
materials [110]) as they crucially influence the nucleation barriers of new phases
within existing interfaces.
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3.1 Model formulation

3.1.2.2 Multi-obstacle energies

In the case of the obstacle potential, both generalizations shown in Fig. 3.1b are
identical which traces back to the re-formulation

1
2 ∑

α
Ωφα(1−φα) =

1
2 ∑

α
Ωφα ∑

β 6=α
φβ = Ω∑

α
∑

β>α
φα φβ .

This generally holds as long as Ω is identical for all phase-pairs. Formulation
f 2
ob suffers from the problem that there are less parameters Ωα than possible

phase-pairs for N > 3 which is why we restrict all following simulation examples
including the obstacle potential to

fob(φ) = ∑
α

∑
β>α

Ωαβ φα φβ (3.14)

which has been extensively used in works from the groups of Steinbach [142]
and Nestler [124].

3.1.3 Multiphase-field evolution equations

The phase evolution equation (2.15) reduces to Eq. (2.14) in the absence of bulk
driving forces. Therefore, we employ the sum over binary interactions as intro-
duced by Steinbach and Pezolla [142]

∂φα

∂ t
=− 1

Ñε

Ñ

∑
β 6=α

Mαβ

(
δ f

δφα
− δ f

δφβ

)
(3.15)

in this chapter. The criterion, 0 ≤ φα from the Gibbs simplex constraint (2.12),
is either fulfilled by construction of the energetic landscape [154] as discussed in
Fig. 3.2 or needs to be enforced explicitly via algebraic constraints or projection
schemes as discussed in Appendix B.
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3 Benchmarking interfacial forces

The interfacial energy terms in MPF formulations are typically formulated as the
summation of binary terms which, in combination with the two-phase interface
solutions from A.2, allows for re-formulation of simulation parameters. The re-
placement of καβ = εγαβ and Ωαβ = Kγαβ/ε leads to an effective decoupling
of interfacial energy and width which allows to keep the width of the diffuse
interface constant throughout all phase pairs [124].

In this work we employ and compare the formulations

f Moelans
well =

9
ε ∑

α
∑

β>α

3γαβ

4
φ 2

α φ 2
β +

9
2ε

γ̃
(

1
4
+∑

α

(
φ 4

α
4
− φ 2

α
2

))
(3.16)

f Toth
well =

9
ε ∑

α
∑

β>α

γαβ

2
φ 2

α φ 2
β +

9
ε

γ̃
(

1
12

+∑
α

(
φ 4

α
4
− φ 3

α
3

))
(3.17)

f Garcke
well =

9
ε ∑

α
∑

β>α
γαβ φ 2

α φ 2
β +

9
ε ∑

α
∑

β>α
∑

γ>β
γαβγ φ 2

α φ 2
β φ 2

γ (3.18)

fob =
16

επ2 ∑
α

∑
β>α

γαβ φα φβ (3.19)

where the prefactors K = 9 for the multi-well and K = 16/π2 for the multi-
obstacle formulation ensure that the parameter γαβ corresponds to the physical
interfacial energy of the α-β phase pair. The interpolated value γ̃ is given by
γ̃ = (∑α ∑β>α γαβ φ 2

α φ 2
β )/(∑α ∑β>α φ 2

α φ 2
β ). Eq. (3.16)-(3.19) will be studied in

combination with the two gradient formulations Eq. (3.7) and (3.8). The factors
in Eqs. (3.16) and (3.17) are chosen such that in every two-phase interface χM =

1.5 and χT = 0.5 are fulfilled.
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3.2 Simulation studies

3.2 Simulation studies

3.2.1 Simulation setup

For our benchmark problem, we start with physical values in the order of typical
microstructure simulations listed in Table 3.1 and make them non-dimensional,
as would be common practice for any application to a specific material system.
Three reference quantities are applied to de-dimensionalize the problem, namely
the reference time tref = 100 s, length xref = 1 µm = 10−6 m and energy Ωref =

106 J/m3, which yields

W̃ =
W
xref

, γ̃αβ =
γαβ

Ωrefxref
and M̃ = M

Ωreftref

xref
. (3.20)

Note that the choice of parameters is somewhat arbitrary and the simulation re-
sults could be re-scaled differently by changing the reference values.

The initial conditions of the problem are identical for the two following sub-
problems and can be summarized as follows: We start with initially sharp inter-
faces and fill 0≤ x≤W and 80 < y≤ 100 with φ0 = 1 and, furthermore, 0≤ x≤
W/2 and 0 ≤ y ≤ 80 with φα = 1 and the other half W/2 < x ≤W,0 ≤ y ≤ 80
with φβ = 1. The respective other phases are equal to zero. A similar validation
example has been used in [190]. For all cases, we employ Neumann boundary
conditions (BCs) ∇φα ·~n = 0, ∀α at the top and bottom of the domain. At the
left and right domain boundary

• Dirichlet BCs are used for sub-problem (1) according to the initial setup,
i.e. phase boundaries are pinned at [0,80] and [W,80];

• Neumann BCs with ∇φα ·~n = 0, ∀α are used for subproblem (2) which in
this case reflects mirror symmetry. Alternatively, the domain length can be
doubled to 2W in combination with periodic BCs.

All simulations are conducted using codes based on finite difference stencils
and an explicit Euler time-stepping. MPF simulations were performed using
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3 Benchmarking interfacial forces

Table 3.1: Set of simulation parameters

Parameter Symbol Physical value Nondimensional

Width of domain W 100 µm 100
Height of domain H [100,. . . ,400] µm [100,. . . ,400]
Spatial resolution ∆x W/cells 1
Interfacial energy γα0 = γβ0 = γ0 1.0 J/m2 1.0

γαβ [0.1, . . . ,2.0] J/m2 [0.01,2.0]
Mobility Mα0 = Mβ0 10−14 m4/(Js) 1

Mαβ 10−14 m4/(Js) 1

PACE3D [155, 156] which is an in-house code. Furthermore, all the models
(MOP as well as MPF) were implemented for the specific case of three phases in
MATLAB together with the necessary post-processing tools to acquire the metrics
presented in the following sections. The MATLAB code has been made publicly
available [191].

3.2.2 Static triple junction

The first benchmark case employed in this work is a triple junction that reaches
a static equilibrium as sketched in Fig. 3.3. Below, the metrics for quantita-
tive comparison of the various model formulations with the analytical considera-
tions [126, Sec. 3.1] are defined:

• The total interfacial energy is computed as the energy density integral
over the simulation domain, and its total value is compared to the sharp
interface solution

Etotal = lαβ γαβ +2l0γ0 =W

(
H
W γαβ +

√
γ2

0 −
γ2

αβ
4

)
[126, Eq. 34].

Convergence to equilibrium state is quantified by the relative energy change
over time ε = |F n−F n−1|/F n and all the simulations presented are be-
low a threshold of ε = 10−5;
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3.2 Simulation studies

• The dihedral angle θ of the triple junction is computed from the position
of the triple point θ = 2arctan(W/2hGB) [126, Eq. 30] and compared with
the analytical solution from Young’s law θ = θαβ = 2arccos

( γαβ
2γ0

)
[126,

Eq. 29]. The numerical triple point is defined as the intersection of isolines
φ0 = φα and φ0 = φβ ;

• Spurious occurance of φα , φβ and φ0 in the respective other two-phase
interface is quantified as the maximum value of the phase as shown in
Fig. 3.3.

As the domain height H limits the range of observable triple junction angles, we
conduct simulation studies with H = 100 and H = 200. The results are equal
within the applicable range of γαβ values. The temporal evolution towards equi-
librium is shown exemplarily in Fig. 3.3.

a) t1 b) t2 c) tend

ϕ0 ϕ0 ϕ0

ϕα ϕβ

ϕmax
0

ϕα ϕβ

ϕmax
α

ϕ0 ϕβ

d) Ghost phases

0

0.2

0.4

0.6

0.8

1

ϕ0

Figure 3.3: Evolution of phase φ0 towards static equilibrium shown exemplarily for γαβ = γ0 and
domain size 100× 100. Subfigures show a) state close to the initial conditions, b) an
in-between state and c) the final state in equilibrium. Spurious phases are quantified by
occurance in the respective other two-phase interface as sketched by linescans in c) and
the detailed plots in d).

An overview of model combinations employed in this work with references to
the original works is given in Table 3.2.

For the multiphase-field method, we compare the eight possible combinations of
the gradient formulations Eq. (3.7) and (3.8) and the potentials Eq. (3.16)-(3.19).
The numerical parameter ε scales the width of the diffuse interface and is set
to 5, which corresponds to 10− 12 grid points within the diffuse interface re-
gion. To check the influence of ε with regard to the overall domain width W , a

61



3 Benchmarking interfacial forces

Table 3.2: Overview of MPF model combinations employed in this work with references to original
works. All new combinations are marked as such.

f Moelans
well f Toth

well
* f Garcke

well fobstacle

f dot
grad Eq. (3.7) new new new [142, 158]

f weighted
grad Eq. (3.8) new new [124, 177] [124, 177]

* In the original work [153], this potential term has been combined with the gradient term f interpolate
grad

within the MPF framework. This combination is not covered within this paper.

comparative study has been carried out with a grid resolution of 0.5 which cor-
responds to a 200× 400 grid and ε = 2.5. The differences in total energy and
dihedral angle were found to be below 1%. The results in Fig. 3.4 clearly show
that the deviations of the dihedral angle and total free energy from the analytic
solutions are directly linked to the occurrence of spurious phases. Generally, all
combinations including the gradient term f weighted

grad (denoted by circular mark-
ers) show larger deviation from the analytical solutions and higher fractions of
ghost phases. We conclude that the driving force resulting from the functional
derivative of Eq. (3.8) is one possible source of spurious phase generation. Fur-
thermore, it should be noted that the implementation of the functional derivative
of f weighted

grad contains about 20 times more arithmetic operations, thus resulting in
simulation times that are significantly longer than the equivalent potential term
combined with the gradient formulation f dot

grad.

As discussed in Sec. 3.1.2, the potential formulation f Garcke
well tends to energeti-

cally favor triple phase regions over two-phase interphases which results in spu-
rious phases and a deviation from the analytical solutions. The fraction of ghost
phases can be reduced by increasing the numerical parameter Ωαβγ which scales
the triplet energy contribution. The parameter study in Fig. 3.5 shows that for
small values of Ωαβγ , a high fraction of spurious phases distorts the equilibrium
solutions. Very high values of Ωαβγ result in numerical pinning (i.e. the triple
junction does not move) such that the resulting dihedral angle is ≈ 180◦ for all
γαβ ∈ [0,2]. For this benchmark, we found that a value of Ωαβγ = 100Ωαβ yields
the best solution (see results Fig. 3.5). Nevertheless, the combination of f dot

grad and
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Figure 3.4: MPF comparison of metrics for the static triple junction with 100× 200 domain size.
Combinations including f dot

grad are marked by diamonds and shown in a)-d) while f weighted
grad

is denoted by circles in subfigures e)-h). The potential terms are color coded as indicated
by the legend ( f Toth

well =red, f Moelans
well =orange, f Garcke

well =green, fobstacle=blue). Analytical solu-
tions are shown as black lines.

f Garcke
well generally exhibits larger deviation from the analytical solution than com-

bination with the other two potential terms. This can be traced back to the higher
amount of spurious phases resulting from the potential term. Only three combi-
nations effectively suppress spurious phases over a large range of γαβ/γ0-ratios,
namely the gradient term f dot

grad in combination with the well potentials f Toth
well and

f Moelans
well or with the obstacle potential fobstacle. Consequently, these are also the

only three combinations which correctly capture de-wetting of the α and β phase
for γαβ/γ0 = 2. Results obtained from f Toth

well and f Moelans
well differ less than 1% due

to the fact that for χT = 0.5 and χM = 1.5 the energetic landscapes are identical.

There are many works that employ the second gradient formulation f weighted
grad in

combination with a modified obstacle potential [124, 135, 190]. Similarly to the
study in Fig. 3.5, a triplet term Ωαβγ φα φβ φγ can be introduced to counteract the
spurious phases generated from the functional derivative of the gradient term.
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Figure 3.5: Influence of numerical parameter Ωαβγ in f Garcke
well (Eq. (3.11)) on spurious phase genera-

tion and model error. Simulations were performed employing f dot
grad. Analytical solutions

are shown as black lines.

The publication by Hötzer et al. [190] is dedicated to the calibration of the nu-
merical parameter Ωαβγ , in which the authors conclude that, first of all, it largely
influences the equilibrium contact angles and, secondly, strongly depends on the
specific pair-wise interfacial energies in every triple junction. This, together with
the fact that for many phases N there could theoretically be ∝ N3 fitting param-
eters Ωαβγ , makes this approach very complicated and numerically inefficient.
Note that the initial problem is the occurance of spurious phases which can more
efficiently be addressed by replacing f weighted

grad with f dot
grad.

3.2.3 Steady-state motion of a triple junction

The second benchmark is a triple junction in steady-state motion which results
from the first benchmark with modified BCs on the left and right boundary as
sketched in Fig. 3.6.

The relevant metrics for quantitative comparison are:

• The dihedral angle is computed from the height of the profile hGB using
the analytic expression (3.21). hGB is measured as the distance between
the interface position at the left boundary yx=0

φ0=φα
(or right boundary as

the problem setup is symmetric) and the y-coordinate of the triple point.
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Convergence to steady-state is quantified by the temporal change of the
profile height with respect to the domain width ε = |hn

GB−hn−1
GB |/W ;

• The velocity is measured as the temporal change of the y-coordinate of the
interface at the left boundary V = |(yx=0

φ0=φα
)n− (yx=0

φ0=φα
)n−1|/∆t;

• The (mis-)match of numerical results for the grain boundary geometry
with regard to the analytical solution (Eq. (3.23)) is quantified by a relative
error measure introduced by the L2-norm as

L2 = ‖ynumeric− yanalytic‖2 =
1

W

√
1
N ∑N

i=1(y
numeric
i − yanalytic

i )2

where ynumeric and yanalytic are both discrete representations evaluated at the
same nodes in x-direction. The reference for the y-values of the GB profile
is set to zero at the left and right boundary, i.e. yx=0

φ0=φα
= 0.

x
y

W

y(x)

h
G
B

θ

Figure 3.6: Steady-state triple junction

The dihedral angle can again be expressed in terms of the surface energy ratio
γαβ/γ0 or the grain boundary profile height hGB = yφ0=φα (x = 0)− yTP

2

analytical:θ = 2arccos
(γαβ

2γ0

)
, numerical:

hGB

W
=

ln(sin(θ/2))
θ −π

. (3.21)

2 Detailed analytical considerations are given in [126, Sec. 3.1]
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Note that in order to obtain the numerical solution for θ from the triple point
position, the implicit expression above needs to be solved using Newton itera-
tions [126]. The analytical steady-state velocity can be expressed in terms of the
surface energy ratio γαβ/γ0 as

V =
M0γ0

W

(
π−2arccos

(γαβ

2γ0

))
. (3.22)

The analytical solution of the grain boundary geometry is given by

y(x) =

{
W

π−θ ln
(
cos
(π−θ

W x
))

0≤ x < 0.5
W

π−θ ln
(
cos
(π−θ

W (x−W )
))

0.5≤ x≤ 1 .
(3.23)

On the MPF side, we compare four model variants, namely all four potential
terms Eqs. (3.16)-(3.19) in combination with f dot

grad. At this point we exclude the

other gradient term f weighted
grad due to the previous results. Similar to the previ-

ous benchmark, the well-potential f Garcke
well shows the largest deviation from the

analytical solution due to appearance of spurious phases (see Fig. 3.7).
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Figure 3.7: MPF comparison of metrics for the steady-state triple junction.
The potential terms are color coded as indicated by the legend
( f Toth

well =red, f Moelans
well =orange, f Garcke

well =blue, fobstacle=green). All MPF simulations
are done in combination with the gradient term f dot

grad. Analytical solutions are shown as
black lines.
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Furthermore, the triplet term scaled by Ωαβγ exhibits a drag force on the triple
junction as discussed by Eiken [184]. As discussed before, large values of Ωαβγ
(yellow dots in Fig. 3.5) lead to pinning of the triple junction which is the extreme
case of this drag effect. The other three model combinations yield a close match
with the analytical solutions. One peculiarity of the obstacle potential can be
seen in the L2-norm results in Fig. 3.7. Due to the finite interface width, the
choice of ε = 5∆x can lead to 12 or 13 grid points within the diffuse interface
where the second is slightly favorable energetically. This leads to a symmetry
breaking force and the x-position of the TP tends to stabilize at 49.5 or 50.5.
This numerical issue can be circumvented if ε is chosen such that the interface
width to ∆x ratio corresponds to an integer, e.g. ε = 4 · 12∆x/π2 ≈ 4.8634∆x.
The results for the dihedral angle and velocity are almost identical but the L2-
norm differs drastically due to the shift in GB geometry. To illustrate the effect
we plot results obtained with ε = 4.8634∆x as blue diamonds and ε = 5∆x using
blue crosses.

3.3 Discussion

The systematic combination of various gradient and potential formulations yields
new insights into the influence on generation of spurious phases which we iden-
tify as the main source for model error. The proposed benchmark is simple
enough to be highly reproducible and yet captures most critical aspects of capil-
lary effects in multi-phase systems. Possible sources for ghost phases can come
from both the gradient and potential energy contribution and are unraveled by
systematic combination of these terms. For the MPF models, the studies reveal
that f weighted

grad generally performs worse than f dot
grad as it introduces an additional

source of spurious phases. The two well-potentials f Toth
pot and f Moelans

pot yield al-
most the same results and, overall, coincide with analytical solutions. The third
well-potential f Garcke

pot leads to a higher fraction of ghost phases and, thus, devi-
ates more strongly from the reference solution. The obstacle potential results in a
close match with analytical solutions and, in our case, comes with an advantage
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in computational efficiency. The first reason for this is the simple form of the
respective variational derivative and, secondly, as the equilibrium profile is given
by a sinus function, the interface has a finite width and computation of phase evo-
lution can be reduced to cells that exhibit a spatial gradient in phase-field values.
Note that this computational advantage cannot be generalized because computa-
tional efficiency results from a complex interplay of numerical implementation,
time stepping and the inclusion of the Gibbs simplex constraint.«

In the context of polycrystalline battery materials, the phase-field variables are
used to parametrize grains with different orientations as well as various phases
within these grains that differ in stoichiometry or their respective crystal lattice.
As grain boundary energies differ strongly from interfacial energies between co-
herent phases, the model should be capable of correctly reproducing high ratios
of γαβ/γ0. Furthermore, the dynamics of grain boundaries and phase transfor-
mations within the grains take place on different time scales. At room temper-
ature, the secondary particle morphology is conserved (unless fracture is mod-
elled) i.e. the mobility of grain boundaries is approximately equal to zero. First
and second order phase transformations of the host material, on the other hand,
are on the timescale of ion mobility in the electrode material. The phase evolu-
tion equation (2.15) can correctly model systems with strongly varying interfacial
mobilities as long as there are no spurious phases in binary interfaces and multi-
junctions. The presence of spurious phases alters the effective interfacial mobil-
ity and will, most likely, lead to an unphysical grain coarsening in the particle
microstructures under investigation.

Based on this benchmark case, the interfacial energy contributions (2.4) and (2.5)
were chosen in combination with the phase evolution equation (2.15).
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4 Phase nucleation driven by
chemical forces1

In continuation of the validation of interfacial energy contributions in the pre-
vious chapter, I now want to elucidate the interplay of chemical and interfacial
forces. In the context of battery materials, it is necessary to investigate, first, if
phase nucleation induced by the intercalation of ions can be modelled and, sec-
ondly, if a moving phase transformation front is correctly reproduced. For this
reason, a stability analysis is performed to characterize the nucleation behaviour
in the bulk and at grain boundaries and, subsequently, the model is tested for an
exemplary polycrystalline cathode material.

4.1 Free energy landscape

»The bulk energy term is expressed as the interpolation of phase-dependent
chemical free energy contributions

fchem(φ,c) =
N

∑
α

f α
chem(c

α)hα(φ), (4.1)

1 The content of this chapter is based on the article Daubner et al. [110]. Sections that are taken
verbatim from the publication have been marked. While the original article includes a comparison
with the Cahn-Hilliard model, only the parts that are specific to multiphase-field models are
included in this dissertation. The MPF model in the publication differs slightly from the model
presented in Chapter 2 in terms of interpolation functions (compare Eq. (2.6) and (4.1)).
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4 Phase nucleation driven by chemical forces

where each f α depends on a local phase dependent composition cα which is
given as molar fraction. The mean compositions are defined by interpolation
ci = ∑N

α cα
i hα(φ) which follows from interpolation of chemical energies [145]

and fulfill the constraint ∑K
i ci = 1. The formulation of interpolation functions

hα(φ) poses a problem with thermodynamical consistency at multiple junctions.
Following [167], we introduce normalised interpolation functions

hα(φ) :=
h(φα)

∑β h(φβ )
, (4.2)

hwell(φα) = φ 2
α(3−2φα) (4.3)

hob(φα) =
1
2
+

2
π

(
(2φα −1)

√
φα(1−φα)+

1
2

arcsin(2φα −1)
)

(4.4)

and adjust our choice to the potential formulation to ensure correct kinetics of the
traveling wave solution in the dual-phase case [143]. More detailed discussion of
interpolation functions in the multiphase context can be found in [186].

The chemical free energies f α can be fitted by incorporation of CALPHAD data.
In this work we use a quadratic fitting for numerical efficiency and furthermore
to fulfill the invertibility criterion used for the derivation of the grand-potential
model [145]. The chemical energy of each component in phase α is formulated
dependent on the phase-dependent mole fraction cα

i of species i and three fitting
parameters Aα

i ,B
α
i and cα

i,min. The free energy of phase α can then be expressed
as the sum over all species contributions«

f α
chem(c

α) =
K

∑
i

Aα
i
(
cα

i − cα
i,min

)2
+Bα

i . (4.5)

The repulsive species interaction that leads to a miscibility gap is imposed by
the potential energy. This term can be interpreted as an additional phase-mixture
contribution which represents the activation energy to be overcome for the phase
transformation [192]. For a dual interface this can be written as

f αβ = f α
chem(c

α)hα(φ)+ f β
chem(c

β )(1−hα(φ))+∆ f αβ
mixing (4.6)
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4.2 Stability analysis in a two-phase system

with the phase-mixture contribution ∆ f αβ
mixing = fwell or fob (see two-phase ener-

gies in Appendix A.1). More generally, the homogenous free energy landscape
is given by the sum fchem+ fpot which is a function of phase variables and phase-
dependent concentrations or, in the case of the grand canonical potential, a func-
tion of phase variables and the chemical potential µ [145]. In the following only
one diffusing species with mole fraction c is considered.

4.2 Stability analysis in a two-phase system

»The phase-dependent mole fractions in the diffuse interface are linked by the
assumption of equal phase diffusion potentials for all phases [193] which yields

µ =
∂ f α

∂cα =
∂ f β

∂cβ =
∂ fchem

∂c
. (4.7)

From Eq. (4.5) and (4.7) we get the equality 2Aα(cα − cα
min) = 2Aβ (cβ − cβ

min).
Furthermore, applying the relation c = cα h(φ)+ cβ h(1− φ) for the mean con-
centration which can be derived from the interpolation of chemical energy den-
sities (4.1) [145], we express the phase-dependent chemical energy density
Eq. (4.5) in terms of variables c,φ

f α
chem(c,φ) = Aα




c−
(

cα
minh(φ)+ cβ

minh(1−φ)
)

h(φ)+ Aα

Aβ h(1−φ)




2

+Bα . (4.8)

By inserting Eq. (4.8) into Eq. (4.1) and using the symmetry of interpolation
function h(1−φ) = 1−h(φ), the free-energy density is expressed as

fchem(c,φ) =
Aα Aβ

(
c−
[
cα

minh(φ)+ cβ
min(1−h(φ))

])2

Aβ h(φ)+Aα(1−h(φ))
(4.9)

+
(

Bα −Bβ
)

h(φ)+Bβ .
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4 Phase nucleation driven by chemical forces

Without loss of generality, we set the reference of energy level to Bβ = 0 and
rename Bα = B. By introducing the term cmin(φ) =

[
cα

minh(φ)+ cβ
min(1−h(φ))

]

and assuming a simplified system with Aα =Aβ =A the free-energy density takes
the form

fchem(c,φ) = A[c− cmin(φ)]2 +Bh(φ). (4.10)

To investigate the stability, we first need to examine the stationary solutions of
the given system of evolution equations in the two phase case

εφ̇ =−M
(

δF

δφ

)
,

∂c
∂ t

=∇ ·
(

D(φ)∇
(

δF

δc

))
. (4.11)

The coupled system of equations is then given by

[
φ̇

ċ

]
=




M
ε

(
2εγαβ∇2φ − ∂ fpot

∂φ +(2A∆cmin(c− cmin(φ))−B) ∂h
∂φ

)

D
(
∇2c−∆cmin

∂h
∂φ ∇

2φ −∆cmin
∂ 2h
∂φ2 (∇φ)2

)

 (4.12)

with ∆cmin = cα
min−cβ

min. To investigate the stability of these stationary solutions,
we introduce the sytem variable vetor y = [φ ,c]T and linearize the given system
around the critical point P0 = (φ0,c0) following the approach in [194]

ẏ =

[
− 1

ετ 0

0 D∇2

2A

]

[
−2εγαβ 0

0 0

]

P0

∇2y+




∂ 2 fpot
∂φ2 + ∂ 2 fchem

∂φ2
∂ 2 fchem

∂φ∂c
∂ 2 fchem

∂φ∂c
∂ 2 fchem

∂c2




P0

y


 .

We then transform our system into Fourier space with ∂ ny
∂xn = (ik)nŷ(k)

∂ ŷ
∂ t

=−
[

1/ετ 0

0 Dk2/2A

]
2εγαβ k2 +

∂ 2 fpot
∂φ2 + ∂ 2 fchem

∂φ2
∂ 2 fchem

∂φ∂c
∂ 2 fchem

∂φ∂c
∂ 2 fchem

∂c2




P0

ŷ.

72



4.2 Stability analysis in a two-phase system

As the gradient in φ is negligibly small initially, the gradient energy contribution
can be neglected |∇φ |2 ≈ 0, which yields

∂ ŷ
∂ t

=−M̃




∂ 2 fpot
∂φ2 + ∂ 2 fchem

∂φ2
∂ 2 fchem

∂φ∂c
∂ 2 fchem

∂φ∂c
∂ 2 fchem

∂c2




P0

ŷ =−M̃H f ŷ

with the system matrix A = −M̃H f . The mobility matrix M̃ is diagonal and has
two constant positive entries. The system is stable if the system matrix is nega-
tive definite which is fulfilled if the Hessian matrix H f is positive definite. We
investigate the stability concerning small pertubations around a constant value of
c by first looking at the determinant

det(H f ) =

[
∂ 2 fpot

∂φ 2 +
∂ 2 fchem

∂φ 2

][
∂ 2 fchem

∂c2

]
−
[

∂ 2 fchem

∂c∂φ

]2

= λ1λ2. (4.13)

The entries of the Hessian matrix are

∂ 2 ftot

∂φ 2 =
∂ 2 fpot

∂φ 2 +2A(∆cmin)
2
(

∂h
∂φ

)2

−2A[c− cmin(φ)]∆cmin
∂ 2h
∂φ 2 +B

∂ 2h
∂φ 2

∂ 2 fchem

∂c2 = 2A,
∂ 2 fchem

∂c∂φ
=−2A∆cmin

∂h(φ)
∂φ

Double-well potential
Examination of stationary solutions [φ̇ , ċ]T = 0 for ∇φ ≈ 0 and thus φ constant
in the whole domain, yields

− 18γαβ

ε
φ(1−φ)(1−2φ)+(2A∆cmin(c− cmin(φ))−B)

∂h
∂φ

!
= 0 (4.14)

with ∂h/∂φ = 6φ(1−φ), which results in cstat = c0 for φ = 0 or φ = 1 and

cstat = cβ
min +∆cminφ 2(3−2φ)+

B
2A∆cmin

+
3γαβ

2Aε∆cmin
(1−2φ) (4.15)
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4 Phase nucleation driven by chemical forces

for φ ∈ (0,1). The determinant according to Eq. (4.13) yields with ∂ 2 fpot
∂φ2 =

18γαβ
ε (6φ 2−6φ +1) in the double-well case

2A
18γαβ

ε
(6φ 2−6φ +1)−

(
4A2[c− cmin(φ)]∆cmin +2AB

) ∂ 2hwell

∂φ 2

!
> 0

Investigating the stability of the critical solutions from Eq. (4.15) then leads to

18γαβ

ε
−12A(c− cβ

min)∆cmin +6B > 0 φ = 0,c = c0 (4.16)

18γαβ

ε
(6φ 2−6φ +1)− 18γαβ

ε
(1−2φ)2 > 0 φ ∈ (0,1) (4.17)

Evaluating Eq. (4.16) shows that in the case of φ = 0 and φ = 1 a change in the
stability behaviour can be observed. The domain of instability is limited by the
critical composition

ccrit(φ = 0) = cβ
min +

B
2A∆cmin

+
3γαβ

2A∆cminε
, (4.18)

ccrit(φ = 1) = cα
min +

B
2A∆cmin

− 3γαβ

2A∆cminε
. (4.19)

In the second case, Eq. (4.17) yields −φ(1−φ) > 0 which is false ∀φ ∈ (0,1).
This means the second critical solution is always unstable. To evaluate the stabil-
ity of Eq. (4.16) for c0 < ccrit we look at the trace of the system matrix tr(H f ) =

λ1 +λ2

(φ0 = 0) 2A+
18γαβ

ε
−12A(c0− cβ

min)∆cmin +6B > 0 (4.20)

Expression (4.20) holds ∀c0 < ccrit and therfore is a stable solution of our sys-
tem (4.12). The two critical values ((4.18) and (4.19)) are symmetric with regard
to c = 0.5(cα

eq + cβ
eq), which is due to the choice of Aα = Aβ = A. The difference

in energy height B results in a constant shift of critical concentrations according
to the common tangent construction.
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4.3 Phase separation in a two-phase model system

Double-obstacle potential
Examination of the stationary solutions of Eq. (4.12) leads to the criterion

− 16γαβ

επ2 (1−2φ)+
8
π
√

φ(1−φ)(2A∆cmin(c− cmin(φ))−B) !
= 0. (4.21)

which results in

cstat = cβ
min +∆cminhob(φ)+

B
2A∆cmin

+
γαβ

Aεπ∆cmin

1−2φ√
φ(1−φ)

(4.22)

The stability criterion Eq. (4.13) with ∂ 2 fpot
∂φ2 =− 32γαβ

επ2 results in

det(H f ) =−2A
32γαβ

επ2 −4A2[c− cmin(φ)]∆cmin
∂ 2hob

∂φ 2 +2AB
∂ 2hob

∂φ 2

!
> 0 (4.23)

Inserting the critical points from Eq. (4.22), we get

det(H f ) =−
8γαβ

επ2
1

φ(1−φ)
< 0 ∀φ ∈ (0,1) (4.24)

which means all critical solutions from Eq. (4.22) are instable with respect to
small fluctuations.

4.3 Phase separation in a two-phase model
system

The first study aims at proving the theoretical predictions in Sec. 4.2 and compar-
ing the simulation results. A set of non-dimensionalised simulation parameters
listed in Tab. 4.1 is used for this model system.

The choice of Aα = Aβ = 6.73/ε results in ccrit(φ = 0) = 0.239 and because
of symmetry ccrit(φ = 1) = 1− ccrit(φ = 0) applies. The predicted instability
((4.18) and (4.19)) is studied for different initial configurations in the variable
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4 Phase nucleation driven by chemical forces

Table 4.1: Input parameters for model validation.

parameter symbol value

equilibrium mole fractions cα
min 0.9

cβ
min 0.1

interfacial energy γαβ 0.5
diffusivity D 1.0

space φ ∈ [0,1] and c ∈ [0,1]. Fig. 4.1 shows the results for the double-well
potential and three different choices of Aα = Aβ while all other parameters are
kept constant.

For all cases, three domains with different phase evolution can be identified. All
setups with an initial composition above the upper critical one lead to decaying
concentration fluctuations and stable α-phase. The phase values in the whole
domain trend towards φ = 1, as indicated by the gray arrows. The second stable
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(a) A = A0
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(b) A = 0.5A0
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c̄

(c) A = 2A0

Figure 4.1: Stability map for well-potential in the variable space φ ∈ [0,1] and c ∈ [0,1]. Stationary
solutions according to Eq. (4.15) are shown in blue if stable and green for the case of
instability. All simulations marked by blue dots feature decaying fluctuations and one
stable phase while red diamonds indicate simulations exhibiting phase separation.
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4.3 Phase separation in a two-phase model system

domain below the lower critical composition favours the β -phase and φ values
trend towards zero. The area in between is characterised by unstable amplifica-
tion of small fluctuations and the formation of regular homogeneous two phase
patterns. All simulations are in agreement with the theoretical predictions.

We apply the same procedure to study the stability for the obstacle potential.
The results are shown in Fig. 4.2 and once again agreement with the theoretical
predictions is observed. The same three domains as before can be identified and
are separated by the stationary solution Eq. (4.22). A qualitative difference to
the well potential is the non-existence of a stable stationary solution for φ = 0
or φ = 1 due to the shape of the potential. We nevertheless observe stable α- or
β -phase within the blue shaded areas as the energy exhibits minimal values at the
boundary and φ is limited to φ ∈ [0,1] by the Gibbs simplex constraint.

The resulting pattern formation during the spinodal decomposition process is
highly dependent on the choice of energy density contributions. In Fig. 4.3, the
demixing process is compared for the three modeling approaches. The parame-
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Figure 4.2: Stability map for obstacle potential. Stationary solutions according to Eq. (4.22) are al-
ways unstable and therfore shown in green. All simulations marked by blue dots feature
decaying fluctuations and one stable phase while red diamonds indicate simulations ex-
hibiting phase separation.
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4 Phase nucleation driven by chemical forces

(a) CH-model

(b) AC-model, double-well potential

(c) AC-model, double-obstacle potential

t = 0 t = 300 t = 600

0

0.2

0.4

0.6

0.8

1
c

Figure 4.3: Concentration evolution in a 3D domain with 200×200×200 voxels and initial c = 0.3.
Opacity of composition below c = 0.5 is set to 20 % for better visibility of the phase
separation. Three timesteps of temporal evolution are shown for (a) CH-model, (b) AC-
model with well potential and (c) AC-model with obstacle potential.

ters were chosen according to Tab. 4.1. The kinetics of the systems are compa-
rable while the structures of the emerging phase are slightly different. While the
CH-model tends to form spheroidal precipitates, the AC-model and especially
the obstable potential formulation form more entangled structures.«
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4.4 Heterogeneous nucleation in pre-existing grain boundaries

4.4 Heterogeneous nucleation in pre-existing
grain boundaries2

We assess the stability of an φβ -φγ equilibrium interface with regard to the for-
mation of a third phase φα driven by chemical energies depending on the global
initial composition c0. The initial simulation setup is shown in Fig. 4.4.

− επ2

4
0 επ2

4

0

0.5

1

x

φ
φγ
φβ
φα

Figure 4.4: φβ -φγ equilibrium interface

The analysis is based on the chemical energy in Eq. (2.6) and quadratic fitting
functions for the phase-dependent contributions (Eq. (2.7)). Based on the as-
sumption that the two present phases β and γ are equal in terms of stoichiomet-
ric composition and chemical energies, we set Aβ = Aγ , cβ

min = cγ
min = cβγ

min and
Bβ = Bγ . We further reduce complexity by choice of Aα = Aβγ = A and Bα = B,
Bβγ = 0. The chemical energy Eq. (2.6) can then be re-written as a function of the
average composition c = ∑α cα φα assuming equal phase diffusion potentials in
the interface µ = ∂ f α/∂cα = · · ·= f N/∂cN . For three phases and the discussed
assumptions, this results in

fchem(φ,c) = A
(

c− cβγ
min(1−φα)− cα

minφα

)2
+Bφα (4.25)

In the following, the abbreviation ∆cmin = cα
min− cβγ

min is used.

2 This section is an extension of the stability analysis presented in Appendix B of the article Daub-
ner et al. [110]. All considerations are applied to the model formulation presented in Chapter 2
for consistency within this work.
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4 Phase nucleation driven by chemical forces

We formulate the evolution equations for φα and φβ based on Eq. (2.15) for a
three-phase system

φ̇α =−Mαβ
3ε

[
εγαβ (∇2φβ−∇2φα)+ 16

επ2 γαβ (φβ−φα)+ε(γαγ−γβγ )(∇2φγ+
16

επ2 φγ ) (4.26)

+ 8
π
√

φα φβ

(
−2A∆cmin(c−cβγ

min−∆cminφα )+B
)]

−Mαγ
Ñε

[
εγαγ(∇2φγ−∇2φα)+

16γαγ
επ2 (φγ−φα )+ε(γαβ−γβγ )

(
∇2φβ+

16
επ2 φβ

)

+ 8
π
√

φα φγ
(
−2A∆cmin(c−cβγ

min−∆cminφα )+B
)]

φ̇β =−Mαβ
3ε

[
εγαβ (∇2φα−∇2φβ )+ 16

επ2 γαβ (φα−φβ )+ε(γβγ−γαγ )(∇2φγ+
16

επ2 φγ ) (4.27)

+ 8
π
√

φα φβ

(
2A∆cmin(c−cβγ

min−∆cminφα )
)
−B
]

−Mβγ
Ñε

[
εγβγ(∇2φγ−∇2φβ )+

16γβγ
επ2 (φγ−φβ )+ε(γαβ−γαγ )

(
∇2φα+

16
επ2 φα

)]

and the evolution of the third phase is given by φ̇γ =−φ̇α − φ̇β . All black terms
are related to the mobility Mαβ of the αβ -interface, red terms are scaled with
Mαγ and the blue term with Mβγ , respectively.

Under the assumption of coherent nucleation, φα only grows at the expense of
φβ (i.e. φ̇α = −φ̇β ) while the third phase remains unaffected φ̇γ = 0. This can
be implemented wihtin the multiphase-field model by setting the mobilities of
neighbouring grains to zero (in this case Mαγ = Mβγ = 0) while coherent vari-
ants within one grain can transform into each other with mobility Mαβ . This pro-
cedure is analogous to the treatment of martensitic variants in a polycrystalline
system [140]. Using these assumptions, Eq. (4.26) can be simplified to

φ̇α =−Mαβ

3ε

[
εγαβ

(
∇2φβ −∇2φα

)
+

16
επ2 γαβ (φβ −φα) (4.28)

+ ε(γαγ − γβγ)(∇2φγ +
16

(επ)2 φγ)

− 8
π

√
φα φβ

(
2A∆cmin

(
c− cβγ

min−∆cminφα

)
−B
)]

.

Note that even though φα grows at the expense of φβ , the driving force for nu-
cleation is still influenced by the third phase φγ . The effect of this term can
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4.4 Heterogeneous nucleation in pre-existing grain boundaries

be illustrated for a three phase system of electrolyte, iron-phosphate (FP) and
lithium iron-phosphate (LFP). As the interfacial energy between LFP and elec-
trolyte (γαγ ) is smaller than the respective interface between FP and electrolyte
(γβγ ), there is an additional driving force for the nucleation of LFP (φα ) which
lowers the nucleation barrier and leads to wetting of the crystal facets in contact
with electrolyte [100]. For simplicity, we neglect the influence of the third phase
by setting γαγ = γβγ in the following analysis.

Starting from the equilibrium interface sketched in Fig. 4.4, we assume ∇φα to
be negligibly small initially. From the equilibrium solution φγ = 1

2 − 1
2 sin( 4x

επ )

we derive
∂ 2φγ

∂x2 =
8

ε2π2 sin
(

4x
επ

)
=

8
ε2π2 −

16
ε2π2 φγ . (4.29)

Furthermore, we employ φβ = 1−φγ −φα and ∇φβ =−∇φγ −∇φα . The sta-
tionary solutions of Eq. (4.28) are then characterised by

− 8γ
επ2 +

16γ
επ2 φγ +

16γ
επ2 (1−φγ −2φα)−

8
π

√
φα φβ ∆αβ

chem
!
= 0

8γ
επ2 (1−4φα)−

8
π

√
φα(1−φγ −φα)

(
2A∆cmin(c− cβγ

min−∆cminφα)−B
)

!
= 0

which yields the criterion for stationary compositions

cstat = cβγ
min +∆cminφα +

B
2A∆cmin

+
γ

2Aεπ∆cmin

1−4φα√
φα(1−φγ −φα)

. (4.30)

The system evolution equation can be linearised around stationary point P0 with
the sytem variable vetor y = [φα ,c]T . We then transform our system into Fourier
space with ∂ ny

∂xn = (ik)nŷ(k) and get

∂ ŷ
∂ t

=−
[

Mαβ

εÑ 0

0 Dk2

2A

]
εγk2− 16γ

επ2 +
∂

∂φα
∆αβ

chem
∂
∂c ∆αβ

chem
∂ 2 fch
∂c∂φα

∂ 2 fch
∂c2




P0

ŷ =−M̃S f ŷ.
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4 Phase nucleation driven by chemical forces

with the system matrix A=−M̃S f . We assume the gradient ∇φα to be negligibly
small, i.e. k2 ≈ 0. The mobility matrix M̃ is diagonal and has two constant
positive entries. The system is stable if the stability matrix S f is positive definite.
The determinant is given by

det(S f ) = Sφα φα Scc−Scφα Sφα c = λ1λ2. (4.31)

with the single contributions

Sφα φα =− 4
π

1−φγ −2φα√
φα(1−φγ −φα)

(
2A∆cmin(c− cβγ

min−∆cminφα)−B
)

+
8
π

√
φα(1−φγ −φα)2A(∆cmin)

2− 32γ
επ2

Sφα c =−
8
π

√
φα(1−φγ −φα)(2A∆cmin) , Scφα =−2A∆cmin, Scc = 2A

which yields

det(S f ) =−
64Aγ
επ2 −

8A
π

1−φγ −2φα√
φα(1−φγ −φα)

(
2A∆cmin(c− cβγ

min−∆cminφα)−B
)

Investigating the stability of the stationary solution Eq. (4.30), we derive the cri-
terion

det(S f ) =−
64Aγ
επ2 −

8Aγ
επ2

(1−φγ −2φα)(1−4φα)

φα(1−φγ −φα)

!
> 0

for stability. Spontaneous nucleation occurs for det(S f )< 0 which is fulfilled for

2φα(1−2φγ)> φγ −1

As we require φα < 1−φγ , this criterion is fulfilled for all φγ < 0.75 and other-
wise we require φα < (φγ −1)/(2−4φγ).

We now compare the critical composition for homogeneous nucleation according
to Eq. (4.22) with the barrier for heterogeneous nucleation in a grain boundary
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4.4 Heterogeneous nucleation in pre-existing grain boundaries

according to Eq. (4.30). The parameters from Tab. 7.1 are used together with
Aα = Aβ = 6.73/ε for an example study. The visualization of analytical predic-
tions in Fig. 4.5 illustrates that the barrier for nucleation of φα is the smallest
for values of φγ → 0 and φα = 0.05 at around ccrit = 0.19 while the minimum
for homogenous nucleation (black dashed line) is ccrit = 0.255. Thus, we expect
nucleation of φα within the diffuse interface but close to the bulk of φβ = 1.

0 0.5 1
0

0.5

1

cβγ
min = 0.1

cα
min = 0.9

φα

c̄

φγ = 0.01
φγ = 0.9

Figure 4.5: Stationary solutions according to Eq. (4.30) shown for discrete values of φγ ∈
[0.01,0.1,0.2, . . . ,0.9]. The black dashed line represents stationary solutions for homo-
geneous nucleation in the bulk according to Eq. (4.22).

To prove this analytical prediction, simulations with an initial composition of
c = 0.22 are conducted which is below the critical value for homogeneous but
above the value for heterogeneous nucleation. Various functions to apply the
noise in φα are compared in Fig. 4.6. Left subfigures show the initial equilibrium
interface with solid lines and the phase fraction after nucleation with dashed lines.
The right subfigures show the corresponding driving forces acting on the phase
φα where the chemical contribution is shown in purple and the overall ∂φα/∂ t as
a black line. The diffuse interface (gray shaded area) has been resolved with 25
grid points in this study. As predicted, phase α grows starting from a nucleation
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4 Phase nucleation driven by chemical forces
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Figure 4.6: Comparison of noise functions for heterogeneous nucleation in a grain boundary. Phase
fraction after nucleation are shown in subfigure a,c,e and the corresponding driving force
for φα is shown in b,d, and f.

in the interface. All three cases exhibit a positive driving force for φγ → 0 but a
negative driving force in the bulk (where φγ = 0 and φβ = 1 initially).

In polycrystalline battery materials, we expect heterogeneous nucleation at pre-
existing grain boundaries as there are typically more defects which facilitate the
formation of new phases. This is consistent with the investigated model formula-
tion which has a lower nucleation barrier in grain boundaries and multi-junctions.
As we expect heterogeneous nucleation to be dominant in our simulations, it is
sufficient to apply the noise term only in diffuse interface regions (see Fig. 4.6 e)
which is the reason for formulation (2.21) in Section 2.3.
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4.5 Multi-grain intercalation

4.5 Multi-grain intercalation

»In our last example we study the intercalation behaviour of a multi-grain sec-
tion and, for performance reasons, only employ the obstacle potential. We start
from a Voronoi filling of ten phases wich have undergone some volume pre-
serving relaxation to reduce the initially high interfacial energies and reproduce
equilibrium angles at triple junctions. Phase pairs are assumed to have the same
interfacial energy γαβ = 0.072 J/m2. The diffusivity of lithium ions is asumed to
be D0 = 10−15 m2/mol and the molar volume is Vm = 4.38× 10−5 m3/mol. The
equilibrium composition of the lithium-poor phase is set to cFP

min = 0.01 while
cLFP

min = 0.99. We furthermore apply a constant boundary flux corresponding to
1C discharge rate at the left-hand side and no flux BC at the right side of the
simulation domain. The phase boundary between FP and LFP is often assumed
to be coherent [84] while grain boundaries are non-coherent. This is reflected in
the choice of corresponding LFP phases that can only grow at the expense of an
FP grain, hence preserving the original grain boundaries.

0.01

0.02

0.03
c

Figure 4.7: Composition gradient within a multi-
grain cathode section under CC dis-
charge at t = 0.01 h.

In Fig. 4.7, the lithium compo-
sition is shown at the beginning
of the intercalation process at t =

0.01 h. Composition gradually de-
cays in horizontal direction and the
gradient is only weakly influenced
by the grain boundaries. Considera-
tion of anisotropic diffusion or grain
boundary diffusion would most likely
largely influence the transport but

both effects are neglected at this point. These are subject to future studies. Phase
separation is initiated at interfaces and multiple junctions which lower the nucle-
ation barrier of the LFP phase as discussed in Section 4.4. Higher order junctions
most likely lower the nucleation barrier additionally but proving this analytically
was out of the scope of this paper. We note however, that in the present simula-
tions nucleation of the LFP phases was always initiated at higher order junctions
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4 Phase nucleation driven by chemical forces
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Figure 4.8: Intercalation in a 2D multi-grain cathode section with 200× 300 cells under constant
current discharge. Evolution of phases (a) is coupled to composition (b) and displayed
here for 1C rate at time t = 0.5 h.

which might be due to the fact that less surface is created. These considerations
strongly support the choice of the noise term Eq. (2.21), which is only active in
the interfacial regions based on the assumption of heterogeneous nucleation.

Once the critical composition has been exceeded and phase separation occurs,
grain-by-grain-like filling can be observed. Fig. 4.8a shows two grains in which
nucleation has been initiated and LFP phases grow on the expense of the cor-
responding FP phase. The phase transformation within each grain is triggered
at higher order junctions such as that marked by the red circle in Fig. 4.8b, and
then proceeds through the grain. If multiple nucleation events happen simul-
taneously, the energetically more favourable grain will be filled completely by
diffusion of ions from the surrounding grains before the next grain will be filled.
This illustrates the strong coupling between diffusion and phase transformation.
Over time, all grains within the section exhibit phase transformation and a front
between LFP phases and FP phases moves through the simulation domain as
shown in Fig. 4.9. Neighbouring grains influence the progression of the phase
transformation as it is energetically favourable for the intercalation to proceed in
a grain-by-grain process. This seems reasonable from a physical point of view
as the overall interfacial energy is reduced. From Fig. 4.9, we conclude that
the evolving LFP phases form 90◦ contact angles at the left and right boundary
of the domain due to the ∇c = 0 BC, but also at the pre-existent internal grain
boundaries. This is in agreement with Young’s equation for the wetting angle on
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φLFP φFP

(a) t = 0.15h

φLFP φFP

(b) t = 0.30h

φLFP
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(c) t = 0.45h

φLFP
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(d) t = 0.60h

φLFP

φFP

(e) t = 0.75h

φLFP

φFP

(f) t = 0.90h

Figure 4.9: Evolution of FP to LFP phase transformation during intercalation in 2D multi-grain cath-
ode section with 200×300 cells under CC discharge with 1C rate.

a rigid surface where all three phase pairs exhibit the same surface energy γαβ .
In this sense, the initial grain boundaries can be interpreted as a rigid substrate
because of their immobility. The observed phase front between the LFP and FP
phase within each grain then evolves such that curvature and total surface are
minimized while keeping 90◦ contact angles with the grain boundaries.«

4.6 Discussion

»Computation of phase evolution within the Allen-Cahn framework enables
the simulation of heterogeneous nucleation of a coherent LFP phase within a
multi-grain section of non-coherent FP phases. The model is able to predict
composition-dependent phase tranformation nucleating at grain boundaries with-
out making a priori assumtions about the nucleation site. The multiphase-field
can be utilised to include lattice orientation information of the respective phases
which can be reflected by anisotropy of diffusion and volumetric expansion. The
explicit modeling of evolving phases also facilitates the incorporation of mechan-
ical energy contributions.
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4 Phase nucleation driven by chemical forces

We also note that this framework is not limited to a one-step phase transition
process within the composition range of c ∈ [0,1] but can easily be extended to a
multi-step process as in the FePO4→ Na0.66FePO4→ NaFePO4 phase transfor-
mation. To the best of our knowledge, this is the first time a multiphase-field ap-
proach has been used to study intercalation in a multi-grain system. Simulations
strongly support the assumption of coexistence of fully lithiated and delithiated
primary particles as the filling process proceeds stepwise in a grain-after-grain
manner through the agglomerate. This result is in agreement with the domino-
cascade mechanism proposed by Delmas et al. [121] and the assumption that a
core-shell-like intercalation occurs in larger secondary particles. Size and poros-
ity of these secondary structures probably influences the battery performance
strongly. The effects of lattice orientation, elastic energy and the electro-chemical
reaction at active electrolyte-electrode surfaces on this process should be studied
further.«

From Eq (4.15), (4.22) and (4.30) we conclude that the nucleation barrier of a
new phase scales with the chemical energy coefficient A, the parameter ε for
interfacial width and the interfacial energy γαβ . This stems from the fact that the
homogenous free energy landscape is given by the sum of chemical energies and
the potential term which imposes the miscibility gap. One of the advantages of
formulating the interfacial energy contributions Eq. (2.4) and Eq. (2.5) in terms
of γαβ and ε is that the interfacial width can be re-scaled by changing ε while
keeping the physical interfacial energy γαβ constant. This feature now comes
at the price of changing the nucleation barrier when the potential energy is re-
scaled while the chemical energy contribution stays constant. In other words, the
diffuse interface must be resolved at the physical scale of diffuseness to correctly
predict the onset of phase nucleation. If the width of the diffuse interface is
enlarged to reduce computation time, nucleation will occur earlier than otherwise
expected. However, the stoichiometry of evolving phases is not affected and the
ratio of chemical to interfacial forces scales correctly once a diffuse interface is
established as the physical value γαβ remains unchanged.
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5 Implementation of anisotropic
diffusion

While the formulation of anisotropic diffusion in terms of a partial differen-
tial equation is rather straightforward (see Section 2.4), an accurate numeri-
cal implementation especially in the non-grid-aligned case, is surprisingly dif-
ficult. Strongly anisotropic fluxes also play a role in the simulation of plasma
physics [195, 196]. The heat flux in magnetized plasmas exhibits a ratio of heat
conductivity coefficients in the order of 109. Similarly, the ion flux in layered
oxides is mainly restricted to the layers and the direction-dependent diffusivity
coefficients span multiple orders of magnitude [10, 13]. The energetic barrier for
across-layer hopping is high in a perfect crystal structure which makes it implau-
sible. Larger crystals and agglomerates naturally contain more structural defects
which facilitates diffusion in the c-direction but diffusivity is still orders of mag-
nitude smaller compared to the layer direction. Bouwman et al. [10] prepared
thin film electrodes with the c-axis parallel and, secondly, perpendicular to the
charging direction. GITT measurements showed almost 10 orders of magnitude
difference between the calculated apparent diffusion coefficients [10, Fig. 13].

5.1 Discretization stencils

Note that the term "cell" is used in the following even though discretization is
based on finite differences. The reason is, that the second order, volume conserv-
ing stencils employed throughout this work correspond to a cell-centered finite
volume scheme on a regular grid (Fig. 2.4). In this sense, cell centers are the
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5 Implementation of anisotropic diffusion

discretization points for the finite difference method and spatial derivatives are
computed on a staggered grid which corresponds to computation of fluxes on
cell faces. The field variables (φ,µ,σ) are stored and computed on cell centers
(red squares in Fig. 5.1). The following discussion is based on a two-dimensional
grid but extension to 3D is straightforward.

1 2 3

4 5 6

7 8 9

Figure 5.1: Standart isotropic discretisation

The simplest discretization which is
typically used to compute gradients
or the laplacian of a field (e.g. the
contribution stemming from the gra-
dient energy in Eq. (2.16)) is sketched
in Fig. 5.1. While spatial deriva-
tives in the x-direction are computed
on the left and right side of the cell
center, the gradients in y are located
at other positions above and below
the cell center. This procedure is
computationally cheap and, further-
more, able to account for grid-aligned

anisotropy. As an example, the fluxes in the mass balance J = −Mµ could be
computed based on different mobilities Mx in the x- and My in the y-direction.
However, the scheme is insufficient for the investigation of polycrystalline mate-
rials as the random orientation of grains within the reference coordinate system
cannot be captured.

To inlude full anisotropy, the total spatial gradient needs to be computed at any
discretization point. Two possible stencils are shown in Fig. 5.2. The first scheme
(Fig. 5.2 a) is called antisymmetric or standard staggered grid (SSG) as the dis-
cretization points for spatial gradients are staggered to (i+ 1

2 , j) and (i, j + 1
2 ).

The second discretization stencil (Fig. 5.2 b) is called symmetric or rotated stag-
gered grid (RSG). Every cell center has a corresponding corner node that is de-
fined by a shift (i+ 1

2 , j + 1
2 ). All corner nodes form a grid that is rotated by

45◦ with regard to the original grid (and thus the naming). The antisymmetric
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5.2 Discrete boundary conditions
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(a)

1 2 3

4 5 6

7 8 9

(b)

Figure 5.2: Spatial discretization of gradients with the a) antisymmetric and b) symmetric scheme.

scheme shares each discretization point with one neighboring cell, i.e. in the
three-dimensional case, there are 6/2×Ncells gradients that need to be evaluated.
The symmetric scheme on the other hand, shares each corner with three other
cells in 2D (and eight in 3D). Every cell center can thus be associated with one
corner node and there are Ncells positions to evalute the spatial gradients which
makes this scheme computationally beneficial, especially in 3D.

5.2 Discrete boundary conditions

There are multiple ways to implement flux boundary conditions which influences
the simulation outcome crucially. Various options are discussed exemplarily for
the right boundary of the spatial domain but results also hold for all other bound-
aries.

In the antisymmetric approach, fluxes need to be computed on the face between
the last inner cell and the adjacent ghost layer. This can either be achieved by
setting the ghost layer values such that the resulting fluxes are the ones prescribed
(Fig. 5.3a and b) or by directly setting the fluxes (Fig. 5.3c).
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fR = 0
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(a) 1. order approx.

fR = 0
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(b) 2. order approx.

fR = 0
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4 5

7 8

(c) 2. order variant

Figure 5.3: No flux (isolate) BC in the antisymmetric scheme

The first order approximation is given as

unx, j = unx−1, j−
∆x
Dxx

Dxy
unx−1, j+1−unx−1, j−1

2∆y
,

where nx denotes the index of the ghost layer (gray cells). The y-component
of the gradient is approximated at nx− 1 such that only inner domain cells are
employed for the computation of the BC.

The second order approximation shown in Fig. 5.3b involves three adjacent ghost
cells for the computation of the gradient. Solving for the boundary value yields

unx, j = unx−1, j−
∆x
Dxx

Dxy
unx−1, j+1 +unx, j+1−unx−1, j−1−unx, j−1

4∆y

which, in the 2D case, leads to a tridiagonal matrix that can be solved via the
Thomas algorithm. In the general three-dimensional case, an efficient sparse
matrix solver is needed. The last variant does not include a ghost layer such
that the index nx denotes the last cell in the computational domain. Fluxs at the
boundary are set to zero. The evolution of composition can be computed as

un+1
nx, j = un

nx, j +∆t
(

Dxx
−un

nx, j +un
nx−1, j

(∆x)2 +Dyy
un

nx, j+1−2un
nx, j +un

nx, j−1

(∆y)2

+Dxy
un

nx, j+1 +3un
nx−1, j−1−3un

nx−1, j+1−un
nx, j−1

4∆x∆y

)
.
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5.2 Discrete boundary conditions

One problem that arises is that the derivative ∇x at the bottom and top side can
only be approximated in first order (see green and purple stencils in Fig. 5.3c).

The same procedure can be applied to the symmetric scheme. Again, three vari-
ants are introduced as sketched in Fig. 5.4. The corresponding computation pro-
cedure for bounday cells is given as

unx, j = unx−1, j−
∆x
Dxx

Dxy
unx−1, j−unx−1, j−1

∆y

for the first order approximation. The second order approximation based on ghost
cells is

unx, j = unx−1, j−1 +
Dxx∆y−Dxy∆x
Dxx∆y+Dxy∆x

(unx−1, j−unx, j−1)

and if the boundary fluxes are directly prescriped instead

un+1
nx, j = un

nx, j +∆t
(
−Dxx

un
8 +2un

5 +un
2−un

7−2un
4−un

1
4(∆x)2 +Dxy

2un
1−2un

7
4∆x∆y

+Dyy
un

7 +un
8−2un

4−2un
5 +un

1 +un
2

4(∆y)2

)
.

For the last case, fluxes on the boundary in the y-direction are also set to zero as
the derivative in y-direction can not be reasonably discretized (see Fig. 5.4c).

fTR = 0

fBR = 0

1 2 3

4 5 6

7 8 9

(a) 1. order approx.

fTR = 0

fBR = 0

1 2 3

4 5 6

7 8 9

(b) 2. order approx.

fTR = 0

fBR = 0

1 2

4 5

7 8

(c) 2. order variant

Figure 5.4: No flux (isolate) BC in the symmetric scheme
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5 Implementation of anisotropic diffusion

5.3 Quantifying the numerical error for bulk
diffusion

All previously discussed implementations of the isolate BC are tested together
with the antisymmetric and symmetric stencils. Problems that may arise with
highly anisotropic diffusion on non-aligned meshes are [197]

• significant numerical diffusion perpendicular to the main diffusion direc-
tion. This effect depends on grid misalignment and the discretization
scheme,

• non-positivity near high gradients, i.e. concentration values become un-
physical (c < 0).

One possible approach to prevent unphysical concentration values are flux lim-
iters as proposed by Sharma and Hammett [196]. To reduce numerical artefacts
due to high gradients, a Dirichlet BC on the left boundary is chosen with a steep
but smooth transition between zero and one. The function can be interpreted as a
smoothed version of a hat profile and is given as

uleft =





1
2 +

1
2 sin(π

2
y−0.38

0.08 ) ,0.30 < y≤ 0.46

1.0 ,0.46 < y≤ 0.54
1
2 +

1
2 sin(π

2
y−0.62

0.08 ) ,0.54 < y≤ 0.70.

(5.1)

For the anisotropy factor ζ = D11/D22, the limiting case of ζ = ∞ is investi-
gated to yield relevant results for strong anisotropy. The combination of nu-
merical scheme and boundary condition implementation is evaluated by com-
parison of the transported solution with the analytical profile Eq. (5.1). As the
information travels throught the domain, the diffusion anisotropy creates a shift
sy = Lx tan(θ). Therefore, the exact solution at the right boundary is known. In
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5.3 Quantifying the numerical error for bulk diffusion

the following, the L2-norm is introduced and used as a relative error measure by
the definition

‖εref‖2 =
‖uright−uexact‖2

‖uexact‖2
=

√
ny

∑
0
(uright−uexact)2/

ny

∑
0
(uexact)2. (5.2)

Fig. 5.5 illustrates the results for a small misalignment angle θ = 9◦ between
the diffusion anisotropy direction and the grid. The domain has been discretised
by 50× 50 cells. All three implementations of the isolate BC are tested for the
antisymmetric and the symmetric scheme.
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(a) Antisymmetric scheme
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(b) Symmetric scheme

Figure 5.5: Concentration profile at the right domain boundary for various numerical implementa-
tions at a rotation angle of α = 9◦ between the material and spatial coordinate system.
The domain has been discretized with 50×50 cells and periodic BCs at bottom and top.
The analytical solution is shown in gray. Profiles and L2-errors due to numerical diffu-
sion are compared for the a) antisymmetric and b) symmetric scheme. Green denotes the
first order, purple the second order approximation and blue the second order variant of
BC implementations as described in Sec. 5.2.

The antisymmetric scheme generally exhibits more numerical diffusion perpen-
dicular to the flux diretion which results in the smoothing of the profiles in
Fig. 5.5a. Concentration values exhibit unphysical values of c < 0 and c > 1
for all cases which has been discussed in literature [196, 197]. For the symmet-
ric scheme, the relative error largely depends on the BC implementation. While
the first order approximation introduces strong numerical diffusion which leads
to a smoothening of the profile and an increased error measure, the other two
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5 Implementation of anisotropic diffusion

variants yield the exact same result. The error is much lower compared to the
antisymmetric scheme.

This study is extended to a set of misalignment angles θ ∈ [−15◦,60◦]. The diffu-
sion length between left and right boundary becomes larger as Ldiff = Lx/cos(θ),
so one expects the error measure to increase with θ . Fig. 5.6 shows the relative
error of the six possible combinations as a function of the misalignment angle θ .

−20 −10 0 10 20 30 40 50 60
0

0.5

1

θ

‖εref‖2

Antisym-BC1
Antisym-BC2
Antisym-BC3

Sym-BC1
Sym-BC2
Sym-BC3

Figure 5.6: Relative error ‖εref‖2 for antisymmetric and symmetric scheme combined with various
BC implementations. Domain is discretised with 50×50 cells.

The antisymmetric scheme leads to an increasing error for higher angles which
is a combination of two effects. First of all, the misalignment of anisotropy di-
rection and the grid becomes larger and, secondly, the diffusion length increases
which results in more numerical diffusion in the perpendicular direction. For
angles θ < 50◦, the first-order approximation BC features smaller errors while
the other two implementations yield better results for higher misalignment. With
the symmetric scheme, the first two BC implementations become instable for
θ < 0 which disqualifies them for practical usage. Generally the error ‖εref‖2

is smaller for the symmetric scheme in combination with prescribing fluxes (BC
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5.3 Quantifying the numerical error for bulk diffusion

in Fig. 5.4c) compared to all other combinations. Furthermore, the symmetric
scheme features the characteristic that the numerical error is zero at θ = 0 and
θ = 45◦ as both are aligned within the rotated staggered approach.

To quantify the effect of discretisation, the case of θ = 60◦ is investigated for
three discretisations 50×50, 100×100 and 200×200 as shown in Fig. 5.7. The
results strongly support the choice of the symmetric finite difference scheme in
combination with direct prescription of fluxes for Neumann boundary conditions.
The finding is consistent with similar works in the field of strongly anisotropic
heat fluxes in magnetized plasmas [195] and anisotropic diffusion [197].
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Figure 5.7: Error of numerical diffusion for antisymmetric (a-c) and symmetric (d-f) scheme at ro-
tation angle θ = 60◦. Exemplary field solutions u(x,y) are shown in a) and d). The
discretization errors for 50× 50, 100× 100 and 200× 200 cells are compared in b) and
e) for various BC implementations. Profiles at the right domain boundary are shown for
the second-order variant BC (BC3) in c) and f). The given L2-errors correspond to the
three discretizations ∆x = [0.02,0.01,0.005] from top to bottom.
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Application to battery
materials
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6 Intercalation in LiFePO4
1

»Phase transformations and ordering effects in cathode materials can lead to a
multitude of energetically favourable states marked by coexistence of phases and,
thus, plateaus in the open-circuit voltage. A very well-known example is the
commercialized, phase separating LiFePO4 (LFP) [198], but also very promising
cathode materials for sodium-ion intercalation batteries feature phase separation
and pronounced volumetric expansion upon cycling due to the larger ionic ra-
dius of sodium [29, 31]. Typically, these materials are based on a reversible in-
tercalation mechanism and have highly anisotropic properties on the crystalline
scale. Degradation mechanisms such as fracture and disintegration of agglom-
erated particles strongly depend on the primary particle size and morphology
which is why, in this context, the discussion of particle morphology is crucial
for battery performance. Taylored design of agglomerated particles and the over-
all electrode structure can lead to beneficial multi-particle behaviour and influ-
ence overpotential, percentage of active particle population, accessible capacity,
rate capability and other kinetic aspects [199]. The strongly coupled effects of
electro-chemical and mechanical driving forces on the microscale are difficult to
access from experiments but simulations can help to shed some light on the lo-
cal effects influencing the overall cell behaviour. While this endeavor can surely
only be adressed by a combination of simulation approaches across the scales,
we want to elaborate on the contribution of the phase-field method and point out
links to other methods.

1 The content of this chapter is taken verbatim from the article Daubner et al. [36]. Figures have
been adjusted to the format of this dissertation.
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6 Intercalation in LiFePO4

Han et al. [74] modelled diffusion of intercalated ions employing the phase-field
method, motivated by the idea that Fickian diffusion is not sufficient to describe
transport inside cathode particles with large concentration gradients as in the
phase-separating LiX FePO4. This material exhibits a large miscibility gap which
results in a voltage plateau over almost the entire composition range of X ∈ [0,1]
at room temperature [198]. The regular solution free energy introduced in [74]
is relatively simple, yet adequate to describe the neighbouring interactions of
intercalated ions in the bulk. Following the principle of linear irreversible ther-
modynamics, the species flux is then driven by the gradient of diffusion potential,
hence it could be shown that diffusion coefficients can be reliably determined by
GITT measurements [74]. Since then, LFP has become the drosophila of many
modeling efforts involving first-principle calculations [9, 24, 43, 48, 49], Kinetic
Monte Carlo (KMC) simulations [52, 200, 201] and the phase-field method [82–
85, 87, 202].

Density Functional Theory (DFT) is tailored to investigate bulk properties of
crystalline materials such as diffusivity, elastic constants, stable phases and the
related equilibrium voltage curve. It can furthermore be employed to investigate
the chemical interfacial energies between coherent phases as well as surface ener-
gies in vacuum. Morgan et al. [43] used first-principle calculations to determine
the diffusion path and associated energy barrier in LFP, predicting 1D diffusion
and kinetic limitation due to electronic conductivity rather than Li diffusivity.
This study was later extended to include defects in the crystal, in order to esti-
mate the particle size dependence [9]. The calculation of elastic constants [48] in
combination with anisotropic chemical interfacial energies [49] can be used to es-
timate the thermodynamically stable interface orientation of the phase-separated
state. The results are size- and morphology-dependent and based on the assump-
tion of equilibrium, meaning that kinetic effects are neglected. These techniques
are very helpful in identifying promising intercalation materials and predicting
some of their inherent material properties.

While the above-mentioned material properties of intercalation compounds can
be studied using first-principle calculations, there are many relevant phenomena
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6 Intercalation in LiFePO4

with time and length scales that are only accessible using continuum methods like
the phase-field approach [24]. Nucleation and growth, the interplay of chemical
and mechanical driving forces as well as the collective behaviour of many inter-
connected particles are highly relevant but cannot be investigated by DFT. Efforts
to bridge the gap between ab-initio simulations and phase-field studies based on
empirical parameter fits have been undertaken using KMC [200]. This approach
allows to study bulk and surface effects in small crystalline sections and is able
to predict ordering, nucleation and growth behaviour purely based on DFT data.
In this work, we want to elaborate if the direct scale bridging between phase-field
and ab-initio methods is possible and check if the calculations are consistent with
other investigations.

Therefore, we discuss two phase-field approaches and underlying assumptions
that can be employed to gain a better understanding of the non-equilibrium be-
haviour of intercalation compounds. The first is based on the Cahn-Hilliard
equation [111, 112] and well-suited to model bulk diffusion in single crystals
including phase transformations on the same parent lattice (i.e. coherent inter-
faces between the phases). The second approach is the more general multiphase-
field framework [124, 129, 143] based on Allen-Cahn equations for the evolution
of non-conserved order parameters in combination with the evolution of diffu-
sional potential based on the grand-chemical potential [144, 145]. This frame-
work has been sucessfully combined with elastic driving forces based on jump
conditions [165, 167] to model martensitic transformations [140], crack propaga-
tion [203–205] and the evolution of electric field to study electromigration [206].
It has further been shown that grain boundary diffusion [207] as well as the insta-
bility leading to phase separation in the miscibility gap [110] can be effectively
modelled. The aim of this work is to show the potentials of both approaches for
the numerical screening of promising intercalation electrode materials while also
discussing their complementary range of applicability and their limitations due
to modeling assumptions.
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6 Intercalation in LiFePO4

6.1 Materials and methods

6.1.1 Material data for LiFePO4

The charge and discharge of LiFePO4 is accompanied by a first-order phase tran-
formation FePO4→ LiFePO4 between lithium-rich and poor olivine phases ex-
hibiting a large miscibility gap [198]. This leads to a voltage plateau of the open
circuit voltage at 3.422V measured against pure metal anode with a residual volt-
age gap of about 10mV, even after very slow cycling with C/1000 [25]. The lat-
tice constants a, b and c of both phases given Tab. 6.1 have been measured in var-
ious experimental works [33, 198] with very low variation. Normal eigenstrains
ε0 along the primary crystal axes can be calculated as ε0

a = (aLFP−aFP)/aFP and
are given in Tab. 6.1.

Table 6.1: Phase characteristics taken from [33]

Parameter FePO4 LiFePO4 ε0

Lattice a 9.826 10.334 5.2%
constants b 5.794 6.002 3.6%
in Å c 4.784 4.695 −1.9%

The calculated normal strains are equivalent to the values used in other works [85,
107] and are strongly direction-dependent. The orthorombic olivine structure
of LiFePO4 is anisotropic in many more properties such as diffusion, surface
energies, elastic constants and surface redox potentials. Elastic constants can be
gained from DFT calculations [48]. Surface energies are also highly anisotropic
and can be computed from DFT simulations [50, 51]. The corresponding Wulff
shape shows a crystal with large (010) facets for both FP and LFP. This result is
consistent with the nano-platelets gained by hydrothermal synthesis [33, 208].
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When phase separation occurs in an LiX FePO4 particle with average composition
X , an intra-particle interface is present. The energy penalty for this event is given
by the combination of chemical intefacial energy γLFP-FP scaled by interfacial
area and the coherency strain accomodated across the particle. The latter is highly
dependent on the boundary condition. The chemical interfacial energies for an
LFP-FP interface have been computed via DFT [49] and are given in Tab. 6.2.
The interplay of anisotropies plays a significant role on the formation of phase

Table 6.2: Interface energies of LFP-FP interface [49]

Orientation (100) (010) (001)

γLFP-FP in [J/m2] 0.115 0.007 0.095

separation, especially as they scale differently with particle size. Regimes where
different interfaces are energetically favourable can be predicted.

Diffusion is confined to 1D channels along the b-axis, which has been shown
experimentally [33] and through theoretical calculations [9]. The diffusion
anisotropy varies with defect concentration and is, therefore, size-dependent.
Under the assumption that the diffusivities scale similarly with temperature in
all three directions, we use the values at an average defect concentration of
ρdefect = 0.05 (and show them for ρdefect = 0.005 for comparison in Tab. 6.3).

Table 6.3: Li-vacancy self diffusion coefficient DLi at
T = 300K [9] given in [m2/s]

ρdefect = 0.005 = 0.05

(100)-direction 3.9 ·10−18 3.9 ·10−17

(010)-direction 1.3 ·10−14 1.3 ·10−15

(001)-direction 7.8 ·10−19 7.8 ·10−18
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6.1.2 Cahn-Hilliard model

The multiphase-field approach presented in Chapter 2 is compared to a model
based on the works of Cahn and Hilliard [111, 112] which has been used in
most previous publications modeling LFP with a phase-field approach [82–85,
87, 202]. The total free energy for a nonuniform system can, in first approxima-
tion, be expressed as

F CH(c,∇c) =
∫

V
f CH
grad(∇c)+ f CH

chem(c)dV (6.1)

consisting of two contributions, namely the gradient energy and the free chemical
energy. The gradient energy penalizes the gradient of concentration

f CH
grad(∇c) =∇c ·κ∇c (6.2)

and features an anisotropic parameter κ in the general case. For lithium iron
phosphate as well as other cathode materials that exhibit a miscibility gap, the
enthalpic term is usually modelled employing the simplest higher order Redlich-
Kister term which leads to a symmetric free energy density with two distinct
minima, also called regular solution

f CH
chem,RS(c) = RT cmax

[
c ln(c)+(1− c) ln(1− c)+Ωc(1− c)

]
(6.3)

where the parameter Ω is made dimensionless dividing by the thermodynamic
pre-factor RT cmax as we will consider constant temperature. The diffusion po-
tential µ can be gained from the free energy by variation µ = δF/δc and is the
sum of two contributions

µ = µgrad +µchem =−2κ∇2c+
∂ f CH

chem(c)
∂c

. (6.4)
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Inserting Eq. (6.4) into a reaction-diffusion equation similar to Eq. (2.22) results
in a fourth order PDE in c

∂c
∂ t

=∇ ·
[
M(c)∇

(
ln
(

c
1− c

)
+Ω(1−2c)−2κ∇2c

)]
+R(c, t). (6.5)

The ionic mobility is assumed to take the form M(c) = D0c(1− c)/RT cmax.
The mass-conserving case without source term is typically referred to as Cahn-
Hilliard equation. Considerable effort has been undertaken to include concentra-
tion dependent eigenstrains and the corresponding elastic energy into this frame-
work. Some works are formulated in the small deformation regime [84, 88, 100,
103, 106] while others account for large deformations [89, 93]. Fracture mechan-
ics has also been sucessfully coupled [93, 103]. Note that a simplified version of
coherency strain is used for the 1D analysis in Sec. 6.2.2. while a more sophis-
ticated treatment such as in the above-mentioned works is out of scope if this
work.

6.1.3 Modeling assumptions

In the simplest case we investigate a cathode which consists of only one particle
which is equivalent to the assumption of many particles that undergo the exact
same process simultaneously. We start from the assumption of a platelet-like
morphology and conduct two types of simulations:

• Bulk kinetics: We investigate the relaxation into the phase-separated state
from a solid solution (i.e. spinodal decomposition) which captures the
physics of quenching experiments like [209]. This scenario is rather aca-
demic but yields valuable insight into the bulk diffusion behaviour decou-
pled from the effects of electro-chemical reaction. This allows us to test the
validity of the phase-field model including strongly anisotropic mobilities
and surface enegies. Effects on the nanoscale are captured and discussed
to motivate the dimensionality reduction for the following simulations.
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6 Intercalation in LiFePO4

• Charge and discharge: Charging a battery with constant current is a typ-
ical use-case. The applied overpotential and possible phase tranformations
are highly dependent on the morphology of primary particles or agglomer-
ates as well as possible diffusion pathways.

Following [33], only the ac-plane is active for Li extraction and insertion in our
simulations. The interface between FP and LFP is assumed to be coherent [85]
and, thus, should have an interfacial energy lower than 0.2 J/m [84]. We therefore
employ the values presented in Tab. 6.2. For the CH-model, the gradient energy
parameter κ is also direction-dependent and is fitted to reproduce the chemical
interface energies given in Tab. 6.2. The maximal concentration of intercalated
ions cmax = 22809 [mol/m3] is computed from the lattice parameters in Tab. 6.1
and accounts for four intercalation sites per unit cell. The enthalpy of mixing
Ω = 0.115eV/Li is taken from Cogswell et al. [84].

6.2 Results and discussion

6.2.1 Dimensionality reduction

Dimensionality reduction affects the overall model formulation as the results
are heavily influenced by the underlying assumptions. First, we discuss vari-
ous modeling approaches in one dimension because this type of reduced model
is often used in the context of porous electrode modeling (e.g. P2D models like
MPET [73]). Typical ways to reduce dimensionality are sketched in Fig. 6.1.
The assumption of a particle with spherical symmetry in Fig. 6.1a is quite com-
mon in P2D models, but has to be treated with care for materials undergoing
phase transformations as it tacitly introduces the notion of a core-shell structure.
In a chemo-mechanical model, this automatically leads to high hoop stresses
for phase separation during charge and discharge if there is a lattice mismatch
between ion-rich and ion-poor phases. Furthermore, material parameters are as-
sumed to be isotropic due to the symmetry condition. The core-shell structure
and material isotropy are contradictory to experiments and the known material
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parameters, especially for highly anisotropic materials such as LiFePO4, which
is discussed here.

JN
R

(a) 1D spherical particle

B
JN

(b) 1D slab

L

JN

(c) 1D thin crystal

Figure 6.1: Simulation setup for particle intercalation study.

The 1D slab approach in Fig. 6.1b assumes a finite width B but infinite extension
in the other two dimensions. Phase separation occurs as moving planar fronts
along the cross-section of the slab. Different directions in the crystal lattice can
be investigated in an isolated manner, which allows anisotropies to be studied
to some extent. Mechanical stresses are expected to be highly overestimated as
the boundary conditions (1D equivalent to plane strain) do not allow for stress
relaxation in the tranverse directions. The third approach in Fig. 6.1c is different
in the sense that it reduces one dimension by symmetry and the other by volume
averaging. The ion composition is averaged in the thin dimension (assuming fast
diffusion and filling in that direction) and another dimension is again reduced
assuming infinite extension of the plate. The surface flux then turns into a vol-
ume source term. Mechanical stresses can be expected to be more realistic as the
thin dimension is assumed to be a stress-free surface, thus allowing for some
stress relaxation. The correct choice of a reduced model is material specific
and should reflect the dominant material anisotropies. A comparison between
the different options can be carried out e.g. with the open-source framework
MPET [73] which includes the geometries sketched in Fig. 6.1 and, furthermore
covers phase-separation.
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6.2.2 Bulk kinetics

In their review, Malik et al. [199] come to the conclusion that there are three
relevant length-scales that need to be considered to accurately model the kinet-
ics in LFP, namely the bulk, the single-particle and multi-particle scales. In this
section, we start off with bulk diffusion on the nano-scale to draw first conclu-
sions which are relevant for modeling of the other two scales. The Cahn-Hilliard
model presented in Sec. 6.1.2 naturally describes the process of phase separa-
tion by diffusion well within the spinodal region, which is why we employ this
model throughout this section. Starting from a solid solution with some random
fluctuations, we conduct relaxation simulations in three possible 2D cross-cuts,
shown in Fig. 6.2. We employ no-flux boundaries and neglect all surface effects
at the electrolyte interface. The respective third dimension is reduced assuming
symmetry such that the relaxation within planes can be investigated in an iso-
lated manner. The results in Fig. 6.2 suggest that the fastest and thus preferred
path to reduce the overall energy in the system is phase separation along the b-
axis which leads to very fine striping. The wavelength of fluctuations is in the
order of lattice parameters and the predicted interfacial width in the b-direction
is l010 = 1.96 · 10−10 m. The spatial scale of striping is below the optical reso-
lution of many experimental works such that the composition would appear ho-
mogenous. These simulations qualitatively agree with the finding that there are
ordered states of alternating filled and empty ac-planes that minimize the overall
energy in comparison with a disordered solid solution [200, 210]. Further re-
duction of interfacial energies by coarsening of the striped pattern would lead to
an ac-interface between lithium-rich and -poor phases over time as has been ob-
served in quenching experiments by Chen et al. [209]. The two main reasons for
this behaviour are the comparatively small interfacial energy in the b-direction
combined with the mobility of ions which is orders of magnitudes higher within
the (010)-channels. It should be noted that it is difficult to quantitatively match
the reduced energy states for ac-ordering presented in [210] with phase-field sim-
ulations. Energy values strongly depend on the free energy function and in this
specific case on the choice of the enthalpy of mixing Ω for the regular solution.
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(a) ab-plane a

b

(b) bc-plane c

b

t = 1e-8 h t = 1e-7 h t = 2e-6 h

(c) ac-plane a

c

t = 1e-4 h t = 1e-3 h t = 0.02 h

Figure 6.2: Virtual quenching experiment with relaxation from solid solution with cinit = 0.5 in 50×
50 nm 2D cross-sections. Three timesteps of temporal evolution are shown for (a) the
ab-plane, (b) the bc-plane and (c) ac-plane. Both simulations including the b-axis show
phase separation on much smaller spatial and time scales compared to the ac-plane. All
simulations assume symmetry (infinite extension) in the third dimension and have no-
flux boundaries.

The formation energies calculated with DFT refer to 0 K but simple superposi-
tion with an ideal solution as in Eq. (6.3) does not reproduce the experimentally
observed miscibility gap.
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The dynamics of spinodal decomposition in the early stage can be derived us-
ing Fourier analysis of fluctuations in the initial solution [113]. The deriva-
tions only hold for the one-dimensional case and

∫
(c− c0)dx = 0 which basi-

cally implies a closed system with no-flux BCs. For a fluctuation of the form
(c− c0) = Acos( 2π

λ x), we can derive the critical and maximum wavenumber

βc =
2π
λc

=

√
−∂ 2 f/∂c2

2κ
, βmax = βc/

√
2.

To estimate the influence of coherency strain on the resulting pattern formation,
we add another free energy contribution f CH

el (c) to our analysis. Coherency strain
due to a change in molar volume is introduced assuming linear dependence of the
eigenstrain on the local composition fluctuation c− c0 for orthotropic material
properties (which is a generalization of the isotropic case in [112])

f CH
el (c) =

1
2
σ : [ε−ε∗] = 1

2
Ψ(n)(c− c0)

2. (6.6)

The direction-dependent parameter Ψ(n) is derived assuming a 1D slab with
free ends but infinite extension in the transverse directions (1D equivalent of
plain strain). The eigenstrain is modelled assuming linear dependence on the
composition fluctuation and the stretch factors are given with reference to the
fictitious solid solution Li0.5FePO4 such that

ε0 =




ηa 0 0

0 ηb 0

0 0 ηc


(c− c0), (6.7)

with ηa = (aLFP−aFP)/(aLFP +aFP) = 2.52%, ηb = 1.76% and ηc =−0.94%.
Stresses are computed assuming linear elasticity and small deformations by em-
ploying an averaged stiffness C= 0.5(CFP+CLFP) from the tensors given in [48].
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Following the procedure in [112], we assume stress-free boundaries in longitu-
dinal direction and infinite extension in the other two dimensions. The resulting
local elastic strain energy is given examplarily for the a-direction

f CH
mech(c) =

1
2

((
C22−

C2
12

C11

)
η2

b +2
(

C23−
C12C13

C11

)
ηbηc

+

(
C33−

C2
13

C11

)
η2

c

)
(c− c0)

2 (6.8)

=
1
2

Ψa(c− c0)
2 (6.9)

where we introduce the direction dependent elastic factor Ψa. Factors for all three
lattice directions can be computed with the same procedure and, furthermore, de-
dimensionalized by dividing with the thermodynamic pre-factor RT cmax

Ψ̃a = 56.37 MPa, Ψ̃b = 82.89 MPa, Ψ̃c = 176.30 MPa, (6.10)

Ψa = 0.99, Ψb = 1.46, Ψc = 3.10. (6.11)

The second derivative of energy densities with respect to c then reads

∂ 2 f
∂c2 =

1
c0(1− c0)

−2Ω+Ψ (6.12)

for the initial case of negligibly small ∇c. From this and Eq. (6.5), the exponen-
tial factor describing the rate of fluctuation growth (c−c0) = exp[R(β )t]cos(βx)
can be computed depending on the initial concentration c0 and corresponds to the
wavelength of the fastest growing unstable fluctuation λ max

Rmax(c0) = M
(∂ 2 f/∂c2)2

8κ

=
Dc0(1− c0)

8κ

(
∂ 2 f
∂c2

)2 ∣∣∣∣
c0

(6.13)
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λ max(c0) =
2π

βmax
=

4π
√

κ√
2Ω−Ψ− 1

c0(1−c0)

. (6.14)

Inserting the values for LiFePO4, we compute the amplification factors for the
purely chemical case, where f = f CH

chem, and for the coupled case accounting for
coherency strains f = f CH

chem + f CH
el . The results are plotted in Fig. 6.3.

Generally, we observe negative R(λ ) for very small wavelengths (which means
cancellation), while between the critical wavelengths all fluctuations are ampli-
fied. The amplification factor features a distinct peak at λ max, indicating that we
expect phase separation within a small interval of wavelengths around the peak
value. The visualization of Rmax(c0) in the middle row of Fig 6.3 reveals two
more details. First, the overall maximal amplification can be found for cinit = 0.5
due to the symmetry of f . Secondly, amplification tends towards zero as the ini-
tial composition approaches the spinodal. This has been discussed by Cahn [112]
and implies that this model cannot describe nucleation as it does not allow for
growth of small but finite fluctuations i.e. nuclei. The comparison of lattice di-
rections (100) and (001) clearly shows that amplification factors are higher along
the a-axis. In both cases, coherency strain delays phase separation by reducing
the amplification factors. Additionally, there is a small shift of the maximal am-
plification towards higher wavelength as can be seen in the top row for cinit = 0.5
and for all cinit ∈ [0,1] in the bottom row subfigures of Fig. 6.3. Applying the
same analysis to the b-axis reveals that the spatial scale as well as the time scales
differ drastically. While the exponential growth of fluctuations in the a-axis is in
the order of 1/Rmax = 1 s, the predicted phase separation along the b-axis is in
the order of 10−4 s. Furthermore, much smaller fluctuations are excited, leading
to expected wavelengths smaller than 1 nm which is in the order of the lattice
parameters (compare Tab. 6.1).

The mechanical contribution generally reduces the amplification of phase sep-
aration and in the specific case of the b-direction by a factor of 2.0. However,
this reduced value is still four orders of magnitude larger compared to the other
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Figure 6.3: Amplification factors for unstable fluctuations in the (100)-direction shown in green and
in the (001)-direction shown in red in the left column. Unstable fluctuation in the (010)-
direction are shown in the right column in blue. The dashed lines represent the purely
chemical case while the solid curves include the additional influence of coherency strain.
The top row shows the amplification factor depending on the wavelength of the fluctua-
tion for cinit = 0.5.
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two directions which means that even with inclusion of coherency strain, ordered
states and phase separation in the b-direction will be observed. We conclude that
diffusion kinetics has a strong influence on the resulting pattern formation. Quan-
tative phase-field modeling that resolves this smallest scale needs to reflect the
strong anisotropies of diffusion, interfacial energies and stiffness to yield mean-
ingful results. Results obtained under the assumption of isotropy, which can
either be introduced implicitely by spherical symmetry (see Fig. 6.1a) or explic-
itly by using a scalar value for the gradient parameter κ , are highly questionable.
From a numerical point of view, the strong anisotropy of LFP poses a severe chal-
lenge for simulation studies. The small spatial scale of striping limits the overall
accessible time and length scales to such an extent that simulation of full or half
cycles with technically relevant C-rates becomes infeasible with our code. Fur-
thermore, the chosen simulation setup only captures bulk effects, while the inclu-
sion of surface energy effects at the particle-electrolyte interface is likely to alter
the observed phase separation [100]. Surface diffusion and ion exchange with
the electrolyte at zero net current enable diffusion across the b-channels which
could promote faster phase separation at the particle surface. These could be the
thermodynamic reasons for the observation that LiFePO4 forms at the surface
while a solid-solution remains within the particle for quenching of LiX FePO4

with X > 0.6 [209].

The remaining question is: How can homogenization be applied to access larger
time and length scales using the phase-field method? We argue that the results
in Fig. 6.2 could be interpreted as a solid solution with ordering, coinciding with
the results in [200, 210, 211]. The effective, homogenized free energy landscape
should be altered compared to the case of a disordered solid solution. However,
the phase-field model fails to predict an effective mobility of ions because of
its continuum assumptions regarding Fickian diffusion for an ideal solution. A
quantitative homogenization should be the goal of future investigations and we
are confident that this issue can be addressed by a collaboration of phase-field and
KMC methods [200, 201]. While micron-sized particles are likely to be domi-
nated by diffusion limitations [86] and stress effects [114], intermediate solid-
solution states have been observed in nano-sized platelets at technically relevant
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C-rates [211]. This observation motivates homogenization by depth-averaging
in the b-direction for thin platelets as sketched in Fig. 6.1c. Not resolving the
atomistic length scale, we neglect ordering effects and phase separation in the
010-direction and replace the local composition variable c(x,y,z, t) with the av-
eraged c̄(x,y, t) = 1/H

∫
c(x,y,z, t)dz [82]. This simplification is the basis for the

simulation studies in the following section.

6.2.3 Galvanostatic charge and discharge

Based on the assumptions that, first, only (010)-facets are active for the electro-
chemical insertion reaction [33] and secondly, that phase boundary migration
progresses according to the domino cascade mechanism [121], the depth-averaged
model sketched in Fig. 6.1c has been formulated [82]. In combination with the
boundary condition of galvanostatic (dis-)charge in Sec. 2.6, we can investigate
the intercalation behaviour. Due to the depth-averaging, the surface flux turns
into a bulk source term R(c, t) with local dependence on filling fraction. There are
two possible assumptions for the in-plane diffusion of intercalated ions, namely

• The limit of D(100)
Li → 0 and D(001)

Li → 0 describes a perfect crystal where
diffusion is confined to 1D channels along the b-axis. The model reduces
to a reaction equation in the ac-plane, which is why this model has been
called Allen-Cahn-reaction model (ACR model) [82, 99].

• The presence of crystal defects lowers the diffusivity in the b-direction and
furthermore allows for diffusion in the ac-plane. The underlying model is
a reaction-diffusion equation and can be computed employing the diffusiv-
ities in Tab. 6.3 for various defect concentrations. Accounting for surface
diffusion, leads to the same evolution equation for ion composition [212].
So in the general sense, the diffusivity in the depth-averaged model could
be interpreted as the effective in-plane diffusivity combining bulk and sur-
face effects.
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Both cases are simulated and compared in the following. We use a reference
cell voltage of V	ref = 3.422 V (see Fig.6.4) and the pre-factor k0 = 10−2 for the
Butler-Volmer equation [172] if not stated otherwise.
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Figure 6.4: Open circuit potential VOCV over filling fraction X in LiX FePO4. Gray data points are
taken from Dreyer et al. [25] at C-rate 1/20 and mapped to the average filling fracion X
under the assumption that all Li can reversibly inserted and extracted. A regular solution
fit according to Eq. (6.3) with Ω taken from [84] is shown in a). Quadratic (green) and
logarithmic (blue) chemical energy fits for the Allen-Cahn model are shown in b).

Starting from an initially homogenous filling fraction of cinit = 0.01 including
some random noise with amplitude A= 0.001 to account for thermal fluctuations,
several C-rates are applied to study the coupled effects of reaction and diffusion.
Coherency strains are neglected in this section.

We start with the ACR model and apply C-rates C ∈ [2−6,2−5, ...,4] 1/h. The
results in Fig. 6.5 imply that phase separation (which is characterized by a plateau
in the voltage plot and a high composition difference cmax− cmin in the domain)
can be suppressed for high currents. In the present case, the limit lies around C-
rate= 0.1, but it should be noted that this value is highly dependent on the choice
of the parameters k0 and the thickness H of the depth-averaged crystal. The
critical current to suppress phase separation can be expressed more generally by
means of the non-dimensional flux ratio

i
i0

=
I

Areaci0
=

C-rate×H×F× cmax

2k0
, (6.15)
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6.2 Results and discussion

where I denotes the total flux according to Eq. (2.40) in [mol/s] and Areac is the
active surface area (in this case 2LB). The averaged reaction flux is scaled to
the characteristic reaction flux i0 = k0/F which is a material surface property. If
we allow for bulk diffusion in the simulated plane, the stability limit to suppres-
sion of phase separation changes drastically. This can be seen by comparison
of the hysteresis for C-rate=1 in Fig. 6.5c. While the assumption of a perfect
crystal (ACR limit) predicts suppression of phase separation, the other two cases
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Figure 6.5: Rate-dependent charging behaviour obtained with the Cahn-Hilliard approach
(Sec. 6.1.2). Subfigure a) shows the resulting voltage for boundary varying C-rate
C ∈ [2−6,2−5, ...,4] 1/h and a constant thickness of H = 50 nm. The equilibrium case
is drawn in black. The maximal concentration difference over time is shown in b) indi-
cating a transition from phase separation to solid solution around C = 0.1. The influence
of in-plane diffusion on phase separation is added in c) and d). For C-rate= 1 and defect
concentrations ρdefect = {0.0,0.005,0.05} the voltage profile V is shown in c). The max-
imal occuring composition difference ∆c = max(cmax− cmin) over the non-dimensional
flux ratio is given in d) illustrating the transition to solid solution behaviour depending
on ρ .
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6 Intercalation in LiFePO4

with assumed defect concentrations of ρdefect = 0.005 and ρdefect = 0.05 exhibit
large voltage plateaus caused by the two-phase coexistence. There can still be
suppression of phase separation but it shifts to higher C-rates (i.e. higher non-
dimensional flux ratios) if in-plane ion transport is possible.

The depth-average assumption enforces the same electro-chemical potential in
the bulk as on the surface of the active facets, which is why the dynamic sup-
pression of phase separation at high charging rates is very sensitive to the free
energy formulation. Employing the experimentally motivated energy fits shown
in Fig. 6.4b will consequently alter the onset of phase separation. Another signif-
icant difference between the two modelling approaches outlined in Sec. 6.1.2 and
Chapter 2 is that within the multi-phase field approach, the phase transition from
FP to LFP is modelled as a first-order transformation while the Cahn Hilliard
model describes the change of composition as a second-order transformation. As
a consequence, the LFP phase occurs once an energetic barrier imposed by the
obstacle potential is overcome which is independent of the charging rate. This is
confirmed by the results in Fig. 6.6a in which the onset of the first-order phase
transformation is initiated at the same average composition but then proceeds at
different speeds depending on the imposed charging rate.

Another important factor that alters the observed phase separation is the inclusion
of coherency strain. Instead of suppressing phase separation dynamically, the
stored elastic energy due to lattice mismatch changes the energetic equilibrium.
As can be seen in Fig. 6.6 and Fig. 6.7, a complete demixing into areas of FP and
LFP becomes unfavourable while intermediate composition states are promoted.
Note that in this study we assumed traction free boundaries such that the nano-
particle can expand freely. Stresses only arise due to phase separation within
the computational domain. The evolution of composition and coupled principle
stresses is shown exemplarily for a C-rate of 0.25 at a low defect concentration
of ρ = 0.005 in Fig. 6.7. Due to the influence of coherency strain, larger areas
of an intermediate composition form and buffer the lattice mismatch between the
end-member phases FP and LFP. Interfaces tend to align with the {101} family
of crystal planes to reduce the stored elastic energy [84]. Areas with lower Li
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6.2 Results and discussion

content exhibit higher tensile stresses due to the overall lattice strain. In the right
column of Fig. 6.7, we display the maximal local tensile stresses as this is the
relevant stress measure for fracture in brittle materials.
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Figure 6.6: Rate-dependent phase separation upon discharge obtained with the multi-phase approach
(Chapter 2). The maximal concentration difference over average filling fraction X in
LiX FePO4 is shown in a) for varying C-rate C ∈ [0.25,0.5,1,2,4,8] 1/h and a constant
thickness of H = 50 nm. Dashed lines denote simulation neglecting the influence of
coherency strain while solid lines include elastic deformation. The effect of in-plane
diffusion with assumed defect concentration ρdefect = 0.005 is included. The maximal
occuring composition difference ∆c = max(cmax− cmin) over the non-dimensional flux
ratio is given in b) illustrating the transition to solid solution behaviour depending on
elastic energy and C-rate. Square symbols represent simulations without elasticity and
diamonds show simulations including the influence of elastic deformation.
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Figure 6.7: Discharge simulation of a thin platelet with dimensions 50× 50 nm under the depth-
average assumption using the multi-phase approach including coherency strain. X de-
notes the average filling fraction in LiX FePO4 while the local composition c is indicated
by the green color scale in the left column. The arrows indicate the magnitude of reaction
flux vectors and illustrate how the reaction flux intensity follows the front of phase trans-
formation. The right column shows the maximum principle stress in GPa. Stresses and
strains are computed fully 3D and at all surfaces we apply homogenous Neumann bound-
ary conditions. Displacements resulting from lattice expansion are superposed with a
magnification of 5.

Generally, as soon as phase separation occurs, the reaction flux becomes highly
non-homogenous across the domain. It can easily be shown that the formula-
tion of the Butler-Volmer equation Eq. (2.36) favours electro-chemical reaction
at the phase boundaries between high and low concentration phases [87, 213].
This is also observed in all (dis-)charge simulations exhibiting phase separation
and shown exemplarily in Fig. 6.7. Starting from a homogenous flux distribution
inside the domain, the flux then concentrates on the interfacial areas as soon as
phase separation occurs. The reaction flux intensity follows the phase fronts as
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6.2 Results and discussion

the particle gets filled. In this sense, the suppression of phase separation is not
only favourable to avoid high tensile stresses, which likely promote mechanical
degradation, but it also leads to a more homogenous flux distribution across the
active facet reducing the probability of parasitic side reactions due to high local
fluxes and overpotentials. These results illustrate the importance of correct mod-
eling of the electro-chemical reaction at the electrode-electrolyte interface. The
assumption of constant flux (locally- as opposed to globally-constant flux which
reflects the CC charge) is only valid for non-phase-separated states and small
concentration gradients on the surface. Furthermore, it is compliant with the 1D
spherical model (see Fig. 6.1a) as the prescribed shrinking core features the same
surface concentration.

6.2.4 Multigrain systems

The simulations in the previous sections shed some light on the possible phase
transformations and the interplay of electro-chemo-mechanical forces in single
crystals. The obtained voltage curves are valid in the limit of a single particle
getting charged or many particles undergoing the exact same process. The actual
multi-particle behaviour in battery electrodes is, however, much more compli-
cated. In a multi-particle system, the state of charge does not necessarily coincide
with the average composition in each particle. Instead, there are many thermo-
dynamic states that minimize energy and the actual ion distribution is history-
dependent [199]. It is energetically favourable for the phase transition FePO4→
LiFePO4 to proceed in a particle-by-particle manner, i.e. to have inter-particle
instead of intra-particle phase separation [121, 214], sometimes referred to as
mosaic pattern [214]. This fact also leads to the non-vanishing hysteresis in the
limit of C-rate→ 0 [25]. LFP is mostly produced as single crystals and phase-field
simulations thereof have sucessfully shown the current dependency of the active
particle population [215]. We investigate the more exotic case of polycrystalline
particles [216] to check if the concept of transition from particle-by-particle to
concurrent intercalation still applies.
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6 Intercalation in LiFePO4

We employ the multiphase-field model described in Chapter 2, still under the
assumptions made for the depth-averaging, to extend the previous simulations.
Depth-averaging now implies the rather strong assumptions of perfectly intercon-
nected crystals and equal alignment of the b-axis. As the diffusivities in (100)-
and (001)-direction are on the same order of magnitude, we neglect in-plane
diffusion anisotropy. Note that the inclusion of orthotropic anisotropy in a sin-
gle crystal simulation is rather straight forward due to grid-aligned discretization
(e.g. using finite difference or finite volume schemes). This is, however, not the
case for a polycrystalline section with arbitrary lattice orientations. More elabo-
rate handling of the discretization of diffusion is needed to study the full effect
of diffusion anisotropy in future works. A noise term enables the simulation of
heterogeneous nucleation without making a priori assumptions about the nucle-
ation site. We follow the procedure sketched in [110] to fit the model parameters
which leads to ε = 2.5 [nm] and γFP-LFP = 0.1 [J/m2] for the FP-LFP interface.
The pre-existing grain boundaries are assumed to have a higher interfacial en-
ergy γFP-FP = γLFP-LFP = 3 · γFP-LFP because they are incoherent. Furthermore,
we employ the quadratic chemical energy fits displayed in Fig. 6.4b which are
determined by the parameters AFP = ALFP = 150 ·RT cmax [J/m3], cFP

min = 0.06,
cLFP

min = 0.94 and BFP = BLFP = 0. As the phase transformations are assumed
to be limited by ion kinetics (reaction and diffusion instead of attachment ki-
netics), we set the mobility of the phase-field evolution to Mαβ = 5 ·D(100). A
polycrystalline section for the initial simulation setup was prepared by random-
ized filling employing Voronoi tesselation and subsequent phase evolution under
volume conservation [217] such that higher order junctions feature equilibrium
angles. We then apply various C-rates to study the influence of particle interac-
tion. First, mechanical influences are neglected and the results for high in-plane
diffusion with ρ = 0.05 are shown in Fig. 6.8.

For all simulations, we observe that nucleation events occuring during cycling
mostly happen at higher-order junctions but also at the pre-existing grain bound-
aries. This is due to the lower nucleation barrier of new phases at the inter-
face [110]. There is a clear trend that higher C-rates lead to more simultaneous
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Figure 6.8: Multi-grain platelet with dimensions 250× 250× 50 nm during discharge using the
depth-averaged model. X denotes the average filling fraction in LiX FePO4 while the
local composition c is indicated by the colorbar. Arrows indicate the magnitude of reac-
tion flux vectors and are scaled to the average reaction flux. The influence of coherency
strain is neglected. The top three rows show simulations based on high defect density
ρ = 0.05 while the bottom row has ρ = 0.005.

nucleation events which is consistent with the observation of higher active par-
ticle population in other phase-field studies [212, 215]. At C= 0.25, the filling
proceeds in a grain-by-grain manner filling one to four grains at a time. This
behaviour reflects the fact that charging particles one-by-one is thermodynami-
cally favourable in the limit of vanishing current [25]. At a C-rate of four, we
observe simultaneous nucleation in all but one grain followed by pre-dominantly
intra-particle phase separation during the discharging process. In this regime, the
diffusivity is high enough for phase separation but not sufficient for relaxation
from the intra- to inter-particle phase-separated state. Reducing the in-plane dif-
fusivity by one order of magnitude also leads to more nucleation events. Fig. 6.8
d) shows the composition evolution with ρ = 0.005 at C= 1 for comparison. The
resulting pattern formation of high- and low-concentration phases is comparable
to the case of higher in-plane diffusion together with higher C-rate in Fig. 6.8 c).
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6 Intercalation in LiFePO4

As we have already observed in the case of the single platelet in Fig. 6.7, adding
the influence of coherency strain stabilizes intermediate composition states to
buffer the lattice mismatch between FP and LFP. Nucleation still occurs at multi-
ple junctions and grain boundaries and stress peaks can be observed at the inter-
face of high and low composition regions. In Fig. 6.9, we investigate the influence
of texture, i.e. the distribution of crystallographic orientations , in a multi-grain
sample. The considered cases range from complete matching of crystal align-
ment (strong texture) in 6.9 a) to a fully random distribution (no distinct texture)
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Figure 6.9: Influence of texture on mechanical stresses during discharge using the depth-averaged
model. The multi-grain platelet has dimensions 250×250×50 nm, X denotes the average
filling fraction in LiX FePO4 while the local composition c is indicated by the colorbar.
Arrows in the multi-grain section on the left indicate the orientation of the a-axis. The
c-axis is orthogonal to the arrow while the b-direction of all grains is pointing into the
sketched plane.
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in 6.9 c). In all cases, we compute the fully three-dimensional stress state re-
sulting from the phase-dependent eigenstrain with traction free surfaces as the
mechanical boundary condition.

Comparison of the two textured samples (6.9 a) and b)) shows that the concen-
tration and stress evolution is almost identical upon insertion. This stems from
the fact that the phase transformation pathway in this regime is predominantly
set by the C-rate and in-plane diffusivity. The biggest difference can be observed
in the final state where, in the case of complete orientation alignment, all stresses
vanish. For the case of small misalignment between the grains, on the other hand,
a residual stress is preserved. Stresses accumulate at grain boundaries where the
misorientation of neighbouring grains leads to unequal expansion and contraction
within the interfacial region. In the third case of fully random crystal orientations,
much higher residual stresses are observed. The two inner grains exhibit espe-
cially high tensile stresses due to their misalignment. In the final state, larger
domains are subject to tensile stresses above 3 GPa and stress hotspots can be
found at triple junctions with a maximum principle stress of 7.28 GPa. Hotspots
of large tensile stresses are already a good indicator for possible fracture of poly-
crstalline materials. Future simulations could possibly include explicit modelling
of fracture mechanics based on a phase-field approach [103, 104, 218].

6.3 Conclusion

In this Chapter, we discussed a new modeling approach based on the multiphase-
field method in the context of previous works and basic modelling assumptions.
The multi-grain studies in Sec. 6.2.4 underline the necessity to account for mul-
tiple interacting particles, especially in systems featuring phase transformations.
Agglomerates and particle ensembles behave differently compared to isolated
single crystals which highlights the importance of electrode morphology design
for battery performance. An important step to improve the proposed modeling
framework is a thermodynamically sound formulation to account for an elec-
trolyte phase and the electro-chemical reaction in the diffuse interface. The
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6 Intercalation in LiFePO4

strong ion migration anisotropy of some intercalation compounds needs inclu-
sion of crystal lattice orientation and anisotropic diffusivities to fully capture the
occuring transport processes.

We show that the established phase-field models are able to capture spinodal
decomposition as a relaxation mechanism and are furthermore able to predict a
wide range of strongly coupled effects such as supression of phase separation un-
der sufficient driving force. The newly introduced model extends existing works
in the sense that multi-particle interactions including the transition from inter-
particle to intra-particle phase separation for increasing C-rates up to complete
suppression of phase separation can be modelled. The combination of a thermo-
dynamically consistent model and quantitative material data yields simulation
results that are in agreement with experimental observations. LFP has been used
as a prominent example in this case but we expect huge potential in the field of
post-lithium materials research. Thus, the multi-phasefield approach based on
Allen-Cahn equations is reckoned to be promising for the in-depth analysis of
phase transformation mechanisms in interacting particle ensembles.

The influence of texture in polycrystalline samples is crucial with regard to me-
chanical degradation. The simulations performed in Sec. 6.2.4 highlight the de-
pendence of stress hotspots on the misorientation of neighboring grains, espe-
cially for strongly anisotropic cathode materials like LFP. The question of nano-
structure design to reduce residual stresses is even more relevant for layered-
oxide materials such as NMC which are typically produced as polycrystals. Stud-
ies have shown that open-pored nanostructuring can, among other benefits, in-
crease cycle life as particle fragmentation is reduced [21]. Many promising
sodium ion cathode materials are also layered oxides and produced as polycrys-
tals [219]. Due to the larger atomic radius of sodium, many intercalation com-
pounds undergo phase transformations coupled with large volume changes of the
crystal lattice upon cycling which increases the probability of mechanical degra-
dation. Morphology optimization by means of computational studies becomes
feasible with the proposed framework.«
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7 Phase transitions in the layered
oxide NaXNi1/3Mn2/3O2

Layered oxides based on the structure NaX TM O2 are promising candidates
for sodium-ion intercalation batteries and have received considerable attention
throughout the past couple years. However, first works date back to the emer-
gence of rechargeable batteries [8] as both lithium and sodium intercalation com-
pounds were initially investigated. O3 and P2-type layered oxides are the most
common structural polymorphs [220] where O denotes the octahedral and P the
prismatic coordination of sodium ions, respectively. The number corresponds to
the amount of transition metal layers per unit cell [15]. Transition metals (TMs)
can be (Cu, Cr, Fe, Co, Ni, Mn, Ti, V) or combinations thereof [8, 29, 221, 222].
Some of the most promising cathode materials for Na ion batteries are based
on a combination of Ni and Mn due to their comparatively high capacity and
rate capability [17, 222]. The P2-polymorph of NaX Ni1/3Mn2/3O2 shows high
reversibility [29] which matches the previous findings for NaX CoO2 [8].

Lu and Dahn [29] first investigated the P2-NaX Ni1/3Mn2/3O2 layered oxide and
found high reversibility despite the first order phase transition from O2 to P2
around x ≈ 1/3 which is accompanied by a significant expansion in the c-axis.
Other voltage plateaus were observed below V = 4.0 which could later be associ-
ated with ion-vacancy orderings within the layers [30]. The cathode material
has been modified in several works to increase the cycle stability. Zhang et
al. [114] investigated Fe doped NaX Ni1/3Mn2/3O2 to stabilize the reversibil-
ity at high operating voltage. Furthermore, the stoichiometry was changed to
NaX Ni1/4Mn3/4O2 to suppress charge ordering and study the effects on capacity
retention and rate capability depending on the voltage range [223, 224].
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7 Phase transitions in the layered oxide NaX Ni1/3Mn2/3O2

Very little effort has been addressed to modeling and simulation of this material
which is surprising given that it is one of the most experimentally investigated
cathode materials for future sodium ion batteries. In the field of lithium-ion ma-
terial research the amount of simulative works is ever increasing, covering all
time- and length-scales from the atomic to the cell level. For investigation of ma-
terial properties on the atomic level, ab-initio methods such as density functional
theory (DFT) have been proven to be important in finding new promising struc-
tures [225] and identifying the electro-chemical as well as mechanical properties
of known compounds [12, 24, 48, 49]. First-principles calculations are well-
established to compute phase diagrams [45], ordering effects [30, 47], diffusion
barriers [30], and open circuit voltages (OCV) [169].

DFT is limited to a certain amount of atoms and mostly concerned with bulk
properties of crystalline structures. Free surfaces and interfaces are only acces-
sible with high computational effort and under very strong assumptions while
phase transformations and the rich interplay of surface reactions, diffusive trans-
port and mechanical deformations are completely out of range [12]. To the best of
our knowledge, little effort has been done to bridge the gap between the atomistic
to the continuum level which is a crucial factor for the computational screening of
cathode materials. Some fundamental aspects are well established, e.g. the rela-
tion of energies above hull with electro-chemical potentials and the resulting the-
oretical voltage profile [12]. The phase-field method is well suited to study inter-
calation dynamics in single crystals and agglomerates as has been demonstrated
in studies on the commercialized LiFePO4 (LFP) cathode material for lithium-
ion batteries [84, 87]. This framework is especially useful for the simulation of
materials undergoing phase transformations as moving surfaces are inherently
difficult to track otherwise. The phase-field method has a strong thermodynamic
foundation as the evolution of phases, concentration and stresses is based on
minimization of the Gibbs free energy. Multi-physics problems coupling chemi-
cal, electrical and mechanical driving forces can be investigated [110, 143]. The
transfer of material data from DFT to Cahn-Hilliard-type phase-field methods
has been discussed by Hörmann et al. [24].
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7.1 Material data

Na2/3Ni1/3Mn2/3O2 crystallizes in the hexagonal P63/mmc space group [30].
The primitive hexagonal unit cell contains two formula units (f.u.) as it spans
two layers of sodium ions/ trasition metals and its volume is V =

√
3/2a2c =

80.6 Å3 [30]. Consequently, we compute the reference concentration for the theo-
retical stochiometry Na1Ni1/3Mn2/3O2 as cref = 2/(NAVP2-2/3) = 41211 mol/m3.
All the initial sodium in Na2/3Ni1/3Mn2/3O2 can be electro-chemically extracted
and reversibly inserted in the voltage range 2.0− 4.5 V [29]. Charge and dis-
charge are accompanied by three voltage plateaus, two of which can be related to
Na-vacancy ordering and the third to a first-order phase transformation [17, 29,
30]. The reversible phase transition from the O2 to P2 phase (crystalline poly-
morphs with AB-stacking and sodium ions reside in octahedral (O) or prismatic
(P) sites) corresponds to a pronounced voltage plateau at ≈ 4.2 V and has been
confirmed by appearance of a new peak in the in-situ XRD [29]. The hypothesis
of Na-vacancy orderings has been confirmed by DFT computations [30] and are
a result of energetically favored intercalant sites. Low-energy ordered states of
NaX Ni1/3Mn2/3O2 exist for X = 0.33, X = 0.5 and X = 0.67. Furthermore, the
existence of these intermediate Na-vacancy ordered phases has been confirmed
by in-operando synchrotron XRD [226].

We extract voltage data for Na2/3Ni1/3Mn2/3O2 from three sources [17, 29, 30]
and compare the datasets in Fig. 7.1a. The comparison shows that the data
from Lee et al. [30] exhibits a capacity larger than the theoretical capacity of
173 mAh/g which has been attributed to parasitic side reactions. The other two
data sets show a close match. Generally, the charge-discharge data from Mao et
al. [17] exhibits a smaller voltage hysteresis which could be due to the well-
defined, single-crystalline morphology. Other factors such as preparation of the
sodium anode, electrolyte or additives could possibly influence the results but
are out of scope of this work. The following simulation studies are based on the
assumption that all occuring interfaces are coherent with an interfacial energy of
γαβ ≈ 0.1 J/m2. The mobility of phase transformations is assumed to be in the
order of the ionic diffusion.

131



7 Phase transitions in the layered oxide NaX Ni1/3Mn2/3O2

0 50 100 150
2

3

4

Specific capacity [mAh/g]

V

Lu & Dahn: C≈1/80
Lee et al.: C=1/100
Mao et al.: C=1/10

(a)

0 0.2 0.4 0.6
2

3

4

X

V

Lu & Dahn
Mao et al.

(b)

Figure 7.1: Experimental voltage data for NaX Ni1/3Mn2/3O2 at low C-rate. Subfigure a) shows the
first charge voltage over specific capacity. On the right, first cycle data from [29] and [17]
is shown over the average filling fraction X .

The primary particles of Na2/3Ni1/3Mn2/3O2 exhibit a hexagonal shape and
platelet-like morphology with the c-axis oriented along the thin dimension. The
morphology can be either single-crystalline with sizes between 1− 4 µm [17]
or larger agglomerates [219]. In this study, we consider a single crystalline
platelet with a simplified cuboid shape. Phase evolutions are evaluated in three-
dimensional simulations as well as corresponding two-dimensional reductions.
The fluxes resulting from the intercalation reaction are applied on all surfaces
but bulk diffusion is limited to the layers, i.e. D001 = 0. Hence, the large crystal
facets in the (001)-direction can be charged but the bulk of the crystal is only ac-
cessible through insertion at (100)- and (010)-facets followed by bulk diffusion.
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7.2 Electro-chemical model

7.2.1 Gibbs free energy fitting

The energetic landscape is approximated by phase-wise fitting functions where
we include the O2-phase and three ordered states of P2 (1/3: single-row, 1/2:
double-row, 2/3: large-zigzag). In this work, we employ quadratic fits for com-
putational efficiency on the one hand and logarithmic expressions based on an
ideal solution on the other

f α
quad = Aα(cα − cα

min)
2 +Bα , (7.1)

f α
ideal = µα

0 cα +Kα cα ln(cα)+Kα(cmax− cα) ln(cmax− cα)+Dα . (7.2)

The diffusion potential is defined as the derivative with respect to the phase con-
centration which yields

µquad = 2Aα(cα − cα
min) (7.3)

µideal = µ0,α +Aα ln
(

cα

cmax− cα

)
(7.4)

for the two cases given in Eqs. (7.1) and (7.2). We employ a fit purely based on
quadratic functions (7.1) with parameters given in Tab. 7.1 and shown in Fig. 7.2
a). In non-dimensionalized form (using F/(RT ) to convert from eV) the func-
tions read

fO2 = 500(x−0.05)2−0.40,

fP2-1/3 = 400(x−0.33)2−4.00,

fP2-1/2 = 400(x−0.49)2−2.98,

fP2-2/3 = 500(x−0.60)2−0.90.

The equilibrium in two-phase regions is given by the tangent construction de-
picted by dashed lines which results in the voltage plateaus according to Eq. (2.34).

133



7 Phase transitions in the layered oxide NaX Ni1/3Mn2/3O2

If we replace the energies of the first (O2) and last phase (P2-2/3) with loga-
rithmic functions (Eq. (7.2)) and employ the parameters in Tab. 7.1, the non-
dimensional phase energies are given as

fO2 = 39.96x+20x ln(x)+20(0.67− x) ln(0.67− x)+6.37, (7.5)

fP2-2/3 =−9.73x+15x ln(x)+15(0.67− x) ln(0.67− x)+12.17. (7.6)

As a result, the corresponding voltage curve exhibits more realistic slopes for
X → 0 and X → 2/3 as shown in Fig. 7.2.

Table 7.1: Fitting parameters for chemical energies

O2 P2-1/3 P2-1/2 P2-2/3

Aα [eV] 12.93 10.34 10.34 12.93
cα

min [−] 0.05 0.33 0.49 0.6
Bα [eV] -0.010 -0.103 -0.077 -0.023
Kα [eV] 0.571 - - 0.388
µα

0 [eV] 1.033 - - -0.252
Dα [eV] 0.165 - - 0.315

Fig. 7.2 shows that both fittings match the experimentally obtained voltage
curve [17] quite well. The biggest difference are the chemical potentials ob-
tained at X → 0 and X → 2/3 where the logarithmic fits approach −∞ and ∞
while the derivation of quadratic energies yields a linear relation with respect to
cα . As a consequence, the logarithmic functions are naturally bounded to the
interval cα ∈ [0,2/3] while for quadratic functions the concentration values can
be negative.
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Figure 7.2: Gibbs free energy fittings fchem in the top row and resulting equilibrium voltages below
for a) parabolic fitting and b) logarithmic fitting. Black dashed lines depict common
tangents indicating two-phase coexistence.Blue shaded areas mark the remaining single
phase regions.

7.2.2 Dimensionality study

The chemical energy fits can be used within the framework of the multiphase-
field method to study the dynamic behaviour of NaX Ni1/3Mn2/3O2 during charge
and discharge. To study the interplay of surface reaction and bulk diffusion, a
simulation study with varying C-rates is conducted. In the following, C-rates are
varied as powers of 2, e.g. C-rate∈ [2−4, . . . ,2] = [C/16,C/8,C/4,C/2,1C,2C].
Diffusivities are assumed to be phase-wise constant. The spread in experimental
values is quite large, ranging from Dapparent = 10−8− 10−12 [cm2/s] in the P2
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7 Phase transitions in the layered oxide NaX Ni1/3Mn2/3O2

phase. The apparent diffusivity in the O2 phase is two to four orders of magnitude
slower. For our reference study, we set the diffusivity in the P2 phase as DP2 =

10−11 [cm2/s] [40, 227] and assume the diffusivity in the O2 phase to be three
orders of magnitude slower such that DO2 = 10−14 [cm2/s]. The rate constant for
charge transfer k0 is assumed to be ≈ 10−3 A/m2 [172].

A question that arises due to computational time and also in the context of includ-
ing small scale models on a larger scale (e.g. particle model in P2D approaches),
is finding an appropriate dimensionality reduction. The simplified cuboid par-
ticle can be reduced in two ways as sketched in Fig. 7.3. The cross-cut on the
left side corresponds to a symmetry reduction assuming c to be constant in the
third dimension. This is equivalent to a slab with infinite extension in this direc-
tion. The depth-averaged model on the right assumes that composition is mainly
a function of x and y while a homogenization by depth-averging can be applied
in the z-direction (i.e. c-axis) of the platelet.

cross-section depth-average

T

Figure 7.3: Dimensionality reduction from the three dimensional case (middle) to a 2D cross-section
(left) or by depth-averaging (right).

The results in Fig. 7.4 a) reveal some fundamental aspects caused by the inter-
play of surface reaction and bulk diffusion. For any C-rate, the voltage curves
deviate from the equilibrium voltage and form a hysteresis between charge and
discharge which originates from the fact that the applied potential is determined
by the sodium concentration at the surface [228]. The higher the insertion rate
in relation to bulk diffusion, the higher are the concentration gradients from the
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Figure 7.4: Comparison of a) fully resolved particle with b) 2D reduction to cross-section and c)
2D reduction through depth-averaging. For all cases, C-rates ∈ [2−4, ...,1,2] have been
computed. The three dimensional results in a) are shown in b) and c) as black dotted
lines for reference. Simulations are based on the quadratic energy fit.

surface towards the inner of the particle. The simulated hysteresis also depends
on the value of k0 which scales the energetic barrier for ion desolvation and inter-
calation. As long as surface reaction is the rate limiting step, the voltage plateaus
are simply shifted depending on the C-rate. When bulk diffusion becomes rate
limiting, plateaus are sloped and steps in the voltage curve are less pronounced
as more than two phases can coexist within one single particle. On discharge,
there is a dynamic capacity loss (also called apparent capacity loss [228]) once
the P2-LZZ phase has formed on all facets of the crystal. As the surface concen-
tration of sodium approaches 2/3, the lower cut-off voltage of 2.0 V is reached
and the insertion reaction breakes down. The effect is more pronounced during
charging due to the slow ion diffusion in the O2 phase. During charging, sodium
ions are continuously removed from the crystal which leads to a ring of the O2
phase forming at the active facets of the crystal. This hinders the extraction of
ions from the bulk of the particle and causes a blocking effect.
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7 Phase transitions in the layered oxide NaX Ni1/3Mn2/3O2

The comparison of dimensionality reductions in Fig. 7.4 b) and c) shows that only
the depth-averaged simulations yield similar results to the fully resolved simula-
tions. This can be explained by two factors. The strongly anisotropic diffusion
(D001 = 0) leads to a partial decoupling of the layers. Diffusion processes are not
influenced by the gradient of chemical potential in the c-direction. The interfacial
energy includes long-range interaction across the layers due to the gradient term
(Eq. (2.4)) which causes interfaces to align perpendicular to the diffusion direc-
tion. The deviation between the two dimensionality reductions originates from
the ratio between surface area to enclosed volume of the active material. For a
cuboid particle with lenght L, width L and height H, the volume is V = L2H. As
the cross-section corresponds to an infinite slab, the surface to volume ratio is
given by A/V = 2LH/L2H = 2/L. For the depth-averaging on the other hand,
we get A/V = (2LH + 2LH)/L2H = 4/L which matches the three dimensional
case as the facets at the top and bottom of the crystal do not contribute to inter-
calation and subsequent bulk diffusion. We conclude that depth-averaging is an
appropriate dimensionality reduction for the electro-chemical model employed
so far and, thus, the following parameter studies are based on this simplification.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
2

3

4

X

V

Figure 7.5: Comparison of logarithmic function fit (colored) with quadratic fit (black, dashed lines)
for C-rates ∈ [2−4, ...,1,2]. The black line represents the fitted equilibrium state.
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7.2 Electro-chemical model

The comparison of logarithmic function fits for the O2 and P2-2/3 phases with
quadratic functions in Fig. 7.5 shows that the resulting voltage profiles only de-
viate for filling fractions X ∈ [0.5,0.67] when the P2-2/3 phase is dominating
(gray shaded area). From a computational point of view, the two variants per-
form similar. Computational times are slighly longer for logarithmic functions
as the function evaluation involves more arithmetic operations. From a physical
point of view, the logarithmic functions seem more justified as they inhibit un-
physical composition values of c < 0.0 while the quadratic functions do not. For
this reason all following simulations are based on the logarithmic function fit.

7.2.3 Influence of diffusivity and charge transfer

The physical input values of DO2 = 10−14 cm2/s and k0 = 10−3 A/m2 which have
been used for simulations in the previous subsection were estimates based on
literature [40, 172]. Both parameters are now systematically varied in orders
of magnitude (DO2 ∈ [10−14,10−13,10−12] cm2/s and k0 ∈ [10−3,10−2]A/m2) to
quantify their impact on simulated voltage curves.

By first comparing C-rate studies with varying DO2 in Fig. 7.6, it becomes evident
that the bulk diffusion in the O2-phase only influences the high voltage plateau
upon charge. The continuous extraction of sodium ions leads to the formation of
a ring of the O2-phase which forms on the active facets and moves towards the
center of the particle. Due to the slow ion migration in the O2-phase, the remain-
ing ions in the bulk of the crystal are trapped which results in a fast increase of
overpotential until the upper cut-off voltage is reached. Even at very low C-rates
of below C/10 the upper voltage plateau is not observed for DO2 = 10−14 and
10−13 which contradicts experimental observations [17]. Furthermore, the hys-
teresis between charge and discharge is larger than expected which indicates that
the charge transfer coefficient should probably be larger.

The systematic variation of DO2 and k0 leads to the results shown in Fig. 7.7. As
k0 is increased, the overpotentials at low C-rates become much smaller. For high
charging rates, overpotentials are still high due to diffusion limitation.
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Figure 7.6: Influence of diffusivity in the O2-phase on overpotential for C-rates ∈ [2−5, ...,4,8]. Col-
ored lines represent simulations with DO2 = 10−14 cm2/s where yellow corresponds to
8C and dark violett to C/32. Simulations with DO2 = 10−13 cm2/s are drawn as gray
dashed lines and DO2 = 10−12 cm2/s as black dotted lines, respectively.

Overall, the experimentally observed rate performance in the P2-type layered
oxide NaX Ni1/3Mn2/3O2 [17] is much better than the predictions discussed so
far from phase-field simulations, even for DO2 = 10−12 cm2/s and k0 = 0.1 A/m2.
Possible reasons are

• The diffusivities DP2 and DO2 might be even higher in single crystals.

• The charge transfer coefficient k0 might be larger, indicating fast intercala-
tion dynamics.

• Physical effects that have been negleted so far are crucial to fully describe
intercalation in the layered NaX Ni1/3Mn2/3O2.

The following studies include the effect of elastic deformations as a result of the
anisotropic lattice expansion and contraction upon intercalation to test the third
hypothesis.
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Figure 7.7: Influence of diffusivity in the O2-phase and assumed charge transfer coefficient k0 on
voltage output for C-rates ∈ [2−5, ...2,4,8].
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7 Phase transitions in the layered oxide NaX Ni1/3Mn2/3O2

7.3 Electro-chemo-mechanical model1

7.3.1 Material-specific input data

The lattice constants of NaX Ni1/3Mn2/3O2 are listed in Table 7.2 for the four sto-
ichiometries that will be modeled as separate phases. They strongly depend on
the respective phase and site filling fraction of sodium ions. The normal eigen-
strains ε0

a and ε0
c have been calculated with respect to Na2/3Ni1/3Mn2/3O2, e.g.

ε0
a = (aO2−aP2-2/3)/aP2-2/3.

Table 7.2: Phase characteristics of NaX Ni1/3Mn2/3O2

Phases a [Å] c [Å] V [Å
3
] ε0

a ε0
c

(O2) Ni1/3Mn2/3O2 2.835 8.830 61.5 −1.9% −20.6%
(P2) Na1/3Ni1/3Mn2/3O2 2.848 11.338 79.6 −1.4% 1.9%
(P2) Na1/2Ni1/3Mn2/3O2 2.865 11.241 79.9 −0.8% 1.1%
(P2) Na2/3Ni1/3Mn2/3O2 2.889 11.120 80.4 0.0% 0.0%

Very strong anisotropy becomes obvious from the calculated values. The stiffness
tensors computed from DFT [229] are directly included as an input for MPF sim-
ulations. The following simulation studies are based on the assumption that all
deformations are elastic and occuring interfaces are coherent with an interfacial
energy of γαβ ≈ 0.1 J/m2 [36] The high resulting stresses are taken as an indica-
tor for degradation but explicit modeling of plasticity, fracture or dislocations is
out of scope of this work.

1 The content of this section is based on the article Daubner et al. [229]. Parts that are taken
verbatim from the publication have been marked. Note that the fitting parameters for chemical
energies are slightly different compared to the previous section as they were fitted to the data
from experimental measurements and DFT simulations.
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7.3 Electro-chemo-mechanical model

7.3.2 Kinetics of phase transformations

»The chemical energy fits can be used within the framework of the multiphase-
field method to study the dynamic behaviour of NaX Ni1/3Mn2/3O2 during charge
and discharge. To study the interplay of surface reaction (Eq. (2.39)) and bulk dif-
fusion (Eq. (2.25)) in combination with elasticity, a simulation study with varying
C-rates is conducted. Diffusivities are assumed to be phase-wise constant and are
approximated from GITT results in [229, Sec. 3.1] as DO2 = 8×10−14 cm2/s and
DP2 = 2× 10−10 cm2/s, respectively. All simulations are based on the function
fit including logarithmic terms as the match with experimental results was larger
in the equilibrium case.

For comparison, extreme current rate tests without formation cycles have been
performed at C/10, C/5, 1C and 5C (Fig. 7.8a-d). At slow rates (C/10 and
C/5) the potential profiles run as expected with large initial charge capacities
of 172 mAh/g for C/10 and 156 mAh/g for C/5, respectively. Under faster cur-
rent rates (1C and 5C), the performance drastically decreases to capacities of
113 mAh/g and 86 mAh/g. The electrochemical curves in Fig. 7.8c and d show
a drastic increase in overpotential and hysteresis. The poor rate performance,
especially at higher potentials can result from the low ionic diffusion coefficient
and poor electronic conductivity [230].

The phase transitions are exemplarily shown for 1C in the inset pictures in
Fig. 7.8e. The transition between P2 ordered states proceeds through a shrinking
core mechanism at 1C and 5C. At low C-rates, the shrinking core is replaced by
a wave-like front moving through the crystal in accordance with simulations for
LCO [172]. The first order phase transition between the O2 and P2-phase pro-
ceeds perpendicular to the layers which is a result of the strong lattice contraction
in the c-direction. In simulations where the elastic deformation is neglected, the
continuous removal of sodium ions leads to a ring of the O2 phase forming at the
active facets of the crystal. This hinders the extraction of ions from the bulk of
the particle and results in a blocking effect caused by the slow diffusivity in the
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Figure 7.8: C-rate tests performed (a)-(d) experimentally and (e) virtually for C/10, C/5, 1C and
5C. The black solid line in (a)-(d) are the relaxed OCV points from the GITT mea-
surement [229]. The black reference in subfigure (e) is the equilibrium potential. Inset
pictures show the local filling fraction of sodium ions for charging with 1C.
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O2-phase. As a result, the accessible capacity at all C-rates is heavily underes-
timated. The experimentally observed capacities can only be achieved through
layer-by-layer filling which is preferential for the minimization of stored elastic
energy. In all cases, phase transitions are initiated at corners and edges of the
crystal where the curvature is high.

The lattice mismatch between phases leads to stress hotspots at locations with
high concentration gradients. In brittle materials, the maximum tensile stress can
be used as an estimate for possible fracture which is the largest eigenvalue of
the local stress tensor. In our simulations, we find high tensile stresses close to
the top and bottom facets during charge and in the center of the particle during
discharge. The observed stress distributions are consistent with the observation
that cracks can form inside the particle and reach the surface through contin-
ued cycling [34]. The simulated voltage curves feature strong resemblance with
the experimentally obtained ones from which we conclude that the model cov-
ers the dominant effects and can be used for predictive material simulation. The
differences between the curves in Fig. 7.8a-d and Fig. 7.8e give some hints for
further model refinement in future works. Very low overpotentials are observed
in the range of X ∈ [0.33,0.5] which suggests that the charge transfer coefficient
k0 might be phase-specific. The deviation at high filling fractions X > 0.6 re-
sults from the energy fit and could be improved by inclusion of the P2’-phase in
the model. Furthermore, there is an asymmetry between charge and discharge
in the high voltage plateau ≈ 4.16 V which becomes apparent through the high
overpotential in the discharge even at low rates (Fig. 7.8a-b). To the best of our
knowledge the reason is not fully understood and could be studied by detailed
simulation studies.«
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7.4 Conclusion

The dynamic nano-battery model reflects the overall electrode behavior at various
C-rates surprisingly well. The inclusion of equilibrium data for phases combined
with two kinetic parameters, namely diffusivity and the rate constant for charge
transfer k0, yield a predictive model that covers phase transformations and result-
ing overpotentials at technically relevant charging rates. The simulation results
highlight that the inclusion of elastic deformation is crucial to capture the phase
transformation mechanism of the O2-P2 transition. Due to the large lattice mis-
match in the c-direction, the phase transformation proceeds perpendicularly to
the diffusion direction which enables higher capacity utilization at high rates.
Simulations which neglect the elastic energy contribution falsely predict a strong
blocking effect upon charge resulting from the slow diffusion in the O2-phase.
In future investigations, the established simulation framework could be used to
study the multi-particle behaviour during phase transformations to identify the
rate limiting step and improve the understanding of GITT measurements.

The detailed investigation of phase transformations in single crystals via the MPF
method is computationally challenging and direct inclusion of 3D particle sim-
ulations into larger scales would probably not be feasible in terms of computa-
tional times. However, the MPF studies can be used to identify regimes where
different mechanisms are rate-determining to formulate appropriate reduced par-
ticle models. As discussed above the O2-P2 first order phase transformation is
strongly influenced by elastic deformation of the host lattice in the c-direction
while diffusion proceeds perpendicular. As a consequence this phase transfor-
mation must be modeled at least in 2D to capture the relevant effects and get
a reliable prediction of overpotential. The regime that is dominated by charge
orderings (0.33 < X < 0.67 in NaX Ni1/3Mn2/3O2), on the other hand, is suffi-
ciently well described by the model formulation based on depth-averaging and
neglecting mechanical contributions. Thus, a one dimensional reduction of a coin
shape, reducing the first dimension by depth-averaging and second by rotational
symmetry, might be approriate to model hexagonal platelets in P2D models. This
discussion is similar to the dimensionality reductions sketched in Fig. 6.1.
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8 Anisotropic ion diffusion in
polycrystalline battery materials1

»Layered oxides are an important material class for lithium as well as sodium
ion intercalation batteries [228]. Their stoichiometry is described by the gener-
alized formula AX MO2, where A is the intercalated ion and M stands for one or
various transition metals such as Ni, Mn, or Co [15]. The crystal structure con-
sists of MO2 sheets with A-ions between these layers, thus resulting in strongly
anisotropic material properties on the single-crystalline scale. Ion diffusion is
limited to the layers in a defect-free structure due to the higher energetic barrier
for cross-layer hopping. This effect is mediated through crystal defects; however,
diffusivities still vary by orders of magnitude between the directions normal and
parallel to the layers in a real system, e.g., in LiCoO2 [10].

Apart from the crystal structure, ion transport in electrode particles is strongly
influenced by the morphology (i.e., structural appearance on the microscale).
Layered-oxide compounds based on nickel, manganese, and cobalt (NMC) are
state-of-the-art cathode materials for commercial lithium-ion cells in high-capacity
applications such as electric vehicles [232]. Typically, NMCs form hierarchical
structures of hundreds of primary crystals agglomerated in a spherical secondary
particle with a diameter in the range of 5–10 µm, sometimes referred to as a
meatball structure [18, 19]. Similar secondary morphologies can be obtained for
a wide range of layered-oxide cathode materials based on lithium and sodium as
the inserting ion [20, 22, 232, 233]. Ionic transport can be altered in polycrys-
talline materials through microstructure design such as tailoring crystallographic

1 The content of this chapter is taken verbatim from the article Daubner et al. [231].
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orientations [22, 233] or introducing nanoporosity [21]. Particles consisting of
radially aligned grains show excellent rate performance and improved cyclic sta-
bility [22, 233]. This can be attributed to less tortuous pathways for ion transport
and the increase of small-angle grain boundaries, which lead to an overall reduc-
tion of accumulated stress in grain boundaries. The same applies for the nano-
porous particle morphology, as the open-pored structure significantly reduces
diffusion paths within the active material compared to close-packed spherical
structures.

Secondary particles tend to form intergranular cracks if the primary crystals un-
dergo significant expansion and contraction [18]. This effect is strongly inter-
connected with the anisotropic nature of these materials because layered oxides
typically exhibit much stronger changes in the c-axis (perpendicular to the transi-
tion metal oxide sheets). As the primary crystals are typically randomly oriented,
stresses arise due to the misorientation of neighboring grains that can lead to frac-
ture and eventually disintegration of the secondary structure [18, 19, 36]. Accord-
ingly, small-angle grain boundaries are not strained as much because neighboring
grains expand in a similar way.

NMC agglomerates have been modeled by Xu et al. [19] to study the forma-
tion of intergranular cracks. Even though the polycrystalline nature is accounted
for, isotropic input parameters for diffusivity, Young’s modulus and volumetric
expansion, which do not reflect the physical properties on the crystalline scale,
were used. Additionally, a detailed investigation of the chemo-mechanical bulk
behavior of NMC811 single crystals has been conducted by Lim et al. [234] in
which anisotropic stiffness tensors and lattice expansions were computed from
density functional theory (DFT) and, subsequently, employed in phase-field sim-
ulations. The mechanical properties from DFT [234] were, furthermore, used to
study simplified secondary agglomerates consisting of 67 primary particles by
Taghikhani et al. [61].
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8.1 Materials and Methods

8.1.1 Multi-phase diffusion

In the context of the multiphase-field method, various phases α . . .N are de-
scribed by their local volume fractions φ = {φα ,φβ , . . . ,φN}. In this work, φ
is used to differentiate between grains with different orientations but with equal
chemical properties. Interfaces between neighboring grains are represented by
diffuse transition regions where the order parameter φα varies between 0 and 1.
The initial polycrystalline microstructures are created by solving the correspond-
ing multiphase-field evolution equations [36, 143, 158] including only interfacial
forces to create close-to-equilibrium interfaces. This work is based on a multi-
obstacle potential and a gradient formulation based on dual interactions [158].
More details can be found in our previous work [36]. For the remainder of this
study, we assume that no phase transformations occur during (dis-)charge. Future
works could encompass the effects of cation disorder and surface densification,
which has been observed in high-nickel NMCs [232] and LiNiO2 [27]. The ion
diffusion in a multi-phase system is given by [145]

∂c
∂ t

=∇ · (M(c,φ)∇µ) (8.1)

where M = ∑N
α Mα φα denotes the average mobility. The lithium content in in-

terfaces is described by an interpolation of phase-specific concentrations c =

∑N
α cα φα [145]. In the bulk of a grain, Eq. (8.1) reduces to

∂cα

∂ t
=∇ · (Mα(cα)∇µ) =∇ ·

(
Mα(cα)

∂ µ
∂cα ∇cα

)
(8.2)

=∇ · (Dα(cα)∇cα)

which yields the relation Mα = Dα/(∂ µ/∂cα) between mobility and chemical
diffusivity Dα . We employ this relation to correlate the ion mobility in simu-
lations with measured chemical diffusivities as (∂ µ/∂cα), which is given from

149



8 Anisotropic ion diffusion in polycrystalline battery materials

the free energy expression Eq. (8.4). For most applications, diffusion is assumed
to be ideal and isotropic, which results in a scalar diffusivity Dα that is phase-
wise constant. More generally, anisotropic diffusion is described by a second or-
der tensor Dα . Under the assumption that the diffusion potentials of co-existing
phases are equal at any point within the diffuse interface (quasi-equilibrium con-
dition [158]), Eq. (8.1) can be re-written in terms of an evolution equation for the
diffusion potential [145]

∂ µ
∂ t

=

[
N

∑
α

∂cα

∂ µ
φα

]−1(
∇ · (M(c,φ)∇µ)−

N

∑
α

cα ∂φα

∂ t

)
(8.3)

which is computationally beneficial. Eq. (8.3) is compatible with the simulation
of phase evolution as the last term accounts for mass conservation at moving
interfaces. This has been used in our previous study [36] while in this context,
all phases and grain boundaries are assumed to be stationary (∂φα/∂ t = 0, ∀α).

8.1.2 Anisotropic diffusion tensor

As discussed in the introduction, layered-oxides exhibit strongly anisotropic
properties in terms of diffusivity and lattice expansion. For orthorhombic mate-
rials with strong anisotropy, the diffusion tensor in the lattice coordinate system
can be described by a diagonal tensor with three independent entries. The lay-
ered structure of NMC results in transverse isotropy, i.e., in-plane diffusion is
isotropic with a diffusion coefficient of D||, while the diffusivity along the c-
axis direction D⊥ exhibits a much lower value. The diffusion tensor in material
coordinates is given by

D123 =




D|| 0 0

0 D|| 0

0 0 D⊥


 .
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Every grain α has an individual orientation that can be described by Euler angles
or quaternions with respect to the global coordinate system. Rotation of the diffu-
sion tensor from the material to the reference coordinate system can be achieved
via rotation matrices, e.g.,

Rα
x =




1 0 0

0 cosθ α −sinθ α

0 sinθ α cosθ α


 ,

Rα
y =




cosψα 0 sinψα

0 1 0

−sinψα 0 cosψα


 ,

Rα
z =




cosϕα −sinϕα 0

sinϕα cosϕα 0

0 0 1




which, in the XYZ-convention, yields the rotation transformation

Dα
xyz =R

α
z R

α
y R

α
x D123(R

α
x )

T (Rα
y )

T (Rα
z )

T .

Alternatively, the rotation can be computed based on quaternions that are more
robust for arbitrary rotations [161, 162] and, moreover, allow for the straight-
forward interpolation of intermediate configurations. Effective material prop-
erties are computed by a mixture rule, i.e., interpolation of the phase-specific
properties. Throughout this work, we employ a linear interpolation of diffusion
tensors D= ∑N

α Dα φα weighted by the local volume fractions φα . The discretiza-
tion is based on the finite difference scheme described in more detail in Chapter 5.
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8 Anisotropic ion diffusion in polycrystalline battery materials

8.1.3 Simulation parameters for high-nickel NMC

Lithium layered-oxides with high nickel content, such as NMC811, deliver high
capacities but also face stronger capacity fading due to mechanical degradation
and surface densification [232]. The cycling of LiNiO2 is accompanied by mul-
tiple phase transitions [26, 27] and indications for similar transformations have
been observed for NMC811 as well [232], although the voltage curve at low
(dis)charge rates does not feature distinct steps and plateaus (see Fig. 8.1). For
the purpose of this study, we assume an ideal solution behavior in the voltage
range 3.6−4.2 V. As a consequence, the chemical free energy and the resulting
chemical potential are expressed as

fNMC = µ	c+K ln(c)+K(1− c) ln(1− c), (8.4)

µNMC =
∂ fNMC

∂c
= µ	+K ln

(
c

1− c

)
. (8.5)

The measurable open-circuit voltage (OCV) is related to the difference in chemi-
cal potentials between the cathode and the anode [170], which in this case yields

VOC =−µCathode−µAnode

eNA
=−µNMC−µ	Li

eNA
=V	− K

eNA
ln
(

c
1− c

)
(8.6)

where the chemical potential defined in Equation (8.5) is used for the NMC cath-
ode, and we assume a lithium metal counter electrode with constant chemical
potential µ	Li. The reference voltage V	 = (µ	Li−µ	NMC)/(eNA) is set to 3.89 V,
which results in the blue curve in Fig. 8.1 for the equilibrium electro-chemical
potential of the cathode with respect to a lithium metal anode. e denotes the el-
ementary charge and NA the Avogadro constant. The ion mobility is assumed to
increase with concentration due to more random hops, while the crowding at high
concentrations leads to a decrease such that M ∝ c(1− c). The thermodynamic
factor ∂ µ/∂cα calculated based on Eq. (8.5) yields Kc−1(1− c)−1. Inserting
the mobility and the thermodynamic factor derived from the ideal solution into
Eq. (8.2) leads to a chemical diffusivity that is independent of c.
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Figure 8.1: Ideal solution fit for the equilibrium electro-chemical potential of NMC811 shown in
blue which is based on the datapoints pusblished in Noh et al. [232] (green markers).
Gray datapoints mark experimental voltage data for LiX NiO2 obtained at C/10 [27] for
comparison. Gray shaded areas mark the phase transformations observed in LiX NiO2.

Lithium diffusion is confined to the plane between transition metal oxide sheets
in a defect-free structure, and thus, is highly anisotropic. Reported values of the
apparent diffusion coefficient in NMC differ by orders of magnitude [16, 232],
which stems from the multiple challenges involved in aquiring reliable data.
Computation of the apparent diffusion from galvanostatic intermittent titration
technique (GITT) relies on the assumption of semi-infinite relaxation that is hard
to ensure for small primary crystals and high diffusivities. The fracture of ag-
glomerates and subsequent penetration of electrolytes lead to an increase in sur-
face, and consequently, an overestimation of diffusivities obtained from GITT
measurements [16]. Within this study, the in-plane diffusion coefficient is set
to D|| = 10−10 cm2/s, which is one order of magnitude faster than the apparent
diffusion measured in [16]. In the direction perpendicular to the planes, diffu-
sivity is assumed to be negligible (D⊥ = 0). At grain boundaries, a mixture rule
is applied to interpolate diffusion tensors of neighboring grains. To the best of
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8 Anisotropic ion diffusion in polycrystalline battery materials

our knowledge, the influence of grain boundary diffusion on ion transport within
polycrystals is not sufficiently understood. Due to a lack of reliable data, no
enhanced grain boundary diffusion is modeled although it is technically straight-
forward in the framework of the multiphase-field method [207].

8.2 Results

Lithium diffusion in NMC811 is simulated in two-dimensional domains for vary-
ing microstructures, as shown in Fig. 8.2. All secondary particles in this study are
assumed to be spherical with an outer diameter of 10 µm [232] (i.e., R = 5 µm).
Inspired by various works with textured, rod-like microstructures [22, 233, 235],
we assume a compact core with randomly oriented grains surrounded by a layer
of radially aligned grains. The radius r of the inner core is systematically var-
ied, starting from r/R = 1 which corresponds to a sphere of randomly oriented
grains (“gravel-NMC” [22]), to a ratio of r/R = 1/4 where the microstructure is
dominated by aligned grains. Randomized grain structures for the inner core
are created by Voronoi tesselation. All structures are pre-conditioned by the
multiphase-field method, in the sense that diffuse transition regions between or-
der parameters of indiviual grains are established by solving the corresponding
phase evolution equations [36, 143, 158]. The grain structures are assumed to be
stable at room temperature such that no microstructure evolution occurs during
cycling.

All structures are subjected to the same electro-chemical simulation setup where
we apply voltage steps of ∆V = 0.1 V, followed by a relaxation time of 1 h.
The voltage steps are applied via a Dirichlet boundary condition for c at the
surface of the particles employing the relation between the voltage and c in
Fig. 8.1. The characteristic relaxation time of the model setup is approximately
τ = R2/D|| = 0.7h. Due to the different microstructures, diffusional relaxation
within the secondary particles varies strongly as can be seen in Fig. 8.3.
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(a) r/R = 1 (b) r/R = 1/2 (c) r/R = 1/4

(d) r/R = 2/3 (e) r/R = 1/3

Figure 8.2: Initial grain structures of secondary particles.

While 1 h of relaxation time is sufficiently long for the strongly textured sam-
ples (r/R = 1/3 and r/R = 1/4) to reach an equilibrium state (∆c = 0), the other
samples are out of equilibrium. Figure 8.3a,d clearly show that the gravel-NMC
sample builds up larger concentration gradients over time as a result of slower
ion diffusion. This effect is also seen in the shifting of currents for the r/R = 1
sample in Fig. 8.4a. The spatial ion distribution is more inhomogeneous as some
grains block the direct diffusion path towards the center of the sphere, resulting in
a more tortuous pathway. The strongly aligned radial grains, moreover, provide
fast ion transport paths towards the inner of the particle. In both cases of aligned
grains (Fig. 8.3b,c), we observe an accumulation of ions at the grain boundary
that is a result of the tapered shape of these grains. All ions moving through
transition metal oxide sheets that end in a grain boundary need to diffuse further
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Figure 8.3: Relaxation of concentration gradients in comparison for the three microstructures with
r/R = 1, r/R = 1/2 and r/R = 1/4 (Fig. 8.2a-c). The concentration gradient ∆c is
measured as the difference between maximal and minimal concentration value. Spatial
concentration distribution is exemplarily shown for t = 4.2 h in subfigure a-c as denoted
by the black dotted line in subfigure d.

via the grain boundary. The particle with a ratio of r/R = 1/2 exhibits inhomo-
geneities in the ion diffusion that appear as rays in Fig. 8.3b. The effective ion
transport through the radially aligned grains is influenced by the microstructure
of the inner core. Strong misalignment at the transition between core and outer
ring leads to a blocking of transport routes and as a result some radial grains ex-
hibit stronger concentration gradients. This effect becomes negligible when the
textured grains dominate the overall morphology of the particle (Fig. 8.3c).
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8.2 Results

The composition gradients can, furthermore, be evaluated in terms of a vir-
tual potentiostatic intermittent titration technique (PITT) experiment. The non-
dimensional current resulting from the applied voltage step is calculated from the
change of average concentration in the particle

I =
1∫

φNMCdV

∫ ∂c
∂ t

φNMCdV (8.7)

where φNMC denotes the local volume fraction of all NMC grains which is, in this
case, identical to 1−φelectrolyte. After a transient regime, the current follows an
exponential decay which can be identified as linear regions in the logarithmic plot
Fig. 8.4a. The results in Fig. 8.4a underline that the microstructure influences
the global current (i.e. influx of ions in this case). The linear regions of the
various samples exhibit different slopes which hints at varying effective diffusion
coefficients. Employing a standard equation to compute the apparent diffusion
coefficient from PITT experiments [17, Eq. 2]

Dapparent =−
dln(I)

dt
16R2

π2 (8.8)

yields the results shown in Fig. 8.4b. Only regions where the current follows an
exponential decay fulfill the assumptions that have been used to derive Eq. (8.8).
Over the course of ten potential steps, the computed apparent diffusivities are
very reliable and the average values have been marked by dashed lines. It should
be noted that the noise in our evaluation becomes larger the faster the average
diffusivity is. This is an artefact of the small changes of ion concentration close to
equilibrium where the computed diffusivity values are dominated by trunctuation
errors.
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Figure 8.4: Virtual PITT experiment. The total influx of ions corresponding to the current resulting
from the potential steps is given in a). Apparent diffusion coefficients calculated with
Eq. (8.8) based on these currents are given in b).
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8.3 Discussion

The results highlight how crucially ion transport is affected by the microstruc-
ture of secondary particles for anisotropic materials. The spatial distribution of
composition which is observed in simulations (Fig. 8.5b and Fig. 8.5d) closely re-
sembles the experimentally obtained ion distribution in the work of Xu et al. [22].
Especially the ray like ion distribution in [22, Fig. 3a] can now be explained by
the interplay of misaligned grains in the randomly distributed core with respect
to the outer aligned grains.

(a) (b) (c) (d)

Figure 8.5: Spatial ion distribution in gravel-NMC (a, b) compared to rod-NMC (c, d). Subfigures
(a) and (c) are reprinted from Xu et al. [22] and have been published under the CC-BY
licence.

The evaluation of apparent diffusion coefficients sheds some light on the vast
range of values that can be found in literature. In this study, the obtained values
for Dapparent vary by a factor of 4, even though the input values for D|| and D⊥
are identical. It should be noted that the apparent diffusion coefficients calcu-
lated from Eq. (8.8) are too high in this case. Although D|| = 1× 10−10 cm2/s
was chosen, the apparent diffusion coefficient for rod-NMC is Drod-NMC

apparent = 8×
10−10 cm2/s, which is physically not possible. This results from the fact that
Eq. (8.8) has been derived for spherical particles while the simulations are only a
two-dimensional represention of spherical microstructures. This does not change
the qualitative differences between the obtained values as all could be corrected
by a geometry factor. However, this discussion underlines the importance to
question the assumptions that have been used for the derivation of formulas which
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8 Anisotropic ion diffusion in polycrystalline battery materials

are typically used for the evaluation of GITT or PITT experiments. The detailed
investigation unravels the influence of microstructure on the effective transport
properties which is only one of many parameters influencing experimental re-
sults. It should be acknowledged that any experimental measurement of diffu-
sivity can only capture the apparent diffusion in the specific microstructure and,
thus, diffusivity values should always be published in combination with a char-
acterization of particle morphology.

Furthermore, the simulation results suggest that grain boundary diffusion could
play an important role for the ion transport in dense secondary particles. In the
randomly oriented sample, an enhanced grain boundary diffusion would mediate
the blocking effect observed at interfaces between strongly misaligned grains.
Also in the rod-NMC with strong texture, grain boundaries play a vital role in
the overall transport as sketched in Fig. 8.6. Due to the tapered shape of radially

Figure 8.6: Role of grain boundaries in textured secondary particles. Ions travelling through transi-
tion metal oxide sheets that end in a grain boundary are forced to diffuse further into the
inner of the particle via grain boundary diffsuion.

aligned grains, many layers are cut by grain boundaries and, thus, the migrating
ions need to diffuse further into the particle via grain boundary diffusion. An
enhanced grain boundary diffusion would lead to faster transport in the whole
particle, while sluggish grain boundary diffusion would result in many trapped
ions and strong concentration gradients at grain boundaries. To the best of our
knowledge, the actual influence of grain boundaries on ion transport is not well
understood.
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8.4 Conclusion

The presented framework is well-suited to study the influence of particle mor-
phology in terms of size, distribution, and alignment of primary particles on key
battery performance measures such as the effective diffusivity. Through a virtual
PITT test, we are able to compute an effective diffusivity depending on the actual
microstructure.

Within this work, the phase-field method is employed to parametrize the poly-
crystalline structure of NMC agglomerates. While this study is based on virtually
generated structures, the regular grid employed to solve the partial differential
equations also enables the straightforward inclusion of image data. Furthermore,
the hierarchical particle morphologies investigated in this work are relevant for
other layered-oxide cathode materials, such as the P2-type NaX Ni1/4Mn3/4O2,
which is a promising material for sodium intercalation batteries [20]. This
material exhibits multiple plateaus in the OCV due to phase transitions. The
multiphase-field framework employed throughout this work naturally allows for
the computation of phase evolution within the grains such that future investiga-
tions will encompass the coupled effects of phase transformations, ion diffusion,
and mechanical degradation. A systematic study of electrolyte infiltration after
crack formation and the resulting effective diffusion coefficients becomes pos-
sible. By explicitly modeling the morphology dependence of ion diffusion, this
work contributes to bridging the gap between diffusivity values obtained at dif-
ferent scales, e.g., from first principle methods such as DFT [9, 13], as well as
from experimental methods such as GITT [16, 232] and PITT [17]. The proposed
framework enables the systematic study of the effective transport properties of
secondary particles, which is relevant for Newman-type models in which sec-
ondary particles are typically homogenized as isotropic spheres.«
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9.1 Summary

In this work, I have presented a multiphase-field approach which covers polycrys-
talline systems on the mesoscopic scale with a system size ranging from 100 nm
to 10 µm. The multi-phase formulation is based on the works of Steinbach et
al. [123], Nestler et al. [124] and Eiken et al. [158]. The isotropic chemical
model is based on the works of Choudhury and Nestler [145] and Aagesen et
al. [236]. The effective treatment of polycrystalline systems, phase nucleation
and coupling with elastic contributions has been adapted from the works of E.
Schoof [140, 146]. New aspects in the context of the MPF method are the com-
putation of strongly anisotropic fluxes and the consistent coupling with electro-
chemistry to describe ion intercalation in terms of measurable quantitites such as
the applied current and cell potential.

In summary, the model formulation includes the effects of

• curvature driving forces based on interfacial energies,

• anisotropic ion diffusion driven by electro-chemical potentials,

• ion intercalation described by Butler-Volmer reaction kinetics,

• anisotropic elastic deformation due to a change of the host crystal lattice,

• spontaneous phase nucleation and evolution

which is sufficient and at the same time necessary to describe the relevant pro-
cesses in intercalation battery materials.
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The energy functional as well as evolution equations have a strong thermody-
namic foundation which ensures the consistency for bridging from atomic reso-
lution to cell models in a multi-scale approach. All energetic contributions to the
energy functional as well as other aspects which are particular to the MPF method
have been validated and discussed in the first part of this thesis. The outcomes
not only underline the choice of model formulation for this work but might also
be helpful as a guidance for model selection and validation in other applications.
In the second part, the framework has been applied to three relevant cathode ma-
terials, namely LiX FePO4, NaX Ni1/3Mn2/3O2 and LiX Ni0.8Mn0.1Co0.1O2.

The study on LFP emphasizes the importance of considering agglomerates and
particle ensembles, as they behave differently from isolated single crystals and
impact battery performance. The phase-field models successfully capture spin-
odal decomposition as a relaxation mechanism and predict the suppression of
phase separation under sufficient driving force. The new model extends existing
works by incorporating multi-particle interactions in an agglomerate which leads
to a transition from inter-particle to intra-particle phase separation at increasing
C-rates. Furthermore, the influence of texture in polycrystalline samples is cru-
cial for mechanical degradation. Simulations reveal that stress hotspots depend
on the misorientation of neighboring grains, especially for strongly anisotropic
cathode materials like LFP.

The dynamic nano-battery model effectively represents electrode behavior at
various C-rates by incorporating equilibrium data and two kinetic parameters.
NaX Ni1/3Mn2/3O2 is used as an example to illustrate the thermodynamically
consistent fitting of Gibbs free energies for the phase-field method from DFT
calculations and experimentally obtained OCV data. For this material, elastic
deformation plays a crucial role in accurately modeling the phase transformation
mechanism of the O2-P2 transition, enabling the capacity utilization observed in
experiments.

The last application example on NMC highlights the influence of particle mor-
phology, including size, distribution, and alignment of primary particles, on key
battery performance metrics such as effective diffusivity. By using a virtual PITT
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test, an effective diffusivity can be computed based on the actual microstructure.
The framework enables the systematic study of effective transport properties of
secondary particles, bridging the gap between diffusivity values obtained from
different scales and methods. Furthermore, this allows for morphology optimiza-
tion through computational studies. In this specific example, the MPF method
is employed to parametrize the polycrystalline structure of NMC agglomerates.
Future studies could encompass stresses arising due to misorientation of neigh-
boring grains and phase transformations of the active material e.g. for LNO or
NaX Ni1/3Mn2/3O2.

These examples highlight various strengths of the proposed method, namely

• the ability to model polycrystalline agglomerates and

• capture the influence of particle ensembles on phase transformation;

• consistency of thermodynamic equilibrium states with DFT calculations as
well as experimental results;

• predictive model for rate performance of intercalation compounds and

• possibility to identify kinetic limitations;

• ability to extract effective properties (e.g. apparent diffusivity) from mi-
crostructure simulations.

In accordance with the literature discussed in Sec. 1.3, this works underlines that
the phase-field method is the method of choice to model intercalation materials
undergoing first-order phase transformations and charge orderings. This is also
key to improve Newman-type models for electrode materials with phase transi-
tions.
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9.2 Outlook

Like in any research endeavor, the pursuit of answers to specific research ques-
tions generates a multitude of new inquiries that emerge during the dedicated
examination of the topic. Looking at this thesis, I see many open research ques-
tions and challenges which might be addressed in future works.

The combination of the examples explored in the previous chapters would enable
detailed insight into the charging of an NaX Ni1/3Mn2/3O2 agglomerate, includ-
ing the effects of charge ordering, phase transformation, primary particle inter-
action and stresses arising from grain misorientation. Simulation studies in that
regard might help with the interpretation of GITT data for determination of dif-
fusion coefficients for multi-phase materials.

Furthermore, the framework’s potential extends beyond the specific materials dis-
cussed so far to most intercalation materials and maybe beyond. Advancing ther-
modynamic understanding and incorporation of quantitative material data is key
to the accurate description of many more battery materials such that, ideally, sim-
ulation results align closely with experimental observations. This could improve
models for graphite, LNO and other compounds.

The numerical implementation employed here is based on finite differences due
to the straightforward parallelization of larger simulation domains. Future works
might encompass numerically more advanced schemes. Another possible advan-
tage of regular grids is the simple inclusion of image data. Simulation studies
based on FIB-SEM data would enhance rate performance predictions for spe-
cific material systems. Furthermore, physics-informed neural networks can be
employed to solve nonlinear partial differential equations [237]. In combination
with experimental image data this can be used for model selection or advanced
parameter fitting through PDE-constrained optimization [238]. This becomes es-
pecially simple in a framework, where image data and physical simulations are
based on the same spatial discretisation, i.e. pixel- or voxel-based data.
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Ultimately, the multiphase-field method serves as a valuable tool for compre-
hending the meso-scale phase transformation mechanisms in battery intercala-
tion materials. This enhanced understanding can guide microstructure design and
improve approximations for coarse-grained cell models. While this work has ex-
plored connections between simulation methods at different length scales, there
is still progress to be made towards a comprehensive description of battery ma-
terials through a multi-scale simulation approach. The phase-field method holds
significant promise for bridging the scale from atomistic to cell models in the
simulation of battery materials. While studying phase transformations in single
crystals using the MPF method is computationally challenging, it helps identify
regimes where different mechanisms dominate, enabling the formulation of re-
duced particle models.

In conclusion, the phase-field method offers a powerful tool for investigating bat-
tery materials, providing insights into phase transformations, diffusion phenom-
ena, and morphology-dependent performance. Its successful application opens
avenues for further research and optimization in energy storage systems, con-
tributing to the development of more efficient and durable battery technologies.
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A Phase-field derivations

A.1 Two-phase energy functional

A two-phase system can be described by one order parameter φ ∈ [0,1]. The
corresponding energy functional for interfacial forces can be defined as

F (φ ,∇φ) =
∫

V
κ|∇φ |2 + fpot(φ)dV.

The potential energy is typically formulated in terms of a double-well or double
obstacle function

fwell(φ) = Ωφ 2(1−φ)2

fob(φ) = Ωφ(1−φ) ∀φ ∈ [0,1] and ∞ otherwise.

where the Ω scales the energetic barrier to be overcome. The evolution equation
for φ is given under the assumption of energy minimization with linear kinetics

φ̇ =−L
(

∂
∂φ
−∇ · ∂

∂∇φ

)(
fgrad + fpot

)

which finally leads to

φ̇ =−L
[
−2κ∇2φ +

∂ fpot

∂φ

]
,

∂ fpot

∂φ
=

{
well: 2Ωφ(1−2φ)(1−φ)

obstacle: Ω(1−2φ)
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A.2 Interfacial properties

Following the procedure in Cahn and Hilliard [111], we can derive the interfacial
properties of the diffuse interface. The equilibrium solution is given by φ̇ = 0
which yields for a 1D flat interface

2κ∇2φ =
∂ fpot

∂φ
→ κ

(
∂φ
∂x

)2

= fpot → dx =
√

κ/ fpotdφ .

The surface energy of a flat interface is given by the excess Gibbs free energy
across the diffuse region

γ =
∫ ∞

−∞
κ(∇φ)2 + fpotdx = 2

∫ ∞

−∞
fpotdx

= 2
∫ 1

0

√
κ fpotdφ =

√
κΩ

{
1/3 (well)

π/4 (obstacle)

While the obstacle potential leads to a sinus profile which has a finite interfacial
width, the well potential leads to a tanh function. For both cases the interfacial
width can be defined by the linear tangent fit in φ = 0.5 such that

lint =
1

dφ/dx

∣∣∣
φ=0.5

=

√
κ

fpot(φ = 0.5)
=

√
κ
Ω

{
4 (well)

2 (obstacle)

A.3 Functional derivatives
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B Gibbs simplex constraint

In multiphase-field models, the phase-field variable φα corresponds to the volume
fraction of the respective phase which makes it necessary to fulfill the Gibbs
simplex constraint

φ ∈ RN :
N

∑
α=1

φα = 1, 0≤ φα ∀α. (B.1)

If the sum constraint is fulfilled and all phases fractions are larger than zero, we
implicitely ensure φα ∈ [0,1] ∀α = 1, . . . ,N. Given that the initial conditions
comply with Eq. (B.1), there are two conditions that need to be fulfilled during
the evolution of phase-field variables, namely

∑
α

∂φα

∂ t
= 0 and 0≤ φα ∀α.

The first conditions is ensured by correct formulation of the evolution equations,
either by introducing a Langrange multiplier or by suitable choice of the mobil-
ity matrix which results in the sum over dual-interactions in Eq. (2.14). If the
choice of energy contributions can lead to nonphysical values of φα < 0, this vi-
olation of constraint Eq. (B.1) needs to be handled separately. Depending on the
discretization of time stepping, there are two possible options

1. Projection-based approach: We separate the total problem into two a
priori simpler problems where the first one is computation of the evolution
equations (e.g. φ new

α = φ old
α +∆t(. . .)) neglecting the additional constraints

and thus violation of φα ∈ [0,1] might occur. In a subsequent step, the
tuple of phase variables φ is projected back onto the admissible set (sort of
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B Gibbs simplex constraint

"pushed back into the Gibbs triangle"). Differences in pairwise mobilities
must be taken into account for this procedure to ensure correct treatment
of the underlying physics.

2. Holistic approach: The condition 0 ≤ φα enters the system of equations
as an algebraic constraint. For large numbers of phases N the problem
growths disproportionally with ∝ N2 as for every cell/ grid point N − 1
evolution equations plus N algebraic constraints must be computed.

While the projection method can be implemented in a fully explicit and local
manner (i.e. cell-wise computation of the prediction φnew

∗ and projection φnew),
the holistic approach needs global convergence of φ-values and all interdepen-
dend physical fields (e.g. concentration c).

Projection into the Gibbs triangle

For the binary case of φα = φ and φβ = 1− φ , it is sufficient to check for the
criterion φ < 0 and, if fulfilled, set φ = 0. Similarly, values of φ > 1 are pushed
back to φ = 1. This results in one line of (pseudo-)code

φ new = max(0,min(φ new,1)). (B.2)

For the general case of N phases, the procedure is more complicated and will be
illustrated over the Gibbs simplex of a triple junction. A detailed discussion of
various projection methods can be found in [239]. Far enough from the triple
junction (where ’far enough’ depends on the width of the diffuse interface), the
three-phase system should reduce to a binary interface or bulk (φα = 1). As-
suming φγ = 0, any change of phase-variables occurs along the αβ -side of the
triangle highlighted in green in Fig. B.1b. A violation of Eq. (B.1), e.g. φα < 0
(and thus φβ > 1) as sketched by circle 1, can essentially be handled by Eq. (B.2)
and the projection along the green arrow yields φα = 0 and φβ = 1. The second
scenario is well within the triple junction and again we assume violation of pos-
itivity by φα < 0. The projection back into the Gibbs triangle now depends on
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B Gibbs simplex constraint

ϕα = 1

ϕβ = 1 ϕγ = 1

ϕα < 0

ϕβ < 0ϕγ < 0

ϕβ < 0

ϕγ < 0

ϕα < 0

ϕγ < 0

ϕα < 0

ϕβ < 0

(a) Gibbs triangle with adjacent domains

α

β γ

ϕγ = 0

ϕγ =const.

Mαγ = 0

ϕβ =const.

Mαβ = 0

Mαβ = Mαγ

1 2

(b) Mobility-weighted projection operation

Figure B.1: Visualization of the Gibbs simplex for a triple junction as the purple triangle while do-
mains fullfilling the sum constraint but violating the positivity constraint φα ≤ 0 are
shown in light gray. The sketch can be interpeted as the top-view onto the energy land-
scape as shown in a). The mobility-weighted projection into the Gibbs simplex is shown
in b) for the case of a binary interface (1) and a general three-phase case (2).

the ratio of pairwise mobilities. In Fig. B.1b, the two limiting cases of Mαβ = 0
and Mαγ = 0 are shown together with the case of equal mobilities. The projec-
tion algorithm is constructed such that the phase with a negative value will be
set to zero φα = 0. Incorporation of mobilities is crucial to avoid nonphysically
fast evolution of ’slow’ phases. Assume that φγ is a highly immobile phase, any
violation of Eq. (B.1) occurs along the blue dashed direction. A projection per-
formed without consideration of mobility ratios results in the operation sketched
with a black arrow and would, thus, allow φγ to zig-zag its way along the lower
side of the triangle, resulting in faster kinetics accelerated by the Gibbs simplex
algorithm. The general N-dimensional procedure is sketched in the following
pseudo-code
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B Gibbs simplex constraint

Algorithm 1: Gibbs simplex implementation for N phases
for α = 1 . . .N do

if φα < 0 then
activateGibbsSimplex[α] = true;
count_violations++;

if (count_violations==0) then return; all phases fulfill φα ∈ [0,1]

done=false;
Mred=zeros[N,N]; Mred ∈ RN×N : reduction of Mαβ to phases violating

φα ≤ 0.
b=zeros[N];
while not done do

for α = 1 . . .N do
if (!activateGibbsSimplex[α]) then continue;
b[α]=−φα ;
Mred[α,α] = Mαα ;
for β = α +1 . . .N do

if (!activateGibbsSimplex[β ]) then continue;
Mred[α,β ] = Mαβ ;
Mred[β ,α] = Mαβ ;

solve(Mredx= b for x); any vecor-matrix solving algorithm, e.g. Gauss
elimination.

done=true;

for α = 1 . . .N do
φ new

α = φ new
α +Mαβ xβ

if (φ new
α < 0) then done=false;
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C Chemical free energies

The multi-phase field functional presented in Sec. 2.2 contains phase-dependent
chemical energies. The grand-potential formulation framework introduced by
Choudhury and Nestler [145] is based on the condition of common equilibrium
potentials among all phases, i.e. µα

i = µβ
i = · · · = µi. Direct computation of

the evolution of chemical potentials (pds are formulated in terms of K chemi-
cal potentials instead of K×N phase-dependent concentrations with additional
constraints) rests on the invertibility of µα

i (c
α
i ) to express cα

i as a function of µi.
Within this work, only two species are considered, namely charged ions (Li or
Na) and the corresponding vacancies. The simplification K = 2 leads to K−1= 1
independent chemical potentials which is the reason that we drop the subscript i.
Three possible energy formulations that fullfill the invertibility criterion are

f α
quad = Aα(cα − cα

min)
2 +Bα ,

f α
ideal = µ0,α cα +Aα cα ln(cα)+Aα(cmax− cα) ln(cmax− cα)+Bα ,

f α
log = (µ0,α −Aα)cα +Aα cα ln(cα)+Bα .

The corresponding diffusion potential is defined by ∂ f α/∂cα which yields

µquad = 2Aα(cα − cα
min),

µideal = µ0,α +Aα ln(cα/(cmax− cα)),

µlog = µ0,α +Aα ln(cα).
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C Chemical free energies

Inversion of these functions leads to an expression for the phase-dependent con-
centrations in terms of the diffusion potential

cα
quad(µ) =

µ
2Aα + cα

min,

cα
ideal(µ) = cmax exp

(
µ−µ0,α

Aα

)/(
1+ exp

(
µ−µ0,α

Aα

))
,

cα
log(µ) = exp

(
µ−µ0,α

Aα

)
.

The thermodynamic factor can be expressed as
(

∂cα

∂ µ

)

quad
=

1
2Aα ,

(
∂cα

∂ µ

)

ideal
=

1
Aα cmax

cα(cmax− cα)
cmax=1
=

1
Aα cα(1− cα),

(
∂cα

∂ µ

)

log
=

cα

Aα .

The chemical driving force for paiwise phase-transformation is given by

∆αβ = f α −µcα − f β +µcβ . (C.1)
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C Chemical free energies

For the three variants presented above, this yields

∆αβ
quad =−

(
1

4Aα +
1

4Aβ

)
µ2− (cα

min− cβ
min)µ +Bα −Bβ ,

∆αβ
ideal =− cmaxAα ln

(
1+ exp

(
µ−µ0,α

Aα

))

+ cmaxAβ ln

(
1+ exp

(
µ−µ0,β

Aβ

))
+ cmax(Aα −Aβ ) ln(cmax)+B

cmax=1
= −Aα ln

(
1+ exp

(
µ−µ0,α

Aα

))

+Aβ ln

(
1+ exp

(
µ−µ0,β

Aβ

))
+Bα −Bβ

=Aα ln(1− cα)−Aβ ln(1− cβ )+Bα −Bβ

∆αβ
log =−Aα cα +Aβ cβ +Bα −Bβ

=−Aα exp
µ−µ0,α

Aα +Aβ exp
µ−µ0,β

Aβ +Bα −Bβ
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