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Abstract— Grating-based X-ray phase-contrast and in
particular dark-field radiography are promising new imag-
ing modalities for medical applications. Currently, the po-
tential advantage of dark-field imaging in early-stage diag-
nosis of pulmonary diseases in humans is being investi-
gated. These studies make use of a comparatively large
scanning interferometer at short acquisition times, which
comes at the expense of a significantly reduced mechanical
stability as compared to tabletop laboratory setups. Vibra-
tions create random fluctuations of the grating alignment,
causing artifacts in the resulting images. Here, we describe
a novel maximum likelihood method for estimating this
motion, thereby preventing these artifacts. It is tailored
to scanning setups and does not require any sample-free
areas. Unlike any previously described method, it accounts
for motion in between as well as during exposures.

Index Terms— Image enhancement/restoration (noise
and artifact reduction), Image reconstruction - iterative
methods, X-ray imaging and computed tomography

I. INTRODUCTION

In grating-based X-ray phase contrast, a periodic (reference)
intensity pattern is generated in the detector plane, whose
distortion is then used to calculate the projected attenuation,
refraction, and small-angle scattering image of the sample.
This intensity pattern may simply be the shadow of a grating,
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but for higher sensitivities, the Talbot effect can be utilized [1],
[2], which creates an intensity pattern resembling the grating
at distinct propagation distances. Resorting to the Talbot effect
also has the advantage that it can be induced by a diffraction
grating, which preserves more of the source’s flux. The pitch of
this pattern is often much smaller than the detector’s resolution
and thus cannot be resolved directly. In this case, an additional
absorption grating is placed in front of the detector, translating
this intensity pattern to an intensity modulation depending on
the relative position of the gratings [3].

Standard X-ray tubes providing sufficient flux for med-
ical imaging, however, do not feature the required spatial
coherence; the intensity pattern would vanish due to focal
spot blur. This limitation is circumvented by placing a third
grating close to the source [4], effectively splitting it into an
array of line sources. Each aperture is sufficiently small to
create an interference pattern. Even though these are mutually
incoherent, the distance of these apertures is chosen so that
they all create the same intensity pattern, which makes the
technique accessible for clinical applications.

In the past decade, this idea has been developed from proof
of concept, first demonstrations of X-ray dark-field imaging [5]
to various trials on animal models, human samples, and even
patients [6]. Imaging of the lung has become one of the
most promising candidates for future clinical application, since
there is no non-invasive imaging modality available so far that
can probe the lung’s microstructure, and because its alveolar
structure causes a large amount of coherent ultra-small angle
scattering, which amounts to a strong contrast in the dark-
field image. After encouraging results in in vivo pigs [7] and
human cadavers [8], a clinical dark-field chest radiography
demonstrator system has been conceived and built [9], which
is also subject of this paper.

In order to achieve a field of view that is larger than the
gratings currently available, the interferometer has to be moved
with respect to the sample. By detuning the interferometer,
sampling the interference pattern and scanning the sample
is done simultaneously, moving either the sample [10] or
the entire interferometer including the detector [11]. This
comes at a cost: the alignment of the gratings is harder to
maintain during acquisition for a moving interferometer. For
thoracic imaging of patients, the scan has to be quick to avoid
motion artifacts from breathing, which makes it even harder
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to maintain the grating alignment.
Several methods have been proposed to remove artifacts

caused by random alignment inaccuracies. A recently pub-
lished method based on deep learning [12] requires repeated
training whenever the flat field changes, and is built upon
the assumption of a weakly scattering sample, which is not
valid for our setup. Methods based on principal component
analysis (PCA) [13], [14] require a fixed position of the sample
with respect to the interferometer. In [15], the authors provide
expressions for the artifacts resulting from a small deviation
from ideal stepping, and propose a removal procedure based
on the assumption that image and artifacts are uncorrelated.
Because sampling in a scanning acquisition scheme is highly
irregular, this approach is not compatible with scanning acqui-
sition either. The algorithm described in [16] does not have
that limitation: grating positions are estimated assuming that
the correct ones yield the most smooth attenuation and dark-
field images. Again, this requires an image that is entirely
uncorrelated with the artifacts. In [17], this issue becomes ap-
parent: describing an improved variant of the aforementioned
algorithm, the authors note that estimated grating positions
differ on whether differential-phase or dark-field images are
assumed to be smooth.

For scanning setups (as opposed to phase stepping), only
one procedure has been discussed so far [18]: rotation, offset
and curvature of the gratings are estimated by assuming that
the true grating position maximizes the correlation between
reference and sample raw image. This works best in sample-
free areas on the detector, which are not always available in
a clinical setting due to careful collimation.

A completely different approach solely relies on a least-
squares fit, extending the cost function of per-pixel phase
retrieval by per-exposure parameters. While being less robust,
this has the advantage that there are no additional assumptions
on the image. The most popular algorithm for that is the
one described in [19], which has successfully been applied to
grating-based X-ray imaging [20], [21]. Unfortunately, their
approach of alternating optimization for images and per-shot
parameters shows very slow convergence for data acquired
by scanning. An extension to more mechanical degrees of
freedom has been demonstrated [22], still relying on some
kind of alternating optimization. Only recently, a superior
optimization scheme for the very same cost function has been
suggested [23] for linear displacements in static interferome-
ters.

In this paper, we present a novel way of mitigating vi-
bration artifacts in a large, quickly moving scanning grating
interferometer. Formulated as a maximum likelihood problem,
it incorporates for the first time both motion in between as
well as during exposures, which is shown to be impossible
for stepping setups. Alternating optimization is replaced by
a gradient descent scheme, which is both faster for scanned
data sets and opens up further possibilities for optimization,
like quasi-Newton methods or preconditioning.

II. METHODS
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0j

φs
1j

G0 xG1
G2

y

Fig. 1. Setup and origin of vibration artifacts. The setup is a Talbot-
Lau interferometer, operated in scanning mode; the active area sweeps
across the detector as the interferometer is rotated upward around the
focal spot of the X-ray source. Without loss of generality, the third grating
G2 is subject to vibrations. If the grating itself is assumed to be rigid, two
degrees of freedom are particularly notable: a “tip” movement φs

0j and
a “tilt” movement φs

1j .

A. Image formation model
For a Talbot-Lau interferometer, the expectation value of

the intensity measured by a single detector pixel can be
approximated as [4]:

Ī = tft
(
1 + vfv cos

(
φf + φ

))
. (1)

Here, the interferometer itself is characterized by the so-
called flat field, i.e. the mean intensity tf , the visibility of the
reference pattern vf , and its position φf with respect to the
analyzer grating in units of p2/2π, where p2 is the pitch of
the analyzer grating. The influence of the sample is described
by its transmittance t as well as a visibility reduction v and
a shift φ of the reference pattern perpendicular to the grating
lines. If one neglects propagation effects within the sample, t,
v, and φ are related to projections of the sample’s attenuation
coefficient µ, linear diffusion (dark-field) coefficient ϵ, and
refractive index decrement δ along the beam path as follows:

t = exp

(
−
∫

µ(sn) ds

)
, (2)

v = exp

(
−cv

∫
ϵ(sn) ds

)
, (3)

φ = cφ∂g

∫
δ(sn) ds, (4)

where n is the unit vector from source to detector pixel,
cv > 0 and cφ > 0 depend on the grating pitch and the setup
geometry [24]–[26], and ∂g denotes the partial derivative taken
perpendicular to the grating lines.

B. Acquisition scheme and basic image reconstruction
In the following, we will assume a full-field detector whose

position is fixed with respect to the sample1. In order to be
able to reconstruct t, v, and φ, one has to take a series of
intensity measurements Ij with varying reference phases φf

j .
In a fringe scanning scheme [10], [27], this is done by slightly
detuning the interferometer such that there are moiré fringes

1Generalization to a detector fixed with respect to the interferometer by
shifting raw data and flat fields is straightforward.
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Fig. 2. Setup simulation study. Simulated (a) attenuation, (b) dark-field, (c) differential phase images, generated by a parallel-beam forward
projection of an extended FORBILD phantom. The overlay in (a) indicates some of the outlines of the four distinct materials (1) lung, (2) soft tissue,
(3) bone marrow, and (4) bone, whose assumed properties are listed in Table I.

perpendicular to the scanning direction. By taking acquisitions
while moving the interferometer across the sample, we obtain
the necessary variation of the reference phase (i.e. local grating
alignment) without moving the gratings with respect to each
other.

We obtain transmission t, differential phase φ, and dark-
field v by solving the following least-squares problem:

Īj = tfjt
(
1 + vfjv cos

(
φf
j + φ

))
, (5)

l
(
Ij
∣∣Īj) = (

Ij − Īj
)2

σ2
j

∝
(
Ij − Īj

)2
Īj

≈
(
Ij − Īj

)2
Ij

, (6)(
t̂, φ̂, v̂

)
= argmin

t,φ,v

∑
j

l
(
Ij
∣∣Īj) . (7)

Here, we use a data-weighted least-squares model l to approx-
imate the log-likelihood that arises from photon shot noise
(variance σ2

j ), neglecting electronic noise. The optimization
problem (7) can be solved directly; for an X-ray grating inter-
ferometer, this has been described first in [28]. By a change
of variables, we can reformulate (5) as a linear equation,

Īj = tfjt
(
1 + vfjv cosφ

f
j cosφ− vfjv sinφ

f
j sinφ

)
=: tfjt+ tfjv

f
j cosφ

f
jc+ tfjv

f
j sinφ

f
js. (8)

The resulting linear least squares problem,(
t̂, ĉ, ŝ

)
= argmin

t,c,s

∑
j

l
(
Ij
∣∣Īj) , (9)

can be solved directly by standard techniques from linear
algebra, such as LDL⊺ Cholesky decomposition. Then, the
visibility reduction and the differential phase are given by:

v̂ =
1

t

√
ĉ2 + ŝ2, φ̂ = atan2 (−ŝ, ĉ) . (10)

C. A model for mechanical vibrations
Experimentally, we observe “tip” and “tilt” vibrations of

the interferometer, whereas the gratings themselves are rigid,
see Fig. 1. Equivalently, these vibrations can be described as
a random displacement of the third grating G2: For the jth
exposure, the grating is shifted perpendicular to the grating
lines by φs

0j as well as rotated around the optical axis by
φs
1j . For small angles and taking the translational symmetry

of the gratings into account, this rotation is equivalent to a
local displacement of the third grating, which is proportional
to the location’s distance to the center of rotation, measured
along the grating lines. Accounting only for motion between
exposures results in the following model,

Īij = tfijti
(
1 + vfijvi cos

(
φf
ij + φs

0j + xiφ
s
1j + φi

))
, (11)

xi being the x coordinate of the ith pixel. The coordinate
system is chosen so that xi of a pixel from the left/right edge
of the detector is ±1.

Furthermore, motion may also happen during one exposure
lasting over a time T . We obtain

Īij =
1

T

∫ T/2

−T/2

tfijti
(
1 + vfijvi cosαij(τ)

)
dτ (12)

= tfijti

(
1 + vfijvi ·

1

T

∫ T/2

−T/2

cosαij(τ) dτ

)
(13)

where

αij(τ) := φf
ij + φs

0j(τ) + xiφ
s
1j(τ) + φi. (14)

Taking only uniform movement into account,

αij(τ) = αij + α̇ij · τ, (15)

this leads to a visibility reduction,

1

T

∫ T/2

−T/2

cos (αij + α̇ijτ) dτ = sinc

(
α̇ijT

2

)
cosαij , (16)
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where sincx := (sinx)/x. If the grating displacement α̇ijT
happening during one exposure is sufficiently small, we can
make the following approximation:

sinc

(
α̇ijT

2

)
≈ 1− 1

6

(
α̇ijT

2

)2

= 1− T 2

24

(
φ̇s
0j + xiφ̇

s
1j

)2
=: vs0j + xiv

s
1j + x2

i v
s
2j , (17)

where vs0, vs1, vs2 denote the motion-induced visibility reduc-
tion, grouped by its degree in x:

vs0j = 1−
(
T φ̇s

0j

)2
24

, vs1j = −
T 2φ̇s

0jφ̇
s
1j

12
,

vs2j = −
(
T φ̇s

1j

)2
24

. (18)

We would like to point out that this approach is valid for
higher-order vibration modes as well: vibrations whose dis-
placements can be described by nth degree polynomials of xi

result in 2nth degree visibility polynomials of xi.
For our setup, we found “tilt” vibrations to be slow enough

that a constant visibility drop vsj := vs0j is sufficient, yielding
the following model:

Īij = tfijti
(
1 + vfijv

s
jvi cos

(
φf
ij + φs

0j + xiφ
s
1j + φi

))
.
(19)

In order to obtain images t̂, v̂, φ̂ and vibration parameters
v̂s, φ̂s

0, φ̂
s
1, we fit this model to the measured intensities,

L (t,v,φ,vs,φs
0,φ

s
1) =

∑
i,j

l
(
Iij
∣∣Īij) , (20){

t̂, v̂, φ̂, v̂s, φ̂s
0, φ̂

s
1

}
= argmin

t,v,φ,vs,φs
0,φ̂

s
1

L. (21)

Notably, the solution is not unique. For any choice of λ ∈ R3,
λ0 ̸= 0, {

t̂, v̂ · λ0, φ̂+ λ1 + λ2x,
v̂s/λ0, φ̂s

0 − λ1, φ̂s
1 − λ2

}
is a valid solution of (21), since all occurrences of λ0, λ1, λ2

cancel out in (19). We select one solution by requiring

median (φ̂s
0) = 0, median (φ̂s

1) = 0, median (v̂s) = 1,
(22)

assuming that there are no long-term drifts between reference
and sample measurements, and that the motion in the sam-
ple scans follows the same random distribution as the one
observed in the reference scans.

D. Gradient-based optimization
In order to find the most likely images t̂, v̂, φ̂ and grating

motion parameters φ̂s, v̂s, we utilize that calculating the im-
ages while keeping φs,vs constant is computationally cheap.
We define a new cost function L̂ where this part of the
optimization has already been done,

L̂ (vs,φs
0,φ

s
1) = min

t,v,φ
L =

∑
i

min
ti,vi,φi

∑
j

l(Iij |Īij), (23)

(t̂, v̂, φ̂) = argmin
t,v,φ

L. (24)

As per the multivariable chain rule, its gradient is given by
(ξs being vs, φs

0 or φs
1)

dL̂

dξsj
=

∂L̂

∂ξsj
+
∑
i

(
∂L̂

∂t̂i

∂t̂i
∂ξsj

+
∂L̂

∂φ̂i

∂φ̂i

∂ξsj
+

∂L̂

∂v̂i

∂v̂i
∂ξsj

)

=
∂L

∂ξsj

∣∣∣∣∣
(t,φ,v)=(t̂,φ̂,v̂)

, (25)

since ∂L̂/∂t̂ = ∂L̂/∂φ̂ = ∂L̂/∂v̂ = 0. Conveniently, this
corresponds to first calculating the image and then taking the
partial derivatives of the log-likelihood with respect to vibra-
tion parameters. L̂ is minimized using the L-BFGS algorithm
[29], [30].

1) Subsampling: In order to increase performance, we may
take only a subset of all pixels into account. Using only every
nth detector column is approx. n times faster. This is similar
to assuming a detector that is just 1/n as wide as the actual
one. We found that e.g. n = 20 does not visibly alter the
resulting images.

There are two limitations to subsampling: First, aliasing
needs to be avoided: the value of the subsampled cost function
does not change when substituting one of the tilt displacements
φs
1j by φs

1j + w/n · 2π, w being the number of pixels in one
detector row, which is not the case for the full cost function.
Second, the estimation becomes more noisy, since it is fitted
to less measured data.

2) Preconditioning: For faster convergence, we aim to
rescale the problem so that the diagonal of its Hessian is
approximately one. The diagonal of the Hessian of L̂ is given
by

d2L̂

dξsj
2 =

∂2L̂

∂ξsj
2 +

∑
i

∑
ζi∈{ti,vi,φi}

∂2L̂

∂ξsj∂ζ̂i

∂ζ̂i
∂ξsj

. (26)

We will neglect everything but the leading term on the right
side. The accuracy of this approximation can be checked
empirically for a specific setup, but may be motivated by the
fact that in the limit of many exposures contributing to each
pixel, the dependency of the images on one single exposure’s
parameter ∂ζ̂i/∂ξ

s
j vanishes. Furthermore, we approximate

this expression by its statistical expectation value ⟨·⟩ (w.r.t.
the photon statistics) to obtain an expression akin to the Fisher
information in standard phase retrieval [31],

d2L̂

dξsj
2 ≈

∂2L

∂ξsj
2 ≈

〈
∂2L

∂ξsj
2

〉
=

〈
∂

∂ξsj

∑
i

∂L

∂Īij

∂Īij
∂ξsj

〉

=
∑
i

〈
∂L

∂Īij

〉
∂2Īij

∂ξsj
2 +

∑
i

〈
∂2L

∂Ī2ij

〉(
∂Īij
∂ξsj

)2

≈
∑
i

2

Īij

(
∂Īij
∂ξsj

)2

, (27)

since 〈
∂L

∂Īij

〉
=

〈
2(Īij − Iij)

Iij

〉
≈ 0, (28)〈

∂2L

∂Ī2ij

〉
≈ 2

Īij
. (29)
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TABLE I
MATERIAL PARAMETERS OF THE PHANTOM STUDY

µ (1/mm) δ (1/mm) ϵ (1/mm)
1 Lung 6.35 · 10−3 5.90 · 10−3 6.49 · 10−3

2 Soft tissue 2.58 · 10−2 2.41 · 10−2 0
3 Bone marrow 2.18 · 10−2 2.07 · 10−2 0
4 Bone 9.96 · 10−2 8.14 · 10−2 0

a

b

c

d

Fig. 3. Simulation study. The flat-field phase of one exposure is shown
in (a). Raw measurements of the phantom were simulated, of which (b -
d) depict three exemplary ones (positions in scan 52, 104, and 156).

To obtain an estimate that depends less on the initial guess, we
take the average over all possible grating positions, neglect the
influence of motion during the exposure (vs ≈ 1) and obtain

d2L̂

dφs
0j

2 ≈
1

π

∑
i

tfij t̂i
(
vfij v̂i

)2 ∫ 2π

0

sin2 φ

1 + vfij v̂i cosφ
dφ. (30)

Expanding this expression and similar ones for the remaining
variables up to the vanishing third order in vfij v̂i yields:

d2L̂

dφs
0j

2 ≈
∑
i

tfij t̂i
(
vfij v̂i

)2
=: hφ0j , (31)

d2L̂

dφs
1j

2 ≈
∑
i

tfij t̂i
(
vfij v̂i

)2
x2
i =: hφ1j , (32)

d2L̂

dvsj
2 ≈

∑
i

tfij t̂i
(
vfij v̂i

)2
=: hvj . (33)

This can be used to rescale the problem so that the diagonal of
its Hessian is nearly constant. I.e., instead of L̂, we optimize

M̂(φ̃s
0, φ̃

s
1, ṽ

s) :=

L̂
(
φ̃s

0 ⊘ (hφ0)
◦ 1

2 , φ̃s
1 ⊘ (hφ1)

◦ 1
2 , ṽs ⊘ (hv)

◦ 1
2

)
,

(34)

where ⊘ and ◦ 1
2 denote the element-wise division and square

root, respectively.

E. Dealing with sample motion and non-convexity

If the sample or a part of it is moving during acquisition,
which is inevitably the case for a human patient and the
relatively long acquisition time of a scanning setup, the
algorithm described above falsely attributes that inconsistent
transmission data to grating motion, often resulting in strong
additional artifacts. This is mitigated by excluding pixels
subject to motion, which can be identified by examining the
“intensity-normalized” residual ϵ̂i for each detector pixel,

ϵ̂i = min
ti,vi,φi

∑
j

l(Iij |Īij), (35)

before starting the optimization: if the transmission in said
pixel is inconsistent, the stepping curve is no longer a good
model for the measured intensities and ϵ̂i becomes large. Thus,
pixels where ϵ̂i exceeds some empirically established threshold
are excluded. We note that this choice is not crucial: discarding
some pixels that are not actually subject to motion will not
have a significant influence on the outcome, as long as enough
pixels of each shot are assumed to be valid. We take advantage
of the same redundancy in Sec. II-D when taking only a subset
of the detector’s columns into account. After determining the
vibration parameters, the final images are retrieved taking all
pixels into account.

The optimization problem stated in (21) is non-convex. We
found a combination of two measures suitable to avoid local
minima: First, we replace the phase image by its circular mean
during the first iterations:

φ← 1 · circmean(φ), (36)

circmean(φ) := arg

(∑
k

exp (iφk)

)
. (37)

This is similar to setting the transmission to unity in [32]. Sec-
ond, we start by optimizing φs, and add vs to the optimization
problem when φs has already mostly converged.

F. Inapplicability of the algorithm to a stepping
acquisition scheme

For a phase stepping acquisition scheme, there is no unique
solution when optimizing for per-exposure phase and visibility.
Suppose we found the correct solution locally minimizing the
log-likelihood. Then, the model intensities Îij fitting the data
optimally are given by

Îij = t̂i
(
1 + v̂sj v̂i cos

(
φ̂s
j + φ̂i

))
. (38)

The key difference to (19) is that the flat field does not change
from exposure to exposure. Hence, unlike for inhomogeneous
gratings used in a scanning acquisition scheme, distinguishing
between sample and flat field is not necessary. Just like in (8),
per-exposure and per-pixel quantities can be separated:

Îij = t̂i
(
1 + v̂sj v̂i

(
cos φ̂s

j cos φ̂i − sin φ̂s
j sin φ̂i

))
= t̂i + v̂sj cos φ̂

s
j · t̂iv̂i cos φ̂i − v̂sj sin φ̂

s
j · t̂iv̂i sin φ̂i.

(39)
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a b c

d e f

Fig. 4. Results of the simulation study. Retrieved attenuation (a, d), dark-field (b, e), and differential phase (c, f) images before (a–c) and after (d–f)
estimation of grating vibrations. The grayscales are as in Fig. 2.

By a change of variables,

ĉsj := v̂sj cos φ̂
s
j , ŝsj := v̂sj sin φ̂

s
j ,

ĉi := t̂iv̂i cos φ̂i, ŝi := t̂iv̂i sin φ̂i, (40)

we obtain an equivalent linear equation,

Îij = t̂i + ĉsj · ĉi − ŝsj · ŝi. (41)

We can construct many different solutions •′ that fit the data
just as well, e.g. these ones, parameterized by λ ∈ R:

ĉs′ = ĉs + λ, (42)

t̂′ = t̂− λĉ (43)

⇒ Î ′ij = (t̂i − λĉi) + ĉi
(
ĉsj + λ

)
− ŝsj ŝi = Îij . (44)

To illustrate these spurious solutions, we obtain expressions
for the resulting images by applying (10):

t̂′i = t̂i(1− λv̂i cos(φ̂i)), (45)
φ̂′
i = φ̂i, (46)

v̂′i = (1− λv̂i cos φ̂i)
−1

v̂i. (47)

Thus, this kind of optimization scheme is not suitable for
stepped data when grating motion during exposures is taken
into account. This is also the case for flat fields in scanning
setups, which are measured in a stepping acquisition scheme.

In theory, this situation also occurs in a perfectly uniform
scanning interferometer, when tfij and vfij are independent of j,

and the flat-field phase is separable,

φf
ij =: βi + γj . (48)

The latter is the case if the flat-field phase gradient in scanning
direction is constant. In practice, this is unlikely and may
easily be avoided by detuning the interferometer slightly.

III. RESULTS

A. Simulation study

We conceived a simulation study for a scanning X-ray
Talbot-Lau interferometer affected by mechanical vibrations
roughly resembling the clinical prototype. The simulation is
monochromatic at an energy of 45 keV. The distance from
source to the patient centre is 1.5m, the distance from source
to detector is 1.8m. We assume a detector having 1mm ×
1mm pixels, with a total size of 45 cm× 51 cm, resulting in
a field of view of 37.5 cm× 42.5 cm.

The interferometer features horizontal grating lines, and has
characteristic parameters cv = 1, cφ = 40 µm and a spatially
constant flat-field visibility vf = 0.3 and illumination tf =
2 ·104 photons. The active area of the interferometer is 7.5 cm
high and as wide as the detector. There are two moiré fringes
in the center, and 2.5 moiré fringes at the left and the right
edge of the grating. The active area moves 0.25 cm in between
two exposures and traverses the entire detector, resulting in 30
exposures of each detector pixel, and 209 exposures in total.
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a b c d

e f g h

i j k l

Fig. 5. Correction of vibration artefacts in images of a patient’s thorax (77 year old male). Retrieved attenuation (a–d), dark-field (e–h) and
differential phase images before (first column) and after (second column) estimation of grating vibrations. The third and the fourth column show
zoom-ins of the uncorrected and corrected images, respectively. Zoom-ins of the dashed regions are shown in Fig. 7. For the logarithmic dark-field
images, a window from − ln 1.05 to − ln 0.55 was chosen, for the differential phase images, it ranges from -0.2 to 0.2. The zoom-ins feature
narrower windows. The scan was performed at 70 kVp, with a total scan duration of 7 s, and an estimated effective dose [33] of 43 µSv. The field of
view is 37 cm×37 cm.
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The phantom is the FORBILD thorax phantom [34], ex-
tended by a refractive index decrement and a dark-field ma-
terial property, i.e. linear diffusion coefficient. Fig. 2 shows
the phantom data. Assumed material parameters are given in
Table I, which were calculated from [35] except ϵ, whose
choice is motivated by the values typically found in images of
patients. The flat-field phase and three exemplary raw images
are displayed in Fig. 3.

Simulating mechanical vibrations, φs
0j and φs

1j were drawn
from a normal distribution with µφ = 0, σφ = 2π/16. The
flat fields are assumed to be known exactly, i.e. contain neither
noise nor vibrations. The visibility reduction vs due to motion
was calculated by |1−|u||, where u was drawn from a normal
distribution with µu = 0, σu = 0.2. This choice corresponds
to vibrations that are approximately twice as large as what
we observe experimentally. The probability distribution of vs

was chosen to avoid negative visibilities, which are physically
impossible, as well as visibilities larger than one: due to the
choice of perfect flat fields, vibrations in the sample scan will
always result in a visibility reduction. In the reconstruction,
we assume max (v̂s) = 1 accordingly.

Fig. 4 shows the resulting images before and after applying
the proposed algorithm. Even without correction, there are no
visible artifacts in the transmission image for these simulation
parameters. The uncorrected dark-field image is not only
impaired by fringe-like artifacts, it is also quantitatively wrong,
since the vibration-induced loss of fringe visibility is falsely
interpreted as a dark-field signal. All visible artifacts from
vibrations are successfully removed, both in the dark-field
and in the differential phase image. A slight global ramp in x
direction is visible in the corrected differential phase image,
due to the ambiguity mentioned in Sec. II-C.

B. Experimental validation

After a first validation in simulations, we applied the
algorithm to a real scan of a patient. The setup is the one
described in [9], a scanning-type Talbot-Lau interferometer
with horizontal grating lines and an active area of 42 cm ×
6.5 cm, which is moved in vertical direction to reach a total
field of view of 42 cm×42 cm measured in the detector plane.
One scan takes 7 s, while acquiring 195 partially overlapping
frames, resulting in at least 24 exposures of each detector
pixel. Raw images are recorded using a flat-panel detector; the
rotating anode X-ray source is operated at 70 kVp. Regardless
of whether the vibration correction has been applied, the
images are corrected for the effects of Compton scatter, beam-
hardening, and dark-field bias [36] in regions with particu-
larly low transmission. Adapted Unique processing (Unique
X-ray image processing software, Philips Healthcare, The
Netherlands) was applied to attenuation images to obtain an
appearance akin to regular chest X-ray images [37]. The dark-
field image has been iteratively denoised to achieve spatially
constant noise variance [38]. The resulting images with and
without vibration correction are shown in Fig. 5. Unlike in the
simulation study, even the attenuation image exhibits some
faint, yet visible fringe artifacts. Most artifacts in all three
images are successfully removed; we attribute residual artifacts
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Fig. 6. Comparison of convergence speed of our novel algorithm with
the alternating optimization one used in [18], [20].

close to the heart, which feature a different spatial frequency,
to cardiac motion. In [39], we provide a detailed description
of their formation and an algorithm for their reduction. Some
of the residual artefacts at the right shoulder are presumably
caused by patient motion as well, as this area features large
gradients of the transmission. Besides, residual Compton scat-
ter would impair this particular area strongly as well, since the
illuminated area of the sample is changing particularly quickly.
There are phase ramps with discontinuities at the boundaries of
the G2 grating’s tiles, which are present in the uncorrected as
well as in the corrected images. These are caused by a single
random vertical offset of the whole interferometer during the
sample scan with respect to the reference scans. Because the
the vertical gradient of the flat-field phase is discontinuous
at the grating boundaries, the effect is most striking there.
Removing these artefacts is beyond the scope of this paper.

C. Evaluation of the convergence rate

Here, we demonstrate that our method outperforms alter-
nating minimization of the same loglikelihood [20], [21] in
scanning setups, and that the preconditioning described in
Sec. II-D.2 is effective.

In order to enable a performance-only comparison with the
previous algorithms as originally presented, we simulated and
reconstructed only linear displacements in between exposures
(φs

1 = 0, vs = 1). All other parameters of the simulated
measurement were the same as before. For our method, we
omitted the subsampling described in Sec. II-D as well as the
measures to avoid local minima sketched in Sec. II-E. Further,
we included an evaluation of the effect of rescaling the per-
shot parameters in our model.

Since both methods involve a similar computational effort
for each iteration, we compared the convergence rate by num-
ber of iterations, see Fig. 6. Except for very early iterations,
our method converges faster than alternating optimization
approaches, and rescaling the problem clearly accelerates
convergence.

The algorithm presented in [22] comprises an extension
of the one in [20] by rotational vibrations at the expense
of replacing the formerly accurate optimization step of the
per-shot parameters by an approximation. Thus, we expect
a behaviour similar to [20] at best. We are not aware of a
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a b c

Fig. 7. The effect on the dark-field image of modelling motion during
exposures (c) compared with correcting only motion between exposures
(b) and no correction at all (a). The region for these zoom-ins is marked
in Fig. 5.

a b c

Fig. 8. Evaluation of the performance of the algorithm presented in [18]
when reconstructing our computational phantom. (a) uncorrected image,
(b) corrected image, (c) corrected image, this time using a spatially
constant attenuation image. The grayscales are as in Fig. 4.

possible generalization of the initial PCA step in [21] or of
the algorithm presented in [23] that can be applied to scanned
datasets.

D. Comparison with other algorithms by image quality
1) Motion during exposures: None of the methods prior to

this work considers motion during exposures. To assess the
effect of this new feature on our images, we repeated the study
from Sec. III-B, but this time excluding vs from the fit. Fig. 7
displays the result of this approach. While the majority of
the artefacts originates from grating displacement and rotation
between exposures, there is a distinct amount of artefacts
rising from motion-induced visibility loss. The transmission
and differential phase images are not shown, because they do
not show a clear change in image quality.

2) Comparison against a previous method for images ac-
quired by scanning: The method described in [18] deserves
a closer examination, since it is to our knowledge the first and
so far only attempt to correct grating instabilities in a scanning
setup. In short, they assume random grating displacements
up to second order in x, which is equal to our model (19)

extended by an additional quadratic term x2
iφ

s
ij . Their model

does not include vibration-induced visibility loss, which might
not occur in that setup in the first place. However, the vibration
parameters are obtained in an entirely different way: For a
range of different grating positions, virtual intensity patterns
for the unloaded interferometer are calculated from the flat
field. Then, column-wise grating positions are determined so
that they maximize the correlation between the actually mea-
sured intensities and these simulated fringe patterns. Then, for
each exposure, the authors fit a polynomial to these column-
wise grating positions. Because the correlations are generally
distorted in presence of a sample, in particular by the sample’s
transmission, a robust fit is chosen for this step, which helps
dealing with these transmission-induced “outliers”.

When evaluating this algorithm using our simulated mea-
surements, we did not simulate any motion-induced visibility
reduction to allow for a more instructive comparison. Also,
the quadratic term in the fit was omitted, since the synthetic
data does not feature such a mode. The scaling parameter of
the bisquare loss function was chosen empirically. The results
are displayed in Fig. 8. Due to the correlations between the
sample’s transmission and the fringe pattern, the algorithm can
not accurately retrieve the grating positions in our simulation.
To illustrate this effect further, we varied the simulation,
this time using a constant attenuation image for raw data
simulation. Since there is no correlation between the fringe
pattern and the sample’s transmission in this setting, the
reconstruction is flawless.

In real patient images, we found that the performance of
the algorithm varies considerably from image to image. While
in some cases, the results look similar to our ones, some
images are reconstructed considerably worse, see Fig. 9 for
one example.

3) Reproducibility of measurements: Because one random
contributing factor is eliminated, grating vibration estimation
is supposed to increase the reproducibility of measurements.
To examine this feature, we carried out 32 measurements of
the Multipurpose Chest Phantom N1 “LUNGMAN” (Kyoto
Kagaku, Kyoto, Japan). It resembles a human thorax at least
in terms of transmission; the dark-field image shows spurious
signal from the bones, which is much stronger than the signal
observed from real lung tissue, and lacks realistic signal from
the lungs. In Fig. 10, we compare the dark-field images
computed from the initial scan against the average of the
images from all 32 scans, using different processing methods.
While both our method and the one described in [18] constitute
a clear improvement against no modelling of vibrations at all,
their differences are more subtle. We argue that a quantitative
comparison using phantom scans is tricky, since the variations
are dominated by photon shot noise and detector noise. This
is also why the deviations are smaller in the area of the lung,
which features a higher transmission than the surrounding area.
Moreover, noise propagation through phase retrieval is influ-
enced by the assumed vibration parameters. More precisely,
correctly guessing a reduced visibility increases the noise in
the retrieved dark-field signal.

4) Noise power spectra of blank scans: To overcome the
shortcomings of the measurements above and to provide a
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a b c d

Fig. 9. Dark-field image of a patient’s thorax (54 year old female, infected with COVID-19), corrected for grating vibration using (a, zoom-in c)
the alorithm described in [18] and (b, zoom-in d) our algorithm. The window of the dark-field images is − ln 1 to − ln 0.62. The zoom-ins feature
narrower windows.

a

−0.05 1.1

− ln(V0)
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−0.03 0.03
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c d

Fig. 10. Reproducibility of measurements in a phantom with human-like transmission properties. (a) exemplary dark-field image, (b–d) difference
∆V = V0 − 1/32

∑31
i=0 Vi between the first one of 32 dark-field images taken in consecutive scans and their average, processed using (b) no

correction for vibrations at all, (c) algorithm [18], (a, d) this work.

5 · 10−2 0.1 0.15 0.2 0.25 0.3

10−3

10−2

Spatial frequency (1/px)

A
m

pl
itu

de
(a

.u
.)

Uncorrected
Algorithm [18]
This work, w/o v̂s

This work

Fig. 11. Binned radial noise power spectra of empty dark-field images,
processed using different algorithms. The error bars mark one standard
deviation.

quantitative analysis, we analyzed noise power spectra of dark-
field images. Ideally, these would be taken from sample-free
areas of patient images. However, these are very small due
to careful collimination, and often overexposed. Instead, we
utilized empty scans. These scans were acquired after each of
the patient scans from the study in [9], respectively; here, we
take the first 50 of these into account. By separating the whole
image into its spatial frequencies, we can focus on the ones
associated with vibrations - namely the fringe frequency and
its first harmonic [15]. These noise power spectra are displayed
in Fig. 11. As can be seen, our method works reliably and
removes a much larger fraction of fringe artefacts than the one
presented in [18]. The artefacts’ spatial frequency is consistent
with our fringe size of about 14 px.

IV. DISCUSSION AND CONCLUSION

We propose an algorithm for correcting artifacts due to
grating motion occurring both during and between exposures.
We first demonstrated its functionality on simulated data, and
then successfully applied it to data from a state-of-the-art
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scanning Talbot-Lau interferometer. While this kind of setup
is generally more prone to vibrations than static setups, it
turns out that motion both in between and during exposures
can be accounted for. Because the algorithm is formulated
as an extension of standard least-squares phase retrieval,
implementation is straightforward. These findings may lead to
more relaxed stability constraints, and thus, easier construction
of future interferometers. While processing becomes much
more robust, this approach still has some requirements on
setup stability, namely uniform motion of small amplitude
during exposures. It has to be noted that while motion-induced
bias can be avoided, random grating positions and randomly
reduced visibility still result in an increased noise level that is
not even spatially homogeneous.

Most recently, an alternative large animal scanning system
was presented [40] where the pig is moved through a stationary
interferometer. While this avoids vibrations, it suffers from
additional artifacts due to sample motion. More importantly,
this concept seems impractical for patient imaging in upright
position, which is the preferred acquisition setup for chest
radiography.

Because our method builds solely upon a stochastic model
for the measured intensities, effects that are not included in the
model must be corrected for beforehand. In our case, these are
motion of the sample and Compton scatter. Compton scatter
can be estimated; regions affected by motion can be excluded
from the optimization problem. Unlike in this work, the source
spot is not fixed with respect to the sample in most scanning
setups. In that case, the beam paths (2)–(4) for the same
pixel change slightly during the scanning process, so there
is additional inconsistency in the measured intensities. Future
research will show to what extent the presented algorithm is
compatible with that approximation.
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